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ABSTRACT

MPEG Reconfigurable Video Coding (RVC) is a new platform-
independent specification methodology chosen by the MPEG
community for describing coding standards. This method-
ology aims at producing Abstract Decoder Models (ADMs)
of MPEG decoders as dataflow programs described in RVC-
CAL Actor Language (RVC-CAL) [1]. RVC-CAL naturally
expresses potential parallelism between tasks of an applica-
tion, which makes an ADM description suitable for imple-
mentation to a wide variety of platform, from uniprocessor
systems to FPGAs. MPEG RVC eases the conception process
of decoders by describing decoders at a library component
level instead of using monilithic algorithms, and by providing
a library of coding tools standardized in MPEG. This paper
presents new mechanisms based on the Low Level Virtual
Machine (LLVM) capacities that allow the conception of the
first decoder able to dynamically instantiate an RVC decoder
description. This decoder, unlike static decoders generated
by RVC tools [2], keeps de facto the features of an RVC de-
scription namely portability, scalability and reconfiguration
ability.

Index Terms— Reconfigurable Video Coding, RVC-
CAL Actor Language, MPEG decoder, Low Level Virtual
Machine, Dataflow programming, Multi-core, Code synthe-
sis

1. INTRODUCTION

MPEG multimedia coding technology has delivered many
heterogeneous coding standards. The specification of such
standards has been done case-by-case providing monolithic
textual description and reference software in C++. Very
little attention has been given to provide a formalism that
would explicitly present the common components of differ-
ent standards and that would furthermore be suited to the
heterogeneous panel of systems available nowadays. MPEG
structured their standards with many possibilities of algorithm
combination called Profiles. Selecting an appropriate profile
for a selected platform would enable a codec designer to
have any desired trade-off between compression performance
and implementation complexity. Currently, interoperability
demands that the selection process for a profile be described

into the normative description of a codec, or at best, into a
number of choices codified within the media syntax.

MPEG Reconfigurable Video Coding (RVC) has been
chosen by the MPEG community to be an alternative paradigm
for codec deployment. The MPEG RVC paradigm is based
on RVC-CAL Actor Language (RVC-CAL) to describe de-
coders at high-level library component using dataflow de-
scriptions. The main objective of RVC is to enable arbitrary
combinations of fundamental algorithms, without additional
standardization steps. By adding the side-information of the
combination description alongside the content itself, MPEG
RVC defines the new concept of RVC decoder. An RVC
decoder may create, configure and re-configure video com-
pression algorithms adaptively to its content.

Yet, no mechanism has been found to automatically and
dynamically use dataflow description to form an RVC De-
coder. Our work presented in this paper proposes to transform
the RVC-CAL description of coding tools into the generic
low-level description called Low-Level Virtual Machine
(LLVM) Intermediate Representation (IR), and to use the
LLVM infrastructure for dynamically and efficiently instan-
tiating these coding tools to create decoders. By combining
the LLVM and the RVC concepts, we created a portable and
universal MPEG decoder engine that can configure and re-
configure an MPEG RVC decoder description. This decoder
has been successfully tested onto multiple platforms.

2. MPEG RECONFIGURABLE VIDEO CODING

Since the year 2004, MPEG has become very active about
video compression/decompression application prototyping
coming from their coding standards. These works led to
the creation of the MPEG Reconfigurable Video Coding
framework. This framework aims at “allowing a dynamic
development, implementation and adoption of standardized
video coding solutions with features of higher flexibility and
reusability” [1]. Its key approach is to provide an Abstract
Decoder Model (ADM) of existing or new MPEG standards
at system-level suited for any platform.

An Abstract Decoder Model, shown in Figure 1, is a
generic representation of a decoder, built as a block diagram
expressed with the XML Dataflow Format (XDF) [3]. XDF
is an XML dialect that describes the connections between
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Fig. 1. The reconfigurable Video Coding Framework.

blocks called Functional Units (FUs). Each FU defines pro-
cessing entities of a decoder and connections represent data
flow between FUs. MPEG RVC is under development as part
of the MPEG-B standard [3], which defines the framework
and the language used to describe components; and as part
of the MPEG-C [4] standard, which defines the library of
video coding tools (Video Tools Library or VTL) employed
in existing MPEG standards.

MPEG RVC provides both a normative standard library of
FUs and a set of decoder descriptions expressed as networks
of FUs. An ADM representation of a decoder is modular and
helps its reconfiguration by allowing the topology of its net-
work to be easily modified. RVC mainly focuses on reusabil-
ity by allowing different decoder descriptions to instantiate
common FUs across standards.

2.1. RVC-CAL Dataflow Programming

FUs of an Abstract Decoder Model are defined using RVC-
CAL, a subset of CAL Actor Language. RVC-CAL [5] is
a textual and domain specific language for writing dataflow
models, more precisely for defining Functional Units (or ac-
tors) of a decoder at a high level of description. An actor
represents an autonomous entity, thus a composition of actors
explicitly describes the concurrency of an application. The
RVC-CAL Actor Language has been defined to be platform
independent and retargetable to a rich variety of platforms.
RVC-CAL, compared with CAL, restricts the data types, and
operators that cannot be easily implemented onto the plat-
forms.

An RVC-CAL actor is a computational entity with in-
put ports, output ports, states and parameters. An actor
communicates with other actors by sending and receiving
tokens (atomic pieces of data) through its ports. An actor
can contain several actions. An action defines a computation,
which consumes sequences of tokens from input ports and

Fig. 2. Representation of an RVC decoder.

produces sequences of tokens to output ports. Actions have
data-dependent conditions for their execution. The execution
of an action may change the actor internal state, so that the
produced output sequences are functions of the consumed
input sequences and of the current actor state.

2.2. RVC Decoder features

The main benefit of the MPEG RVC approach is to be able
to describe a decoder without carrying implementation de-
tails. By using an RVC-CAL description, an Abstract De-
coder Model has two benefits:

1. Parallelism scalability: While scalability of paral-
lelism composes the principal weakness of traditional
imperative languages, RVC-CAL proposes to encap-
sulate tasks into actors, explicitly exposing parallelism
between tasks of an application.

2. Modularity: The “untimedness” and the strong encap-
sulation of actors offer high degree of modularity. This
property allows each actor of a dataflow model to be
unbound to its environment and thus to be easily used
in others.

C and HDL synthesis tools [1] can be used to automat-
ically generate static decoders for specific platforms. These
decoders may only take the useful information from an ADM
description to fully exploit processing resources of the tar-
geted platform. Our approach differs in the way that we skip
this synthesis process and dynamically run an ADM descrip-
tion on the targeted platform. To be fully RVC compliant,
this decoder must integrate a Video Tools Library, a library
that supports RVC ADM representation and a Virtual Ma-
chine able to produce efficient Just-In-Time (JIT) compilation.
By combining all these tools, video decoders (Fig. 2) can be
created, configured and reconfigured adaptively to decode any
video sequence or syntax.

3. LOW LEVEL VIRTUAL MACHINE (LLVM)

Performance and portability are crucial to develop a sustain-
able RVC decoder. High Level Language Virtual Machines



(the most popular are Java Virtual Machine or Common Lan-
guage Runtime) have generally high portability but poor per-
formance compared to an equivalent C application [6, 7]. The
Universal Video Decoder (UVD) [8], dedicated to video de-
coding, shows interesting performances but at the cost of de-
veloping a dedicated Virtual Machine, currently tested on a
single environment. The Low-Level Virtual Machine fits all
of our expectation by providing excellent application perfor-
mance, a compiler infrastructure tested in a wide variety of
platforms and a strong research infrastructure support.

3.1. LLVM Intermediate Representation

The centerpiece of LLVM is the LLVM Intermediate Repre-
sentation (IR) using LLVM virtual instruction set. The LLVM
instruction set is a very simple representation and language
independent type-system that captures the key operations of
ordinary processors but avoids machine specific constraints
such as physical registers, pipelines, low-level calling con-
ventions, or traps. The generic instruction set of LLVM con-
stitutes an excellent low-level representation for FUs, allow-
ing their representation to be directly executed into a wide
variety of platforms. LLVM IR includes explicit type infor-
mation, control flow graphs, dataflow representation along
with a three-address code (3AC) and Static Single Assign-
ment (SSA) form. These properties simplify transformations
and code analyses to allow aggressive multistage optimiza-
tion and high-performance execution onto its integrated Vir-
tual Machine [7] .

3.2. LLVM compilation framework

LLVM also designates a compilation framework that exploits
the LLVM IR to provide a combination of features not avail-
able in any previous compilation approach[7]. These capabil-
ities are:

1. Persistent program information: The compilation
model preserves the LLVM representation through-
out an application’s lifetime, allowing sophisticated
optimizations to be performed at all stages of execu-
tion.

2. Transparent runtime model: The system does not spec-
ify any particular object model, exception semantics, or
runtime environment, thus allowing any language to be
compiled using it.

3. Uniform, whole-program compilation: Language-
independence makes it possible to optimize and com-
pile all code comprising an application in a uniform
manner.

This compilation framework corresponds to a collection
of libraries and tools that makes easier to build offline compil-
ers, optimizers or Just-In-Time (JIT) code generators. LLVM

FU AST AST actions

action
scheduler

FUs translation

Parse Transform

Generated files

LLVM files

i

Fig. 3. LLVM Code Generation for a selected FUi.

is currently supported on X86, X86-64, PowerPC 32/64,
ARM, Thumb, IA-64, Alpha, SPARC, MIPS and CellSPU
architectures. As LLVM is becoming a commercial grade
research compiler, the code generated will continually benefit
from improvements of its compiling infrastructure.

4. PORTABLE VIDEO TOOL LIBRARY
GENERATION

The main purpose of this paper is to use the efficiency of the
LLVM representation to provide a portable VTL manageable
by the LLVM infrastructure. We describe in this part the
translation process used to convert FUs described in RVC-
CAL into an LLVM representation.

4.1. Functional Units transformation

The first constraint of the LLVM code generation is to avoid
lost information from the original VTL, described in RVC-
CAL. We used mechanisms presented in [2], which describe
the translation of an RVC ADM into a C representation for
single processors. This C representation transformed FUs
from VTL into several instances. As an instance is equivalent
to FU but with resolved parameters, a direct translation of a
C representation into LLVM would induce loss information
from the VTL. In our approach, we extend the method pre-
sented in this previous paper by applying our transformation
directly to the VTL and thus conserve modularity properties
of FUs.

The first stage of our translation process, described in Fig-
ure 3, consists in parsing each Functional Unit from the VTL
to an Abstract Syntax Tree (AST). This AST helps the appli-
cation of a series of transformation and the conversion of the
RVC-CAL into LLVM IR. The transformations applied to the
AST are:

• Control Flow Graph (CFG) transformation: Actions
are transformed in a set of basic blocks, and each basic
block as a sequence of instructions, ending in exactly
one terminator instruction.

• Static Single Assignment (SSA) and Three-Address
Code (3AC) form: Each register is written in exactly
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one instruction, that takes one or two operands and pro-
duce a single result.The LLVM instruction set includes
an explicit phi instruction, which corresponds directly
to the standard (non-gated) φ function of SSA form[7].

• Strong type checking: Each variable is declared as in-
teger type with an arbitrary width. This transformation
checks and ensures the size coherence for each variable
contained in an LLVM IR.

As presented in section 2.1, actions from an FU have data-
dependent conditions for their execution. We composed an
actor with several functions that describe actions and an ac-
tion scheduler. The action scheduler checks the presence and
values of tokens on its input ports and executes actions that
fit to their associated executing conditions. The rationale for
using action scheduler is to conserve the encapsulation of an
actor and to easily deport the execution of the global network
to a scheduler inside the decoder of the targeted platform; we
called it actor scheduler and detailed it on part 5.2.

4.2. LLVM code generator into the Open RVC-CAL
Compiler framework

To ease the translation process of FUs, we integrate the LLVM
actor code generation into the extensible Open RVC-CAL
Compiler1 (Orcc) Infrastructure. This compiling infrastruc-
ture, shown in Figure 4, has been structured to easily write
code generators that targeting any language from a single
Intermediate Representation. The Orcc specific Intermedi-
ate Representation preserves the properties of RVC-CAL
representation while being at a lower level of description,
with simple arithmetic expression, imperative statements and
SSA property. Back-ends are already available for generating
VHDL, Java, C and C++ representations from an Orcc IR.

For the need of our portable VTL, we developed a new
back-end that converts the Orcc IR of RVC-CAL Functional
Units into an LLVM Representation. As the Orcc IR directly
embeds simple arithmetic expressions and SSA form, the
translation of an RVC-CAL FU into an LLVM representation
is greatly simplified. The developed LLVM backend trans-
forms the Orcc IR from each coding tools of the VTL into a
set of LLVM files, representing an only VTL portable on any
platform supported by the LLVM infrastructure.

MPEG RVC is based on the idea that most of the tools
used in video coding come from MPEG Standards. As the

1Orcc is available at: http://orcc.sourceforge.net

LLVM representation of coding tools are generics and di-
rectly suited for a wide range of platforms, our approach al-
lows decoders to extend the RVC concept by providing FUs
outside the VTL. Thus, a decoder can be equally formed by
coding tools standardized or not standardized in MPEG-C, for
instance by coding tools directly included inside the bitstream
to decode. This opportunity opens significant new opportu-
nities in multimedia coding, especially in adaptative decod-
ing [8].

5. RVC DECODER ENGINE

The second step of our approach is to produce a decoder that
dynamically instantiates an RVC description of a decoder ac-
cording to a network description and our portable VTL. To
achieve this goal, we create an engine called RVC Decoder
Engine, which manages the LLVM infrastructure for dynami-
cally translating LLVM IR into optimized machine code. This
RVC decoder engine also integrates execution rules to use the
generated decoder.

5.1. Network instantiation

The instantiation of a network designates the initialization of
actors, structures and fifos of an RVC description. The dy-
namic instantiation is made possible by coupling the Linker,
Optimizer and Just-In-Time Compiler from the LLVM Infras-
tructure with an XDF parser and our RVC decoder engine.
The RVC decoder, described on Figure 5, has the role to man-
age the instantiation of a network in a six steps process:

1. XDF parsing: XDF description is parsed into a graph
that describes the whole network. This graph contains
information about the list of FUs in the VTL, instances
of an FU and connections in the network.

2. FUs selection: The necessary FUs are taken from the
portable VTL and stored in memory in the form of
LLVM modules.

3. Linking: Functions of FUs are changed to their instance
name to avoid ambiguous calls. All functions are then
links into a single module.

4. Optimization: The generated single module passes
through aggressive optimizations, selected according
to their efficiency for the targeted platform.

5. Compilation: Functions of the single LLVM module
representing actions and action schedulers are dynami-
cally translated into machine code.

6. FIFO instantiation: FIFOs are instantiated and con-
nected to each functions. Our FIFOs are unidirectional
circular buffers that avoid the use of semaphore.

The generated decoder is finally connected to the source that
contained the encoded video bitstream.
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5.2. Network execution

Once the decoder is created, the RVC decoder engine exe-
cutes the whole network. The network scheduler we wrote is a
simple round-robin scheduler following the Dataflow Process
Networks (DPN) [9] model. A DPN is a model of computation
(MoC) where a group of sequential processes (in our case the
actors) are communicating through unbounded FIFO chan-
nels. DPN models must be dynamically scheduled, hence our
actor scheduler endlessly calls the action scheduler of every
actor contained in the network. Actors in the network are
scheduled one after the other according to an arbitrary order,
in our case the XDF Parsing order.

The strength of our scheduler consists in the preservation
of the scalability of the original model. Indeed, all actors are
still considered as independent entities, without any knowl-
edge about the execution sequence of actions. Therefore, the
execution of the network can be made by more than one round
robin scheduler. Starting from this observation, a round robin
scheduler can contain from one to all the actor of a network.
If a platform contains multiple cores, a group of FUs could be
mapped onto several round robin schedulers and each sched-
uler can be affected onto a separate core of the platform. This
scheduler enhances parallelism and pipelining of each process
for the whole application.

The strength of our model constitutes also its principal
weakness if we compare the achievement of our decoder with
an equivalent sequential code for a uniprocessor system. As
the scheduler does not contain any information about the or-
der to execute actions for each actor, every action has to be
tested before determining if it can be executed. This sched-
uler involves an important overhead that can be reduced by
finding static execution rules in the original dataflow network.
We plan in future works to reduce this overhead by coupling
our scheduler with analyzing tools for dataflow networks that
would automatically detect sequential execution order of ac-
tions [10].

6. EXPERIMENTAL RESULTS

This section presents the experimental results led on our de-
coder. These experiments shows that our VTL is portable and

compares the achievement of the RVC decoder with an equiv-
alent static C and Java decoders onto several Operating Sys-
tems (OS). With this aim in mind, we developed our RVC
decoder, described in Figure 3, in C++ using LLVM 2.62.
We also used our LLVM backend to generate a portable VTL
from RVC-CAL FUs standardized in MPEG-C. The FUs cur-
rently available in MPEG-C are the coding tools from MPEG-
4 Part-2 Simple Profile (SP) and MPEG-4 Advanced Video
Coding (AVC) standards. We compiled our developed RVC
decoder and copied our generated portable VTL on several
OS with an Intel E6600 Core2 Duo processor at 2.40 GHz
running with Windows 7, Mac OS X 10.5 and Linux Ubuntu
9.10.

FUs
MPEG-4 Simple Profile 22

+ MPEG-4 Advanced Video Coding 47
Generated VTL 69

Table 1. Description of the generated portable VTL.

Table 1 shows the number of FUs contained in the VTL
and currently available in MPEG-C. Those two configurations
of decoders described in [1] for the MPEG-4 Part-2 Simple
Profile (SP) decoder and from [11] for the MPEG-4 Advanced
Video Coding(AVC) Constrained Baseline Profile (CBP) de-
coder are the most representative as they cover all the VTL.
Some of these FUs are instantiated several times in decoders,
the RVC description of the MPEG-4 SP decoder contains 64
instances and the RVC description of the MPEG-4 AVC con-
tains 92 instances.

C JAVA LLVM
Windows (Visual Studio) 26,7 fps 3,5 fps 24,9 fps

Linux (GCC) 39,3 fps 4,83 fps 24,6 fps
MAC OS X (Xcode) 26,6 fps 4,85 fps 26,4 fps

Table 2. Decoder performance of an MPEG-4 Part-2 Simple
Profile configuration for CIF sequences (352 × 288).

The same configuration of these two decoder has also
been generated by the static C and Java synthesis tools in-
cluded in RVC framework. The comparison results, showed
in Table 2 and Table 3, compare the achievement of our
RVC decoder with these two static implementation. These
decoders were respectively tested on conformance testing
sequences for SP decoders3 and AVC decoders4.

A comparison of our decoder implementation with the
equivalent static C decoders (i.e. without any Virtual Ma-
chine) shows that the impact of the LLVM Virtual Machine
is unseen on Windows and Mac (OS) and has minor impact
(roughly 20%) on Linux OS. On the contrary, our dynamic

2LLVM 2.6 is available at: http://llvm.org/
3Video sequences available at: http://standards.iso.org/
4Video sequences available at: http://wftp3.itu.int/av-arch/jvt-site/



decoder is about 7 times faster than a static Java decoders
running on the Java Virtual Machine (JVM). This speed fac-
tor can be explained by the fact that Java has no pointer mean.
Each access to a FIFO in Java involves a memory copy of
data, which puts pressure on the garbage collector of the Vir-
tual Machine.

C JAVA LLVM
Windows (Visual Studio) 30,9 fps 2,8 fps 31,7 fps

Linux (GCC) 48,5 fps 2,35 fps 33,5 fps
MAC OS X (Xcode) 34,9 fps 2,78 fps 34,5 fps

Table 3. Decoder performance of an MPEG-4 Advanced
Video Coding configuration for QCIF sequences (176 × 144).

Preliminary results show that the configuration and recon-
figuration times of the MPEG-4 SP decoder are about 800 ms
and about 1 second for the MPEG-4 AVC description. The re-
configuration times can be greatly improved by encapsulating
dataflow network representation into bitstream and by sup-
porting partial reconfiguration of decoders. We also tested the
multi-core abilities of our decoder for a dual core processor.
Two POSIX threads were used to implement two round-robin
schedulers, with one round-robin scheduler per core. Each
scheduler was precompiled with a list of actors manually dis-
tributed. The performance shows benefits of the multi-core
(up to 1.5) depending on the configuration used. We have
to find some mechanisms to have a smart and automatic dis-
patchment of the actors into several schedulers.

7. CONCLUSION AND PERSPECTIVES

The concept of such an RVC decoder implementation opens
significant new opportunities, first in video decoding then in
sound, 3D or any other medium that involve the purpose of
a decoder. The main advantage of our approach is to couple
the active research of LLVM and MPEG RVC. Its implemen-
tation, integrable into a wide variety of platforms, represents
a good starting point for new research on adaptive decoding.
The experimental results show the relevance of our approach
by testing the portability, scalability and the fast configuration
of two decoder samples.

However, this decoder is a base for many challenges. The
DPN model of computation we use can be improved with
dataflow analysis to be close to an equivalent sequential pro-
gram. We plan to reduce the overhead induced by our sched-
uler by finding some mechanisms that could predict the next
actions/actors to execute. The reconfiguration of a decoder
involves yet a global change in the new decoder. We also
plan to reduce reconfiguration times, by finding parts of a de-
coder that really needs to be changed. Finally, we prove that
this decoder has scalable parallelism and rules should been
implemented to automatically dispatch decoding algorithms
onto the processing elements of a platform. The abilities

brought by our modular and promising approach still require
many new researches to produce real time High-Definition
decoders.
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