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Abstract

We propose an extension of the model by Yoshida et al. (1996), where de-

formation in the inner core is forced by preferential growth in the equatorial

belt, by taking into account the presence of a stable compositional strati-

fication. Stratification inhibits vertical motion, imposes a flow parallel to

isodensity surfaces, and concentrates most deformation in a shallow shear

layer of thickness ∼ B−1/5, where B is the dimensionless buoyancy number.

The localization of the flow results in large strain rates and enables the de-

velopment of a strong alignment of iron crystals in the upper inner core. We

couple our dynamical model with a numerical model of texture development

and compute the time evolution of the lattice preferred orientation of dif-

ferent samples in the inner core. With sufficient stratification, texturing is

significant in the uppermost inner core. In contrast, the deeper inner core
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is unaffected by any flow and may preserve a fossil texture. We investigate

the effect of an initial texture resulting from solidification texturing at the

ICB. In the present inner core, the deformation rate in the shallow shear

layer is large and can significantly alter the solidification texturing, but the

solidification texture acquired early in the inner core history can be preserved

in the deeper part. Using elastic constants from ab initio calculations, we

predict different maps of anisotropy in the modern inner core. A model with

both solidification texturing and subsequent deformation in a stratified inner

core produces a global anisotropy in reasonable agreement with seismological

observations.

Keywords: inner core, anisotropy, HCP iron, texturation, crystallization

1. Introduction

The inner core of the Earth exhibits a noticeable anisotropy in P-wave

velocity and attenuation (Poupinet et al., 1983; Morelli et al., 1986; Wood-

house et al., 1986; Souriau, 2007), which may reflect structural and dynamical

complexity. The main observation is a ∼ 3% anisotropy with cylindrical sym-

metry, with the fast axis aligned with the axis of rotation of the Earth or

possibly slightly tilted (Su et al., 1996). The degree of inner core anisotropy

is increasing with depth (Souriau, 2003), with no strong anisotropy in the

upper 150-200 km (Song and Helmberger, 1995), and perhaps still different

[but poorly constrained (Calvet et al., 2006)] seismic properties in an inner-

most inner core (Ishii and Dziewoński, 2002; Niu and Chen, 2008). There

is also a growing consensus on the presence of an hemispherical asymmetry

in the seismic properties of the upper part of the inner core (Tanaka and
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Hamaguchi, 1997). An anisotropy in inner core seismic attenuation is also

observed (Souriau and Romanowicz, 1996, 1997; Yu and Wen, 2006a) and

shows hemispherical variations (Garcia, 2002; Yu and Wen, 2006b) which

are reminiscent of the pattern of the anisotropy.

The seismic anisotropy of the inner core is most often interpreted as re-

sulting from the lattice preferred orientation (LPO) of elastically anisotropic

iron crystals. Processes for creating iron LPO in the inner core include so-

lidification at the inner core boundary (ICB) (Karato, 1993; Bergman, 1997;

Brito et al., 2002), plastic deformation (Jeanloz and Wenk, 1988; Karato,

1999; Wenk et al., 2000a; Buffett and Wenk, 2001), or stress-induced re-

crystallization (Yoshida et al., 1996). It is not, however, unlikely that a

combination of several mechanisms are - or have been - active. To what

extent solidification texturing can be reworked by subsequent deformation

might well be a critical point to understand the observed radial variations in

anisotropy and attenuation.

A number of deformation models have been proposed, including thermal

convection (Jeanloz and Wenk, 1988; Wenk et al., 1988, 2000a; Weber and

Machetel, 1992; Buffett, 2009), continuous deformation forced by aspherical

growth (Yoshida et al., 1996), and flow induced by the outer core magnetic

field (Karato, 1999; Buffett and Wenk, 2001; Takehiro, 2010). The viability

of most of these mechanisms depends on the thermal and chemical state

of the inner core. Apart from the mechanisms proposed by Buffett and

Wenk (2001) and Takehiro (2010), all involve a large radial flow (Jeanloz

and Wenk, 1988; Yoshida et al., 1996; Karato, 1999; Wenk et al., 2000a)

and will be inhibited by a stable stratification in the inner core (Buffett
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and Bloxham, 2000; Deguen and Cardin, 2009). The ’convective translation’

proposed recently by Monnereau et al. (2010) and Alboussière et al. (2010)

also requires an unstable stratification.

In this paper, we extend the model proposed by Yoshida et al. (1996) to

include the effect of a stable density stratification in the inner core. In section

2, we discuss the thermal and compositional state of the inner core before in-

troducing our dynamical model in section 3. We then concentrate our efforts

on connecting our geodynamic model with simulations of LPO development

in mineral aggregates using the viscoplastic self-consistent (VPSC) model of

Lebensohn and Tomé (1993). The mineralogical model we used is discussed

in section 4. From our numerical models of inner core deformation, we track

the deformation history of markers inside the inner core and calculate the

evolution of their LPO (section 5). The results are used in section 6 to

calculate the resulting P-wave velocity anisotropy.

2. Dynamical model

2.1. Thermal state of the inner core

The thermal state of the inner core results from a competition between

cooling at the ICB and extraction of the inner core internal heat. The inner

core would be stably stratified (subadiabatic) if its growth is slow enough to

allow thermal conduction to extract most of its internal heat. In contrast,

the inner core would develop an unstable thermal stratification, and may be

able to convect, if its growth has been fast enough. The thermal evolution of

the inner core has been investigated in some details elsewhere (Sumita et al.,

1995; Yukutake, 1998; Buffett, 2009; Deguen and Cardin, 2009, 2011) but,
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unfortunately, uncertainties on most important parameters (growth rate of

the inner core, thermal diffusivity, adiabat and Clapeyron slopes) are such

that it is not possible at present to conclude about the thermal stratification

of the inner core. Deguen and Cardin (2011) estimate that the inner core

would have developed a stable thermal stratification if its age is larger than

0.9 ± 0.6 Gy. This fully overlaps with inner core age estimates from core

thermal evolution models, e.g. 1 ± 0.5 Gy in Labrosse et al. (2001) and

1.15± 0.75 Gy in Nimmo (2007), which implies that whether the inner core

is subadiabatic or superadiabatic is not known. Here, we focus on the case

where the inner core has a stable subadiabatic thermal stratification, keeping

in mind that this is one of two equally likely possibilities.

2.2. Chemical stratification in the inner core

Additional density stratification can come from compositional stratifica-

tion in the inner core. Light elements present in the core partition upon freez-

ing, which implies that the composition of the outer core evolves in response

to inner core solidification. Since the composition of the newly crystallized

solid at the ICB is linked with the outer core composition by partition coef-

ficients, the temporal evolution of the composition of the outer core results

in a compositional stratification of the inner core. Gradual enrichment of

the outer core in light incompatible elements can result in a stable chemical

stratification in the inner core.

We assume here that the outer core is well-mixed, has negligible chemical

interactions with the mantle, and that the partition coefficients are constant.

Chemical diffusion being negligible in the inner core, the evolution of the

concentration of the light element c`(t) in the liquid outer core is given by
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the Rayleigh distillation law (e.g. Albarède, 1996),

c`(t) = c`0

[
1− Mic(t)

M0

]D−1

, (1)

where c`0 is the concentration in the core prior to inner core nucleation, D is

the partition coefficient (the ratio of the concentration in the solid to that

in the liquid), Mic the mass of the inner core, and M0 the mass of the core.

For simplicity, we approximate Mic(t)/M0 ≈ (ricb(t)/rc)
3. The light element

concentration c in the solid at the ICB at time t is given by Dc`(t), which

implies a compositional profile in the inner core given by

c(r) = Dc`0

(
1−

(
r

rc

)3
)D−1

. (2)

The resulting radial density variations profile is

∆ρc(r) = αcρ[c(r)− c(0)] = αcρDc
`
0

(1−
(
r

rc

)3
)D−1

− 1

 , (3)

≈ αcρD(1−D)c`0

(
r

rc

)3

, (4)

where ρ is the mean density in the inner core and αc = (1/ρ)(∂ρ/∂c) is the

compositional expansion coefficient. Equation (4) shows that the chemical

stratification is approximately proportional to D(1−D): stratification would

be maximum if D = 0.5, and is small if the distribution coefficient is either

small or close to one.

The magnitude of the stratification depends on the nature and abun-

dance of the light elements present in the core. Recent models favour O, Si

and S as the most plausible alloying elements. Ab initio calculations of the

partitioning behaviour of O, Si and S by Alfè et al. (2002) suggest that Si
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and S both partition weakly (with similar partition coefficients, DSi,S = 0.8)

while, in contrast, O partitions strongly, DO = 0.02 (values of D are con-

verted from molar ratios to mass ratios). Alfè et al. (2002) estimate that the

outer core contains 5.6 wt. % of Si and/or S and 2.5 wt. % of O, in good

agreement with the geochemical model of Allègre et al. (1995), and that the

inner core contains 4.4 wt. % of Si/S and negligible amount of O. Badro

et al. (2007) used additional constraints from experimentally measured com-

pressional wave velocity of Fe-Si, Fe-S and Fe-O alloys. In their model, S is

unlikely to be a major component of the inner core, the outer core contains

2.8 wt. % Si and 5.3 wt. % O, and the inner core is constituted of 2.3 wt.

% Si and 0.1 wt. % O.

With the distribution coefficients calculated by Alfè et al. (2002), the

chemical models discussed above, and αc ' −1 [see Deguen and Cardin

(2011)], we find that the density stratification associated with Si/S is much

larger than that associated with O. We therefore model the inner core as

a Fe-(Si,S) binary mixture with a distribution coefficient equal to 0.8. The

difference in density across the inner core is ∆ρc ∼ −2 to −5 kg m−3. This

is probably an upper bound because departures from the assumptions be-

hind this derivation would result in a weaker stratification. As noted by

Alboussière et al. (2010), variations of the effective partition coefficient result-

ing from changes in the efficiency of melt extraction by compaction (Sumita

et al., 1996) and interdendritic convection (Loper, 1983; Worster, 1997) in

a mushy layer at the ICB may significantly decrease the magnitude of the

chemical stratification.

7



2.3. Dynamic equations for a stratified inner core

We build a model for a thermally and chemically stratified inner core

according to the two previous subsections. Under these conditions, the in-

ner core stays at rest except if external forcings, such as pressure forcings

(Yoshida et al., 1996) or magnetic forcings (Karato, 1999; Buffett and Blox-

ham, 2000; Buffett and Wenk, 2001), are imposed. Here, we follow the ideas

of Yoshida et al. (1996) and focus on how differential growth of the inner core

generates motion in a stratified inner core. For simplicity, we only consider

the chemical contribution to the density stratification.

2.3.1. Equatorial growth of the inner core

The growth of the inner core is primarily due to its cooling by action of

convective motions in the liquid outer core, also responsible for the geo-

dynamo generation. The predominance of the axial geomagnetic dipole

throughout the Earth’s history demonstrates the permanent key role of the

Coriolis force in the fluid motion in the outer core. Thermal convection in

the outer core is made of columnar vortices aligned with the axis of rotation.

This quasi geostrophic flow, first predicted by Busse (1970) and later con-

firmed by numerical or experimental means (Zhang, 1992; Dormy et al., 2004;

Cardin and Olson, 1994) has a strong influence on convective heat transfer

(Aubert et al., 2008; Aurnou et al., 2008).

Accordingly, it is expected that heat is extracted more efficiently from the

equatorial band than from the polar regions of the inner core, which results in

faster crystallization in the equatorial band. Following Yoshida et al. (1996),

we model this by introducing a spherical harmonic degree 2 dependence in
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the rate of crystallization of the inner core u,

u(θ, t) = uicb(t)

(
1− S2

3 cos2 θ − 1

2

)
, (5)

where θ is the colatitude and S2 is a dimensionless parameter that measures

the differential growth. In calculations by Aubert et al. (2008), the crystal-

lization rate at the equator is approximately twice larger than that at the

poles, which is equivalent to S2 = 2/5.

Preferential growth of the inner core in the equatorial belt produces an

out-of-equilibrium topography, which, if not sustained by heterogeneous so-

lidification, would relax toward hydrostatic equilibrium. The problem is very

similar to that of post-glacial rebound, and the timescale of viscous relax-

ation τη can be calculated by extending to spherical geometry the classical

calculation of topography relaxation in a semi-infinite domain (e.g. Turcotte

and Schubert, 2002). We find

τη =
19

5

η

∆ρicbgricb
'
( η

1018 Pa.s

)(1221 km

ricb

)2

× 40 year, (6)

where η is the dynamic viscosity of iron in the inner core, and g the acceler-

ation of gravity. Since the relaxation timescale is very small in comparison

to the timescale of boundary conditions evolution and inner core growth,

the inner core topography must be in a quasi-steady state, with the growth

rate anomaly balanced by the continuous relaxation of the ICB topography

(Yoshida et al., 1996). The radial velocity at the ICB is therefore prescribed

to be equal to the opposite of the anomalous solidification rate.

This gives boundary conditions for the radial velocity; boundary condi-

tions for the horizontal velocity are given by the assumption that the ICB is

a shear stress free boundary.
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The newly crystallized material has a solute concentration c(ricb(t)) given

by (2).

2.3.2. Equations of motion in a growing inner core

We consider an incompressible fluid of constant viscosity η in a spherical

domain (r < ricb). The Boussinesq approximation is valid and the momentum

equation is written as

0 = −∇p+ αcρ̄cg + η∇2v, (7)

where p is the dynamic pressure, αcc = (ρ − ρ̄)/ρ̄ is the density perturba-

tion from the static density field. Inertial terms have been neglected as the

Reynolds number of the flow is vanishingly small. Taking the curl of the

Stokes equation (7) gives

0 = −αcρ̄g
′

η

∂c

∂θ
eφ + ∇2∇× v, (8)

where g has been assumed to be linear in radius, and g′ = dg/dr. Taking

advantage of the incompressibility of the velocity field, we can introduce

the poloidal (P ) and the toroidal (T ) scalars to describe the velocity field

v = ∇ × (Tr) + ∇ ×∇ × (Pr) which are projected onto the basis of the

axisymmetric spherical harmonics (P, T ) =
∑

(Pl(r), Tl(r))Y
0
l (θ). Taking

er ·∇×(8) and er · ∇×∇×(8), we find

D2
l Pl =

αcρ̄g
′r

η
cl and D2

l Tl = 0, (9)

where cl is the degree l spherical harmonic component of the solute concen-

tration field and Dl is the Laplacian operator defined by ∂2

∂r2
+ 2

r
∂
∂r
− l(l+1)

r2
.

At the ICB, we deduce from (9) and (5) that the toroidal flow is zero and

that, consequently, the velocity field is fully described by its poloidal part. To
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write (9) in a dimensionless form, we scale the length by ricb(t), the velocity

by uicb(t) and the solute concentration by the difference of concentration

∆c(t) = c(ricb) − c(0) between the concentration at the top of the growing

inner core and the initial concentration at the center. The poloidal part of

(9) becomes

D2
l P̃l = Bc̃l, (10)

where ˜ stands for the dimensionless variables and B, the dimensionless buoy-

ancy number, is defined as

B =
αcρ̄g

′∆c(t)r3
icb(t)

ηuicb(t)
. (11)

B increases significantly during the growth of the inner core as a result of

the combined effect of increasing stratification (∆c ∝ r3
icb and g ∝ ricb),

decreasing solidification rate, and increasing length scale ricb, which makes

the viscous transfer of momentum less efficient. If we assume that the inner

core radius increases as the square root of time [a reasonable first order

approximation (Buffett et al., 1992)], B evolves as r7
icb. Since αc is negative,

B is negative, which corresponds to a stably stratified system. The actual

value of B in the inner core suffers from very large uncertainties on the solid-

state viscosity of iron in those conditions (Yoshida et al., 1996; Buffett, 1997;

Van Orman, 2004), with published estimates ranging from 1011 Pa.s to 1021

Pa.s. With ∆ρc = −5 kg m−3 and uicb = 3 × 10−11m.s−1 (1 mm/yr), the

present value of B (noted B∗ = B(t̃ = 1)) would be

B∗ = −106 ×
(

1018 Pa.s

η

)
. (12)

We explore a large range of B∗ value, going from B∗ = 0 [no stratification,

Yoshida et al. (1996)] to B∗ = −109.
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2.3.3. Light element transport equation

The solute transport equation is written as

∂c

∂t
+ v ·∇c = 0. (13)

Taking into account the inner core secular growth is done naturally with our

choice of length scale which is the time dependent radius of the inner core

ricb(t). The radial domain is defined by r̃ = r/ricb(t) ∈ [0, 1] with a fixed

boundary at r̃ = 1. The time derivative in the new coordinate system R̃ is

written (Crank, 1984) as

∂

∂t

∣∣∣∣
R̃

=
∂

∂t

∣∣∣∣
R
− ∂r̃

∂t

∣∣∣∣
R

∂

∂r̃

∣∣∣∣
t

=
∂

∂t

∣∣∣∣
R

+ r̃
uicb
ricb

∂

∂r̃

∣∣∣∣
t

. (14)

This allows the equation of solute transport to be written in the new refer-

ential as
∂c̃

∂t̃
=
uicbτic
ricb

(r̃ ẽr − ṽ) · ∇̃c̃− ∆̇c τic
∆c

c̃, (15)

where time has been scaled by the age of the inner core, τic, and other

variables as in section 2.3.2.

The first term in the RHS of equation (15) comes from the moving bound-

ary transformation and corresponds to an apparent inward advection in the

new reference frame. The last term in the RHS comes from the time de-

pendence of the prescribed concentration scale ∆c(t) (∆̇c stands for the time

derivative of ∆c). If we assume that the inner core radius grows as the square

root of time, and that the compositional evolution takes the simplified form

(4), then (uicbτic)/ricb = 1/2 and (∆̇c τic)/∆c simplifies to 3/2.

2.3.4. Numerical implementation and simulations

We implement the two equations (10,15) into a meridional plane, with

a spectral description for the horizontal dependence and a finite difference
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Figure 1: Time evolution of the flow induced by preferential growth of the inner core at the

equator for two values of the dimensionless buoyancy number, B∗ = 0 (no stratification)

and B∗ = −106 (stratified flow). All subfigures are divided into four quadrants, which

correspond to non-dimensional times t̃ = 0.25, 0.5, 0.75 and 1, starting clockwise from the

upper right quadrant; the radius of each quadrant reflects the value of ricb(t). a) and d):

Contours of the stream function ψ. b) and e): von Mises equivalent strain rate ε̇vM, in

Myr−1. c) and f): Non-dimensional light-element concentration χ = c/∆c(t̃ = 1). The

computations were made with S2 = 2/5, which corresponds to a solidification rate two

times higher at the equator than at the poles.
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scheme for the radial description. The radial mesh can be contracted in the

outermost part of the domain for large B. Boundary conditions at r̃ = 1

are : ∀l 6= 2, P̃l = 0, P̃2 = S2, and ∀l, ∂2P̃l

∂r̃2
= [2 − l(l + 1)]P̃l (shear stress

free condition), c̃0 = 1 and ∀l 6= 0, c̃l = 0. The non linear term ṽ · ∇̃c̃ is

evaluated in the physical space at each time step. A semi-implicit Crank-

Nickolson scheme is implemented for the time evolution of the linear terms

and an Adams-Bashforth procedure is used for the non-linear term. We

typically use time steps of order 10−4.

We start the simulations with a small inner core (r̃ = 0.1) and let evolve

the system to the final time t̃ = 1. We track some fluid particles to com-

pute their trajectories and their stress tensor ε̇ by bilinear interpolation in

the physical space. These quantities are saved and used as inputs for the

mineralogical model.

3. Results of dynamical simulations

Fig. 1 presents snapshots of the stream function ψ (computed from the

poloidal component of the axisymmetric velocity, ψ = r sin θ ∂P
∂θ

), the von

Mises equivalent strain rate ε̇vM, and the solute field. The isocontours of ψ

show the flow pattern. ε̇vM is a measure of the deviatoric strain rate (Tomé

et al., 1984; Wenk et al., 2000a), and can be used to highlight the regions of

intense deformation.

3.1. Neutral stratification, B = 0

The case B = 0 (Fig. 1 left column) corresponds to no back reaction of

the buoyancy force on the flow. Our numerical results are in good agreement

with the analytical model derived by Yoshida et al. (1996). The absence of
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Figure 2: Trajectories within the inner core. Twenty samples are introduced at the inner

core boundary at different colatitude, θ = 5, 25, 45, 65 and 85 degrees, and different times,

t̃ = 0.1, 0.5, 0.7, and 0.9. (a) model with no stratification (B∗ = 0), the time t̃ = 0.7 is

omitted for clarity. (b) model with stratification (B∗ = −106).
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stratification allows the flow to develop into the whole inner core. Continuous

relaxation of the dynamic topography results in a flow from the equator to

the poles with a quadripolar pattern. The average strain rate is rather small

ε̇ ≈ 3×10−18 s−1 ≈ 0.1 Gyr−1 - it takes 1 Gyr to accumulate a deformation of

10% in the material sample - and the deformation induced texture is expected

to be weak (section 4), except at the center of the inner core where strain

rate can reach values of 1.5 Gyr−1 during the first stage of the inner core

growth.

Note the strong deformation of the initially spherical iso-compositional

surfaces (Fig. 1c). This motion is also apprehended by the trajectories of

samples set at the ICB and transported by the flow during its later evolution

as shown in Fig. 2a.

3.2. Stratified flows, B∗ = −106

Calculations for a stratified flow (B∗ = −106) are presented in Fig. 1

(right column). As explained in section 2.3, the magnitude of B increases

from 0 to B∗ during the growth of the inner core. The effect of the strat-

ification is negligible early in the inner core history, but becomes rapidly

important as the inner core grows and B increases. The stratification tends

to prevent radial motion because deformation of isodensity surfaces induces

restoring buoyancy forces. As the stratification strengthens, the flow is forced

to follow isodensity surfaces and becomes quasi-horizontal. The radial pen-

etration is strongly reduced and the flow is progressively confined in a thin

shear layer below the ICB, of thickness δ. An important consequence of the

localization of the flow is that the magnitude of the associated strain rate

becomes much larger, as can be seen in Fig. 1e.
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Figure 3: Evolution of the thickness δ of the uppermost stratified layer with the dimension-

less buoyancy number B∗ for different values of differential growth parameter S2 (Eq. 5).
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Momentum is transmitted deeper in the inner core by viscous entrain-

ment, and the flow takes the form of a vertical series of elongated cells with

vorticity of alternating sign. The specific geometry of the flow results from

the competing effects of the stratification, which inhibits vertical motion,

and of the symmetry of the forcing, which implies that the horizontal veloc-

ity must vanish in the equatorial plane and on the N-S axis. In the vicinity

of the equatorial plane and of the N-S axis, the flow is deflected and forced

to be locally vertical. Stratification limits this vertical flow which is forced to

rotate further until it becomes horizontal again (the deformation of the iso-

density surfaces acts as a localized source of vorticity). The thickness of the

resulting cells depends on the magnitude of the local stratification. The as-

sociated strain rate decreases rapidly with depth and is mainly concentrated

in between the two first shallower cells.

Fig. 2b shows the trajectories of different particles introduced at the sur-

face of the inner core at different time during its growth. The trajectories

are quasi horizontal below the ICB, with a maximum of amplitude at mid

latitude. Deeper within the inner core, the particles follow the return flow

associated with the viscous counter cell. At polar and equatorial latitudes,

as well as in the deepest part of the inner core, the radial and horizontal dis-

placement are equivalent and the particles follow almost circular trajectories.

3.3. Scaling laws

Simulations with different values of S2 and B∗ have been performed. The

magnitude of the flow velocity is found to be proportional to S2 but, perhaps

surprisingly, the dimensionless depth δ̃ of the alternating layers does not

depend on S2 when S2 < 1. As shown in Fig. 3, the thickness of the layer
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varies with B only and we find δ̃ ≈ 1.6|B|0.20±0.01 from a fit for 3 < log |B| <
9.

This scaling can be explained as follows. The thickness of the first cell

corresponds to the depth at which the buoyancy forces resulting from the

deformation of isodensity surfaces balance the viscous forces, by the mean of

pressure, and prevent any further vertical motion. The uppermost cell has a

dimensionless horizontal elongation equal to 1 and a dimensionless thickness

δ̃. From the dimensionless incompressibility equation, the horizontal compo-

nent of the velocity in the layer ṽθ is O(S2 δ̃
−1) since the vertical component

ṽr imposed by the boundary condition is of order S2 (S2uicb in dimensional

unit). The vorticity ∇ × v is then O(S2 δ̃
−2

). The dimensionless vorticity

equation (8) writes

∇2∇× v = B
∂c̃

∂θ
eφ, (16)

from which a scaling for δ̃ can be derived. The scaling of ∂c̃/∂θ can be found

by considering the deformation by the flow in the upper cell of a newly crys-

tallized, initially horizontal, isocompositional surface. This isocompositional

surface is progressively tilted by the flow and, at a time δt̃ after solidification,

the resulting horizontal compositional gradient is of order

∂c̃

∂θ
∼
∣∣∣∣∂c̃∂r̃
∣∣∣∣ ṽr δt̃ ∼ S2 δt̃ (17)

since |∂c̃/∂r̃| = O(1) and ṽr = O(S2). It reaches a maximum in the transition

zone between the two upper cells, at a depth δ̃, where vorticity changes sign.

If the deformation velocity is small compared to the mean growth rate of

the inner core, material crystallized at the ICB is buried to a depth δ̃ in a

time δt̃ = δ̃/ ˜uicb = δ̃. The maximum horizontal compositional gradient is
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then ∂c̃/∂θ = O(S2 δ̃). Using this scaling in equation (16), we find that the

thickness of the shear layer scales as

δ̃ ∼ |B|−1/5, (18)

which has no dependence in S2. The scaling exponent estimated above from

the numerical simulations is in very good agreement with the value 1/5 pre-

dicted by the scaling analysis.

The scaling law (18) implies that the strain rate in the uppermost shear

layer scales as

ε̇ ∼ ũθ

δ̃
∼ S2 |B|2/5. (19)

This shows that the the magnitude of the strain rate increases with increasing

stratification, in agreement with our simulations. The 2/5 power is small but

the buoyancy number can easily reach values large enough to concentrate

the deformation in the uppermost layer. With B∗ = −106, δ ∼ 100 km and

ε̇ ∼ 0.015 Myr−1. This corresponds to a cumulative horizontal deformation of

more than 100% in a material sample during its burying below the dynamical

superficial layers. Note that since B is an increasing function of time, δ

decreases and ε̇ increases with time.

4. Mineralogical model

It is generally accepted that the stable phase of pure iron at inner core

conditions is hexagonal close packed (hcp) (e.g. Mao et al., 1990; Ma et al.,

2004; Dewaele et al., 2006; Tateno et al., 2010). The presence of light elements

in the core is said to stabilize cubic phases at high temperature (Vočadlo

et al., 2003; Dubrovinsky et al., 2007; Côté et al., 2008). Kuwayama et al.
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(2008) also argued that a transition from an hcp to an fcc phase could explain

the presence of the innermost inner core (Ishii and Dziewoński, 2002; Niu and

Chen, 2008), although the range of composition at which this can occur is

tight. For the sake of simplicity, in this paper, we will restrict ourself and

assume that the inner core is composed of pure hcp-Fe.

4.1. Plastic properties

To this day, the determination of active deformation mechanisms in iron

at core conditions remains an active field of research (Poirier and Price,

1999; Wenk et al., 2000b; Merkel et al., 2004; Miyagi et al., 2008; Liermann

et al., 2009) and more experiments will be needed to properly constrain those

parameters.

At room temperature, plastic deformation in hcp-Fe is controlled by a

dominant (0001)〈1210〉 basal slip, with a contribution of {1010}〈1210〉 pris-

matic slip, mechanical twinning, and other minor systems (Wenk et al.,

2000b; Merkel et al., 2004). At higher temperature, twinning is inhibited

and pyramidal 〈c+a〉, {2112}〈2113〉 becomes more dominant (Miyagi et al.,

2008). It allows an easier rotation of the Fe grains. In agreement with those

experimental results, we assume easy basal slip and allow significant contri-

bution of prismatic and pyramidal 〈c+a〉 slip (Table 1).

LPO in Fe polycrystals were simulated using the Los Alamos viscoplastic

self-consistent (VPSC) code of Lebensohn and Tomé (1993). The VPSC

model treats each grain as an inclusion in a homogeneous but anisotropic

medium that has the average properties of the polycrystal. It is intermediate

between the Taylor model that enforces strain compatibility and the Sachs

model that is based on stress equilibrium. One to one grain interaction
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Slip type Plane Direction CRSS

Basal (0001) 〈1̄21̄0〉 0.5

Prismatic {101̄0} 〈1̄21̄0〉 1.0

Pyramidal 〈a〉 {101̄1} 〈1̄21̄0〉 3.0

Pyramidal 〈c+ a〉 {2112} <2113> 2.0

Table 1: Slip systems and their critical resolved shear stress (CRSS) of hcp-Fe used in our

simulations.

or intergranular heterogeneities are not accounted for directly, but using a

mean field approach. As deformation proceeds, crystals deform and rotate to

generate preferred orientation. By applying different critical resolved shear

stresses (CRSS) to slip systems, the model will favour one deformation mode

over another. It was already used for inner core modelling by Wenk et al.

(2000a) and Buffett and Wenk (2001) and has been reliable for simulating

textures of many low symmetry materials (Wenk, 1999) and hcp metals (e.g.

Lebensohn and Tomé, 1993; Proust et al., 2010).

For each deformation step, we extracted the velocity gradients for mark-

ers placed inside our models (Fig. 2). Those gradients are used as inputs

for simulating texture evolution of a 3000 grains Fe aggregate using VPSC.

Orientations in the aggregates are characterized by an orientation distri-

bution function (ODF). The ODF is a probability function for finding an

orientation and it is normalized over the whole orientation space to unity.

An aggregate with a random distribution function has a probability of one

for all orientations, or one multiple of a random distribution (m.r.d.). If

preferred orientation is present, some orientations have probabilities higher
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than one and others lower than one. Three dimensional ODF are not easy

to visualize. Here, we will display pole figures of the 〈a〉 and 〈c〉 directions.

In order to match the meridional representation of the flow, we place the

z-direction (axis of rotation of the Earth) at the top of the figure, the x-

axis (cylindrical radial direction) at the right of the figure, and the y-axis

(azimuthal direction) at the center.

4.2. Initial texture

Simulations were run with both a random initial texture and a solidification-

induced initial texture. It seems quite likely that a texture can be frozen-in

at the ICB during solidification (Bergman, 1997; Brito et al., 2002), in partic-

ular if the inner core grows dendritically, as predicted by theoretical analysis

(Fearn et al., 1981; Shimizu et al., 2005; Deguen et al., 2007). Dendritic

crystallization of hcp materials typically leads to crystallographic preferred

orientation with the basal planes of the crystals parallel to the gradient of

temperature (e.g. Bergman et al., 2000, 2003). Therefore, we created dis-

tributions such as those in Fig. 4 to be used as a pretexture induced by

crystallization, where 〈a〉 and 〈c〉 axes are preferentially aligned perpendicu-

lar and within the plane of the ICB, respectively.

4.3. Time evolution of texturing

Fig. 5 shows an example of outputs of the dynamical model with B∗ =

−106, for a polycrystalline aggregate introduced at time t̃ = 0.5, colatitude

θ = 45◦, and radius 0.96. Our calculations assume an incompressible fluid

and thus
∑

i ε̇ii = 0. For this particular tracer, deformation is dominated

by the xx and zz components of the deformation tensor with ε̇xx ≈ −ε̇zz.
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Figure 4: Pretexture due to solidification at the ICB, expressed using pole figures of the

〈a〉 and 〈c〉 directions, for colatitudes of 5, 45, and 85◦. Linear scale, equal-area projection,

contours in multiples of a random distribution (m.r.d.).
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Figure 5: Trajectory, components of the strain rate tensor (ε̇xx, ε̇yy, ε̇zz, ε̇xy), rigid body

rotation (ω̇y), and accumulated deformation (εxx, εyy, εzz, εxy) and rotation (ωy) vs. time

for a particle introduced at time t̃ = 0.5, colatitude 45◦, and radius 0.96.

Figure 6: Pole figures of the 〈a〉 and 〈c〉 directions illustrating the LPO simulated for an

hcp-Fe aggregate introduced in the inner core time t̃ = 0.5, colatitude 45◦, and radius 0.96

(Fig. 5), assuming a crystallization texture as in Fig. 4. Contour scale in m.r.d. White

color indicates regions where the pole density is larger than in the color scale.
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This corresponds to simple shear applied at 45◦ with respect to the Earth

reference frame, in the direction of the flow (Fig. 5).

The rigid body rotation of the aggregate is given by ωy. This component

is important in magnitude and induces a rotation of the aggregate around

the azimuthal axis that affects the orientation of the texture.

The corresponding texture evolution for an hcp-Fe aggregate with an

initial solidification texture (Fig. 4) is shown in Fig. 6. Texture develops

very quickly when the aggregate is in the upper layer and migrates toward

the pole. At time t̃ = 0.6, texture is fully developed, with the a and c-axes of

the aggregate mainly distributed along directions parallel and perpendicular

to the N-S direction, respectively.

5. Evolution of lattice preferred orientation during inner core growth

5.1. Neutral stratification, B∗ = 0

In this case, we do not account for stratification, and flow can develop in

the whole inner core (section 3.1, Fig. 2a). At the center of the inner core, the

deformation rate is large enough to modify the orientation of the aggregate at

the beginning of the inner core formation. Later on, and consequently further

out in the inner core, deformation becomes weaker and is not sufficient to

induce any texture development.

With a random initial texture, LPO is significant only at the center of the

inner core (Fig. 7a, aggregates introduced at t̃ = 0.1). The inner core itself

could be seen as a sample in a pure shear deformation with a compression in

the equatorial plane and an extension along the polar axis. This explains why
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Figure 7: Pole figures of the 〈a〉 and 〈c〉 directions representing present day LPO in hcp-

Fe aggregates introduced at colatitudes θ = 5, 45 and 85◦ and at times, t̃ = 0.1 and

0.9 for models with or without stratification and with or without crystallisation texture.

Corresponding trajectories can be seen in Fig. 2. Linear scale, equal-area projection,

contours in multiples of a random distribution (m.r.d.), axis as in Fig. 6. White regions

on the pole figures indicate region with intensities higher than in the colour scale.
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the samples crystallized at t̃ = 0.1 all show the same LPO. The distribution

of c-axes shows a pronounced maximum 10◦ to 15◦ away from the equatorial

plane while a-axes concentrate toward the poles and a secondary maximum

at colatitudes of 60◦. The 10◦ to 15◦ deviation of c-axes from the equatorial

plane may be surprising at first, but is related to the activity of pyramidal

〈c+ a〉 slip.

With solidification texturing as in Fig. 4, the initial textures are only

weakly affected by the flow, as can be seen in Fig. 7b. The solidification

texture is preserved in the outer part of the inner core (aggregates introduced

at t̃ = 0.9 in Fig. 7b), and only aggregates in the central part of the inner

core (introduced at t̃ = 0.1 and t̃ = 0.5 in Fig. 7b) have been significantly

reworked. Close to the N-S axis, plastic deformation is compatible with the

initial LPO and reinforce the alignment of the a-axes with the N-S axis (e.g.

t̃ = 0.1, θ = 5◦).

5.2. Stratified flow, B∗ = −106

For a stratified flow, and assuming random initial textures, aggregates

tend to develop strong textures in the outer part of the inner core (Fig. 7c)

where plastic deformation is maximum (Fig. 1e). Near the center (r < 0.5,

aggregates introduced at t̃ = 0.1), LPO is weak and the signature of plastic

deformation cannot be detected. This can be attributed to the small value of

the buoyancy number and the small corresponding strain rate (Eq. 19) early

in inner core history. As the inner core grows and stratification strength-

ens, deformation is gradually localized in the upper inner core where LPO is

acquired by simple shear in a relatively short time scale. There is no signifi-

cant deformation in the deeper inner core (Fig. 1e), and the deep texture is
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preserved.

In the uppermost shear layer at mid latitude, the c-axes tend to orient

along the radial direction, perpendicular to the shear plane. The a-axes are

oriented preferentially in the horizontal plane with a primary orientation in

the direction of the shear and a secondary direction at 60◦ off the meridional

plane. In the deep inner core, rigid body rotation and simple shear change

these orientations, but by less than 20◦.

In the equatorial disk and the polar cone, Fe aggregates exhibit a weak

texture: the vertical migration of material in these region is associated with

pure shear but is much smaller. The pure shear deformation would tend to

align the c-axes with the major compression direction, and a-axes in the ex-

tension direction. From the scaling laws deduced in section 3.3, we can show

that the deformation associated with the pure shear is a factor δ̃ smaller than

the simple shear at mid latitude. In those two regions, rigid body rotation of

the aggregates plays an important role and rotates the deformation texture

around the y-axis (clockwise in the equatorial disk and the opposite and the

polar region).

With solidification texturing, the initial texture is preserved in the central

part of the inner core (Fig. 7d, aggregates introduced at t̃ = 0.1). Along

the axis of rotation (Fig. 7d, θ = 5◦) and the equatorial plane (Fig. 7d,

θ = 85◦), the solidification texture is rotated by the rigid body rotation of

the sample, as shown in Fig. 2b. In the superficial shear layer, the texture is

heavily transformed to textures resembling that of Fig. 7c, where a random

initial texture was assumed.
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6. Predicted elastic anisotropy of the inner core

6.1. Elastic properties of hcp-Fe at inner core conditions

Calculation of seismic wave velocities inside crystal aggregates requires

the knowledge of single crystal elastic moduli. The elastic properties of iron

are difficult to evaluate experimentally at inner core conditions (e.g. Mao

et al., 1998; Fiquet et al., 2001; Merkel et al., 2005; Antonangeli et al.,

2006; Badro et al., 2007; Mao et al., 2008) while they remain a challenge

for the most advanced ab initio calculations (e.g. Stixrude and Cohen, 1995;

Laio et al., 2000; Steinle-Neumann et al., 2001; Gannarelli et al., 2003, 2005;

Vočadlo et al., 2009; Sha and Cohen, 2010; Chen et al., 2011). From those

experiments and calculations, the anisotropy of hcp iron remains unclear.

Low temperature, high pressure calculations (Stixrude and Cohen, 1995;

Laio et al., 2000; Steinle-Neumann et al., 2001; Gannarelli et al., 2003, 2005;

Vočadlo et al., 2009; Sha and Cohen, 2010; Chen et al., 2011) suggest that P-

wave propagation is faster along the c-axis than along the a-axis, in agreement

with low pressure/low temperature hcp analogs. Experimental determination

of the elastic constants suggest a fast direction lying at an intermediate an-

gle between the a and c-axes (Mao et al., 1998; Merkel et al., 2005), but the

technique that was used includes serious artifacts related to stress hetero-

geneities induced by plastic deformation (Antonangeli et al., 2006; Merkel

et al., 2009). At inner core pressures and temperatures, Steinle-Neumann

et al. (2001) found a reversal of anisotropy, with the a-axis faster than the

c-axis but the validity of their calculation has been questioned (Gannarelli

et al., 2003, 2005). Yet recent ab initio calculations at inner core pressure

and temperature by Vočadlo et al. (2009), Sha and Cohen (2010), and Chen

30



0 30 60 90
Angle to c-axis (degrees)

10.4

10.6

10.8

11.0

11.2

11.4

11.6

V
P
 (

k
m

/s
)

Vocadlo et al, 2009

Sha and Cohen, 2010

hcp-Fe, V
P

ρ = 13.15 g.cm
3
, T = 5000 K

Figure 8: P-wave velocity in hcp-iron at 5000 K and core density according to the ab

initio calculations of Vočadlo et al. (2009) and Sha and Cohen (2010) as a function of

propagation direction with respect to the c-axis. Results of Sha and Cohen (2010) have

been interpolated to a density of ρ = 13.15 g.cm−3 and temperature T = 5000 K.

c11 c33 c12 c23 c44 ρ

1689 1725 1186 990 216 13.154

Table 2: Interpolated isothermal elastic constants (in GPa) and density (in g.m−3) for

hcp-Fe at 5000 K according to Vočadlo et al. (2009). c66 = (c11 − c12)/2

et al. (2011) again suggest that anisotropy in iron changes at high tempera-

ture. Results of the calculations differ, both for the average P -wave velocity

and the amplitude of anisotropy (Fig. 8). However, those calculations find

that P -waves travel faster along the c than the a axis, with a pronounced

minimum 45◦ away from c. Here, we will use the set of elastic moduli of

Vočadlo et al. (2009) (Table 2). Calculations using the elastic moduli of

Sha and Cohen (2010) or Chen et al. (2011) would not change the style of

anisotropy, but only the absolute P -waves velocities and the amplitude of

anisotropy. Also note that all recent calculations find a pronounced P -wave

velocity minimum 45◦ away from c. This implies that discussing anisotropy

in terms of velocities along a and c-axes only is not appropriate.
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Figure 9: Present day P wave velocity anisotropy inside the inner core for a model with

no stratification (B = 0), with stratification (B = −106), with a random solidification

texture, or with initial solidification texture. Velocity scale are in km/s. Each contour

corresponds to a 0.5% change in velocity.
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6.2. Model with no stratification and a random initial texture

Fig. 9a shows the present day P-wave velocities inside the inner core

obtained for a model with no stratification and a random initial texture. This

model exhibits a cylindrical anisotropy with fast velocity along the NS axis

in the deep (r . 0.5) inner core, and isotropy in the upper half of the inner

core. The overall pattern of anisotropy seems reasonably consistent with

seismological observations (deep cylindrical anisotropy and isotropic layer)

but the isotropic region is too thick and the global anisotropy is significantly

weaker than observed. The local P-wave anisotropy is at most ∼ 1%, which

implies that global travel time anisotropy would be significantly less than 1%.

This is far from the 3% anomaly observed by seismologists (Souriau, 2003).

In addition, the slowest direction in this model is not in the equatorial plane

but at about 45◦ from the N-S axis.

6.3. Model with no stratification and solidification texturing

Solidification texturing can produce strong anomalies at the top of the

inner core. In this model, local P-wave anisotropy can be seen throughout

the inner core, with amplitudes reaching about 1.5% (Fig. 9b). In most of the

inner core, the calculated direction of fast propagation is mostly radial, with

a secondary maximum in the plane perpendicular to the radial direction.

This configuration poorly explains the seismological data since ray paths

integrations would not show significant variations of travel time with the ray

angle.
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6.4. Model with stratification and a random initial texture

Stratification inhibits radial flows, concentrates the deformation in a

superficial horizontal layer and produces intense simple shear deformation

that can generate strong LPO and seismic anisotropy. Fig. 9a shows the

present day P-wave velocity distribution inside the inner core for a model

with B∗ = −106 and a random initial texture.

With stratification (B∗ = −106), the anisotropy is large (3%) but is

mostly localized in the outer part of the inner core, away from the equator

and the pole (Fig. 9c). The directions of fast propagation are mainly oriented

along the direction of shear, parallel to the ICB, with a slight rotation as the

material plunges deeper into the inner core. This rotation induces a shift of

the direction of fast propagation from the local horizontal towards the N-S

direction (e.g. r ≈ 0.7). Note the quadrangular shape of the anisotropy

figure which is the reminiscence of the P-wave velocity minimum at 45◦ away

from a and c in the single crystal (Fig. 8). The anisotropy is weak in the

deep inner core, in disagreement with seismic observations.

The strong radial anisotropy in the uppermost layer would be difficult to

detect. Constraints on the seismic properties of the uppermost inner core

come mostly from the comparison of almost horizontal rays with different

orientations. This is insensitive to radial anisotropy, which implies that the

prediction of radial anisotropy is not incompatible with the apparent isotropy

of the uppermost inner core. It would probably be difficult to compare hori-

zontal and radial traveltimes in this layer.
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6.5. Model with stratification and solidification texturing

This model results in a layered inner core with two layers of distinct

anisotropy. Similarly to the previous model, there is a strong anisotropy in

the outer part of the inner core, away from the equator and the pole (Fig.

9b). In this region, the crystallization texture is erased and the observed

anisotropy is the result of the intense shear flow induced by stratification.

Below r < 0.5, LPO associated with the solidification process is preserved.

Along the equator and the N-S axis, the anisotropy induced by solidifica-

tion is slightly rotated. Indeed, in those regions, aggregate are subjected to

significant rigid-body rotation but little plastic deformation (see Fig. 2).

7. Discussion and conclusions

We have successfully coupled a model of inner core dynamics with a visco-

plastic deformation model to compute LPO of hcp-Fe in the inner core and

predict the resulting seismological anisotropy. Although the procedure we

have developed is quite general, each step involves additional hypothesis,

and consequently less robustness. The final result is function of a number of

assumptions regarding the thermo-chemical state of the inner core, the stable

phase of iron at inner core condition, its rheology, and its elastic properties.

The choices we have made are consistent with current beliefs and the most

recent experimental and numerical studies, but there is still no consensus on

these questions.

Despite these difficulties, a number of general results emerge from our

work:

i) Flow and stress field calculated by Yoshida et al. (1996) are applicable
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to the inner core only if |B| . 102 (see Fig. 3). Since the order of magnitude

of the stratification is probably correctly estimated, B is mostly sensitive to

the viscosity. Having |B∗| < 102 requires η > 1022 Pa.s (Eq. 12), at the

very high end of published estimates (Yoshida et al., 1996). If the inner core

is stably stratified, the forcing proposed by Yoshida et al. (1996) - viscous

relaxation of a disequilibrium topography sustained by heterogeneous solid-

ification - is still relevant, but the flow is significantly altered. Stratification

inhibits vertical motion and deformation is localized in a shallow shear layer.

Perhaps surprisingly, the effect of a stable stratification is to increase the

magnitude of the strain rate and the efficiency of deformation induced tex-

turation. Deformation in this shear layer erases any solidification texturing,

and results in a strong, predominantly radial, anisotropy. This layer would

appear isotropic to body wave seismology, but might be detectable in normal

mode data.

ii) An interesting consequence of the increase of |B| during inner core

history is that there is a gradual, but significant, change in the flow geometry

and in the strain rate magnitude. As illustrated in Figs. 7 and 9, this can

result in a layered inner core, with the deepest part of the inner core only

very weakly affected by deformation, and the upper layer with an heavily

reworked texture. Our simulations of texture development show that, in

particular, a solidification texture can be preserved in the deep inner core.

The relative thickness of the two layers depend on the value of the buoyancy

number B∗. Larger value of B∗ would result in a smaller region of fossilized

solidification texture.

iii) It is important to constrain whether inner core anisotropy results pri-
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marily from currently active processes, or from past texturation processes.

The distinction is important in particular because true polar wander of the

inner core is plausible at long time scales. Therefore, the orientation of a

fossil anisotropy may not be conserved. In our model of inner core layering,

texturation in the outermost inner core results from intense plastic deforma-

tion, and this process is fast (∼ 10 Myr), but anisotropy in the deep inner

core is mostly fossil. If inner core true polar wander is indeed significant, the

initial orientation of the deep inner core anisotropy could have been rotated

in a way that would be difficult to predict. This is not necessarily incom-

patible with seismic observations (e.g. Niu and Chen, 2008) that suggest a

different orientation of anisotropy in the innermost inner core.

iv) Chemical stratification combined with crystallization texture is a pow-

erful mechanism for generating anisotropy in the inner core. This results in

a layered inner core with distinct seismic properties (Fig. 9d). The ampli-

tude of the calculated anisotropy is of the same order of magnitude that

seismic observations, with a complex substructure. Because of this complex

substructure, a comparison with first order seismic anisotropy observations

is difficult. This will be addressed in a forthcoming study.

v) Finally, our model can be generalized to any arbitrary inner core

growth pattern. In particular, the hemispherical growth pattern as predicted

by the experiments of Sumita and Olson (1999, 2002) and the numerical sim-

ulations of Aubert et al. (2008) is an interesting candidate for explaining the

seismic hemispherical dichotomy of the inner core (Tanaka and Hamaguchi,

1997; Garcia and Souriau, 2000; Deuss et al., 2010). This should be investi-

gated in the future.
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Shimizu, H., Poirier, J.-P., Le Mouël, J.-L., 2005. On crystallization at the

inner core boundary. Phys. Earth Planet. Inter. 151, 37–51.

Song, X., Helmberger, D. V., 1995. Depth dependence of anisotropy of

Earth’s inner core. J. Geophys. Res. 100, 9805–9816.

Souriau, A., 2003. The seismological picture of the inner core: structure and

rotation. C. R. Geosci. 335, 51–63.

Souriau, A., 2007. Treatise on Geophysics. Vol. 1. Elsevier, Ch. The Earth’s

Core, pp. 655–693.

Souriau, A., Romanowicz, B., 1996. Anisotropy in inner core attenuation: a

new type of data to constrain the nature of the solid core. Geophys. Res.

Lett. 23, 1–4.

Souriau, A., Romanowicz, B., 1997. Anisotropy in the inner core: relation

between P-velocity and attenuation. Phys. Earth Planet. Inter. 101, 33–47.

Steinle-Neumann, G., Stixrude, L., Cohen, R. E., Gülseren, O., 2001. Elas-

ticity of iron at the temperature of the Earth’s inner core. Nature 413,

57–60.

Stixrude, L., Cohen, R. E., 1995. High-pressure elasticity of iron and

anisotropy of Earth’s inner core. Science 267, 1972–1975.

Su, W., Dziewonski, A. M., Jeanloz, R., 1996. Planet within a planet: rota-

tion of the inner core of Earth. Science 274, 1883–1887.

Sumita, I., Olson, P., 1999. A laboratory model for convection in Earth’s

core driven by a thermallyheterogeneous mantle. Science 286, 1547–1549.

46



Sumita, I., Olson, P., 2002. Rotating thermal convection experiments in a

hemispherical shell with heterogeneous boundary heat flux: Implications

for the Earth’s core. J. Geophys. Res. 107, 2169.

Sumita, I., Yoshida, S., Hamano, Y., Kumazawa, M., 1995. A model for the

structural evolution of the earth’s core and its relation to the observa-

tions. In: Yukutake, T. (Ed.), The Earth’s central part : Its structure and

dynamics. pp. 232–260.

Sumita, I., Yoshida, S., Kumazawa, M., Hamano, Y., 1996. A model for

sedimentary compaction of a viscous media and its application to inner-

core growth. Geophys. J. Int. 124, 302–324.

Takehiro, S., 2010. Fluid motions induced by horizontally heterogeneous

Joule heating in the Earth’s inner core. Phys. Earth Planet. Inter. 184,

134–142.

Tanaka, S., Hamaguchi, H., 1997. Degree one heterogeneity and hemispher-

ical variation of anisotropy in the inner core from PKP(BC)-PKP(DF)

times. J. Geophys. Res. 102, 2925–2938.

Tateno, S., Hirose, K., Ohishi, Y., Tatsumi, Y., 2010. The structure of iron

in Earth’s inner core. Science 330, 359.
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