N

N
N

HAL

open science

Open SVC decoder: a flexible SVC library
Médéric Blestel, Mickaél Raulet

» To cite this version:

Médéric Blestel, Mickaél Raulet. Open SVC decoder: a flexible SVC library. Proceedings of the inter-
national conference on Multimedia, 2010, Firenze, Italy. pp.1463-1466, 10.1145/1873951.1874247 .

hal-00560027

HAL Id: hal-00560027
https://hal.science/hal-00560027

Submitted on 27 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00560027
https://hal.archives-ouvertes.fr

Open SVC Decoder: a Flexible SVC Library

Médéric Blestel
IETR/Image group Lab
UMR CNRS 6164/INSA

France
mblestel@insa-rennes.fr

ABSTRACT

This paper describes the Open SVC Decoder project, an
open source library which implements the Scalable Video
Coding (SVC) standard, the latest standardized by the Joint
Video Team (JVT). This library has been integrated into
open source players The Core Pocket Media Player (TCPMP)
and mplayer, in order to be deployed over different platforms
with different operating systems.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General

General Terms

Algorithms, Performance

Keywords

Scalable Video Coding, mplayer, TCPMP, Joint Video Team,
Joint Scalable Video Model

1. INTRODUCTION

In October 2007, the Joint Video Team (JVT), composed
of the ITU-T Video Coding Experts Group (VCEG) and
the ISO/IEC Moving Picture Experts Group (MPEG) has
standardized a Scalable Video Coding (SVC) [1] extension
of the H.264/AVC standard [2]. The two groups have also
developed a reference software, named the Joint Scalable
Video Model (JSVM) [3] which implements this standard.

The SVC standard extends the AVC standard with scal-
ability features allowing easy adaptation of the bit-stream
to network and terminal constraints. SVC provides a high
degree of flexibility in terms of scalability dimensions sup-
porting various temporal or spatial resolutions and quality
levels.

The Open SVC Decoder [4] [5], an open source library,
aims to implement this new standard. It has been devel-
oped using a data flow methodology and tested over differ-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MM’ 10, October 25-29, 2010, Firenze, Italy.

Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

Mickaél Raulet
IETR/Image group Lab
UMR CNRS 6164/INSA

France
mraulet@insa-rennes.fr

ent platforms like x86 platform, Personal Data Assistant,
PlayStation 3 and Digital Signal Processor.

In this paper, a brief description of the SVC standard is
done, followed by a presentation of the Open SVC Decoder
(OSD) and its installation procedure.

2. SVC OVERVIEW

Scalable Video Coding (SVC), the new scalable codec based
on H.264/AVC standard, has been developed to broadcast
a video to multiple users with multiple displays and con-
nected through multiple networks using a single bit-stream.
Thanks to this standard, it is possible to partially trans-
mit or decode a video bit-stream resulting in various video
qualities.

In the SVC standard, the video compression is performed
by generating a unique hierarchical bit-stream structured in
several layers of information, consisting of a base layer and
several enhancement layers. The base layer provides basic
quality while the enhancement layers provide improved qual-
ity at increased computational cost. The particularity of the
bit-stream is that the enhancement layers can be removed
without compromising the decoding process of the resulting
bit-stream.

% temporal_id = 1 temporal_id = 1 temporal_id = 1
i l T1
—— temporal_id = 0 ‘temporal_id = 0 temporal_id = 0
EZm E(Z1) EZ2) T é
Sp2 Dild = 32 Dild = 33 Dild = 34
’é T
EC1;0) Ei1;1) E(1,2) T ﬁ
spi DGld =16 DGl =17 DGld =185 'g
T1 o§?
—— / Pres
*
Base-Level E(T;1) S 1 g
Spa Dl =0 Dl =1 Dl =2 r

sno =n

Figure 1: Evolution of layers parameters

Figure 1 shows an example of a bit-stream with several
enhancement layers: 2 spatial, 2 SNR and 1 temporal. Each
layer E(dependency_id; quality_id), can be easily identified
thanks to two parameters, the “DQId” (derived by: (depen-
dency_id << 4) 4 quality_id) and the “temporal_id”. These

parameters refer to the different scalabilities present in the
layer among the three types of scalability specified in the
standard:

e Temporal: The temporal scalability which was already
present in H.264/AVC, has been improved by parti-
tioning the hierarchical B and P frames in different
temporal layers. The temporal scalability of each frame
can be determined thanks to the “temporal_id” param-
eter.

e Spatial: This type of scalability tries to increase cod-
ing efficiency by exploiting the redundant information
between layers. In addition of the basic prediction
mode defined in H.264/AVC, a new macroblock cod-
ing mode has been defined to predict from a base layer,
macroblock’s information thanks to upsampling mech-
anisms. Each spatial enhancement should have a dif-
ferent “dependency_id”.

e Quality: The quality scalability is very similar to the
spatial scalability but without changing of resolution
between layers. The same inter-layer predictions are
used except the up sampling mechanisms. The quality
enhancement can be referred either by the quality_id
or by the dependency_id following the SNR scalability
chosen.

In the SVC amendment [2], temporal and quality scal-
abilities should be supported by decoders without any re-
strictions. Only the spatial scalability is limited according
to the profile defined. There is three profiles in the SVC
amendment:

e The Scalable Baseline profile: In this profile, the base
layer must conform to H.264 / AVC Baseline profile.
Resolution ratios between successive spatial layers in
both horizontal and vertical direction must be 1.5 or
2.

e The Scalable High profile: In this profile, the base layer
must conform to H.264 / AVC High profile. No restric-
tions have been defined for the enhancement layers.

e The Scalable High Intra profile: Only intra pictures in
all layers are authorized. As the previous profile, the
base layer should be conforming to H.264 / AVC High
profile.

3. OPEN SVC DECODER

IETR is developing since July 2006 the Open SVC De-
coder, a C language Scalable Baseline profile library sup-
porting all tools to deal with spatial, temporal and fidelity
scalabilities. It is based on a fully compliant H.264 / AVC
Baseline library with most of Main profile tools.

In this section, the library features and its conformance
are presented.

3.1 Open SVC Decoder features

Contrary to the JSVM which decodes only the layer with
the highest scalability, i.e the enhancement layer with the
highest spatial, temporal and quality scalability, the Open
SVC Decoder can decode partially the bit-stream until a

specific layer with a specific temporal scalability. This par-
ticularity provides an adaptability of the decoder over dif-
ferent platforms by selecting the right layer in order to have
a real-time decoding.

The library contains also several mechanisms to switch
of layer during the decoding process which allows the user
to select the layer to display by specifying commands. How-
ever, the decoder is also able to change of layer by itself when
a missing enhancement occurs due to transmission errors.

In the case of a partial decoding of a bit-stream, the de-
coder will dismiss discardable layer. Figure 2 shows the data
flow graph of the decoding process when the top layer of a
four layers stream is not decoded. Variable Length Coding
and Texture Decoding are processes for the first three layers
but not for the fourth.

R B [
|

— BN — B —

—

e [

Output
—
frame

NH NAL Lnithezde: YLD Var able lorgth dezedirg D Texture deccdirg * Indicates hattre furctior is parialy dene

Figure 2: Open SVC Decoder data flow graph

3.2 OSD conformance and benchmarks

The Open SVC Decoder has been compared to the JSVM
9.19 to benchmark and to test the conformance of the library
using conformance sequences which can be found on the JVT
site [6]. A list of the conformance sequences in which Open
SVC Decoder is compatible with, is available on the web site
[7].

Table 1 shows the results of the comparison between both
decoders on several conformance sequences. The bench-
marks were executed on a PC with Intel Core 2 Duo CPU
at 2.4GHz.

Table 1: Open SVC Decoder Benchmark

Decoding time (s
Sequence ISVM & OSD() Speed up
SVCBST-1 31.2 0.87 35
SVCBST-2 23.3 0.87 26
SVCBST-14 137 2.69 50
SVCBST-15 50 2.11 23

These benchmarks show the speeding up between the Open
SVC Decoder and the JSVM decoder on several conformance
sequences with different configurations. Indeed, the perfor-
mance of the library is up to 50 times faster than the JSVM
decoder.

4. OSD INSTALLATION AND EXECUTION

The library has been built into two open source players,
TCPMP and mplayer which were using fimpeg video codec
[8]. This codec has been removed and replaced by the Open
SVC Decoder in order to decode AVC and SVC bit-streams.

In this section, only the installation and execution of mplayer

is presented. Others installation procedures are presented on
the project web site [4].

4.1 Installation

‘We have decided to only present mplayer installation which
is simplest than the TCPMP one. Moreover, this player
is compatible with all major operating systems, including
Linux and other Unix-like systems, Microsoft Windows and
Mac OS X, and has been tested over different platforms.

The mplayer version proposed in this project is based on
the 31411th revision of the mplayer SVN repository [9]. No
major changes have been done except for the interfacing of
the library into the mplayer.

The installation proceeds in several steps:

e Download the sources: The first step consists in down-
loading the source of the project [10]. The latest re-
lease, 1_08 should be downloaded. The package is orga-
nized in three different directories: the library sources
(Libs), mplayer directory and TCPMP directory.

e Download a MinGW package: This step is necessary

only if the operating system is Windows. Indeed, mplayer

under Windows, is only compatible with MinGW build
environment which can be downloaded on this page
[11]. The compilation with CygWin or others built
environments is not working.

e Download SDL library: This step is necessary only if
the operating system is different from Windows. The
SDL library [12] is used to manage the layer to display.

e Configure the player: Once all packages downloaded,
the next step consists in configuring the player by using
the following the command line “./configure —enable-
svc” in a console (MinGW if the operating system is
Windows) at the root of the mplayer directory. The
option “—enable-svc” allows the player to be configured
with the SVC library located in the “Libs” directory.
Without specifying this option, mplayer will be config-
ured with the ffmpeg library and only the base layer
will be decoded in case of a SVC bit-stream.

e Start the compilation: The compilation of all sources
can be started using the command line: “make”. Once
the compilation done, the program mplayer is ready
for use.

4.2 Execution

Once the installation finished, the program can be exe-
cuted. Contrary to TCPMP which can only read multimedia
file formats, mplayer can also read raw streams. The com-
mand line to execute mplayer is quite simple: “./mplayer
file_name”.

However, to decode SVC raw streams like conformance
sequences from the JVT site, the option “-fps” followed by
the frame rate (25 as default) has to be specified in the
command line. Moreover, if the operating system is Mac
OS X, the option “-vo sdl” should be added in order to use
SDL library to correctly display the output video.

As default, the decoding process starts by displaying the
enhancement layer with the highest scalability. Options can
be added to the command line to select a specific layer to
decode with a specific temporal scalability.

For instance, the option “-setlayer” followed by a DQId
value, allows to select the layer with the DQId specified
present in the bit-stream. To select the temporal level to
decode, you can specify the option “-settemporalid” followed
by the temporal id wanted.

For example, the following command line “./mplayer -fps
25 mystream.264 -setlayer 16 -settemporalid 2 -vo sdl” allows
to decode all layers necessaries to display the layer with the
DQId equals to 16, of the bit-stream named “mystream.264”.
The decoder will display at 25 frames per second and using
the SDL library, all frames of this layer with a “temporal_id”
inferior or equals to 2.

The configuration of the DQId and the temporal scalabil-
ity can be changed during the decoding process thanks to
hot-keys:

e ‘I To select a layer with a lowest spatial or quality
scalability if the layer currently displayed has a DQId
different from O.

o “b” To select a layer with a higher spatial or quality
scalability if the currently displayed layer has not the
maximum value of DQId present in the bit-stream.

e “ To switch down of temporal scalability. The frame
rate will not change, so the bit-stream will be decoded
faster.

e “7 To switch up of temporal scalability.

Using this library, the user can change of temporal layer
at any time whereas he can change of spatial and quality
layer only on frames set as IDR (Instantaneous Decoding
Refresh). This type of frame occurs occasionally in the se-
quence from the JVT site, that’s why video bit-streams with
multiple IDR frames are available on the project download
page [10]. These sequences allow to regularly switch between
layers.

S. AUDIENCE

The Open SVC Decoder has been developed in the frame-
work of Scalim@ges [13] project in a modular manner [14].
This project aimed to promote SVC standard in order to
reduce the number of formats manipulated in production,
distribution, and use of video compatible with existing so-
lutions. Partners of this project had actively contributed to
the standardization of the SVC standard and its transport
stream protocol [15].

Currently, others French and international projects like
SVC4QoE [16] and ScalNet [17] are using Open SVC De-
coder. ScalNet tries to focus on designing a streaming sys-
tem based on the SVC standard. The system is designed to
cope with streaming scenarios that can be classified in four
use cases: session handover, network congestion, receiver
heterogeneity and user driven adaptation.

The SVC4QoE project aims at associating Scalable Video
Coding and Quality of Experience (QoE) evaluation tech-
niques in order to maximize the user experience when re-
ceiving audiovisual content over broadcast networks. The
purpose of the project is to explore and demonstrate how
to optimize the broadcast network infrastructure in various
receiving conditions by lowering the necessary bandwidth,
while providing the best quality of the signal to a wide range
of portable and hand-held receivers.

The Open SVC Decoder is likewise used as a starting point
in the development of a new SVC library in the framework
of MPEG-Reconfigurable Video Coding [18].

6. CONCLUSION

Since May 2009 when this project had been uploaded on
sourceforge web site, Open SVC Decoder has been down-
loaded 7,100 times and the SVN repository has next to 2500
read transactions. These results show the interest of the
community into this video codec and open source code.

The web site has also permitted us to meet and work with
foreign teams in order to enhance the library. Optimized
algorithms are regularly added to the Open SVC Decoder
source code.

The speeding up’s library compared to the JSVM, and
its portability over different platforms make the Open SVC
Decoder a relevant candidate for research projects

7. ACKNOWLEDGMENTS

The authors would like to thank the numerous people hav-
ing contributed code to this SVC library.

In particular, we would like to offer our most sincere thanks
for Vincent Bottreau from Scalim@ges, Myllyniemi Mikko
from ScalNet and all contributors from the project SVC4QoE
who have supported Open SVC Decoder.

We also would like to take this opportunity to extend a
warm thank you to Fernando Pescador and his team from
the Electronic and Microelectronic Design Group (GDEM-
UPM) from Madrid for their contributions to this work in
particular to the deployment [19] of the library over digital
signal processors (DSP).

The authors would like to thank the DGCIS (French Min-
istry for Industry), Région “Bretagne” and Région “Pays
de la Loire” (regional councils) for partially funding the
SVC4QoE project.

8. REFERENCES

[1] H. Schwarz, D. Marpe and T. Wiegand, “Overview of
the Scalable Extension of the H.264 / AVC Video
Coding Standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 17, no. 9, pp.
1103-1120, Sept 2007.

[2] ITU-T and ISO/IEC JTC 1, ITU-T Recommendation
H.264 - ISO/IEC 14496-10(AVC), “Advanced Video
Coding for Generic Audio Visual services, Amendment
3: Scalable Video Coding,” 2007.

[3] Joint Video Team, “Reference software,”
http://ip.hhi.de/imagecom_G1/savce/downloads/
SVC-Reference-Software.htm.

[4] M. Blestel, “Open SVC Decoder Web site,”
http://opensvcdecoder.sourceforge.net/, 2009.

[5] M. Blestel and M.Raulet, “Open source code of an svc
decoder,” SIGMultimedia Rec., vol. 1, no. 4, pp. 24,
December 2009.

Joint Video Team, “Conformance testing,”

http://wftp3.itu.int/av-arch/jvt-site/

bitstream_exchange/SVC/, 2008.

M. Blestel, “Open SVC Decoder Conformance,” http:

//opensvcdecoder.sourceforge.net/JVT-AB023.x1s.

ffimpeg, “ffmpeg web site,” http://ffmpeg.org/.

mplayer, “mplayer svn repository,”
svn://svn.mplayerhq.hu/mplayer/trunk.

[10] M. Blestel, “Open SVC Decoder download page,”
https//sourceforge.net/projects/
opensvcdecoder/files/, 2009.

[11] MPlayer for Win32, “Mplayer for win32 web site,”
http://sourceforge.net/project/downloading.
php?groupname=mplayer-win32&filename=
MinGW-full-gcc-4.2.4.7z&use_mirror=freefr.

[12] Simple Direct Media Layer, “Simple Direct Media
Layer,” http://www.libsdl.org/.

[13] “Scalim@ges project,”
http://www.images-et-reseaux.com/en/
les-projets/fiche-projets-finances.php?id=125.

[14] M. Pelcat, M. Blestel, M. Raulet, “From AVC decoder
to SVC: Minor impact on a data flow graph
description,” Picture Coding Symposium, November
2007.

[15] ISO/IEC 13818-1:2007/Amd 3:2009, Transport of
scalable video over Rec. ITU-T H.222.0 | ISO/IEC
13818-1, 2009.

[16] M. Barkowsy, M. Blestel, M. Carnec, A. Ksentini,

P. Le Callet, G. Madec, R. Monnier, JF. Nezan,

R. Pepion, Y., JF. Travers, M. Raulet, and

A. Untersee, “Overview of the svcdqoe project,” in
Workshop on Impact of Scalable Video Coding on
Multimedia Provisioning (SVCVision 2010), Lisbon,
Portugal, September 2010.

[17] M. Ransburg, E. Martinez Gracid, T. Sutinen,

J. Ortiz, M. Sablatschan, and H. Hellwagner, “Scalable
Video Coding Impact on Networks,” in Workshop on
Impact of Scalable Video Coding on Multimedia
Provisioning (SVCVision 2010), Lisbon, Portugal,
September 2010.

[18] M. Mattavelli, I. Amer, and M. Raulet, “The
Reconfigurable Video Coding standard [Standards in a
Nutshell],” IEEE Signal Processing Magazine, pp. 159
— 167, 05 2010.

[19] F. Pescador del Oso, D. Samper, M. Garrido
Gonzalez, E. Juarez Martinez, and M. Blestel, “A DSP
based SVC IP STB using Open SVC Decoder ,”
International Symposium on Consumer Electronics,
June 2010.

[6

[7

=

