

Effects of cyanobacteria on fitness components of the herbivore Daphnia

O Sarnelle, Susanne Gustafsson, Lars Anders Hansson

▶ To cite this version:

O Sarnelle, Susanne Gustafsson, Lars Anders Hansson. Effects of cyanobacteria on fitness components of the herbivore Daphnia. Journal of Plankton Research, 2010, n/a (n/a), pp.n/a-n/a. 10.1093/plankt/FBP151. hal-00560023

HAL Id: hal-00560023 https://hal.science/hal-00560023

Submitted on 27 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal of Plankton Research

Effects of cyanobacteria on fitness components of the herbivore Daphnia

Journal:	Journal of Plankton Research
Manuscript ID:	JPR-2009-317.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	23-Dec-2009
Complete List of Authors:	Sarnelle, O; MIchigan State University, Fisheries and Wildlife Gustafsson, Susanne; Ecology, Limnology Hansson, Lars Anders; Lund University, Ecology; Lars-Anders Hansson, Lars-Anders Hansson
Keywords:	microcystin, Microcystis, Daphnia, toxin, cyanobacteria, limnology, fitness

1		
2 3	1	
4 5	2	
6 7		
8 9	3	
10 11	4	
12 13	5	Effects of cyanobacteria on fitness components of the herbivore
14	6	Daphnia
15 16	7	
17	8	
18 19	9	
20 21	10	
22	11	Orlando Sarnelle
23 24	12	
25	13 14	Department of Fisheries and Wildlife Michigan State University
26 27	14	East Lansing, MI 48824
28	16	
29 20	17	Susanne Gustafsson
30 31	18	Lars-Anders Hansson
32	19 20	Department of Feelogy
33 34	20	Department of Ecology Lund University
35	22	Ecology Building,
36	23	S-223 62 Lund
37 38	24	Sweden
39	25 26	
40 41	26 27	Key words: microcystin, Microcystis, Daphnia, toxin, cyanobacteria, limnology
42	_,	neg words, mieroegstin, mieroegstis, Dupmina, tonin, egunoeutera, miniorogg
43 44		
45		
46		
47 48		
49		
50 51		
52		
53 54		
54 55		
56		
57 58		
59		
60		

28 Abstract

Cyanobacteria are known to negatively affect their herbivores either by being of low nutritional value, by clogging the feeding apparatus, or by producing toxins; and specifically the role of toxins has been debated. Hence, in order to assess to what extent cyanobacterial toxins affect a major herbivore (Daphnia magna) that has previous experience of cyanobacterial toxins, we conducted a life-table study using two otherwise-similar strains of *Microcystis aeruginosa*, one producing and one not producing the toxin microcystin. In contrast to previous studies, we found that *Daphnia* population growth was positive $(r > 0.1 \text{ d}^{-1})$ on a diet containing toxic *Microcystis.* However, we also found that the presence of the toxin negatively affected early survival and population growth of a microcystin-tolerant D. magna clone. Although there was no effect of toxin presence on per capita fecundity of surviving adults, Daphnia produced smaller neonates when fed toxin-containing *M. aeruginosa* than when fed the non-toxic mutant. Hence, although *Daphnia* survival, population growth and neonate size were negatively affected by microcystin presence, *Daphnia* populations that have prior experience with toxic cyanobacteria may show positive population growth even at high concentrations of cyanobacterial toxins. This conclusion may have considerable implications for interactions between toxic cyanobacteria and herbivores in natural systems.

http://mc.manuscriptcentral.com/jplankt

Introduction

	17	
	48	Negative relationships between bloom-forming cyanobacteria (for example species in the
	49	genera Anabaena, Aphanizomenon, Microcystis, and Oscillatoria/Planktothrix, hereafter
) >	50	referred to as "cyanobacteria") and the abundances of Daphnia have been observed in nature,
- 3 4	51	either across lakes that vary in trophic status (Hansson et al. 2007), or across the growth season
5	52	within eutrophic lakes (Threlkeld 1979). This may indicate negative effects of Daphnia grazing
/ 3 2	53	on cyanobacterial abundance, negative effects of cyanobacteria on Daphnia population growth
)	54	rate, or both. These alternative explanations seem somewhat incompatible because
2 3	55	cyanobacterial inhibition of Daphnia growth and reproduction would be expected to interfere
+ 5 6	56	with the ability of a Daphnia population to increase and so exert enough grazing pressure to
7 3	57	suppress cyanobacterial abundance. Despite this seeming incompatibility, evidence supportive
)) I	58	of both explanations has accumulated over the last several decades. However, the relative
2 3	59	importance of these mechanisms remains unresolved.
4 5	60	The negative effects of Daphnia grazing on cyanobacterial abundance have been
5 7 2	61	documented in field experiments in which the abundance of either zooplanktivorous fish (that
)	62	prey most intensively on large Daphnia), or in some cases the abundance of Daphnia, are
 2	63	manipulated (Lynch and Shapiro 1981; Vanni 1984; Vanni and Findlay 1990; Sarnelle 1993;
5		

Samelle 2007). The negative effects of cyanobacteria on Daphnia growth and reproduction

have been documented primarily in laboratory experiments in which Daphnia are fed various

species and strains of cyanobacteria and their performance (survival and/or fecundity) is

compared to that on a reference diet such as nutritious chlorophytes (Lampert 1987; Lürling

2003; Wilson et al. 2006).

Page 3

2		
3 4	69	Three properties of cyanobacteria may contribute to their relatively poor quality as a food
5 6 7	70	source for Daphnia. Bloom-forming cyanobacteria typically exhibit a colonial or filamentous
8 9	71	morphology in nature that can make them difficult for zooplankton to ingest in general
10 11	72	(DeMott 1989) and may interfere with the food-collecting process in Daphnia in particular
12 13	73	(Webster and Porter 1978; Gilbert 1990). In addition, cyanobacteria may lack certain
14 15 16	74	biochemicals that are essential for Daphnia nutrition (Von Elert and Wolffrom 2001; Von Elert
17 18	75	et al. 2002; Brett et al. 2009). Finally, some cyanobacteria produce compounds that may inhibit
19 20	76	Daphnia survival, growth, reproduction and/or feeding (Rohrlack et al. 2001; Lürling 2003;
21 22	77	Lürling and Van Der Grinten 2003; Rohrlack et al. 2003). A recent meta-analysis of laboratory
23 24		
25 26	78	life-table studies came to the unexpected conclusion that intracellular cyanobacterial toxins are
27 28	79	not a major factor underlying the negative effects of cyanobacteria on Daphnia population
29 30	80	growth (Wilson et al. 2006). This conclusion was based on a comparison of the effects of toxic
31 32	81	versus non-toxic strains across all studies. Further analyses suggested that any role of toxins
33 34 35	82	may be limited to a small number of cyanobacterial genotypes (Wilson et al. 2006). A second
36 37	83	meta-analysis of life-table studies that focused on variation across taxa suggested that
38 39	84	Microcystis was the most inhibitory of the cyanobacterial genera, although the role of toxins in
40 41 42	85	inhibiting Daphnia population growth was again uncertain (Tillmanns et al. 2008). The former
43 44	86	result provides justification for the heavy emphasis on <i>Microcystis</i> among studies of the
45 46	87	inhibitory effects of cyanobacteria on zooplankton (Wilson et al. 2006; Tillmanns et al. 2008).
47 48 49	88	Several recent studies have shown that Daphnia individuals or populations can adapt to the
50 51	89	presence of toxin-producing cyanobacteria in the diet (Hairston et al. 2001; Gustafsson and
52 53 54	90	Hansson 2004; Sarnelle and Wilson 2005). This new information has led us to hypothesize that
55 56	91	some of the conflicting nature of the evidence summarized above may be resolved if we can
57 58 59		

Page 4

60

Journal of Plankton Research

attribute variation in the negative effects of toxigenic cyanobacteria to variation in the toxin tolerance of the specific zooplankton genotypes used in life-table experiments, i.e. considering the co-evolutionary history of zooplankton-cyanobacteria interactions. As a first attempt to examine this hypothesis, we report the results of a laboratory experiment in which the effects of wild-type (produces the toxin, microcystin) and mutant (cannot produce microcystin) genotypes of *Microcystis aeruginosa* on the population growth of *Daphnia magna* were quantified. Several existing laboratory studies have demonstrated strong negative effects of one or both of these *M. aeruginosa* genotypes on the survival, growth and/or reproduction of *Daphnia* magna (Rohrlack et al. 1999; Rohrlack et al. 2001; Lürling 2003). The difference in our study is that we deliberately chose a *D. magna* genotype that we have found to be relatively tolerant of toxic cyanobacteria in the diet, which would better mirror the natural situation. Our objective was to determine how the effects of a highly toxic strain of *M. aeruginosa* are manifested on a relatively toxin-tolerant genotype of *D. magna*. Daphnia populations in habitats with high concentrations of toxic cyanobacteria should be dominated by genotypes that are toxin-tolerant (Sarnelle and Wilson 2005), making our experiment more like natural

108 conditions. Knowledge about tolerance in herbivores may have considerable implications for
109 our understanding of interactions between consumer and prey, and, in a broader perspective, on

112 Method

the dynamics of cyanobacterial blooms.

Experimental organisms: The *Daphnia magna* clone used in this study was hatched from
ephippia collected in 2001 from the water's edge, in the highly eutrophic Lake Bysjön (Total

2 3	115	phosphorus and nitrogen concentrations: 1200 and 2400 μ g/L, respectively) situated in
4 5		
6 7	116	southern Skåne, Sweden. Lake Bysjön has blooms of cyanobacteria every summer, generally
8 9	117	dominated by Aphanizomenon, but different species of Microcystis also occur and occasionally
10 11	118	these blooms produce microcystins (unpublished data). Ephippia were hatched in 2006,
12 13 14	119	resulting in the establishment of 13 clonal lines of <i>D. magna</i> . These 13 clones were exposed to
15 16	120	increasing concentrations of microcystin-producing M. aeruginosa (wild-type, PCC 7806) to
17 18	121	identify clones that were most tolerant of this strain (Gustafsson 2007). The clone used in this
19 20 21	122	study was the most tolerant of the 13 based on fastest time to maturity on a diet containing
22 23	123	PCC 7806. Animals were cultivated in an aquarium (17°C, 16:8 light:dark cycle) and fed only
24 25	124	Scenedesmus obliquus for 8 months prior to the start of the experiment.
26 27 28	125	Scenedesmus obliquus and two strains of Microcystis aeruginosa, the microcystin-
29 30	126	producing PCC 7806 (wild-type) and a genetically-engineered mutant, PCC 7806 mcy A
31 32	127	(Dittmann et al. 1997) that cannot produce microcystin, were cultivated in Z8 medium at 20°C
33 34 35	128	with a light dark cycle of 12:12 and a light intensity of 15-20 μ mol quanta·m ⁻² ·s ⁻¹ . The cells
36 37	129	were maintained in exponential growth phase. Total algal concentrations used in the
38 39 40	130	experiment correspond to 1 mg Carbon/L, which is equivalent to 60,000 cells mL ⁻¹ (0.5 mg
40 41 42	131	C/L) of Scenedesmus obliquus plus 140,000 cells mL ⁻¹ (0.5 mg C/L) for Microcystis
43 44	132	aeruginosa. Both phytoplankton species were within the size range of particles that are
45 46 47	133	efficiently consumed by Daphnia (Scenedesmus: 7.5 µm x 5 µm, Microcystis: 3 - 4 µm,
48 49	134	DeMott 1989). There were no differences in size among Microcystis clones and neither
50 51	135	Microcystis nor Scenedesmus produced colonies or gelatinous sheets of any substantial size.
52 53 54	136	Algal cells were enumerated in a Palmer- Maloney counting chamber (Wildlife Supply,
55 56 57 58 59	137	Buffalo, New York, USA) using an Nikon inverted microscope at 400 X magnification. The

Journal of Plankton Research

animals were fed twice this concentration every second day. Samples of approximately 1 mL
from both the toxic and non-toxic treatment were stored at -20 °C for later analysis of
microcystin content.

Experimental design: Daphnia neonates were exposed to three dietary treatments: a control consisting of 100% Scenedesmus, a "non-toxic" treatment with 50% Scenedesmus and 50% mutant Microcystis PCC 7608 and a "toxic" treatment with 50% wild-type Microcystis and 50% Scenedesmus (all percentages based on carbon content). Neonates born within 24 h from ten parthenogenetically reproducing females were randomly transferred to 250 mL beakers to start the experiment. Four replicate beakers were assigned to each treatment and each beaker contained 5 or 6 animals. Every second day animals were pipetted to new algal solution in clean beakers. The animals were checked for survival, maturity and offspring every day and the water was stirred with a pipette to re-suspend the phytoplankton. Offspring were removed every day, counted and measured from the eye to the base of the tail spine. Length measurements were used to calculate biomass based on length-weight regressions (Bottrell et al. 1976). The experiment was continued for 28 days, which allowed for approximately three adult instars (Lürling 2003).

Population growth rates were calculated from daily survival and fecundity schedules using
Euler's equation (Stearns 1992). Treatment effects on survival were analyzed via repeatedmeasures MANOVA on arcsin square root-transformed proportions in each beaker
(experimental unit) on days 2-28. Per capita fecundity (offspring produced per surviving
female summed over 28 days), and instantaneous population growth (*r*, d⁻¹) were analyzed via
One-Way Analysis of Variance (ANOVA), followed by an *a priori* Tukey's HSD test for
differences among individual means. Fecundities and population growth rates were log-

transformed as needed to homogenize variances. All statistical tests were performed usingSPSS for Macintosh.

Microcystin analysis: Microcystin was analyzed by means of ELISA (enzyme-linked immunosorbent assay) using the Abraxis Microcystins ELISA Kit (Environmental Assurance Monitoring, LLC.). Before the analysis, algal cells were lysed by freezing and thawing three times and then sonicated for two minutes in an ice bath (Ultrasonic Liquid Processor, Heat Systems Inc.). Samples were centrifuged for 20 min at 6500 rpm and the supernatant was analyzed. A negative control, five standards (0.15, 0.40, 1.0, 2.0 and 5.0 μ g L⁻¹, respectively), a control at 0.75 μ g L⁻¹ and samples were all analyzed in duplicate. Absorbance was measured at 450 nm on a Hyperion Microreader 3, (Hyperion, Miami FL, USA).

Results

Total microcystin concentrations averaged 10 μ g L⁻¹ (range 9 - 11 μ g L⁻¹) in the toxic treatment and were undetectable in the non-toxic treatment. We found no significant overall effect of treatment on *Daphnia* survival over 28 days (ANOVA F-test on arcsine-transformed data, p > 1(0.15), although mean survivorship in the toxic treatment (63%, SE = 0.22) was considerably lower and more variable than in either of the other treatments (control: 87%, SE = 0.16, non-toxic: 83%, SE = 0.14, Fig. 1). Further, the repeated measures analysis was ambiguous with respect to a time x treatment interaction: by the Greenhouse-Geisser criterion, the interaction was not significant at the 5% level (p = 0.09) whereas by the less conservative Huynh-Feldt criterion, the interaction was significant (p = 0.04). Given these results and the pattern of mean responses across the three treatments (Fig. 1), we re-ran the analysis to test the hypothesis that Daphnia survival was different in toxic Microcystis (N = 4) versus pooled non-toxic

Journal of Plankton Research

2 3 4	184	(<i>Microcystis</i> or <i>Scendesmus</i> , $N = 8$) treatments. In this case, we found overall lower survival in
5 6	185	the toxic treatment (ANOVA F-test on arcsine-transformed data, $p < 0.04$). Mortality in the
7 8 9	186	toxic treatment was limited to the first two weeks of the experiment (Fig. 1).
10 11	187	With respect to Daphnia fecundity, we found an overall effect of treatment (ANOVA F-
12 13 14	188	test, $p < 0.01$), but the means for the non-toxic <i>Microcystis</i> and toxic <i>Microcystis</i> treatments
14 15 16	189	were essentially identical (Fig. 2), so the treatment effect was purely a function of diet species
17 18	190	(Scenedesmus versus Microcystis). As seen for survival, error variation was higher in the toxic
19 20 21	191	treatment (SE = 4.6 versus 1.9 for non-toxic and 2.6 in the control). <i>Daphnia</i> population
22 23	192	growth was also affected by treatment (ANOVA F-test, $p < 0.0001$), and in this case all three
24 25	193	treatment means were different from each other (Fig. 2), indicating a further negative effect of
26 27 28	194	the toxic strain of <i>Microcystis</i> , along with an effect of diet species. Finally, there was an overall
29 30	195	effect of treatment on mean neonate length over the course of the experiment (ANOVA F-test,
31 32	196	p < 0.0001), with mean length highest in the non-toxic <i>Microcystis</i> treatment and lowest in the
33 34 35	197	Scenedesmus control (Fig. 3). The neonate biomass produced during the experiment (28 days)
36 37	198	was 152, 93 and 82 μ g L ⁻¹ in the control, non-toxic and toxic treatments, respectively
38 39	199	(ANOVA, F-test, p < 0.001; Fig. 4).
40 41 42	200	(ANOVA, F-test, p < 0.001; Fig. 4).

Discussion

Our study shows that exposure to *Microcystis aeruginosa* had a negative impact on population growth rate, survival and fecundity of a microcystin-tolerant clone of *Daphnia* and that the presence of microcystin in the wild-type of *Microcystis* significantly enhanced the negative effect on population growth rate and reduced the biomass of neonates produced. Our experimental treatment with 50% cyanobacteria is a common feature in natural eutrophic lakes

2	
3 4	207
5 6	208
7 8 9	209
10 11	210
12 13	211
14 15	212
16 17 18	213
19 20	214
20 21 22	
23	215
24 25 26	216
26 27 28	217
29 30	218
31 32	219
33 34 35	220
35 36 37	221
38 39	222
40 41	223
42 43	224
44 45	227
46 47	225
48 49	226
50 51	227
52 53 54	228
55 56	229
57	
58 59	
60	

(e.g. Bergman et al. 1999; Cronberg et al. 1999). Moreover, the amount of toxic compounds, such a microcystin, may vary temporally from zero to $35 \ \mu g \ L^{-1}$ within the same lake (Hansson et al. 2007). Hence, with respect to the amount of cyanobacteria and toxins, our study may well mirror the situation in natural systems.

Of the three potential mechanisms that may underlie the reduction in population growth (morphology, nutrition, toxic metabolites), we can in our study rule out morphology as an explanation because the *Microcystis* strains we used were similar in size to the *Scenedesmus* control and both species were well within the highly-edible size range for *Daphnia* (DeMott 1989).

216 With respect to the effect of food quality (i.e. difference between Scenedesmus and non-217 toxic *Microcystis*), it appears that the negative effect on population growth was driven 218 primarily by reduced fecundity because survival was similar between the Scenedesmus diet and 219 the non-toxic *Microcystis* diet (Fig. 1). In contrast, the negative effect of the toxic metabolite 220 on Daphnia population growth (difference between non-toxic and toxic Microcystis) was 221 clearly not driven by reduced fecundity (Fig. 2). Fecundity was essentially identical between 222 the non-toxic *Microcystis* and toxic *Microcystis* diets, although the size of neonates was larger 223 in the non-toxic *Microcystis* treatment than in the other two treatments (Fig. 3). An increase in 224 Daphnia neonate size is often observed when food supply is scarce (Boersma 1997) and has 225 been interpreted as a way to enhance survival capability of the neonates. At ample food 226 conditions, such as in the *Scenedesmus* treatment, *Daphnia* generally produce small, but 227 numerous neonates, which are able to survive with less investment from the mother (Boersma 228 1997; Hammers-Wirtz and Ratte 2000; Pieters and Liess 2006). On a diet of toxic Microcystis, 229 however, neonates were smaller suggesting that mothers were not able to invest as much in

Page 11 of 25

1

Journal of Plankton Research

~		
2		
3		
<u>،</u>		
4		
5		
ĥ		
6		
7		
8		
2		
9		
1	ი	
1	2	
1	1	
1	2	
	2	
1	0 1 2 3 4 5	
1	4	
4	E	
I	S	
1	6	
1	7	
!	'	
1	890123456789012345678	
1	a	
	2	
2	υ	
2	1	
_	÷	
2	2	
2	3	
ົ	1	
2	4	
2	5	
n	R	
_	0	
2	7	
ი	Ω	
~	0	
2	9	
ર	ი	
2	2	
3	1	
3	2	
2	~	
3	3	
3	4	
ັ		
S	S	
3	6	
ი	7	
J	'	
3	8	
ç	9	
3	9	
	0	
4		
7		
4	2	
4	3	
4		
4	5	
4	6	
4		
4		
+	0 2	
4	9	
5		
5		
5	2	
5	3	
5	4	
5		
5	6	
5		
5	r c	
5	8	
5	۵	
J	J	

60

individual neonates. These differences in size, maternal mortality and fecundity, mean that the
total neonate biomass produced during the investigation period was highest in the *Scenedesmus*treatment and lowest when mothers were fed toxic *Microcystis* (Fig. 4).

233 We suggest that the presence of microcystin affected *Daphnia* population growth by 234 reducing survival, as indicated by our re-analysis of the survival data. Moreover, the negative 235 effect of microcystin on survival was manifested solely during the first 2 weeks of life, with no 236 additional treatment-related mortality thereafter (Fig. 1). Our results contrast with those of 237 previous studies in terms of the strength of the negative effect of toxic *Microcystis aeruginosa*. 238 Most notably, we found that *D. magna* was able to maintain a positive population growth (~ 0.12 d^{-1}) on a diet containing 50% toxic *M. aeruginosa*. Previous studies have found that this 239 240 strain of *Microcystis* (PCC 7806) did not support positive population growth of *Daphnia* when 241 presented alone or in a 50:50 mixture with Scenedesmus (Rhorlack et al. 1999, 2001; Lürling 242 2003; Semyalo et al. 2009). One potential explanation for this contrast in the effect of M. 243 aeruginosa PCC 7806 could have been that microcystin levels differed among experiments. However, microcystin levels in our toxic treatment (10 μ g L⁻¹) were comparable to the level of 244 ~9 μ g L⁻¹ employed by Rohrlack et al. (2001) who found 90-100% mortality of 6 *Daphnia* 245 246 clones within 10 days of exposure (compare to our Fig. 1). However, Rohrlack et al. (2001) did 247 not provide any nutritious algae to the animals in their toxic treatment. Lürling (2003) did not 248 measure microcystin levels directly, but we can estimate the levels he employed in his 50% toxic PCC 7806/50% Scenedesmus treatment as ~4.5 μ g L⁻¹, based on the biovolume 249 concentration of *Microcystis* used (5 mm³ L⁻¹) and a microcystin guota of 0.9 µg mm⁻¹ for this 250 251 strain, as reported by Rohrlack et al. (2001). Thus, we did not use lower microcystin levels than

previous studies that reported negative population growth, making it unlikely that this canexplain the difference among studies.

An alternative explanation for the difference between our results and those of Rohrlack et al. (1999, 2001) and Lürling (2003) is related to our use of a strain of *D. magna* that had previous experience from *Microcystis* in the diet (Gustafsson and Hansson 2004). Several studies have now demonstrated that *Daphnia* populations can either adapt genetically or acclimate phenotypically, to better tolerate the presence of toxic cyanobacteria in the diet (Hairston et al. 2001; Gustafsson et al. 2005; Sarnelle and Wilson 2005). Previous studies using toxic *Microcystis* may have used *Daphnia* strains that had no previous experience of cyanobacteria. We therefore suggest that the ecological experience of consumers be taken into consideration when selecting strains for study and when interpreting results with respect to natural conditions (Gustafsson et al. 2005; Sarnelle and Wilson 2005).

We found a significant difference in *Daphnia* population growth rate between diets containing toxic wild-type *Microcystis* versus the non-toxic mutant, the same basic result reported by Rohrlack et al. (1999, 2001). Our conclusion that the added effects of microcystin only affected early-life survival (given that there was no effect of microcystin on per capita fecundity, Fig. 2) is also consistent with the conclusions of Rohrlack et al. (1999, 2001). That toxins primarily affect survival can also be implied from the meta-analysis of Wilson et al. (2006). However, negative effects of microcystin on the fecundity of *Daphnia* have also been reported, manifested as later maturation in individuals exposed to the wild-type (Semyalo et al 2009). There may exist a threshold level for microcystin where concentration above the threshold level has an instant effect on survival while concentrations below mainly affect

Journal of Plankton Research

2	
3	
4	
5	
6	
7	
8	
9	
9 10	
10	
11	
12 13	
13	
11	
14 15 16	
15	
16	
17	
18	
10	
19	
20	
21	
20 21 22 23 24 25 26 27 29 31 32 33 34 35 37 38 37 38 39	
~~	
23	
24	
25	
26	
20	
21	
28	
29	
30	
00	
31	
32	
33	
31	
25	
30	
36	
37	
28	
200	
39	
40	
41	
42	
43	
44	
45	
46	
47	
10	
48	
49	
50	
51	
52	
52	
53	
54	
55	
50	
56	
57	
58	
59	
00	

274 fecundity and growth rate. This threshold level could differ for different species and clones of 275 Daphnia but also be related to the daphnids earlier experience of microcystin.

276 Our results contrast with those of Lürling (2003) who was not able to detect a difference in 277 survival between toxic and non-toxic strains. The latter result led Lürling (2003) to conclude 278 that other toxic compounds produced by *Microcystis* were driving poor *Daphnia* performance 279 (Jungmann 1992; Rohrlack et al. 2003). Given that the *Daphnia* in our experiment performed 280 much better on both strains, we conclude that our animals are also tolerant of other cyanotoxins 281 possibly present during the experiment. We also found significant effects of treatment on 282 neonate length, where mean length was greater in the non-toxic *Microcystis* treatments relative 283 to the high-quality *Scenedesmus* diet (Fig. 3) indicating greater maternal investment in each 284 offspring under deteriorating environmental conditions (Boersma 1997; Hammers-Wirtz and 285 Ratte 2000; Pieters and Liess 2006).

286 Our results suggest three general conclusions. Firstly, that the presence of microcystin 287 further enhances the negative impact of cyanobacteria on *Daphnia* population growth. 288 Secondly, intraspecific variation in microcystin tolerance within *Daphnia* species can be large, 289 given that some genotypes rapidly go extinct (Rohrlack et al. 1999, 2001), while others may 290 show considerable population growth (Fig. 2). Thus, although our data suggest that co-occuring 291 Daphnia populations can increase in the presence of high levels of microcystin, population 292 growth should be impaired relative to when microcystin is absent because of reduced early 293 survival, suggesting that microcystin matters even for tolerant D. magna. This reduction in 294 population growth rate could be enough to affect a *Daphnia* decline in habitats with other 295 significant sources of mortality, such as predation and food shortage.

296

Acknowledgments

The study was financed by The Swedish Research Council for Environment, Agricultural

Sciences and Spatial Planning (FORMAS) and the Swedish Research Council (VR).

<text>

References

1

2	
3 4 5	300
5 6 7	301
8 9	302
10 11	303
12 13 14	304
15 16	305
17 18	306
19 20 21	307
22 23	308
24 25	309
26 27 28	310
29 30	311
31 32	312
33 34 35	313
36 37	314
38 39 40	315
40 41 42	316
43 44	317
45 46 47	318
47 48 49	319
50 51	320
52 53 54	321
54 55 56	
57 58	
59 60	

Ahlgren, G. (1977) Growth of Oscillatoria agardhii in chemostat culture. Nitrogen and phosphorus requirements. Oikos 29, 209-224. Boersma, M. (1997) Offspring size in *Daphnia*: does it pay to be overweight? *Hydrobiol.* 360, 79-88. Bergman, E., Hansson, L-A., Persson, A., Strand, J., Romare, P., Enell, M., Granéli, W., Svensson, J., Hamrin, S., Cronberg, G., Andersson, G., and Bergstrand, E. (1999) Synthesis of the theoretical and empirical experiences from nutrient and cyprind reductions in Lake Ringsjön. Hydrobiologia 404, 145-156. Bottrell, H.H., Duncan, A, Gliwicz, Z.M., Grygierek, E., Herzig, A., Hillbricht-Ilkowska, A., Kurasawa, H., Larsson, P. and Weglenska, T. (1976) A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24, 419-456. Brett, M. T., Kainz, M., Taipale, S., and Seshan, H. (2009) Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. PNAS 106, 21197-21201. Cronberg, G. (1999) Qualitative and quantitative investigations of phytoplankton in Lake Ringsjön, Scania, Sweden. Hydrobiologia 404, 27-40. DeMott, W. R. (1989) The role of competition in zooplankton succession, p. 195-252. In U. Sommer [ed.], Plankton ecology: succession in plankton communities. Springer-Verlag. Dittmann, E., Neilan, B. A., Erhard, M., Von Dohren, H., and Borner T. (1997) Insertional mutagenesis of a peptide synthetase gene that is responsible for heptatoxin production in the cyanobacterium *Microcystis aeruginosa* PCC 7806. *Molecular Microbiology* 26, 779-787.

Journal of Plankton Research

3 4	322	Gilbert, J. J. (1990) Differential effects of Anabaena affinis on cladocerans and rotifers:
5 6 7	323	mechanisms and implications. <i>Ecology</i> 71 , 1727-1740.
7 8 9	324	Gustafsson, S. (2007) Zooplankton response to cyanotoxins. Ph.D. Lund University.
10 11	325	Gustafsson, S., and Hansson, LA. (2004) Development of tolerance against toxic
12 13 14	326	cyanobacteria in Daphnia. Aquatic Ecology 38, 37-44.
14 15 16	327	Gustafsson, S., Rengefors, K. and Hansson, L. A. (2005) Increased consumer fitness following
17 18	328	transfer of toxin tolerance to offspring via maternal effects. Ecology 86, 2561-2567.
19 20 21	329	Hairston, J., N. G. and others 2001. Natural selection for grazer resistance to toxic
22 23	330	cyanobacteria: Evolution of phenotypic plasticity? Evolution 55, 2203-2214.
24 25	331	Hammers-Wirtz, M. and Ratte, H. T. (2000) Offspring fitness in Daphnia: Is the Daphnia
26 27 28	332	reproduction test appropriate for extrapolating effects o the population level? Env.
29 30	333	<i>Toxicol Chem.</i> 19 , 1856-1866.
31 32 22	334	Hansson, L. A., Gustafsson, S., Rengefors, K. and Bomark, L. (2007) Cyanobacterial warfare
33 34 35	335	affects zooplankton community composition. Freshwater Biol. 52, 1290-1301.
36 37	336	Jungmann, D. (1992) Toxic compounds isolated from Microcystis PCC 7806 that are more
38 39 40	337	active against Daphnia than two microcystins. Limnol. Oceanogr. 37, 1777-1783.
40 41 42	338	Lampert, W. (1987) Laboratory studies on zooplankton-cyanobacteria interactions. New
43 44	339	Zealand Journal of Marine and Freshwater Research 21, 483-490.
45 46 47	340	Lürling, M. (2003) Daphnia growth on microcystin-producing and microcystin-free
48 49	341	Microcystis aeruginosa in different mixtures with the green alga Scenedesmus obliquus.
50 51 52 53 54 55 56 57	342	Limnol. Oceanogr. 48, 2214-2220.
58 59 60		

1 2		
3 4	343	Lürling, M., and Van Der Grinten, E. (2003) Life-history characteristics of Daphnia exposed to
5 6 7	344	dissolved microcystin-LR and to the cyanobacterium Microcystis aeruginosa with and
7 8 9	345	without microcystins. Environmental Toxicology and Chemistry 22, 1281-1287.
10 11	346	Lynch, M., and Shapiro, J. (1981) Predation, enrichment and phytoplankton community
12 13 14	347	structure. Limnol. Oceanogr. 26, 86-102.
15 16	348	Pieters, B. J. and Liess, M. (2006) Maternal nutritional state determines the sensitivity of
17 18	349	Daphnia magna offspring to short-term Fenvalerate exposure. Aquatic Toxicology 76,
19 20 21	350	268-277.
22 23	351	Rohrlack, T. and others. (2003) Isolation, characterization, and quantitative analysis of
24 25 26	352	microviridin J, a new Microcystis metabolite toxic to Daphnia. Journal of Chemical
20 27 28	353	<i>Ecology</i> 29, 1757-1770.
29 30	354	Rohrlack, T., Dittman, E., Börner, T and Christoffersen, K. (2001) Effects of cell-bound
31 32 33	355	microcystins on survival and feeding of Daphnia spp. Applied and Environmental
34 35	356	Microbiology 67, 3523-3529.
36 37	357	Rohrlack, T., Dittmann, E., Henning, M., Börner, T. and Kohl, J-G. (1999) Role of
38 39 40	358	microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by
41 42	359	the cyanobacterium Microcystis aeruginosa. Applied and Environmental Microbiology
43 44 45	360	65, 737-739.
45 46 47	361	Sarnelle, O. (1993) Herbivore effects on phytoplankton succession in a eutrophic lake.
48 49	362	Ecological Monographs 63, 129-149.
50 51 52	363	Sarnelle, O. (2007) Initial conditions mediate the interaction between Daphnia and bloom-
52 53 54 55 56 57 58 59 60	364	forming cyanobacteria. <i>Limnol. Oceanogr.</i> 52, 2120-2127.

2	
3 4	36
5 6	36
7	
8 9	36
10 11	36
12 13	36
14 15	37
16 17	37
18 19	57
20 21	37
22 23	37
24 25	37
26 27	37
28 29	37
30 31	07
32 33	37
34 35	37
36 37	37
38 39	38
40 41	38
42 43	
44 45	38
46 47	38
48 49	38
50 51	38
52 53	38
54 55	
56	38
57 58	
59 60	

Sarnelle, O., and Wilson, A. E. (2005) Local adaptation of *Daphnia pulicaria* to toxic
cyanobacteria. *Limnol. Oceanogr.* 50, 1565-1570.

367 Semyalo, R., Rohrlack, T. and Larsson, P. (2009) Growth and survival responses of a tropical

368 Daphnia (Daphnia lumholtzi) to cell-bound microcystins. J. Plankton Res. 31, 827 - 835

369 Stearns, S. C. (1992) The evolution of life histories. Oxford University.

370 Threlkeld, S. (1979) The midsummer dynamics of two *Daphnia* species in Wintergreen Lake,

371 Michigan. *Ecology* **60**, 165-179.

- 372 Tillmanns, A. R., Wilson, A. E., Pick, F. R. and Sarnelle, O. (2008) Meta-analysis of
- 373 cyanobacteria effects on zooplankton population growth rate: species-specific responses.

374 Fundamental and Applied Limnology **171**, 285-295.

375 Vanni, M. J. (1984) Biological control of nuisance algae by *Daphnia pulex:* experimental
376 studies. *Proceedings 3rd Annual Conference North American Lake Management Society*,
377 151-156.

378 Vanni, M. J., and Findlay, D. L. (1990) Trophic cascades and phytoplankton community
379 structure. *Ecology* **71**, 921-937.

- Von Elert, E., Martin-Creuzburg, D. and Le Coz, J. R. (2002) Absence of sterols constrains
 carbon transfer between cyanobacteria and a freshwater herbivore (*Daphnia galeata*).
 Proceedings of the Royal Society of London B 270, 1209-1214.
- 383 Von Elert, E., and T. Wolffrom. (2001) Supplementation of cyanobacterial food with
 384 polyunsaturated fatty acids does not improve growth of *Daphnia*. *Limnol. Oceanogr.* 46,
 385 1552-1558.
 - Webster, K. E., and Porter, R. H. (1978) Some size-dependent inhibitions of larger cladoceran
 filterers in filamentous suspensions. *Limnol. Oceanogr.* 23, 1238-1245.

2		
3 4	388	Wilson, A. E., Sarnelle, O. and Tillmanns, A. R. (2006) Effects of cyanobacterial toxicity and
5 6	389	morphology on population growth of freshwater zooplankton: meta-analysis of
5 6 7 8 9 10 112 13 14 5 16 7 18 9 20 12 23 24 25 26 7 28 29 30 13 23 33 35 36 7 38 9 41 42 34 45 46 7 48 9 51 52 35 45 56 57 58 59 60	389	morphology on population growth of freshwater zooplankton: meta-analysis of laboratory experiments. <i>Linnol. Oceanogr.</i> 51 , 1915-1924.
00		

Figure 1. Effects of dietary treatment on survival of *Daphnia magna* over 28 days of exposure.
Squares- 100% Scenedesmus, circles- non-toxic Microcystis (50% microcystin-lacking
Microcystis + 50% Scenedesmus), triangles- toxic Microcystis (50% microcystin-containing
Microcystis + 50% Scenedesmus). Error bars represent standard errors of the mean.

Figure 2. Effects of dietary treatment on fecundity (upper panel) and per capita population growth rate (day⁻¹; lower panel) of *Daphnia magna* over 28 days of exposure. Probability (p) values are for significance tests (ANOVA) of overall differences among treatments. Columns with different letters are significantly different from the adjacent column at p < 0.05 (multiple comparison tests). Error bars represent standard errors of the mean. Treatments are: *Scenedesmus* (100%), Non-toxic *Microcystis* (50%) + *Scendesmus* 50% and Toxic *Microcystis* (50%) + Scendesmus 50%.

Figure 3. Effects of dietary treatment on carapace length of *Daphnia magna* neonates over 28 days of exposure. Probability (p) values are for significance tests (ANOVA) of overall differences among treatments. Columns with different letters are significantly different from the adjacent column at p < 0.05 (multiple comparison tests). Error bars represent standard errors of the mean. Treatments are: *Scenedesmus* (100%), Non-toxic *Microcystis* (50%) + *Scendesmus* 50% and Toxic *Microcystis* (50%) + Scendesmus 50%.

Figure 4. Effects of dieatry treatment on biomass (μ g L⁻¹, \pm 1SE) of *Daphnia magna* neonates over 28 days of exposure. *P* values are for significance tests (ANOVA) of overall differences among treatments. Columns with different letters are significantly different from the adjacent column at *p* < 0.05 (multiple comparison tests). Treatments are: *Scenedesmus* (100%), Nontoxic *Microcystis* (50%) + *Scendesmus* 50% and Toxic *Microcystis* (50%) + Scendesmus 50%.

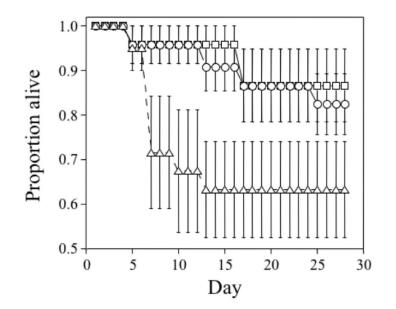
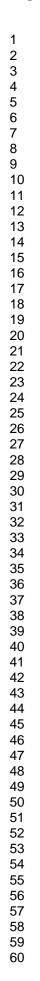
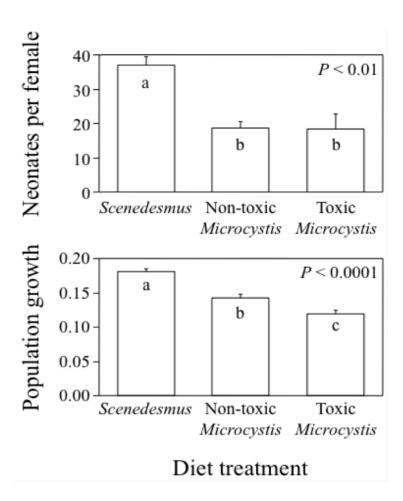
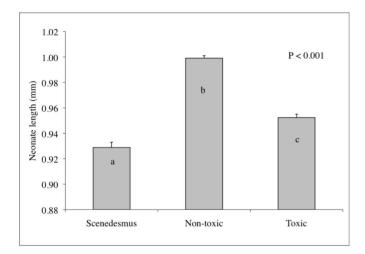
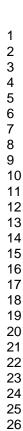
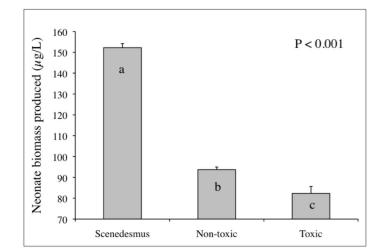




Fig 1


197x276mm (576 x 576 DPI)

http://mc.manuscriptcentral.com/jplankt





197x276mm (576 x 576 DPI)

197x276mm (576 x 576 DPI)

197x276mm (576 x 576 DPI)