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Introduction

Let X 1 , . . . , X n be n i.i.d. nonnegative random variables, with unknown density f . The problem of estimating f as a function on R by a non-parametric approach has received a lot of attention in the past decades. A huge variety of methods have been investigated and powerful techniques allow to build concrete estimators having optimality properties in the sense that their L 2 -risk reaches automatically the best possible rate associated with the unknown smoothness of the unknown density. Among many authors, we can quote [START_REF] Stone | Optimal rates of convergence for nonparametric estimators[END_REF], [START_REF] Devroye | A universally acceptable smoothing factor for kernel density estimates[END_REF], [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF], [START_REF] Kerkyacharian | L p adaptive density estimation[END_REF], [START_REF] Birgé | From model selection to adaptive estimation[END_REF], [START_REF] Juditsky | Wavelet estimators: adapting to unknown smoothness[END_REF], [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. See also [START_REF] Butucea | Exact adaptive pointwise estimation on Sobolev classes of densities[END_REF] for a detailed discussion.

In the case of nonnegative observations, f = 0 on (-∞, 0). Hence, even if f is very smooth as a function on (0, +∞), f may be not even continuous as a function on (-∞, +∞). Therefore, it is not wise to use blindly estimators fitted with functions on the whole real line. One should at least use a transformation of the data (such as taking logarithms) and estimate the density of the transformed variables. Thus, there is a need to find specific methods to estimate densities for nonnegative or lower bounded random variables. Nonnegative random variables are commonly used for models in survival analysis or reliability, for waiting times in renewal processes . . . In this paper, our aim is to propose a new type of estimators fitted to nonnegative random variables which can be used directly without transforming data. The basic idea of their construction is the following. Consider a density K on (0, +∞), with expectation 1, and let U 1 , . . . , U m be m i.i.d. random variables with distribution K(u)du (K = 0 on (-∞, 0)). The empirical mean Ūm = (U 1 + . . . + U m )/m has distribution K m (u)du with (1) K m (u) = mK m (mu)

(1) Université Paris Descartes, MAP5, UMR CNRS 8145.

where K m = K • • • K, m times and denotes the convolution product. The distribution K m (u)du converges weakly to 1 as m grows to infinity. For given x > 0, we propose to estimate the value f (x) by ( 2)

fm (x) = 1 nx n k=1 K m ( X k x ).
The noteworthy property of the above estimator is that, by an elementary change of variable,

E fm (x) = Ef (x Ūm ),
which is close to f (x) for large m e.g. when f is continuous at x and bounded. If f is smoother, we can use a Taylor expansion of the difference f (x Ūm )f (x) and integrate it. Note that, by the assumption on K, the first term ( Ūm -1)xf (x) is centered. In the standard case where K has finite variance v, the second term in the Taylor expansion being (x 2 /2)( Ūm -1) 2 f (x) has expectation of order m -1 . Below, we prove that Var fm (x) is of order √ m/n. Choosing m such that m -2 = √ m/n (the usual square bias-variance compromise) yields the standard rate n -4/5 for the estimation of a C 2 function at x.

These preliminary remarks motivate a more thorough study and raise the following question: is it possible to prove that estimators such as (2) to estimate functions on R + fulfill all properties of non-parametric kernel estimators of functions on R. This is the topic of the present paper and the answer is yes. First, we extend the definition of the estimator to obtain the best possible rate for the bias term fitted with the smoothness of the unknown density (as a function on (0, +∞)). For this, we define a new notion of kernel of order and study the pointwise estimation. Then, we study the global properties by introducing a weighted Mean Integrated squared Error (MISE). The value m -1/2 plays the role of the bandwidth and we study in both cases (pointwise and global) adaptive bandwidth selection. For this, we prove that the method of [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] can be adapted to our estimators.

In Section 2, we precise the assumptions on the densities K used to build estimators, extend the definition of (2) and prove a key preliminary result (Lemma 2.1) on the Fourier transform of K m , which enables us to obtain the variance rate of our estimators. We give examples of densities K for which K m is explicit. The case of K an infinitely divisible density is especially interesting, as it allows to give an explicit construction of kernels of order . It also allows to extend the definition of K m to the case of non integer m. This construction is closely related to the construction of [START_REF] Kerkyacharian | Non-linear estimation in anisotropic multiindex denoising[END_REF]. Section 3 is devoted to pointwise estimation. We study the pointwise Mean Square Error and build an adaptive estimator fitted to local Hölder regularity. For adaptive bandwidth selection, we introduce iterated kernels built using densities of the form K m K m where K 1 K 2 denotes the density of the product U V where U, V are independent nonnegative variables, U has density K 1 and V has density K 2 . We prove in Theorem 3.1 that the estimator reaches the same optimal adaptive rate as the one obtained by [START_REF] Butucea | Exact adaptive pointwise estimation on Sobolev classes of densities[END_REF] on Sobolev classes. In Section 4, we study a global weighted Mean Integrated Square Error (MISE). This requires the introduction of a new type of Nikol'skii class of functions on (0, +∞). Classical examples of densities are shown to belong to this class. We propose a global adaptive estimator still based on iterated kernels. Theorem 4.2 gives an oracle inequality for the weighted MISE of this estimator. In Section 5, numerical simulation results are provided for local adaptive selection of m. Moreover, we consider the kernel estimators described in Goldenschluger and Lepski (2010b) and implement a local adaptive bandwidth selection which is new. Both methods are convincing and we discuss their respective advantages and drawbacks. Section 6 contains concluding remarks. Proofs are gathered in Section 7.

Definition of estimators and kernels.

2.1. Assumptions and preliminaries. For K a density on R + , we consider the following assumptions:

• (H1) For u ≥ 0, K(u) ≥ 0, for u < 0, K(u) = 0 and

+∞ 0 K(u)du = 1, +∞ 0 uK(u)du = 1, +∞ 0 (u -1) 2 K(u)du = v, +∞ 0 K 2 (u)du < +∞.
• (H2) Let K m be defined by (1). For m large enough,

I m := K m (u) du u = 1 + O( 1 m ). • (H3) Let ν γ = |u -1| γ K(u)du.
There exists γ ≥ 4 such that ν γ < +∞. A density K satisfying (H1) has expectation equal to 1, finite variance v(K) = v and belongs to L 2 . The function K m defined by ( 1) is the density of the empirical mean Ūm = (U 1 +. . .+U m )/m of m i.i.d. random variables U 1 , . . . , U m with distribution K(u)du. The Fourier transform of K:

K * (t) = +∞ 0 e itu K(u)du belongs to L 2 (R). The Fourier transform of K m is K * m (t) = K * (t/m) m . As K * is a characteristic function, |K * (t)| ≤ 1 for all t ∈ R. Thus, for all m ≥ 2, K * m (t) belongs to L 1 (R) and for all m ≥ 1, K * m (t) belongs to L 2 (R).
The rate of the variance term in the risk of our estimator relies on the following lemma.

Lemma 2.1.

• Let K be a density satisfying (H1). For α ≥ 1, we have

( √ m) -1 R |K * m (t)| α dt → m→+∞ 2π/(αv).
Consequently, as m tends to infinity,

||K m || ∞ ≤ √ m(1/ √ 2πv)(1 + o(1)) and ||K m || 2 2 = √ m(1/2 √ πv)(1 + o(1)),
where ) , K (2) be two densities satisfying (H1) with variances v 1 , v 2 respectively. As m tends to infinity,

||K m || ∞ = sup u≥0 K m (u) and ||K m || 2 2 = +∞ 0 K 2 m (u)du. • Let K (1
< K (1) m , K (2) m >= +∞ 0 K (1) m (u)K (2) m (u)du = √ m(1/ 2π(v 1 + v 2 ))(1 + o(1)).
Integrating formula (2) on R + , we get:

+∞ 0 fm (x)dx = +∞ 0 K m (u) du u = E( 1 Ūm ) := I m .
Thus, we have to impose that this expectation be finite at least for m large enough (Assumption (H2)). This is not a problem as we choose the kernel. In such a case, as E Ūm = 1, we have

E( 1 Ūm ) -1 = 1 m E(m (1 -Ūm ) 2 Ūm ) Knowing that m (1-Ūm) 2
Ūm converges in distribution to vZ 2 with Z a standard Gaussian variable, we can easily choose the kernel

K such that E(m (1-Ūm) 2 Ūm ) = O(1), so that I m = 1 + O(1/m)
(see below the examples). Thus, I -1 m fm (x) is a density. The moment assumption (H3) is used to evaluate the rate of the absolute moments

ν γ,m = |u -1| γ K m (u)du,
(see below Lemma 7.1).

Remark 2.1. Note that we can link formula (2) with a more usual kernel type estimator as follows. Let k m (z) denote the density of m/v( Ūm -1). The following relations holds:

k m (z) = √ v √ m K m (1 + z √ v √ m ),
and setting

h m (x) = √ vx/ √ m, fm (x) = (nh m (x)) -1 n k=1 k m ((X i -x)/h m (x))
. Hence, fm (x) looks like a kernel estimator with kernel k m and bandwidth h m (x).

Extension of the definition of estimators.

In order to have adequate properties of the bias term, we must consider a more general class of estimators than the one defined by ( 2) and introduce kernels that can be real-valued. Let α 1 , . . . , α L be real numbers such that (3)

L j=1 α j = 1
and consider the extended kernel K = L j=1 α j K (j) and set, for m ≥ 1, (4)

K m = L j=1 α j K (j) m
where K (j) is a density on R + satisfying assumptions (H1)-(H3) with variance denoted by v j , and

K (j) m (u) = m(K (j) ) m (mu) is the density of (U j 1 + . . . U j m )/m with U j k , k = 1, . . . , m i.i.d. with density K (j) (for m = 1, K 1 = K, K (j) 1 = K (j)
). The functions K m are not necessarily positive. We define

(5) fm (x) = L j=1 α j fm,j (x) = 1 nx n k=1 K m ( X k x ).
where fm,j (x) is given by formula (2) using the density K (j) m . By Assumption (H2) and (3),

+∞ 0 fm (x)dx = 1 + O(1/m).

2.3.

Examples of kernels yielding explicit formulae. The method proposed here leads to explicit formulae when the m-th convolution of a density K satisfying (H1)-(H3) can be explicitly computed. We can note below that m need not be integer.

2.3.1. Gamma kernels. For K the Gamma density G(a, a) for any positive a, (H1)-(H3) hold and:

K m (u) = (am) am Γ(am) u am-1 e -mau 1 u>0 . For m > 1/a, I m = +∞ 0 u -1 K m (u)du = (am)/(am -1) = 1 + O(1/m).
In particular, for K(u) = e -u 1 u>0 (exponential density with parameter 1), the estimator (2) is given by

(6) fm (x) = 1 n m x m 1 (m -1)! n k=1 X m-1 k e -m x X k .
Introducing the Laplace transform of X, L X (λ) =

+∞ 0 e -λt f (t)dt, for λ ≥ 0, and its successive derivatives L (j) X (λ) = (-1) j +∞ 0 t j e -λt f (t)dt, we have, for x > 0:

(7) E fm (x) = m x m (-1) m-1 (m -1)! L (m-1) X ( m x ).
This is a very well known inversion formula for Laplace transforms to get an approximation of f (x) (see e.g. [START_REF] Feller | An introduction to probability theory and its applications[END_REF].

2.3.2. Inverse Gaussian kernels. The inverse Gaussian distribution IG(a, θ) a > 0, θ > 0, is defined as the distribution of the hitting time T a = inf{t ≥ 0, θt + B t = a} where (B t ) is a Wiener process. This parametrization is the one used in Barndorff-Nielsen (1998). The density of an

IG(a, θ) is a √ 2πt 3 e θa e -1 2 θ 2 t+ a 2 t .
Its Laplace transform is given by

E(e -λTa ) = exp a(θ -θ 2 + 2λ) , λ > -θ 2 /2.
Thus for a = θ, the expectation is 1 and the variance is v = 1/a 2 . For K the inverse Gaussian density IG(a, a), (H1)-(H3) hold and K m is the density of the law IG(a √ m, a √ m):

K m (u) = a √ m √ 2πu 3 e ma 2 (1-1 2 ( 1 u +u)) 1 u>0 .
Using properties of the Generalized Inverse distributions (see [START_REF] Barndorff-Nielsen | Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics[END_REF], p.173), we can compute:

I m = +∞ 0 u -1 K m (u)du = a √ m √ 2π e ma 2 2 K-3/2 (a 2 m),
where Kν is the modified Bessel function of second kind (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], 9.6.23 p.376)

(8) Kν (u) = K-ν (u) = √ π(z/2) ν Γ(ν + 1/2) +∞ 0 e -z cosh(t) (sinh t) 2ν dt.
We use the notation Kν for the Bessel function to avoid confusion with the density K m .

After the successive changes of variables e t = u and s = u + u -1 -2, we obtain

e z K3/2 (z) = π 2 ( 1 √ z + 1 z 3/2 ).
We thus find I m = 1 + 1/(a 2 m).

Pointwise Estimation.

In this section, we study the properties of (5) as an estimator of the value f (x) for a given positive x.

3.1. Pointwise MSE. The pointwise Mean Squared Error (MSE) is given by E( fm (x)f (x)) 2 and is split into the usual sum of the variance and squared bias terms.

First, we give the variance bound.

Proposition 3.1. Assume that f is bounded and let fm (x) be defined by ( 5) with (3)-(4) .

Then, for all n, as m tends to infinity,

Var fm (x) ≤ √ m||f || ∞ nx 1 √ 2π   1≤i,j≤L α i α j √ v i + v j   (1 + o(1)),
where o(1) is uniform in x (v j denotes the variance of the density K (j) ). If L = 1 the constant in parenthesis is just 1/ √ 2v.

To study the bias term, the notion of kernel of order can be here defined as follows.

Definition 3.1. We say that K = L j=1 α j K (j) defines a kernel of order if, for j = 1, . . . , L, the kernel K (j) satisfies Assumptions (H1)-(H3) (with variance v j ), admits moments up to order and the coefficients α j , j = 1, . . . , L are such that L j=1 α j = 1 and for 1 ≤ k ≤ and all m (at least large enough)

+∞ 0 (u -1) k K m (u)du = L j=1 α j +∞ 0 (u -1) k K (j) m (u)du = 0.
These relations allow to compute the α j 's as functions of the moments of the K (j) 's. Below, we show how to compute kernels of order in the above sense. The Hölder-type class on (0, ∞) with constant C and regularity β is defined in its usual sense:

Σ(β, C) = {f : (0, +∞) → R, f ( ) exists for = β and |f ( ) (x) -f ( ) (x )| ≤ C|x -x | β-, for all x, x > 0}.
We obtain the following bias bound. Proposition 3.2. Assume that f belongs to the class Σ(β, C). Assume that, for j = 1, . . . , L, ν (j) β = |u -1| β K (j) (u)du < +∞ and that K is a kernel of order = β in the sense of 3.1. Then,

|E fm (x) -f (x)| ≤ C C(β)x β ! 1 m β/2
where C(β) depends on the coefficients α j and the moments of the K (j) 's.

Remark 3.1. The assumption that the K (j) 's are square integrable is not required in this result.

Finally, for the pointwise quadratic risk, we can state: Proposition 3.3. Assume that f is bounded and belongs to the class Σ(β, C). Assume that, for j = 1, . . . , L, ν

(j) β = |u -1| β K (j) (u)du < +∞
and that K is a kernel of order = β in the sense of 3.1. For all n and all positive x, as m tends to infinity,

E fm (x) -f (x) 2 ≤ C 1 √ m nx + (C 2 (β)) 2 x 2β m β , where (9) C 1 = (1 + o m (1)) √ 2π ||f || ∞   1≤i,j≤L α i α j √ v i + v j   , C 2 (β) = C C(β) β ! ,
where o m (1) does not depend on x and C(β) is the constant appearing in the bias bound in Proposition 3.2.

Note that

1≤i,j≤L

α i α j √ v i + v j ≤ L i=1 |α i | √ v i L i=1 |α i |.
The choice of m leading to the optimal bias-variance compromise is obtained for x 2β m -β = (nx) -1 m 1/2 , i.e. m = x 2 n 2/(2β+1) and the rate of the pointwise risk is n -2β/(2β+1) and does not depend on x. This rate is the standard optimal rate for estimating a density in the class Σ(β, C) (see [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF] and the references therein).

3.2. Kernels of order . In this paragraph, we show how to build a kernel of order as defined in 3.1. Let K be a density on R + satisfying (H1) and which is infinitely divisible with Lévy density n(.) on R + . The characteristic function of K is given by: [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]. By the assumption on K, we have, by twice derivating

(10) K * (t) = exp +∞ 0 e itx -1 n(x)dx = exp (it + ψ(t)), with 
ψ(t) = +∞ 0 e itx -1 -itx n(x)dx, see e.g.
K * , 1 = +∞ 0 uK(u)du = +∞ 0 xn(x)dx, v = +∞ 0 (u -1) 2 K(u)du = +∞ 0 x 2 n(x)dx.
The distribution with density K has moment up to order k if and only if +∞ 0

x k n(x)dx < +∞. Moreover, the j-th order cumulant of K obtained by developping it + ψ(t) around 0 is simply given using the Lévy density by

κ j = +∞ 0 x j n(x)dx.
Proposition 3.4. Assume that K is a density satisfying (H1), admitting moments up to order n, with characteristic function given by (10). For a > 0, define the distribution P a (du) on R + by the characteristic function

(11) K * a (t) = K * ( t a ) a = e it+ψa(t) ,
where

ψ a (t) = +∞ 0 e itx -1 -itx n a (x)dx, with n a (x) = a 2 n(ax).
For a > 2, the distribution P a has a density K a satisfying (H1) and admitting moments up to order n. Let µ j,a = E(V j a ) be the j-th moment of V a = U a -1 where U a has density K a . Then,

µ n,a = n-1 =k(n) c( ) a where c(n -1) = κ n is the n-th cumulant of K, the other constants c( ) depend on the cumulants κ , 2 ≤ ≤ n -1 of K and k(n) = n/2 for n even, k(n) = (n + 1)/2 for n odd.
It is worth noting that, for all integer m,

K * am (t) = K * ( t am ) am
is the characteristic function of the density mK m a (u).

Remark 3.2.

• Using the density K a , we can extend the definition of the estimator by changing K m into K a for any positive a by setting:

(12) fa (x) = 1 nx n k=1 K a ( X k x ) If U a has distribution K a (u)du, U a → 1 and √ a(U a -1) tends in distribution to N (0, v).
• The examples given above fit in this framework. The density Gamma G(a 0 , a 0 ) has Lévy density n(x) = x -1 a 0 e -a 0 x 1 x>0 . The Inverse Gaussian density IG(a 0 , a 0 ) has Lévy density n(x) = a 0 (2πx 3 ) -1/2 e -a 2 0 x/2 1 x>0 .

We use the previous moments properties to build a kernel of order . The construction of [START_REF] Kerkyacharian | Non-linear estimation in anisotropic multiindex denoising[END_REF] can be adapted to our kernels as follows.

Proposition 3.5. Let K be a density satisfying (H1)-(H3), admitting moments up to order ≥ 2, with characteristic function of the form (10). Let a > 2 and consider the density K a specified by (11). For 1 ≤ j ≤ integer, set

K (j) = K aj -1 (see (11)) so that K (j) m = K amj -1 . The function K = j=1 j (-1) j+1 K (j)
is a kernel of order in the sense of definition 3.1.

Local bandwidth selection.

We assume that f belongs to the class Σ(β 0 , C) where the true value β 0 is unknown, and β 0 ≤ β max with known β max . We consider kernels K = L i=1 α i K (i) of order l ≥ β max . Recall the notations (9) and set

B = sup β≤βmax C 2 (β). The function β → C(β) is upper bounded on [0, β max ], see also Proposition 7.1. For x 0 > 0 and m = m opt (x 0 ) = x 2 0 n 2/(2β 0 +1
) , the estimator fmopt(x 0 ) (x 0 ) satisfies:

E fmopt(x 0 ) (x 0 ) -f (x 0 ) 2 ≤ (C 1 + B 2 )n -2β 0 /(2β 0 +1) .
Our aim is to define a data driven choice of m for the estimation of f (x 0 ), leading to an estimator whose rate is as near as possible of the optimal one. This requires that x 0 ≥ x min > 0. For two functions s and t on (0, +∞), let us define, each time it exists, the function defined on (0, +∞) by

u → s t(u) = +∞ 0 s(u/v)t(v)dv/v.
Consider U 1 , U 2 two nonnegative independent random variables with densities K 1 , K 2 respectively. Then, the density of the product

U 1 U 2 is equal to K 1 K 2 (u).
In view of m opt (x 0 ), we could select m among values of the form m = k 2 x 2 0 . This is possible from the theoretical point of view. In practice, the drawback is that the proposed choices for m can be very small if x 0 is small, which yields numerical problems. This is why we set ( 13)

M n = {m = k 2 , log(n) ≤ k ≤ n/ log(n)}
as the set of possible indexes m and consider

K m = L j=1 K (j)
m an extended kernel as defined in (3)-( 4) where the densities K (j) satisfy (H1)-(H3). Set

(14) fm,m (x) = 1 nx n k=1 K m K m ( X k x ) = K m fm (x).
As obviously

K m K m = K m K m , we have fm,m (x) = fm ,m (x). Note that (15) fm,m (x) = L i,j=1 α i α j 1 nx n k=1 K (i) m K (j) m ( X k x ).
For m, m integers,

K (i) m K (j)
m is the density of the product (U

(i) 1 + . . . + U (i) m )/m × (V (j) 1 + . . . + V (j) m )/m where U (i) 1 , . . . , U (i) m , V (j) 1 , . . . , V (j)
m are independent random variables, the U (i) 's have density K (i) and the V (j) 's have density K (j) . So, as m, m tend to infinity,

K (i) m K (j) m (u)du tends to 1. Now, define (16) V (m, x 0 ) = κC(K) max( f ∞ , 1) log(n) √ m
nx 0 where κ is a numerical constant and ( 17)

C(K) = 2( L i=1 |α i |) 3 ( L i=1 |α i |/ √ 2πv i ).
Note that, as

L i=1 α i = 1, L i=1 |α i | ≥ 1.
In C(K), the value 2 replaces (1 + o m (1)) in formula (9). This is justified by the fact that we choose m ≥ log 2 (n), n large enough.

The following quantity must be understood as an approximation of the squared bias term:

(18) A(m, x 0 ) = sup m ∈Mn ( fm (x 0 ) -fm,m (x 0 )) 2 -V (m , x 0 ) + .
The adaptive estimator is then

(19) f (x 0 ) = f m(x 0 ) (x 0 ) with m(x 0 ) = arg min m∈Mn (A(m, x 0 ) + V (m, x 0 )) .
We can prove the following result.

Theorem 3.1. Assume that f belongs to the class Σ(β 0 , C) with β 0 unknown, 0 < β 0 ≤ β max , with known β max . Let K be a kernel of order in the sense of Definition 3.1 with ≥ β max . Consider the estimator f (x 0 ) = f m(x 0 ) (x 0 ) with x 0 ≥ x min > 0. Then, there exists a constant κ in ( 16) such that, for n large enough,

E[( f (x 0 ) -f (x 0 )) 2 ] n log n -2β 0 /(2β 0 +1)
, where x n y n means x n ≤ Cy n for some constant C.

As we can see, the rate is optimal up to a log(n) factor, but this is expected (see [START_REF] Butucea | Exact adaptive pointwise estimation on Sobolev classes of densities[END_REF]). The method is illustrated in Section 5. We also rewrite a local version of the method of Goldenschluger and Lepski (2010), and compare both methods.

3.4. Iterated kernels. The estimators fm can easily be implemented for instance when choosing the densities K (i) among Gamma densities G(a i , a i ) or among Inverse Gaussian densities IG(a i , a i ). As seen above, it is important to note that the value m need not be an integer as the densities K (i) m , in the two previous cases, are respectively G(a i m, a i m) and IG(a i √ m, a i √ m). In particular, when dealing with local bandwidth selection at x 0 , the value of m may be proportional to x 2 0 . For implementing the adaptive selection method, one must compute

K (i) m K (j)
m . In case of K (i) = G(a i , a i ), we must compute the density of a product of independent Gamma variables. Some relatively explicit formulae can be obtained, involving Bessel functions of high index. The case of

K (i) = IG(a i , a i ) is simpler. Proposition 3.6. Let K (i) m = IG(a i √ m, a i √ m
). We have:

K (i) m K (j) m (u) = a i a j √ mm πu 3/2 exp (ma 2 i + m a 2 j ) K0 (c ij (u)),
where K0 is the modified Bessel function of second kind with index 0 and

c ij (u) = a 4 i m 2 + a 4 j (m ) 2 + a 2 i a 2 j mm (u + 1 u ) 1/2
Proof of Proposition 3.6 Recall that

K (i) m K (j) m (u) = +∞ 0 K (i) m ( u v )K (j) m (v) dv v
Thus, we must compute

I ij (u) = +∞ 0 exp [- 1 2 ( 1 v δ 2 ij + vγ 2 ij )] dv v ,
where

δ 2 ij = a 2 i mu + +a 2 j m , γ 2 ij = a 2 i m u + +a 2 j m .
The integral I ij (u) can be computed using the norming constant of Generalized Inverse Gaussian densities (see Barndorff-Nielsen and Shephard ( 2001)):

I ij (u) = 2 K0 (δ ij γ ij ),
where K0 is the modified Bessel function of second kind with index 0. This gives the result.2

The Bessel function K0 is available in Matlab. Various expressions are given in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF].

4. Weighted MISE.

We study a weighted mean integrated squared error with weight function w(x) = x ∧ 1 as we need the weight w 1 (x) = x for the variance term and the weight w 2 (x) = 1 for the bias term. 

m = L i=1 α i K (i)
m where L i=1 α i = 1, for i = 1, . . . , L, the density K (i) satifies Assumptions (H1) and (H2) (with variance denoted by v i ). Then,

+∞ 0 Var fm (x)x dx ≤ C √ m n ,
where the constant C only depends on the kernel K and not on the unknown density f .

(C = L i=1 |α i | L i=1 |α i |/ √ 2πv i (1 + o m (1))).
As the problem here only deals with densities on R + , the usual Nikol'skii class as defined in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF] (see also Goldenschluger and Lepski (2010)) is not adequate. We need define a new class fitted with the bias term.

Definition 4.1. For β ≥ 0 and φ a nonnegative convex function on (0, +∞) such that φ(1) = 0, consider the class of functions f defined on R + having a derivative on (0, +∞) f ( ) with = β satisfying, for all positive u, +∞ 0

(u x) 2 f ( ) (ux) -f ( ) (x) 2 u dx 1/2 ≤ φ(u)|u -1| β-.
We denote this class by

H + (β, φ). Proposition 4.2. (Bias bound) Assume that K m = L i=1 α i K (i) m where L i=1 α i = 1, for i = 1, . . . , L, K (i) satisfies Assumptions (H1)-(H3) (with variance denoted by v i ) and |u - 1| β K (j) (u)du < +∞.
Assume that the density f belongs to the class H + (β, φ). Assume that the kernel K is of order = β (see (3.1)) and satisfies: there exists m 0 such that

(20) sup m≥m 0 m β/2 ψ(u)|u -1| β |K m (u)|du = C < +∞, with ψ(u) = (φ(1) + φ(u))(1 + 1 u +(1/2) ). Then, for m ≥ m 0 , +∞ 0 E fm (x) -f (x) 2 dx ≤ C2 ! 2 m β .
Let us make some comments on the class H + (β, φ) and the assumption (20). The new class requires an enveloppe function φ (see the examples below). As φ(1) = ψ(1) = 0, and φ is continuous by the convexity, we know that, for all i, as m tends to infinity, with Ūm,i having density

K (i) m , m β/2 | Ūm,i -1| β ψ( Ūm,i ) → D v β/2 i |Z| β φ(1)
, where Z is a standard Gaussian variable. Condition (20) requires that this convergence in distribution implies the convergence of the expectation

Em β/2 | Ūm,i -1| β ψ( Ūm,i ) to the corresponding expectation v β/2 i φ(1)E|Z| β .
Hence, the condition is not stringent. Finally, we can state: Theorem 4.1. Under the assumptions of Propositions 4.1 and 4.2, the weighted MISE satifies

E +∞ 0 fm (x) -f (x) 2 w(x)dx ≤ C √ m n + C2 ! 2 m β .

Examples.

(1) Consider the density f (x) = e -x 1 R + (x). As a function on R, it is not derivable. We have

(f (x + t) -f (x)) 2 dx = (1 -e -|t| ) ≤ |t|.
Hence, it belongs to the usual Nikol'skii class H(β, L) with β = 1/2, L = 1 (see e.g. [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]. Thus, if we estimate f using a standard kernel estimator, the better rate of convergence of the risk is n -2/3 (for the optimal bandwidth h = n -1/3 ). As a function on (0, +∞), f is infinitely derivable with f ( ) (x) = (-1) e -x . We have, for all integer

+∞ 0 (u x) 2 f ( ) (ux) -f ( ) (x) 2 u dx = Γ(2 + 1) 2 2 +1 (1 + u) 2 +1 P (u),
where the polynomial

P (u) = (1 + u 2 +1 )(1 + u) 2 +1 -2(2u) 2 +1
satisfies P (1) = P (1) = 0, P (1) = 0. Hence,

P (u) = (u -1) 2 Q(u) where Q(u) is a polynomial of degree 4 such that Q(1) = 0. Thus f belongs to H + (β, Q 1/2 ) for all β.
The optimal rate of convergence of the risk for the estimation of f can be n -2β/(2β+1) for all positive β (for m = n -2/(2β+1) ).

(2) For f (x) = xe -x 1 R + (x), we have = 0 and β = 1 for the usual Nikol'skii class as:

(f (x + t) -f (x)) 2 dx = 1 2 (1 -e -|t| -|t|e -|t| ) ≤ t 2 . On (0, +∞), f is infinitely derivable with f ( ) (x) = (-1) (x -)e -x 1 (0,+∞) (x). For all integer +∞ 0 (u x) 2 f ( ) (ux) -f ( ) (x) 2 u dx = ( + 1)Γ(2 + 1) (1 + u) 2 +3 R(u), where 
R(u) = 1 2 2 +2 (1 + u 2 +1 )(1 + u) 2 +3 -2u 2 +1 (2 + 2)u + (1 + u 2 ) satisfies R(1) = R (1) = 0, R (1) = 0.
Here again, R(u) = (u -1) 2 L(u) where L(u) is a polynomial of degree 4 + 2 such that L(1) = 0. Thus f belongs to H + (β, L 1/2 ) for all β.

(3) For f (x) = 1 [0,1] (x), we have = 0 and

(f (x + t) -f (x)) 2 dx = 2|t| ∧ 1, +∞ 0 (f (ux) -f (x)) 2 u dx = |u -1|.
Hence, β = 1/2 for both criteria. So far, in the above examples, computations rely on the explicit expression of the density f . We can give a general property.

Proposition 4.3. Assume that the density f is C ∞ on (0, +∞) and compactly supported. Then, for all integer , such that f ( +1) = 0

F (u) = +∞ 0 (u x) 2 f ( ) (ux) -f ( ) (x) 2 u dx 1/2 ≤ c(1 + u +(1/2 )|u -1|.
4.3. Global bandwidth selection. Let M n be defined by ( 13) and consider again

K m = L j=1 K (j)
m an extended kernel as defined in (3)-( 4) where the densities K (j) satisfy (H1)-(H3). We still consider fm,m defined by ( 14). Now, define

V (m) = κC(K) √ m
n where κ is a numerical constant and C(K) defined by ( 17), We can prove the following result Theorem 4.2. Assume that f belongs to L 2 ((0, +∞)). Under the assumptions of Proposition 4.1, we have

E( f -f 2 w ) ≤ C inf m∈Mn ( +∞ 0 (E( fm (x) -f (x)) 2 dx + V (m)) + C n .
Corollary 4.1. Assume that f belongs to L 2 ((0, +∞)). Under the assumptions of Propositions 4.1 and 4.2, with M n defined in ( 13),

E( f -f 2 w ) ≤ O(n -2β/(2β+1)
). The corollary follows immediately from Theorem 4.2 and Proposition 4.2. It is worth noticing that the optimal rate of convergence is automatically reached by the adaptive estimator.

Practical implementation.

5.1. The benchmark: standard kernel estimators with local adaptive bandwidth selection. We compare our method with the one, based on iterated kernels, described in Goldenschluger and Lepski (2010), transposed in a pointwise version. Note that the idea to use several kernels was introduced by Devroye (1989). To be more precise, let

fh (x) = 1 n n i=1 K h (X i -x), K h (u) = 1 h K( u h ),
where

K is a symmetric kernel on R, R |K(u)|du < +∞, R K(u)du = 1 and R K 2 (u)du < +∞.
Assume that f is bounded and belongs to a Hölder class Σ(β, C). Let K be a square integrable kernel of order β in the usual sense (i.e. R u k K(u)du = 0 for k = 1, . . . , , where = β and

R |u| β |K(u)|du < +∞).
Then a classical squared bias-variance decomposition of the pointwise risk gives a bound C β h 2β + ( f ∞ K 2 )/(nh) and a rate of order n -2β/(2β+1) if h is chosen proportional to n -1/(2β+1) , see [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF].

In Goldenschluger and Lespki (2010), only the global bandwidth selection is studied. Let us describe how local automatic bandwidth selection can be performed. We define and for If f is bounded and in a Hölder class Σ(β, C) and K is a square integrable kernel of order ≥ β, we can prove that, for n large enough, E[( fĥ

fh ,h (x) = K h fh (x) = 1 n n i=1 K h K h (X i -x) = f h,h (x)
H n = {h k , k = 1, . . . , M n }, M n ≤ n, we set S(h) = κ ( R |K|) 2 ( R K 2 (u)du) log(n) nh , B(x, h) = sup
(x) (x) -f (x)) 2 ] = O((log(n)/n) 2β/(2β+1) ).
As the steps are analogous to the ones used to prove Theorem 3.1, we omit the proof. In practice, Gaussian kernels are used to ease the computation of K h K h . 5.2. Results. We provide in this section results of simulation experiments. Concretely, the penalty is computed using the true value of f ∞ , κ = 5.10 -3 and κ = 0.1. We choose

H n = {h k = k/M, k = 1, . . . , M } and M n = {m k = k 2 , k = 1, . . . , M } with M = 25.
The function is estimated on [a, b] with a = max(min(X), 0.01 max(X)) and b = max(X) where X = (X 1 , . . . , X n ) is the vector of observations. Estimators are plotted for 40 equispaced points of [a, b]. We take one Inverse Gaussian kernel for K m with a = 1 (L = 1) and one standard Gaussian kernel for K h . Then, we know in all cases the convoluted functions and the terms |K| or K 2 . We show in Figures 1-2 the variability of the choices of h or m depending on the point of estimation. The upper plots give the true function and one estimation and the middle ones give the selected m or h at the corresponding points. It is clear that both methods adapt very well to the form of the function. The bottom plots give the curves for all values of h and m. Figure 1 shows that, near 0, the two methods react differently. For all proposals, the usual kernel estimators are too low. On the contrary, for our kernels which are fitted to nonnegative data, the proposed estimators take larger values.

We study then the compared variability of the methods in Figure 3 for four different functions: an exponential E(1), a beta β(1, 3), a beta β(3, 3) and a lognormal with µ = -1 and σ = 0.25. We also considered two different samples sizes n = 400 and n = 1000 for the exponential and the lognormal. We observe the same difference of behaviours near 0 as previously noticed for the exponential E(1) and the beta β(1, 3). This confirms the fact that our method performs better from this point of view.

Discussion and concluding remarks.

In this paper, we propose a new type of kernel estimators fitted to nonnegative data, based on kernels which are approximations of δ 1 . In usual kernel methods, the intuition is that the estimation at x counts the number of observations X k such that X kx is close to 0. In our strategy, the intuition is that the estimator at x counts the number of observations X k such that X k /x is close to 1.

We prove that we can develop the complete theory of nonparametric density estimation for nonnegative data, from both the pointwise and the global point of view: bias-variance decomposition, higher order kernels for fitting functional regularities, adaptive bandwidth selection.

As noted above, In our numerical simulations, we have implemented only the pointwise adaptive method as the results are really convincing. To compare our estimators to more standard kernel estimators, we have described how the adaptive method of Goldenschluger and Lespki (2010) can be done locally. The numerical results show that both methods perform well, with a slight advantage for our method near 0 when f (0) > 0.

+∞ 0 fm (x)dx = 1 + O(1/m). If we consider: fm (x) = 1 nx n k=1 X k x K m X k x Exponential E(1) distribution, n = 400
It is worth stressing that we have at disposal explicit formulae for the iterated kernel K m K m with K = IG(1, 1), involving a Bessel function available in Matlab. Note that some numerical problems may appear in this computation due to the very small values of the Bessel function K0 (z) for large z. An interesting alternative is to use the formula 

e z K0 (z) = +∞ 0 e -zs/
(t)| α dt = √ m R |K * (s/ √ m)| αm ds.
We now prove that, for α ≥ 1, as m tends to infinity:

(22) D m = R |K * (s/ √ m)| αm ds - R e -αvs 2 /2 ds → 0
where R e -αvs 2 /2 ds = 2π/αv. First, note that ϕ(t) = K * (t)e -it is the characteristic function of a distribution which is centered, has the same variance v as K and satisfies |ϕ(t)| = |K * (t)| for all t. Hence, we can replace K * by ϕ in ( 22) to study D m . Now, we can follow closely the proof given in Feller (1971, p.516). We have

ϕ(t) = 1 - vt 2 2 + o(t 2 ).
Using that

ϕ(s/ √ m) = 1 - vs 2 2m + o(1/m),
we standardly deduce that, uniformly on compact sets,

v m (s) := |ϕ(s/ √ m)| αm -e -αvs 2 /2 → 0.
Moreover, we can choose δ > 0 such that, for |t| ≤ δ,

|ϕ(t)| ≤ e -t 2 v/4 .
Therefore, we split the integral into three terms:

(23) R |v m (s)|ds = |s|≤a . . . + a<|s|<δ √ m . . . + |s|≥δ √ m . . .
For the second term, we use:

a<|s|<δ √ m |v m (s)|ds ≤ 2 a<|s|<δ √ m
e -s 2 αv/2 ds.

For all ε > 0, this term can be made smaller than ε by choosing a large enough. The first term in ( 23) tends to 0. For the third term, we know that, for t = 0, |ϕ(t)| < 1 and ϕ(t) tends to 0 as t tends to infinity. Therefore, η = sup |t|≥δ |ϕ(t)| < 1. Hence, we can write for m ≥ 2/α,

|s|≥δ √ m |v m (s)|ds ≤ η (αm-2) |ϕ(s/ √ m)| 2 ds + |s|≥δ √ m
e -s 2 αv/2 ds.

As |ϕ(s/ √ m)| 2 ds = √ m |ϕ(t)| 2 dt, and |ϕ(t)| 2 dt < ∞ by the assumption that K is in L 2 ,
we get ( 22) and the result follows.

Using Fourier inversion and the Parseval equality yield:

K m (u) ≤ 1 2π R |K * m (t)|dt and ||K m || 2 2 = 1 2π R |K * m (t)| 2 dt,
Thus, the first point.

For the second point, we use analogously that

< K (1) m , K (2) m >= 1 2π < (K (1) m ) * , (K (2) m ) * > .
Then, we prove in the same way

1 √ m < (K (1) m ) * , (K (2) m ) * > - R e -(v 1 +v 2 )s 2 /2 ds → 0. 2 7.
2. Proof of Proposition 3.1. We have:

Var fm (x) = 1 nx 2 +∞ 0 K 2 m (t/x)f (t)dt - +∞ 0 K m (t/x)f (t)dt 2 ≤ ||f || ∞ nx +∞ 0 K 2 m (u)du.
We develop K 2 m . By Lemma 2.1, as m tends to infinity, for 1 ≤ i, j ≤ L, +∞ 0

K (i) m (u)K (j) m (u)du = √ m 1 √ 2π 1 √ v i + v j (1 + o(1)).
The result follows. 2 7.3. Proof of Lemma 7.1. For the proof, we omit the superscript (j) and assume that K (j) = K is a density satisfying the assumptions. Consider first the case 0 < α < 2. Then, by the Holder inequality, as 4/α > 1,

ν α,m = E| Ūm -1| α ≤ E( Ūm -1) 4 α/4 .
Some elementary computations lead to

E( Ūm -1) 4 = µ 4 m 3 + 6v 2 m -1 m 3 . As α/4 < 1/2 < 1, E( Ūm -1) 4 α/4 ≤ (6v 2 ) α/4 1 m α/2 + µ α/4 4 m 3α/4
For α ≥ 2, we can use the Rosenthal inequality (see e.g. Hall and Heyde, 1980, p.23). For some constant c(α),

ν α,m ≤ c(α) v α m α/2 + ν α m α-1
, where α -1 ≥ α/2. 2 7.4. Proof of Proposition 3.2. Before proving the result, we evaluate the rate of absolute centered moments of a density K (j) m when K (j) satisfies (H1)-(H3). Let us set, for integer, γ > 0, m ≥ 2, ( 24)

µ (j) = +∞ 0 (u -1) K (j) (u)du, µ (j) ,m = +∞ 0 (u -1) K (j) m (u)du, (µ (j) 1 = µ (j) 1,m = 0, µ (j) 2 = v j , µ (j) 2,m = v j /m), (25) ν (j) γ = +∞ 0 |u -1| γ K (j) (u)du, ν (j) γ,m = +∞ 0 |u -1| γ K (j) m (u)du.
Lemma 7.1. Assume that the density K (j) satisfies (H1) and (H3). Then, for all α ≤ γ,

ν (j) α,m ≤ c j (α) m α/2 ,
where the constant c j (α) depends on α, v j , µ

4 and ν (j)

α .

The moments µ (j)

,m for integer can be computed and expressed as explicit functions of the µ

(j) k , k ≤ . In particular, if µ (j)
2 < +∞ for some integer , then, µ

(j) 2 ,m ≤ m -C(µ (j)
2k , k ≤ ). Now we prove Prosposition 3.2. By the Taylor formula, and the assumption on K m ,

E fm (x) -f (x) = x +∞ 0 du(u -1) K m (u) 1 0 s -1 ( -1)! f ( ) (x + sx(u -1))) -f ( ) (x) ds.
The result follows using the assumption on f and Lemma 7.1 (see [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]).2 7.5. Proof of Proposition 3.4. Define t) , which is the characteristic function of V = U -1 for U a random variable with density K. The following relations hold:

ϕ(t) = K * (t)e -it = e ψ(
iκ 1 = ϕ (0) = ψ (0) = 0, -κ 2 = ϕ (0) = ψ (0) = -v,
and for j ≥ 3,

ϕ (j) (0) = i j µ j = i j E(V j ), ψ (j) (0) = i j +∞ 0 x j n(x)dx.
Thus, the first cumulant of V is κ 1 = 0 and for j ≥ 2, the j-th cumulant of V is

κ j = +∞ 0 x j n(x)dx, (κ 2 = v).
As K * is a characteristic function, and K belongs to L 2 (R + ), we have, for a > 2:

|K * a (t)| ≤ |K * ( t a )| 2 and |K * a (t)| 2 ≤ |K * ( t a )| 2
which implies that the distribution P a has a density K a belonging to L 2 (R + ).

Let us now establish the links between the moments µ j,a = E(V j a ) of V a = U a -1 where U a has density K a and the moments µ j of V = U -1 where U has density K = K 1 . We denote by κ j,a the j-th cumulant of V a and set ϕ a (t) = e ψa(t) . We have (26) ψ a (0) = 0 = ϕ a (0).

For j ≥ 2, ( 27)

ψ (j) a (0) = i j κ j,a = i j +∞ 0 x j n a (x)dx = i j 1 a j-1 κ j .
Using ( 26) and tedious computations, we obtain:

ϕ a (0) = ψ a (0), ϕ (3) a (0) = ψ (3) a (0), ϕ (4) a (0) = ψ (4) a (0) + 3(ψ a (0)) 2 , ϕ (5) a (0) = ψ (5) a (0) + 9ψ a (0)ψ (3) a (0). This implies: µ 2,a = v a = v/a, µ 3,a = κ 3 /a 2 , µ 4,a = κ 4 /a 3 + 3v 2 /a 2 , µ 5,a = κ 5 /a 4 + 9vκ 3 /a 3 .
More generally, cumulants and (centered) moments are linked by the induction formula (see e.g. [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]) (using that κ 1 = 0, see ( 27)):

κ n,a = µ n,a - n-2 k=2 n -1 k -1 κ k,a µ n-k,a .
We deduce, by a tedious but elementary induction:

µ n,a = n-1 =k(n) c( ) a
where c(n -1) = κ n , the other constants c( ) depend on the cumulants κ , 2 ≤ ≤ n -1 of K and k(n) = n/2 for n even, k(n) = (n + 1)/2 for n odd. 2 7.6. Proof of Proposition 3.5. By Proposition (3.4), for a > 2 , the distributions P aj -1 with characteristic functions specified by the relation ( 11) have a density satisfying (H1) and admit moments up to order . Hence the functions K (j) are well-defined. First, we have:

j=1 j (-1) j+1 = (-1)[(1 -1) -1] = 1.
Then, we have to check that, for k = 1, . . . , , +∞ 0

(u -1) k K m (u)du = 0. By Proposition (3.4), +∞ 0 (u -1) k K amj -1 (u)du = i≤k-1 j i (am) i c(i),
where c(i) = 0 for i < k/2 for even k, and c(i) = 0, for i < (k + 1)/2 when k is odd. Hence, it is enough to prove that, for k = 1, . . . , -1 j=1 j (-1) j+1 j k = 0, which, in turn, holds, as, for k = 1, . . . , -1, 

j=1 j (-1) j+1 j(j -1) . . . (j -k + 1) = j=k j (-1) j+1 j(j -1) . . . (j -k + 1) = ! ( -k)! j=k -k j -k (-1) j+1 = (-1) k+1 (1 -1) -k = 0.
B m f (x) = E fm (x) -f (x), B m,m f (x) = E fm,m (x) -f (x).
The following relation between bias terms holds.

Lemma 7.2.

B m,m f (x) = B m f (x) + +∞ 0 K m (u)B m f (xu)du. Proof. Let fm,i (x) = 1 nx n k=1 K (i) m ( X k x ), fm,m ,i,j (x) = 1 nx n k=1 K (i) m K (j) m ( X k x ), B m,i f (x) = E fm,i (x) -f (x), B m,m ,i,j f (x) = E fm,m ,i,j (x) -f (x). We have: E fm,m ,i,j (x) = K (i) m (t/xy)K (j) m (y)f (t) dydt xy = K (j) m (y) dy xy xyK (i) m (v)f (xyv)dv = K (j) m (y)[E fm,i (xy) -f (xy)]dy + K (j) m (y)f (xy)dy. Using L i=1 α i = 1 yields, L i=1 α i E fm,m ,i,j (x) = K (j) m (y)B m f (xy)dy + B m ,j f (x) + f (x).
And

B m,m f (x) = ( L j=1 α j K (j) m (y))B m f (xy)dy + L j=1 α j B m ,j f (x), which is the result.2 Lemma 7.3. Let K m = L i=1 α i K (i)
m with L i=1 α i = 1 be an extended kernel where the densities K (j) satisfy (H1)-(H3). Then, j) , = 1, . . . , m independent random variables where the U (i)

(29) ||K m K m || ∞ ≤ √ m ∧ m ( L i=1 |α i |)( L i=1 |α i | √ 2πv i )(1 + o(1)). Proof. Consider U (i) k , k = 1, . . . , m, V ( 
k 's have density K (i) and the V (j) 's have density K (j) . Recall that

K (i) m is the density of Ū (i) m = (U (i) 1 + . . . + U (i) m )/m and I (i) m = E(1/ Ū (i) m ) = 1 + O(1/m). Analogously, K (j) m is the density of V (j) m = (V (j) 1 + . . . + V (j) m )/m and C (j) m = E(1/ V (j) m ) = 1 + O(1/m). We have K m K m (u) = 1 2π R e -iut (K m K m ) * (t)dt = 1 2π 1≤j, ≤L α j α R e -iut (K (j) m K ( ) m ) * (t)dt,
and

(K (j) m K ( ) m ) * (t) = E (K ( ) ) * ( t Ū (j) m m ) m . Setting t = s √ m / Ū (j) m , we get R e -iut (K (j) m K ( ) m ) * (t)dt = √ m E 1 Ū (j) m R e -ius √ m / Ū (j) m [(K ( ) ) * ( s √ m )] m ds .
Using that E( 1

Ū (j) m ) = 1 + O(1/m)
, and Lemma 2.1, we get 1)) which yields the result by symmetry in m, m . 2 Lemma 7.4. We have:

||K (j) m K ( ) m (u)|| ∞ ≤ √ m (1 + O(1/m))(2πv ) -(1/2) (1 + o(
Var fm,m (x) ≤ √ m ∧ m C(K)||f || ∞ nx (1 + o(1)).
where the constant C(K) (see ( 17)) does not depend on the density f .

Proof. We have:

Var fm,m (x) ≤ 1 nx +∞ 0 f (ux) (K m K m (u)) 2 du.
we conclude using Lemma 7.3 and the fact that

K (i) m K (j)
m (u) are densities. 2 7.7.2. Proof of Theorem 3.1. First note that the definition of m(x 0 ) given in (19) implies that A( m(x 0 ), x 0 ) + V ( m(x 0 ), x 0 ) ≤ A(m, x 0 ) + V (m, x 0 ) for all m ∈ M n . Hence, for m any element of M n , we can write the decomposition

( f (x 0 ) -f (x 0 )) 2 ≤ 3[( f m(x 0 ) (x 0 ) -fm, m(x 0 ) (x 0 )) 2 + ( fm, m(x 0 ) (x 0 ) -fm (x 0 )) 2 + ( fm (x 0 ) -f (x 0 )) 2 ] ≤ 3(A(m, x 0 ) + V ( m(x 0 ), x 0 )) + 3(A( m(x 0 ), x 0 ) + V (m, x 0 )) + 3( fm (x 0 ) -f (x 0 )) 2 ≤ 6(A(m, x 0 ) + V (m, x 0 )) + 3( fm (x 0 ) -f (x 0 )) 2 .
Therefore,

E[( f (x 0 ) -f (x 0 )) 2 ] ≤ 3E[( fm (x 0 ) -f (x 0 )) 2 ] + 6V (m, x 0 ) + 6E(A(m, x 0 )).
Let us study A(m, x 0 ) (see ( 18)). Let E( fm (x)) = f m (x) and E( fm,m (x)) = f m,m (x). Then

( fm (x 0 )-fm,m (x 0 )) 2 ≤ 3( fm (x 0 )-f m (x 0 )) 2 +3( fm,m (x 0 )-f m,m (x 0 )) 2 +3(f m (x 0 )-f m,m (x 0 )) 2 . By Lemma 7.2, for all m, m ∈ M n , |f m (x 0 ) -f m,m (x 0 )| = | +∞ 0 B m f (x 0 u)K m (u)du|.
Therefore, using that each K (i) m is a density, Proposition 7.1 and Proposition 3.2, we obtain:

|f m (x 0 ) -f m,m (x 0 )| ≤ L i=1 |α i | +∞ 0 |(B m f )(xu)|K (i) m (u)du ≤ CC(β 0 ) β 0 ! x β 0 0 m β 0 /2 L i=1 |α i | u β K (i) m (u)du ≤ CC(β 0 )2 β 0 β 0 ! x β 0 0 m β 0 /2 L i=1 |α i |( K (i) m (u)du + ν (i) β 0 ,m ) ≤ CC(β 0 )2 β 0 β 0 ! x β 0 0 m β 0 /2 L i=1 |α i |(1 + c i (β 0 )(m ) -β 0 /2 ) ≤ C (β 0 , α) x β 0 0 + 1 m β 0 /2 ,
where

C (β, α) = CC(β 0 )2 β 0 β 0 ! L i=1 |α i |(1 + c i (β 0 )).
Thus,

(f m (x 0 ) -f m,m (x 0 )) 2 ≤ [C (β 0 , α)] 2 2(x 2β 0 0 + 1) m β 0 .
We can write:

A(m, x 0 ) ≤ 3 sup m ( fm (x 0 ) -f m (x 0 )) 2 - V (m , x 0 ) 6 + +3 sup m ( fm,m (x 0 ) -f m,m (x 0 )) 2 - V (m , x 0 ) 6 + + 6(C (β, α)) 2 x 2β 0 + 1 m β .
Now, we can prove the following Lemmas:

Lemma 7.5. Under the assumptions of Theorem 3.1, we have

E sup m ( fm (x 0 ) -f m (x 0 )) 2 - V (m , x 0 ) 6 + ≤ C n .
Lemma 7.6. Under the assumptions of Theorem 3.1, we have

E sup m ( fm,m (x 0 ) -f m,m (x 0 )) 2 - V (m , x 0 ) 6 + ≤ C n .
This yields that, ∀m ∈ M n ,

E(( f (x 0 ) -f (x 0 )) 2 ) ≤ 3E(( fm (x 0 ) -f (x 0 )) 2 ) + 6V (m, x 0 ) + 6(C (β 0 , α)) 2 x 2β 0 0 + 1 m β 0 + 6C n . As E(( fm (x 0 ) -f (x 0 )) 2 ) V (m, x 0 ) + C 3 x 2β 0 0
m β 0 , the proof of Theorem 3.1 is complete. 2 7.7.3. Proof of Lemma 7.5. First we write, (30)

E sup m ( fm (x 0 ) -f m (x 0 )) 2 - V (m , x 0 ) 6 + ≤ m∈Mn E ( fm (x 0 ) -f m (x 0 )) 2 - V (m, x 0 ) 6 + . Then E ( fm (x 0 ) -f m (x 0 )) 2 - V (m, x 0 ) 6 + ≤ +∞ 0 P | fm (x 0 ) -f m (x 0 )| ≥ V (m, x 0 ) 6 + u du.
Now we apply the Bernstein inequality (see Birgé and Massart (1998), p.366).

Lemma 7.7. Let T 1 , . . . , T n be independent random variables and S n (T ) = n i=1 [T i -E(T i )]. Then, for η > 0,

P (|S n (T ) -E(S n (T ))| ≥ nη) ≤ 2 exp -nη 2 /2 v 2 + bη ≤ 2 min exp - nη 2 4v 2 , exp - nη 4b , (31) 
where

Var(T 1 ) ≤ v 2 and |T 1 | ≤ b or 1 n n i=1 E(|T i | m ) ≤ m! 2 v 2 b m-2 , ∀m ≥ 2 .
For our purpose, we have:

T i = 1 x 0 K m ( X i x 0 ), η = V (m, x 0 ) 6 + u,
and we need compute v 2 and b. We have

|K m | ≤ L i=1 |α i |K (i)
m where, for all u,

K (i) m (u) ≤ √ m 2π R |(K (i) m ) * |(t/ √ m)| m dt ≤ 2 √ m √ 2πv i ,
by Lemma 2.1. Hence,

1 x 0 |K m ( X i x 0 )| ≤ 2 √ m x 0 L i=1 |α i | 1 √ 2πv i := b.
Using the variance bound, we choose, for C(K) given by ( 17)

v 2 = C(K)( f ∞ ∨ 1) √ m x 0 . We find, nη 2 4v 2 ≥ κ 24 log(n) + nux 0 4C 1 √ m with C 1 = C(K)( f ∞ ∨ 1). Now, we use √ a + b ≥ a/2 + b/2, and denoting by A = 2 L i=1 α i / √ 2πv i , we get nη 4b ≥ κC 1 8 √ 3A log(n) √ nx 0 m 1/4 + nx 0 4 √ 2mA √ u. Thus, as m ≤ (n/ log(n)) 2 , nη/(4b) ≥ κC 1 x 0 8 √ 3A log(n) + log(n)x 0 √ u 4 √ 2A .
Hence, as x 0 > x min ,

+∞ 0 P |f m (x 0 ) -fm (x 0 )| > V (m, x 0 ) 6 + u du ≤ 2 min(n -κ/24 +∞ 0 exp(- nux 0 4C 1 √ m )du, n - √ κC 1 x 0 /(8 √ 3A) +∞ 0 exp(-log(n)x 0 √ u 4 √ 2A )du) ≤ 2 min( 4C 1 √ m nx min n -κ/24 , 64A 2 x 2 min log 2 (n) n - √ κC 1 x min /(8 √ 3A) ) ≤ Cn -ω if κ/24 ≥ ω, κC 1 x min /(8 √ 3A) ≥ ω. Then, we can choose κ large enough such that card(M n )n -ω ≤ n 1-ω ≤ C/n, that is κ ≥ max(2 × 24, 12 × 64A 2 /(C 1 x min ).
Hence, the result is complete. 2 7.7.4. Proof of Lemma 7.6. The proof follows the same line. The new elements are to be taken from ( 29) in Lemma 7.3 and from Lemma 7.4.

7.8. Proof of Proposition 4.1. We have

Var fm (x) = 1 nx 2 +∞ 0 K 2 m (t/x)f (t)dt - +∞ 0 K m (t/x)f (t)dt 2 ≤ 1 nx +∞ 0 K 2 m (u)f (xu)du.
Thus,

+∞ 0 xVar( fm (x))dx ≤ 1 n +∞ 0 +∞ 0 dxduK 2 m (u)f (xu) = 1 n +∞ 0 K 2 m (u) du u .
For i = 1, . . . , L, we have the following uniform bound, using Lemma 2.1:

|K m (u)| ≤ L i=1 |α i |K (i) m (u) ≤ √ m L i=1 |α i |/ √ 2πv i (1 + o m (1)), Using that +∞ 0 K (i) m (u) du u = 1 + O(1/m), yields: +∞ 0 xVar( fm (x))dx ≤ C √ m n , 2 
7.9. Proof of Proposition 4.2. We recall the generalized Minkovski inequality. The proof of the following inequality can be found in e.g. Tsybakov (2004, p. 161). For all Borel function g

on R × R, we have R R g(u, x)du 2 dx ≤ R R g 2 (u, x)dx 1/2 du 2 .
As in Proposition 3.2, we start with

E fm (x) -f (x) = x +∞ 0 du(u -1) K m (u) 1 0 s -1 ( -1)! f ( ) (x + sx(u -1))) -f ( ) (x) ds.
Then, as in Tsybakov (2004, Proposition 1.8, p.20), we can apply twice the generalized Minkowski inequality and the assumptions to get the result. For the first application, we set:

g(u, x) = 1 (x>0) 1 (u>0) x (u -1) K m (u)I(u, x) with I(u, x) = 1 0 s -1 ( -1)! f ( ) (x + sx(u -1))) -f ( ) (x) ds.
We obtain:

+∞ 0 E fm (x) -f (x) 2 dx ≤ +∞ 0 du|u -1| |K m (u)| +∞ 0 x 2 I 2 (u, x)dx 1/2 2 .
For the second application, we set

h(s, x, u) = 1 (x>0) 1 [0,1] (s)x s -1 ( -1)! f ( ) (x + sx(u -1))) -f ( ) (x) . Thus, +∞ 0 1 0 h(s, x, u)ds 2 dx ≤ 1 0 s -1 ( -1)! +∞ 0 dx x 2 f ( ) (x + sx(u -1))) -f ( ) (x) 2 1/2 2 . By definition of the class H + (β, φ), setting v = 1 + s(u -1) = 1 -s + us, +∞ 0 dx x 2 f ( ) (vx) -f ( ) (x) 2 1/2 ≤ φ(v) v +(1/2) |v -1| β-≤ ψ(u)|u -1| β-. Consequently, +∞ 0 1 0 h(s, x, u)ds 2 dx ≤ ψ(u)|u -1| β-/ !. Finally, +∞ 0 E fm (x) -f (x) 2 dx ≤ 1 ! 2 +∞ 0 ψ(u)|u -1| β |K m (u)|du 2 ≤ C2 m -β ! 2 . 2 7.10. Proof of Proposition 4.3. Set D(u) = F 2 (u). Then, D(u) = (1 + u 2 +1 ) +∞ 0 (f ( ) (x)) 2 x 2 dx -2u 2 +1 +∞ 0 f ( ) (ux)f ( ) (x)x 2 dx.
By the assumption, D is C ∞ and:

D (u) = (2 + 1)u 2 +∞ 0 (f ( ) (x)) 2 x 2 dx -2(2 + 1)u 2 +∞ 0 f ( ) (ux)f ( ) (x)x 2 dx -2u 2 +1 +∞ 0 f ( +1) (ux)f ( ) (x)x 2 +1 dx satisfies: D (1) = -(2 + 1) +∞ 0 (f ( ) (x)) 2 x 2 dx -2 +∞ 0 f ( +1) (x)f ( ) (x)x 2 +1 dx = -x 2 +1 (f ( ) (x)) 2 +∞ 0 = 0. Next, D (u) = 2 (2 + 1)u 2 -1 +∞ 0 (f ( ) (x)) 2 x 2 dx -2(2 )(2 + 1)u 2 -1 +∞ 0 f ( ) (ux)f ( ) (x)x 2 dx -4(2 + 1)u 2 +∞ 0 f ( +1) (ux)f ( ) (x)x 2 +1 dx -2u 2 +1 +∞ 0 f ( +2) (ux)f ( ) (x)x 2 +2 dx satisfies D (1) = -2 (2 + 1) +∞ 0 (f ( ) (x)) 2 x 2 dx -4(2 + 1) +∞ 0 f ( +1) (x)f ( ) (x)x 2 +1 dx -2 +∞ 0 f ( +2) (x)f ( ) (x)x 2 +2 dx.
Using F (1) = 0 and another integration by parts yields

D (1) = 2 +∞ 0 (f ( +1) (x)) 2 x 2 +2 dx = 0.
Using a Taylor expansion, 

F (u) = 1 2 (u -1) 2 1 0 F (1 s(u -1)ds, where |F (u)| ≤ c(1 + u 2 +1
E m β/2 ψ( Ūm ))| Ūm -1| β δ .
For f (x) = 1 [0,1] (x), we have φ(u) = 1, = 0, β = 1/2. Thus, we must check that

m 1/4 | Ūm -1| 1/2 Ū 1/2 m , m ≥ 1,
is uniformly integrable. For this, we compute, for K equal to the density G(a, a) with m > 2/a and δ = 4:

mE ( Ūm -1) 2 Ū 2 m = m(2 + am) (am -1)(am -2) = 1 a (1 + O(1)).
Hence, condition (20) holds. For f ( ) (x) = (-1) e -x 1 x>0 , we have β = l + 1, φ(u) ≤ c(1 + u 2 ). We take δ = 2 and check that there exists m 0 such that (33) sup

m≥m 0 m +1 E( 1 Ū +(1/2) m + Ū -(1/2) m )( Ūm -1) 2 +2 < +∞.
Using the property of moments (see Lemma 7.1) and the Cauchy-Schwarz inequality, it is enough to check that

E( 1 Ū 2(2 +1) m ) = 1 + O(1/m).
For K equal to the density G(a, a), this holds for am > 2(2 + 1). 7.12. Proof of Theorem 4.2. 7.12.1. A preliminary Lemma. The Lemmas of Section 7.7.1 are also used here, and must be completed by the following one.

Lemma 7.8.

+∞ 0 Var fm,m (x) x dx ≤ √ m ∧ m n C(K)(1 + o(1)),
where the constant C(K) (see ( 17)) does not depend on the density f .

Proof. For the second bound, by integrating, we get:

+∞ 0 Var fm,m (x) x dx ≤ 1 n +∞ 0 (K m K m (u)) 2 du/u.
To conclude, we use Lemma 7.3 again and the fact that:

(

) +∞ 0 |K m K m (u)|du/u ≤ i,j |α i α j |E(1/ Ū (i) m )E(1/ V (j) m ) = 1 + O(1/m) + O(1/m ). 34 
7.12.2. Proof of Theorem 4.2. Recall that w(x) = x ∧ 1 and that we have set < f, g > This yields that, ∀m ∈ M n ,

w = +∞ 0 f (x)f (x)w(x)dx, ||f || w =< f, f > 1/2 w . First note that the definition of m implies that A( m) + V ( m) ≤ A(m) + V (m) for all m ∈ M n . Hence, for m any element of M n , we can write the decomposition f -f 2 w ≤ 3( f m -fm, m 2 w + fm, m -fm 2 w + fm -f 2 w ) ≤ 3(A(m) + V ( m)) + 3(A( m) + V (m)) + 3 fm -f 2 w ≤ 6(A(m) + V (m)) + 3 fm -f 2 w . Therefore, E( f -f 2 w ) ≤ 3E( fm -f 2 
E( f -f 2 w ) ≤ 3E( fm -f 2 w ) + 6V (m) + 6c 2 (B m f ) 2 (v)dv + 6C n .
As E( fmf 2 w ) (V (m) + (B m f ) 2 (v)dv), the proof of Theorem 4.2 is complete. 2 7.12.3. Proof of Lemma 7.9. First we write, Next, we note that fmf m 2 w = sup t, t w =1 fmf m , t 2 w , and the supremum can be taken over a dense countable family of functions t such that t w = 1; we denote by B(1) this set. Thus,

ν n (t) = fm -f m , t 2 w = 1 n n j=1 1 x K m ( X j x ) -EK m ( X j x t(x)w(x)dx
is a centered empirical process, and we can apply the Talagrand inequality (see [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF]):

(36) E sup This yields:

V ≤ +∞ 0 K m (u) 1 √ u du +∞ 0 t(x)w(x)f (xu) 1 √ x dx C 1/2 m 1/4 .
Then, using again w(x)/x = w(1/x) ≤ 1, For the first term, we can apply Lemma 7.4 to get

| +∞ 0 t(x)w(x)f (xu) 1 √ x dx| ≤ t 2 (x) w 2 (x) x dx f 2 (xu)dx 1/2 ≤ 1 √ u ||t|| w ||f ||.
E( sup t∈B(1) (ν * n ) 2 (t)) ≤ E( fm,m -f m,m 2 w ≤ C(K) √ m ∧ m n ≤ C(K) √ m n := H 2 * .
Next, by analogy with the proof of Lemma 7.9, we have

1 x K m K m ( u x )t(x)w(x)dx ≤ K m K m ∞ |K m K m (v)|/vdv.
This gives, by using Lemma 7.3 and inequality (34)

1 x K m K m ( u x )t(x)w(x)dx ≤ C(m ∧ m ) 1/4 ≤ C(m ) 1/4 := M * 1 .
In the same way, we get b * = C m 1/4 . The bounds being the same as for Lemma 7.9, the conclusion is also analogous. 2
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 1 Risk bound. Proposition 4.1. (Variance bound) Assume that K
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 1 Figure 1. Exponential E(1) density. True function (bold) and estimation for one path (dotted) with n = 1000, Lepski method (up left), our method (up right), selected h (middle left) or m (middle right), true function (bold) and set of all the estimators proposed to the selection algorithm (bottom).
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 2 Figure 2. Beta β(3, 3) density. True function (bold) and estimation for one path (dotted) with n = 1000, Lepski method (up left), our method (up right), selected h (middle left) or m (middle right), true function (bold) and set of all the estimators proposed to the selection algorithm (bottom).
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 3 Figure 3. True density (bold) and 50 estimated densites (dotted), Lepski method (left), our method (right).

  dx = 1. The theoretical study and the numerical performances are analogous to those of fm . But, proofs for the adaptive procedure are much more difficult, especially for what concerns the Bernstein and the Talagrand inequalities (unbounded empirical processes).

  Three useful Lemmas. Let us set, for m, m > 0, (28)

B

  w ) + 6V (m) + 6E(A(m)). Let us study A(m) (see (21)). Let E( fm (x)) = f m (x) and E( fm,m (x)) = f m,m (x). Then fmfm,m 2 w ≤ 3 fmf m 2 w + 3 fm,mf m,m 2 w + 3 f mf m,m 2 w . By Lemma 7.2, for all m, m ∈ M n , f mf m,m m f (xu)K m (u)du 2 w(x)dx.Therefore, as w(x) ≤ 1, setting c = L i=1 |α i |, and using that each K and the change of variable v = xu. Now, K

  C 1 , C 2 , C 3 are three numerical constants and H, b, M 1 are defined by x)w(x)dx ≤ M 1 .|K m (v)|/vdv ≤ 2 L i=1 |α i | and K m ∞ ≤ 2 √ m L i=1 |α i |/ √ 2πv i . Hence, we can take M = C(K)m 1/4 . Now, we study x)K m (ξ/x)t(x)w(x)(1/y)K m (ξ/y)t(y)w(y)dxdydξ.First, f (ξ)K m (ξ/x)K m (ξ/y)dξ = x K m (u)K m (xu/y)f (xu)du. Hence, w(y)K m (xu/y)(1/y)dy ≤

  || ≤ C 1/2 m 1/4 ||f ||(1 + O(1)).Thus, we can take b = C m 1/4 . Lastly, This ends the proof of Lemma 7.9. 2. 7.12.4. Proof of Lemma 7.10. The proof of Lemma (7.10) follows the same line as previously with K m replaced by K m K m , where m is fixed and the sum is now taken over m in M n . x)w(x)dx ≤ M * 1 .

  Proof of Lemma 2.1. Recall that the Fourier transform of K m is K *

	2	ds s(s + 4)	,
	which is obtained from (8) and numerically more stable.	
	7. Proofs		
	7.1.		

m (t) = (K * (t/m)) m . Thus, by the change of variables t = s √ m, we get: R |K * m

It follows from the definition of ν n that

where C(K) is defined in (17).

Next, for t w = 1, we have

and by noting that w(x)/x = w(1/x) ≤ 1, we get

Again, I m = +∞ 0