
HAL Id: hal-00560031
https://hal.science/hal-00560031

Submitted on 27 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A codesign synthesis from an MPEG-4 decoder dataflow
description

Nicolas Siret, I. Sabry, Jean François Nezan, Mickaël Raulet

To cite this version:
Nicolas Siret, I. Sabry, Jean François Nezan, Mickaël Raulet. A codesign synthesis from an MPEG-4
decoder dataflow description. Circuits and Systems (ISCAS), Proceedings of 2010 IEEE Interna-
tional Symposium on, May 2010, Paris, France. pp.1995 -1998, �10.1109/ISCAS.2010.5537107�. �hal-
00560031�

https://hal.science/hal-00560031
https://hal.archives-ouvertes.fr


A codesign synthesis from an MPEG-4 decoder
dataflow description

Nicolas Siret∗ ∗∗, Ismaı̈l Sabry∗, Jean François Nezan∗∗ and Mickaël Raulet∗∗
∗Lead Tech Design, F-35043 Rennes, France

∗∗IETR/INSA. UMR CNRS 6164, F-35043 Rennes, France

Abstract— The elaboration of new and innovative systems such
as MPSoC (MultiProcessor System on Chip) which are made up
of multiple processors, memories and IPs lies on the designers to
achieve a complex codesign work. Specific tools and methods are
needed to cope with the increasing complexity of both algorithms
and platforms. Our approach to design such systems is based on
the usage of a high level of abstraction language called RVC
CAL. This language is dataflow oriented and thus points out the
concurrency and parallelism of algorithms. Moreover CAL is
supported by the OpenDF simulator and by two code generators
called CAL2C (software generator) and CAL2HDL (hardware
generator). The MPEG expert group has recently elaborated
the Reconfigurable Video Coding (RVC) standard which defines
the RVC CAL language as reference for MPEG video decoder
descriptions. This paper introduces the opportunities to design
an innovative system involving hardware and software IPs,
embedded processors and memories from a CAL model. Practical
results on a FPGA are provided with a codesign solution of an
MPEG4 Simple Profile (SP).

Index Terms— Dataflow, Cal, Reconfigurable Video Coding,
MPEG, codesign, hardware, software.

I. INTRODUCTION

There are nowadays a lot of multimedia devices, for in-
stance mobile computer, smartphone or mobile phone. Video
standards (e.g. MPEG-1, MPEG-2, etc.) must be fitted to each
device. A problem commonly faced by the designers is the
lack of re-usability and genericity of the code provided by
the standard (usually a C/C++ monolithic specification). To
overcome this limitation, a new standard called Reconfigurable
Video Coding (RVC) [1], [2] has been recently standardized
by the Moving Picture Expert Group (MPEG). An RVC
decoder is so built by carefully connecting elementary blocks
called Functional Units (FUs). An RVC decoder could decode
existing MPEG standards like MPEG-4, AVC or SVC and
even future standards. This decoder should also be compliant
for hardware and software code generation and so, should
be fitted to embedded systems. Currently the most ended
(and stable) description for RVC approach is an MPEG-4 SP
decoder provided by the MPEG RVC experts group. An AVC
decoder is also under development as part of the MPEG RVC
standardization [3].

Specific architectures (e.g. low power) need to be design
for hardware processing. The evaluation of possibilities and
capacities on FPGA and ASIC is one important way to validate
the interest of this standard. This paper is the first which
introduces the method to design an embedded codesign de-
coder (i.e. embedded processors, IPs) from RVC descriptions

and which provides practical results. The paper is organized
in three parts: the section II introduces the RVC standard
and its related tools, the section III presents the MPEG-4 SP
decoder and the codesign methodology, the section IV outlines
practical results and perspectives of future work.

II. RVC STANDARD AND TOOLS

A. The RVC standard
The MPEG RVC Framework is currently under development

by the MPEG committee as part of MPEG-B and MPEG-
C standards [4]. It aims at providing a framework allowing
dynamic development, implementation and certification of
existing or new video coding solutions. Moreover, it involves
abstract model, higher flexibility and reusability features in
order to efficiently support multiple codec configurations and
to facilitate innovation in codec design. An abstract decoder,
shown in figure 1, is built as a block diagram expressed
with functional unit Network Language (FNL) [1]. Each block
is defined with processing entities called Functional Units
(FUs) [2] and connections which represent dataflows between
FUs. The MPEG-B part 5 Bitstream Syntax Description Lan-
guage (BSDL) [5] describes the syntax of the bitstream the
RVC decoder.

Bitstream 

Schema (BCDL)

Decoder Description

Schema (DDL)

Parser 

instantiation 

(CAL/FU)

Network 

instantiation 

(CAL/FU)

E
n
c
o
d
e
d
 V
id
e
o
 D
a
ta

(CAL/FU) (CAL/FU)

Proprietary Decoder

E
n
c
o
d
e
d
 V
id
e
o
 D
a
ta

ABSTRACT DECODER

Decoder Description

Schema (DDL)

Network 

instantiation 

(CAL/FU)

Standard 

MPEG 

Toolbox 

(CAL/FUs)

D
e
c
o
d
e
r
 V
id
e
o
 D
a
ta

(CAL/FU)

D
e
c
o
d
e
r
 V
id
e
o
 D
a
ta

MODEL

STANDARD RECEIVERMODEL

Fig. 1. Graphical representation of the conceptual process of deriving a RVC
abstract decoder model

RVC provides both a normative standard library of FUs and
a set of decoder descriptions expressed as networks of FUs.
Such a representation is modular and helps the reconfiguration
of a decoder by modifying the topology of the network.

B. Functional Units (FUs)
Two kinds of FU can be distinguished in a video processing.

The first one involves almost algorithmic video decoding



processes (i.e. IDCT, inverse-quant, etc.) which are usually
reusable between decoders. Conversely, the second one con-
tains data management processes (i.e. parser, multiplexer, etc.)
which usually have to be adapted to each specific codec. The
FUs which compose the RVC standard library are built from
the model of computation and normative I/O specified in RVC
CAL. RVC CAL [6], [7] is a subset of the CAL Actor
Language, which is a dataflow oriented language. Each FU
corresponds to a RVC CAL actor contained in the Standard
MPEG Toolbox.

Figure 2 introduces a network of actors. An actor is a
computational entity with interfaces (input and output ports),
internal states and parameters. Actors are completely inde-
pendent from each others and they can interact by exchanging
data (called tokens) along channels. During a process (also
referred as firing an action), the actor consumes input tokens,
produces output tokens and changes its internal state. Action
guards, action scheduling with Finite State Machine (FSM)
or action priorities are the controlling structures that constrain
the selection of actions to fire.

FIFO Actor

Consume/produce tokens

FIFO

Consume/produce tokens

and modify internal states

FIFO

Actions

State

ActorActor

Actions are implemented

sequentially and they can

be sequenced

FIFO

Actor

be sequenced

FIFO

Fig. 2. A network of CAL actors

C. CAL tools

CAL is supported by the OpenDF [8] simulator1 and by two
code generators called CAL2C [9] and CAL2HDL [10] which
has been designed to work on an Eclipse environment. CAL2C
converts CAL actors into C code which can be compiled
on any processor [11] including embedded processors, DSPs,
ARMS. CAL2HDL is a subset of OpenDF plugin. It converts
a CAL model into HDL code which can be implemented on
Xilinx FPGA. For an automatic generation of the parser, a
BSDL to CAL translator is also under development as part of
the OpenDF effort [5].

III. CODESIGN METHODOLOGY

A. The MPEG-4 SP decoder

As shown figure 3, the MPEG-4 SP decoder is compound
with three main functional units’ blocks: a parser, a texture
decoder and a motion compensator (i.e. acdc and idct2d).
Furthermore all of these FUs are themselves composed of
algorithmic video actors or data management processes actors.

Motion compensation and texture decoding are classical
processes in a video decoding application. They handle the
video data provided by the parser to realize a macroblock
decoding of each image. On the contrary the parser which

1Open dataflow sourceforge project : http://opendf.
sourceforge.net/.

[01101…]

Parser (5 actors) acdc (7 actors)

[01101…]

Bitstream

Decoded 

idct2d (12 

actors)

Decoded 

data

Fig. 3. The CAL MPEG-4 SP decoder desciption

analyzes the incoming bitstream and extracts the video data
is specific to the standard. The parser is the most complex
actor (1389 lines), in fact it is compound with more than forty
actions sequenced with guards and complex FSM.

B. Design process

Figure 4 introduces the four steps involved in the design
process.

EclipseEclipse

CAL2HDL

HARDWARE

CODE

GENERATOR

CAL DECODER

CAL2C

SOFTWARE

CODE

GENERATOR

GENERATOR

Xilinx tool Platform

EDK –

HARDWARE

SYNTHESIS

HDL IP

EDK –

SOFTWARE

COMPILATION

MICROBLAZE

Fig. 4. Four steps to design : CAL research and developement, code
generation, code synthesis and onchip validation

Actors of the MPEG-4 decoder are compliant with
CAL2HDL [12] [10] and CAL2C [9]. In effect some al-
gorithms involved in video decoding are usually fitted to
hardware or software processing. As a consequence, it is
necessary in a first step, to specify the CAL blocks on the
network which are fitted to hardware or software processes.
In this case, acdc and idct2d actors involve almost parallel
processes and are adapted to hardware. On the opposite, the
parser block performs full sequential operations (e.g. reading
input bit, storing input bit, looking for start code ...) and thus,
is fitted to software processing. The second step consists in the
hardware code generation, the mapping between the generated
IP and the embedded processors and the code synthesis.
Indeed, once the hardware code is generated, it is necessary
to connect the MPEG-4 decoder IP with processors or others
hardware IPs which will send him the MPEG-4 video data
and display the decoded video. In a third step it is essential to
program the processors with a scheduler and the generated
software code. The last step consists in implementing and
testing the MPEG-4 codesign decoder on the platform.

C. Hardware and software processing

The MPEG-4 decoder sources are generated thanks to the
CAL2HDL. Each CAL actor is transformed into a verilog file
and the top level into a vhdl file. Inputs and outputs (I/Os)
compulsory connected on the top are Data (I/O), Send (I/O),
Acknowledgment (I/O), ready (I/O), clock and reset. The tool
used to implement the hardware code generated is Xilinx EDK,



thus embedded processors which realize the software part are
Microblazes. To connect the generated HDL decoder with a
microblaze, a study of options point out that an efficient way
consists in encapsulating the IP as a coprocessor. Then the
IP can be plug to the processor thanks to a Xilinx proprietary
bus called Fast Simple Link (FSL). FSL is a unidirectional fast
communication channel bus used by Xilinx to connect there
processors to peripherals. As shown figure 5, the link between
FSL bus and decoder I/Os has been made in accordance with
the FSL standard thanks to logical operators (e.g. and, or,
when, etc.).

F
S
L
 S
L
A
V
E
IN
T
E
R
F
A
C
E

FSL_clk

Ack

Send

ready

D

E

C

O

D

E

R

Data_in

L
o
g
ic
a
l 
o
p
e
ra
ti
o
n
s

Clk

D

E

C

O

D

E

R

Data_out

L
o
g
ic
a
l 
o
p
e
ra
ti
o
n
s

Reset

Ack

Send

ready

FSL_rst

F
S
L
 S
L
A
V
E
IN
T
E
R
F
A
C
E

Fig. 5. The generated decoder can be connect with a FSL link thanks to
logical operators

Before code synthesis, Xilinx peripherals have to be con-
nected as introduces figure 6.

Microblaze0

M
p
e
g
4
 –
S
P
 d
e
c
o
d
e
r

Timer

(xps_timer)

Interupt controler

(xps_intc)

E
th
e
rn
e
t 
IP

V

i

d

e

o

d

a
FSL

FSL

DDRAM

M
p
e
g
4
 

BRAM

Debug module

(debug_module)

a

t

a

FSL

Microblaze1

D
is
p
la
y
 I
P

F
S
L
_
li
n
k
fr
o
m
 t
h
e
 

d
e
c
o
d
e
r

Timer

(xps_timer)

Interupt controler

(xps_intc)

PLB

i

d

e

o

d

a

FSL

DDRAM

F
S
L
_
li
n
k

BRAM

UART module

(xps_uart_lite)
Clock generator

a

t

a

Fig. 6. The whole system needed to decode video, notably the decoder and
two embedded processors

The whole system is divided into two parts. The first
part is composed of three elements: the Ethernet IP which
manages the Ethernet link between a network and the system,
the first Microblaze which orders the Ethernet IP, realizes
the software part and transmits MPEG-4 video data through
two FSL links and the MPEG-4 decoder. The second part
is also composed of three elements: a YUV2RGB (i.e.
conversion and display) IP, a second microblaze which
read YUV data from the decoder and send them to the
YUV2RGB IP and a coprocessor called ”FSL link from the
decoder”. The ”FSL link from the decoder” coprocessor

formats the video data to make them suitable with the FSL
bus. Moreover it is compulsory to overcome a limitation
of the FSL link indeed a FSL link can be connected with
a single Microblaze. Due to the platform limitation (figure
9), software applications and related data are stored on
the external DDRAM. Thus, processors must regularly
make external memory access to complete their treatment.

The C code provided by CAL2C is almost fully synthesiz-
able. CAL actors are transformed into C files scheduled with a
SystemC process. As a consequence it is necessary to modify
the C scheduler using FIFOs (e.g. structure of table type) to
send variables or parameters between actors in accordance
with the RVC CAL model of computation. The work to do
is to call all the necessary function in the scheduler and to
read or write data into the correct FIFOs. The structure of the
program is presented figure 7.

/ / FIFOs d e f i n i t i o n ( f o r one f i f o )
s t r u c t f i f o f i f o 1 = { s i z e o f ( char ) , s i z e , a r r a y } ;
s t r u c t f i f o ∗ p a r s e r = &f i f o 1 ;

/ / Main
i n t main ( ) {

/ / v a r i o u s i n i t i a l i z a t i o n
i n i t ( ) ;

/ / I n f i n i t e loop
whi le ( 1 ) {

Receive TCP ( ) ;
S e r i a l i z e ( ) ;
P a r s e r ( ) ;
F S L t r a n s m i s s i o n ( ) ;
}

}

Fig. 7. Structure of the scheduler code

In first, MPEG-4 data are read from the Ethernet IP and are
written in the input FIFO of the parser. This one achieves its
own process without any intervention from the designer. In the
second place, YUV data has to be sent on the FSL bus. This
is made by reading the output FIFO of the parser and making
a basic writing operation, (i.e. write data into fsl(data, slot)).

IV. RESULTS ON THE MPEG-4 SP DECODER

Results introduce figure 8 and figure 9 are obtained without
any optimization of the CAL description provided by the
MPEG RVC group. H.decoder is made up of the hardware de-
coder and the hardware parser. H.system consists of the whole
system presented figure 6 including the MPEG-4 decoder
(with the parser). Cod.decoder is made up of the hardware
decoder without the hardware parser. Cod.system consists of
the whole system presented figure 6 including the MPEG-
4 decoder (without the hardware parser). For decoders, the
slices occupation, the internal RAM (iRAM) occupation and
the maximum frequency are computed by the ISE tool and the
Frames per second (FPS) are calculate thanks to Modelsim.
For the whole systems, results are computed by the EDK tool
(e.g. slice, iRAMs, and frequency) and by experimentations
on the Microblaze (e.g. FPS).

Comparing the results highlights a profit in term of fre-
quency performance and slices occupation. FPS results for the



Project H.decoder H.system Cod.decoder Cod.system

Slices: 26% 80% 22% 74%

iRAM: 8% 33% 8% 30%

 frequency: 55 MHz 40 MHz 55 MHz 50 MHz

FPS: 58 4 58 0,77

Fig. 8. Results obtained on the Xilinx ML402 evaluation platform (FPGA:
Virtex4 - XC4VSX35)

0%

10%

20%

30%

40%

50%

60%

70%

80%

Slices iRAM

H.decoder

Cod.decoder

H.system

Cod.system

Fig. 9. Slices and iRAM utilization for both the decoders and the whole
systems

hardware solution and the codesign solution seem disappoint-
ing but are actually encouraging. In fact the highly generalist
architecture of the Microblaze (hardware, codesign), the hard-
ware aspect of the RVC CAL parser (codesign) and the lack of
pipelining (codesign) explains the FPS loss. More precisely,
in both the codesign and the hardware solution, Microblaze
performances are highly strained by the capabilities of the
platform (e.g. one instruction per cycle, 100MHz operating
frequency and some regularly external memory access, see
subsection III-C) and by the necessary use of a kernel to
manage the application. Moreover, for the codesign system
other significant confines appear. On the one hand there is no
pipelining, so the Microblaze has to manage four processes:
receiving data from the Ethernet IP, serializing the data (e.g.
byte to bits), parsing the data and transmitting them to the FSL.
On the other hand the parser provided with the MPEG-4
SP decoder has been designed for a hardware processing.
Indeed, it is made up of a sizeable FSM (more than fifty states
in the C code) and many actions (more than one hundred in
the C code) which achieve a binary process. At this moment
the hardware aspect of the RVC CAL parser makes it very
complex and difficult to change, a prospect is to write a generic
parser suitable for software processing to replace the current
one and to measure the benefits.

Design the MPEG-4 codesign decoder highlights several ad-
vantages. The greatest one is the time to design, indeed using
the RVC CAL MPEG-4 description and the RVC associated
tools reduces the work to do and thus, the time to design from
several month to few days. Moreover, despite several strains
and no code optimization, results are quite good and opens
up many prospects in term of software optimization, logical
occupation reducing and dataflow architecture research.

V. CONCLUSION AND PROSPECTS

Designing new and innovative embedded systems is more
and more complex. The rapidly growth of MPSoC (Multi-
Processor System on Chip), which are made up of multiple
processors, memories and IPs, poses problems of development
and optimization of the hardware and software code. This
paper points out another way to program this kind of systems:
instead of separating hardware and software developments, the
designers can work on the entire system at a higher level
of abstraction. The system is seen as a set of independent
actors which can be transformed either in hdl code or in C
code. The framework of the RVC standard (with the RVC
CAL language) uses this new and innovative approach. The
codesign method introduces in this paper allow the designer
to generate a codesign solution from an RVC CAL decoder.

The results presented are promising, it is possible to gen-
erate within a limited time, a complex codesign system.
Moreover, its frequency performance, slice occupation and
FPS are quite good whereas no optimization has been made.
Based on this work, several prospects are under studies notably
the building of a generic parser, the enhancement of the tools
to improve hardware and software generated code and the
deployment of multiple processors (MPSoC) on the FPGA.

REFERENCES

[1] ISO/IEC Interntional Standard 23001-4: 2009, “Information technology
- MPEG systems technologies - Part 4: Codec Configuration Represen-
tation,” 2009.

[2] ISO/IEC Interntional Standard 23002-4: 2009, “Information technology
- MPEG video technologies - Part 4: Video Tool Library,” 2009.

[3] J. Gorin, M. Raulet, Y-L. Cheng, H-Y. Lin, N. Siret, K. Sugimoto, and
G.G. Lee, “An RVC dataflow description of the AVC constrained base-
line profile decoder,” in International Conference on Image Processing
(ICIP), 2009.

[4] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Janneck, “Reconfig-
urable Media Coding: a new specification model for multimedia coders,”
in Signal Processing Systems (SiPS), 2007.

[5] M. Raulet, J. Piat, C. Lucarz, and M. Mattavelli, “Validation of bitstream
syntax and synthesis of parsers in the MPEG Reconfigurable Video
Coding framework,” in Signal Processing Systems (SiPS), 2008, pp.
293–298.

[6] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli,
and M. Raulet, “Overview of the MPEG Reconfigurable Video Coding
Framework,” Springer journal of Signal Processing Systems. Special
Issue on Reconfigurable Video Coding, 2009.

[7] ISO/IEC FDIS 23001-4, “MPEG systems technologies – Part 4: Codec
Configuration Representation,” 2009.

[8] Shuvra S. Bhattacharyya, Gordon Brebner, Jörn W. Janneck, Johan Eker,
Carl von Platen, Marco Mattavelli, and Mickaël Raulet, “OpenDF: a
dataflow toolset for reconfigurable hardware and multicore systems,”
SIGARCH Comput. Archit. News, vol. 36, no. 5, pp. 29–35, 2008.

[9] G. Roquier, M. Wipliez, M. Raulet, J.W. Janneck, I.D. Miller, and D.B.
Parlour, “Automatic software synthesis of dataflow program: An MPEG-
4 simple profile decoder case study,” in Signal Processing Systems
(SiPS). IEEE Workshop on, 2008, pp. 281–286.

[10] J.W. Janneck, I.D. Miller, D.B. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing hardware from dataflow programs: an MPEG-
4 Simple Profile decoder case study,” in Signal Processing Systems
(SiPS), 2008.

[11] I. Amer, C. Lucarz, G. Roquier, M. Mattavelli, M. Raulet, J.-F. Nezan,
and O Deforges, “Reconfigurable video coding on multicore,” in Signal
Processing Magazine, IEEE, 2009, pp. 113–123.

[12] Julien Dubois Richard Thavot, Romuald Mosqueron and Marco Mat-
tavelli, “Hardware synthesis of complex standard interfaces using CAL
dataflow descriptions,” in Design and Architectures for Signal and Image
Processing (DASIP), 2009.


