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Workflow analysis of production lines with complete 

inspection and rework loops 
 

GIORGOS GIANNAKIS, VASSILIS S. KOUIKOGLOU*, and 

SPILIOS NIKITAS 
 

Department of Production Engineering and Management, Technical 

University of Crete, University Campus, GR-73100 Chania, Greece.  

 

We study the flows induced by different rework loops in serial manufacturing 

systems with inspection stations. Average values of these flows and queueing 

network formulas are used for performance evaluation and optimization of 

production lines. An application is presented for solving jointly the problems 

of inventory control and inspection station allocation in a CONWIP 

production line. 

 

Keywords: Flow lines; Inspection allocation; Queueing networks; Inventory 

control. 

 

1. Introduction 

This paper studies the flow of items in production lines with inspection, 

rework and scrapping of items and solves related analysis and optimization 

problems. The analysis of production processes with rework loops and 

scrapping presents combinatorial difficulties.  

 Consider, for example, a flow line in which items visit machines M1, M2 

and M3 sequentially and are then sent to an inspection station. Each end item 

is inspected for defects. If all defects can be fixed, the item is sent back to 

the machines which performed the defective operations and, after 

completing a rework cycle therein, it is sent back to the inspection station. 

In general, an item entering the inspection station belongs to one of the 

following nine classes: [scrap], [conforming], [needs rework only at M1], 

[needs rework only at M2], [needs rework only at M3], [needs rework at M1 

and M2], [needs rework at M1 and M3], [needs rework at M2 and M3], and 
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[needs rework at M1, M2 and M3]. Each one of these classes has its own 

routing matrix. Therefore, the outcome of each inspection or re-inspection 

and the routing of items in the system depend on each item's history of 

previous processings, as pointed out in Lee et al. (1999). In a flow line with 

K machines there are a total of 2
K
 + 1 distinct classes and corresponding 

routings. An even more complicated situation arises when the probability of 

an operation being conforming or non-conforming depends on the number 

of times the operation has been repeated on the same item.  

 In the literature, rework loops are usually ignored or assumed to be 

fixed in number and involve only sequential operations. 

 Lindsay and Bishop (1965), White (1969), and Britney (1972) were 

among the first to study the problem of allocating inspection effort in 

multistage systems without rework loops. Because the cost functions 

involved are linear or multi-linear, either complete inspection or no 

inspection is optimal for each stage. Eppen and Hurst (1974), Yum and 

McDowell (1981, 1987), and Rau et al. (2005) study systems with rework 

and imperfect inspection accuracy. In these systems the outgoing quality, 

rework, and inspection costs are the main components of system 

performance. The statistics of flows due to rework, scrapping and 

replacement of defective items, as well as their impact on the processing 

times and inventory were first studied in Seidman and Nof (1985) and 

Tapiero and Hsu (1987) for single-stage production systems. Since then, the 

operational analysis of production systems with several machines and 

rework loops has received considerable attention (see, e.g., Wittrock 1992, 

Kim et al. 1995, Crowley et al. 1995, Narahari and Khan 1996, Lee et al. 

1999, Li 2004, Ioannidis et al. 2004, and Pradhan and Damodaran 2008). 

The papers by Raz (1986) and Mandroli et al. (2006) provide surveys on the 

inspection allocation problem. 

 All the models above, with the exception of that in Lee et al. (1999), 

assume simple rework loops which involve a single machine or a chain of 

sequential operations immediately preceding the inspection station. More 
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general rework routings are usually ignored or approximated, as for example 

in Wittrock (1992) where the rework possibilities are truncated by ignoring 

“sufficiently improbable” ones. Lee et al. (1999) present queueing models 

for a three-stage system with random inspection at each stage, which take 

into account all rework combinations of the three operations. For each 

processing stage, their models calculate the mean flow rates induced by 

first-pass and rework flows into that stage. System throughput, average 

outgoing quality, inspection frequencies, and average inventory levels are 

then computed using decomposition methods (exact and approximate) and 

Markov chain analysis. 

 In this paper, we examine production lines of any size with distinct 

rework loops, in which the probability of a nonconforming operation may 

depend on the number of times this operation has been repeated on the same 

item. In section 2 we derive expressions for the mean workload of each 

machine and the outgoing quality of the system. We use these quantities in 

section 3 to evaluate the performance of a production line. Section 4 

presents an application to the problem of inventory control and inspection 

station allocation. Section 5 discusses possible extensions. 

 

2. Yield rate and visit ratios in production lines with scrapping and 

rework 

We examine flow lines with complete inspection, scrapping of items and 

rework loops, and derive analytical expressions for two performance 

indices: the yield rate, defined as the fraction of raw items that are not 

scrapped, and the visit ratios or mean number of visits at each machine and 

each inspection station, before an item is disposed off as scrap or declared 

as conforming product. In Section 3 we shall derive important performance 

indices with the use of visit ratios and the yield rate. 

 The method used to compute visit ratios and the yield rate avoids 

enumerating explicitly the different rework routings. First, we study a 

production line with a single inspection/repair station; then we extend the 
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results to lines with several inspection/repair stations; we also study systems 

with group rework, i.e., if an operation has to be repeated, then all 

operations in the same group must be repeated as well.  

 

2.1. Single inspection station 

Consider the production line shown in figure 1. Assume it operates 

according to the following assumptions:  

(i) The production line consists of K machines, M1, …, MK, followed by a 

single quality inspection/repair station, IS. Machine Mi performs a 

specific operation, denoted i. Station IS inspects the finished items for 

repairable (minor), reworkable and unrestorable defects, and repairs 

items with minor defects. Reworkable items are sent back for rework 

to the machines which performed the defective operations. Items with 

unrestorable defects are declared as scrap and are replaced by new raw 

items. For simplicity, both conforming and repairable items and 

operations will be referred to as conforming, since they do not have to 

be reworked. Conforming items are sent to the output buffer. 

(ii) The quality of operation i may depend on the number of times the 

same workpiece has already been reworked at Mi, but it is independent 

of the quality of other operations.  

(iii) At the exit of each stage, semifinished workpieces may be subject to a 

rough (e.g., visual) inspection, which removes only a fraction of the 

items that have acquired an unrestorable defect at that stage. The 

probability that an item is disposed off as scrap immediately after 

operation i is si,x, where x is the number of times this item has passed 

through Mi. 

(iv) Suppose that a finished item, either first-pass or reworked, is inspected 

in IS after having completed a sequence of processing steps involving 

the xth pass through Mi, x ≥ 1. Then, operation i is declared as 

conforming (including the case of a repairable operation) with 
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probability ci,x, reworkable with probability ri,x, and unrestorable with 

probability ti,x. 

(v) The inspection and repair operations at station IS are assumed to be 

free of errors. Yet, rough inspection may be fraught with errors of 

both types: 1 – si,x is the fraction of conforming and restorable items as 

well as items with unrestorable defects misclassified as conforming or 

restorable ones; si,x is the fraction of items with unrestorable defects as 

well as conforming or restorable workpieces misclassified as 

unrestorable ones. When rough inspection is not present we set si,x = 0. 

 

insert Figure 1 about here 

 

 The probabilities ci,x, ri,x, si,x, and ti,x will be referred to as the quality 

probabilities and they satisfy ci,x + ri,x + si,x + ti,x = 1, for all x = 1, 2, … and 

i = 1, … K. These probabilities determine the yield rate of the system and 

the distributions of the number of inspections and number of reworks of 

each item before it leaves the system as a conforming product or scrap. In 

practice, an item can be reworked only a finite number of times X before it 

is either discarded as scrap and replaced by a new raw item or becomes a 

conforming product. Other rework models in the literature assume that ri,x is 

independent of the number of passes x. These assumptions are generalized 

as follows: There is a fixed integer X such that  

(a) the quality probabilities for x > X are equal to the corresponding 

probabilities for X  

(b) ri,X < 1. 

 When ri,X = 0, operation i cannot be repeated more than X times. 

Because, by assumption (a), ri,x = ri,X for all x > X, the case ri,X = 1 does not 

represent a realistic situation, as it implies that if operation i is not 

successful after X – 1 trials, then it is repeated for ever. Finally, if ri,X ∈ (0, 
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1), then, with probability one, each item is reworked a finite number of 

times at Mi before it is either scrapped or produced successfully. For 

example, suppose that if operation 1 is performed on the same item four 

times, then the item is scrapped. The quality probabilities of the remaining 

operations i ≠ 1 are independent of x with ri < 1. In this case, we set X = 4, 

c1,x = r1,x = t1,x = 0 and s1,x = 1 for x ≥ 4, and assumptions (a) and (b) above 

are satisfied for all machines Mi. 

 In the sequel, we drop the subscript x in the notation of the quality 

probabilities when x ≥ X. We thus have ci = ci,X, ri = ri,X < 1, si = si,X, and 

ti = ti,X.  

 We now define three quantities which will be used in deriving 

expressions for the yield rate and visit ratios. First, consider machine Mi 

operating in isolation. The quantity 

 Ci(n) = ci,1 + ri,1ci,2 + … + (ri,1…ri,n–1ci,n) (1) 

is the probability that Mi will perform a conforming operation i on an item 

in at most n passes. Note that Ci(n) is increasing in n. The yield rate of Mi in 

isolation is Ci = limn→∞ Ci(n). Because the quality probabilities are constant 

for x ≥ X and also ri,x = ri < 1, the yield rate of Mi in isolation is given by 

  Ci = ci,1 + ri,1ci,2 + … + (ri,1…ri,X–2ci,X–1) + (ri,1…ri,X–1)(ci + ri ci + …)  

       = ci,1 + ri,1ci,2 + … + (ri,1…ri,X–2ci,X–1) + (ri,1…ri,X–1)
i

i

r

c

−1
. (2) 

If X = 1, then Ci = ci/(1 – ri). 

 Next, we consider the K-machine line and compute the probability Pi(n) 

that an item passes through Mi at least n times. In particular, the probability 

Pi(1) of at least one pass through Mi equals the probability that the item will 

not be discarded due to immediate scrapping during its first pass through the 

preceding machines. Thus, Pi(1) = (1 − s1,1)(1 − s2,1)…(1 − si–1,1). In general, 

an item will visit Mi at least n times if the following events occur 

simultaneously: 
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• operation i is reworkable after the first n – 1 passes 

• the downstream operations j > i are either conforming or reworkable 

after the first n – 1 visits to the corresponding machines 

• the upstream operations j < i are either conforming after at most n – 1 

passes through Mj or reworkable but the item is not scrapped 

immediately after its nth pass. 

Combining the above we obtain 

 Pi(n) = (ri,1…ri,n–1) [ ]








+−∏
>

−
ij

njjj rrnC 1,1,)1( K    

              × [ ]








−+−∏
<

−
ij

njnjjj srrn )1()1(C ,1,1, K . (3)  

 Finally, we compute the probability PIS(n) that an item will pass from 

the inspection/rework station IS at least n times. In particular, PIS(1) equals 

the probability that the item will not be scrapped during its first pass through 

the system. Thus, PIS(1) = (1 − s1,1)(1 − s2,1)…(1 − sK,1). The item will be 

inspected at least n times if the following events occur simultaneously: 

• each operation i is either conforming after the first n – 1 passes 

through Mi or reworkable but the item is not scrapped immediately 

after its nth pass  

• not all operations are conforming after the first n – 1 passes. 

Therefore, 

 PIS(n) = [ ] ∏∏
==

− −−−+−
K

i

i

K

i

niniii nCsrrnC
11

,1,1, )1()1()1( K . (4)  

 We now give the main results of this section. 

 

Proposition 1: The yield rate of a production line with a single 

inspection/repair station IS is the product of the yield rates of its machines 

in isolation: 
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 CIS = .
1

∏
=

K

i

iC  (5) 

 

Proof: An end item is conforming if it has successfully received all 

operations. The proof follows from the assumption that the quality of each 

operation is independent of the quality of others. 

 

Proposition 2: The visit ratios of an item at Mi and at the 

inspection/rework station IS are the limits of the sequences  

 Ni(n) = Pi(1) + Pi(2) + …+ Pi(n) 

 NIS(n) = PIS(1) + PIS(2) + … + PIS(n) 

(6) 

as n→∞. 

Proof: It follows from the fact that the mean value of a nonnegative 

integer random variable x, x = 0, 1, …, is given by E(x) = P(x ≥ 1) + 

P(x ≥ 2) + …. 

 

 The infinite series Ni = Ni(∞) and NIS = NIS(∞) do not have closed form 

expressions. Therefore, they must be truncated for computational purposes. 

Remark: Feedback loops similar to the rework routings examined herein 

arise also in the analysis of research and development projects, where parts 

of a project can fail and need to be done again. Truncation is the only recipe 

to get around this problem. Wittrock (1992) develops a network model 

named Orchard for manufacturing systems and quotes: “Of course, Orchard 

cannot explicitly store an infinite tree. It avoids this by ignoring sufficiently 

improbable visits.” Also in Section 17.4.4 of their book, Morton and Pentico 

(1993) comment on loopbacks in stochastic project networks as follows: “A 

reasonable way out of this difficulty is to remove (prune) branches of less 

than a certain minimum probability and to fudge their consequences roughly 

into their more important neighbors. This procedure is necessarily 
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judgemental in nature ….” 

 To approximate Ni by Ni(n), we seek a truncation value n ≥ X such that 

the error Pi(n + 1) + Pi(n + 2) + … is smaller than a specified value ε. 

Consider a term Pi(k) of the error, where k > X. From equation (3), we have 

 Pi(k) = (ri,1…ri,k–1)








+−∏
>

−
ij

kjjj rrkC ])1([ 1,1, K  

                                   × [ ]








−+−∏
<

−
ij

kjkjjj srrk )1()1(C ,1,1, K .  

Because ri,x ≤ 1 for all x and ri,k = ri for all k > X, we have that  

 (ri,1…ri,k–1) = (ri,1…ri,X–1)ri
k–X–1

 ≤ ri
k–X–1

. 

For j ≠ i, it suffices to consider the relaxed inequality rj,1rj,2…rj,k–1 ≤ 1. 

Finally, because the sequence Cj(k) is monotonically increasing to Cj as 

k→∞, we have Cj(k – 1) ≤ Cj. From the previous three inequalities we obtain 

the bounds  

 Pi(k) ≤ ri
k–X–1∏

≠
+

ij

jC )1( , k ≥ n + 1, 

 Pi(n + 1) + Pi(n + 2) + … ≤ 
Xn

i

i

ij

j

r
r

C
−≠

−

+∏

1

)1(

. 

If we define 

 Ai =
i

ij

j

r

C

−

+∏
≠

1

)1(

, (7) 

then n must satisfy Airi
n–X

 ≤ ε. By taking logarithms on both sides and noting 

that log ri < 1, we see that the smallest truncation value n = ni that 

guarantees a maximum error ε in estimating Ni is  

 







>







 −
+=

otherwise,,0

 ,
log

loglog
ε

ε
i

i

i

i

A
r

A

Xn  (8) 
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where y is the smallest integer greater that y. 

 Next, we determine a truncation value n for approximating the visit 

ratio at the inspection station by NIS(n). The approximation error is 

PIS(n + 1) + PIS(n + 2) + …. Consider a term PIS(k), k ≥ n + 1, of the error 

 PIS(k) = [ ] ∏∏
==

− −−−+−
K

i

i

K

i

kikiii kCsrrkC
11

,1,1, )1()1()1( K .  

It can be shown by differentiation that PIS(k) is an increasing function of 

Ci(k − 1) and ri,1…ri,k–1(1 – si,k). Because Ci(k − 1) ≤ Ci for all k and ri,1… 

ri,k–1(1 – si,k) ≤ ri
k–X–1

 for k > n ≥ X, we see that 

 PIS(k) ≤ ( ) ∏∏
==

−− −+
K

i

i

K

i

Xk
ii CrC

11

1
 

                                               ≤ ( ) K
KXk

ArA −+ −− 1
IS  

where we have defined  

 A = maxi Ci,    rIS = maxi ri (9) 

From the binomial theorem we obtain 

 PIS(k) ≤ ∑
=

−−−






K

j

jXkjK rA
j

K

1

1
IS )( <

1
IS

1

−−

=

− 















∑ Xk
K

j

jK rA
j

K
 

where the strict inequality follows from the fact that ri < 1 implies rIS < 1, 

from which we have (rIS
k–X–1

)
j
 < rIS

k–X–1
 for j > 1. The approximation error is 

bounded from above as follows 

     PIS(n + 1) + PIS(n + 2) + … < 






















 ∑∑
∞

+=

−−

=

−

1

1
IS

1 nk

Xk
K

j

jK rA
j

K
 

                                                  = [ ]
IS

IS

1
)1(

r

r
AA

Xn

KK

−
−+

−

. 

Therefore, if we define 

 AIS =
IS1

)1(

r

AA KK

−
−+

, (10) 
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then the smallest truncation value n = nIS that guarantees a maximum error ε 

in estimating NIS is given by 

 







>







 −
+=

otherwise.,0

 ,
log

loglog
IS

IS

IS

IS

ε
ε

A
r

A

Xn  (11) 

 The following algorithm can be used to compute the yield rate and visit 

ratios for a production line with a single inspection station. 

 

Algorithm 1: 

1. Compute Ci, i = 1, …, K, from equation (2) and CIS from (5). 

2. Compute Ai, i = 1, …, K, from equation (7), ni from (8), and 

Ni ≈ Ni(ni) from equations (1), (3) and (6). 

3.  Compute A, rIS and AIS from equations (9) and (10), nIS from (11), and 

NIS ≈ NIS(nIS) from equations (1), (4) and (6). 

 

Example 1: Consider a production line with ten machines having the same 

quality probabilities, independent of the number of reworks. Let ci = 0.9, 

ri = 0.09, and si + ti  = 0.01 but si and ti are otherwise arbitrary. Then, setting 

X = 1 in equation (2), we find Ci = ci/(1 – ri) = 0.989; the overall yield rate is 

0.989
10

 = 0.895. For every i = 1, …, 10, equation (7) gives Ai = 1.989
9
/(1 –

 ri) = 535, and for a maximum error ε = 10
−7

, equation (8) with logarithms of 

base ten gives the truncation value  

 ni = X + (–7 – log 535)/log 0.09 = 1 +  9.3 = 11. 

Setting A = maxi Ci = 0.989, rIS = maxi ri = 0.09 in equation (10) we obtain 

AIS = (1.989
10

 – 0.989
10

)/(1 – rIS) = 1064, and, upon substituting this into 

equation (11), we obtain 

 nIS = X + (–7 – log 1064)/log 0.09 = 1 +  9.6 = 11. 

Therefore, at most eleven terms are required in equations (6) to approximate 
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the visit ratios Ni and NIS with errors less than 10
–7

. To reduce the error to 

10
–8

 we need one additional term in equations (6). 

 

2.2. Multiple inspection stations and adjusted visit ratios 

We now consider a production line with K machines and NS ≥ 1 inspection 

stations. Station IS inspects and repairs all items that complete a specific 

subset of consecutive operations. Both the subset of operations and the set 

of machines which perform them will be referred to as chains (of station) 

IS. Figure 2 shows a production line with two chains of operations, chain 

1 = {1, 2} and chain 2 = {3, 4}. 

 

insert Figure 2 about here 

 

 Not all conforming items that depart from a chain end up conforming 

products. For example a conforming item leaving chain 1 and entering M3 

may eventually be scrapped if it acquires an unrestorable defect at some 

subsequent production stage. 

 To take into account the possibility of scrapping at subsequent chains, 

we define the adjusted visit ratio Vi to be the mean number of visits to 

machine Mi per conforming product of the system. Each item entering chain 

IS ends up a conforming product with probability CISCIS+1…CNS and also 

each such item passes on average Ni times through Mi and is inspected NIS 

times. Thus the adjusted visit ratios are given by 

 Vi =
NS1ISIS CCC

N i

K+
 (12) 

for all machines Mi belonging to chain IS and also for the inspection station, 

i = IS.  

 The overall yield rate C of a production line with NS chains and K 

machines is the product of the yield rates of its chains or its machines in 
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isolation, i.e., 

 C = ∏
=

NS

1IS

ISC =∏
=

K

i

iC
1

. (13) 

    

2.3. Group scrapping and rework 

 So far, we have assumed that the qualities of operations are independent 

of each other, so that an item may need rework at M1 but not at M2. We now 

examine the case of tend the previous results to take into account group 

scrapping and rework. Suppose that, instead of a single machine Mi, we 

have a group of Ki consecutive machines, denoted Mi,m, m = 1, …, Ki, such 

that whenever an item must be reworked at Mi,m, all operations in group i 

must be repeated as well, provided none of them renders the item scrapped. 

 An item that enters machine Mi,m for its xth rework receives a 

conforming operation with probability ci,m,x, a reworkable operation with 

probability ri,m,x, or it becomes a scrap item, either right after the item 

completes all group i operations with probability si,m,x or after inspection (at 

the end of the chain to which group i belongs) with probability ti,m,x. 

 When several groups are inspected by a single inspection station, they 

form a chain as explained in the previous section. In this case, we can 

describe group i using an equivalent machine Mi whose quality probabilities 

can be computed as follows.  

a) The probability of a conforming operation during the xth rework in group 

Mi is the product of the corresponding probabilities of Mi,m. That is, 

 ci,x = ∏
=

iK

m

xmic
1

,, . 

b) Similarly, the probability that an item will be either conforming or 

reworkable after its xth pass through group i equals the product of the 

corresponding probabilities of Mi,m. Subtracting the probability of 

conforming group operations we obtain the rework probability, thus 
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 ri,x = ∏∏
==

−+
ii K

m

xmi

K

m

xmixmi crc
1

,,

1

,,,, )( . 

c) An item will be scrapped immediately after its xth pass through group i if 

at least one operation renders the item scrap. The corresponding probability 

is given by the sum of probabilities of mutually exclusive events as follows: 

 si,x = si,1,x + (1 – si,1,x)si,2,x + … + [(1 – si,1,x)…(1 – si,Ki–1,x)]si,Ki,x. 

d) Finally, ti,x = 1 – ci,x – ri,x – si,x. 

 In a group of machines with group scrapping and rework, each rework 

loop involves all machines of the group. Therefore the adjusted visit ratios 

and yield rate of each machine Mi,m are the same as those of the equivalent 

machine Mi, for all m = 1, …, Ki. The analysis of sections 2.1 and 2.2 

applies here as well. 

 Now suppose that an item is scrapped with probability si,m,x immediately 

after it passes through Mi,m rather than through the whole group. Here we 

have the case of group rework but immediate scrapping. The quality 

parameters of the equivalent machine Mi are the same as above. The visit 

ratio of the equivalent machine is equal to the visit ratio of the first machine 

M1,i of the group, but it is greater than the visit ratios of the other machines, 

because a reworkable item always passes through Mi,1 but may be scrapped 

before it visits a downstream machine of group i. The visit ratios of the 

downstream machines Mi,2, Mi,3, … can be computed using the same 

arguments as those for equation (3). 

 

3. Analysis of a CONWIP line with inspection stations and lost sales 

This section describes a practical application of the results of section 2. 

Consider a production line with K machines and NS inspection stations, in 

which the total inventory (raw items, semi-finished items, products) is kept 

constant and equal to S. It is assumed that there is ample storage space 

before each machine so that no blocking phenomena take place. The system 
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begins with S raw items before the first machine M1. Whenever a product is 

sold to a customer or a semi-finished item is scrapped, a new raw item is 

released into M1. Such systems, known as CONWIP (CONstant Work In 

Process) systems, are frequently encountered in practice because their 

inventory can easily be controlled (Spearman and Zazanis 1992). 

 Suppose that all demand arriving during stockouts is lost. Let µ0 be the 

mean demand rate and µi the mean processing rate of machine Mi, if i = 1, 

…, K, or the mean inspection rate of station IS, if i = K + IS, where IS = 1, 

…, NS. Thus, the demand and the inspection stations can be modelled by 

equivalent machines with known production rates.  

 For simplicity, we assume that workpieces after each operation i, i = 1, 

…, K, either conform or need rework or are scrapped immediately or after 

inspection, with corresponding probabilities ci, ri, si and ti independent of 

the number of previous reworks. 

 Let us compute the adjusted visit ratios Vi at each service node of the 

system. The adjusted visit ratio of M0 is assumed to correspond to the 

satisfied demand. Therefore, we set V0 = 1 because an arriving customer 

requires one conforming product. Each inspection station serves a chain of 

machines. Let ISi denote both the chain and the inspection station that 

correspond to machine Mi. If machine Mj belongs to the same chain as Mi, 

then we write j ∈ ISi. 

 Next we compute the visit ratios Ni for each i = 1, …, K + NS using 

Algorithm 1. For any j ≤ K, equations (1) and (2) simplify to 

 Cj(n – 1) = 
j

n
j

j
r

r
c

−

− −

1

1 1

,  Cj = 
j

j

r

c

−1
. 

By considering all machines Mj in the same group with Mi, IS = ISi, 

equation (3), which gives the tails of the distribution of the number of visits 

at Mi, becomes 
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Pi(n) = ri
n–1 ∏

>∈

−
−









+

−

−

ijj

n
j

j

n
j

j r
r

r
c

 IS,

1

1

1

1
∏

<∈

−
−









−+

−

−

ijj

j
n
j

j

n
j

j sr
r

r
c

 IS,

1

1

)1(
1

1
 

for IS = ISi and i = 1, …, K. Also equation (4), for inspection station IS, 

becomes 

 PK+IS(n) = ∏
∈

−
−









−+

−

−

IS

1

1

)1(
1

1

j

j
n
j

j

n
j

j sr
r

r
c – ∏

∈

−










−

−

IS

1

1

1

j j

n
j

j
r

r
c ,  

IS = 1, …, NS, where the index IS of inspection stations is changed to 

K + IS to avoid confusion with the corresponding probabilities of ordinary 

machines. Equation (5), which gives the yield rate of chain IS, is written as 

 CK+IS = ∏
∈ISj

jC . 

The remaining calculations for computing the visit ratios Ni, i = 1, …, 

K + NS, involve equations (6)–(11), as described in Algorithm 1. 

 Suppose that machine chains and inspection stations are visited in 

increasing order of IS. Then, equation (12) for any machine Mi of chain 

IS = ISi reads as follows, after re-indexing the yield rates,  

 Vi =
NS1ISIS ++++ KKK

i

CCC

N

K

, 

and for the inspection station IS, 

 VK+IS =
NS1ISIS

IS

++++

+

KKK

K

CCC

N

K

. 

 The adjusted visit ratio Vi, i = 1, …, K + NS, can also be viewed as the 

ratio of the mean arrival rate at node i (machine or inspection station) of the 

system to the rate of satisfied demand or system throughput. This is also in 

accordance with our assumption that the adjusted visit ratio of the 

equivalent machine M0 is V0 = 1. 

 Using the adjusted visit ratios and exact or approximate results from 

queueing theory, we can evaluate the performance of the CONWIP line. The 

most important performance measure of the system is its throughput TH. 
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Because the number of items in the system is always S, the system can be 

modeled as a closed queueing network of K + NS + 1 queues with service 

rates µi, i = 0, 1, …, K + NS. The number of items in node i (queue + 

service) is denoted ni. The quantity n0 is the number of finished products. 

 When the processing times of each node are independent, exponentially 

distributed random variables and the items at each machine and inspection 

station are processed according to a FIFO (first in, first out) discipline, the 

throughput of the system is given by (Buzen 1973) 

 TH =
)(

)1(

SG

SG −
 (14) 

where  

 G(S) = ∑ ∏
=++

≥ = 



















 
,0 0

0 Sn...n
n

L

i

n

i

i

L

i

i

V

µ
 (15) 

and L = K + NS. The rate of scrap items can be computed as follows. The 

yield rate, C = C1…CK, is the fraction of raw items that become products. A 

fraction 1 – C of raw items end up scrapped. Therefore, the total scrap rate 

is given by 

 SC =
C

C−1
TH . (16) 

There exist efficient algorithms to compute TH (Buzen 1973, Reiser and 

Lavenberg 1980). Other measures of performance, such as the mean number 

of items and the mean delay in each queue, can also be computed using 

these algorithms. 

 When the processing times have distributions other than exponential or 

they depend on the number of times an item has been reworked, and the 

service disciplines are not FIFO, throughput can be estimated with good 

accuracy using approximate methods (see, e.g., Narahari and Khan 1996). 

For systems with failure-prone machines, limited local buffers (with 

capacities less than S) and multiple rework loops involving sequential 
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operations, Li (2004) has proposed an iterative decomposition method to 

approximate TH. All these methods make direct or indirect use of Ni and Vi 

to compute routing probabilities and traffic intensities, assuming that the 

visit ratios are known. For systems with history-dependent rework routing, 

these quantities can be calculated using the results of sections 2.1 and 2.2. 

 Since there is always one inspection station at the end of the line, all 

products are conforming even when no additional inspection stations are 

installed. However, by adding more inspection points we can reduce the 

workload of downstream machines by preventing items that should have 

already been declared as scrap from being processed therein. The problem 

of inspection station allocation arises when it is costly and time-consuming 

to perform inspection at each stage of the production process. The ultimate 

criterion in deciding the best allocation is of course the mean profit rate of 

the system, which includes the profit from sales, the cost of scrap, inventory 

holding costs, and the costs of installing and operating inspection stations. 

 In the next section we give an example in which the problems of 

inspection station allocation and inventory control are solved 

simultaneously for a CONWIP line with exponential processing and 

inspection times. 

 

4. Inspection station allocation and inventory control of a CONWIP line 

Consider a ten-machine CONWIP line with the following machine 

parameters: production rates µi = 6, quality probabilities ci = 0.9, ri = 0.09, 

si = 0 and ti = 0.01, i = 1, …, 10. The demand rate is µ0 = 4. The mean 

inspection times are integer multiples of 0.005, proportional to the number 

of operations in each chain. For example, if only one inspection station is 

installed, its mean production rate is µ11 = 1/(10 × 0.005) = 20 inspections 

per time unit. The system incurs a cost rate of 10 for each inspection station 

installed and for each machine whose output is inspected. Thus, if 2 

inspection stations are installed, then the overall inspection cost rate is 
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2 × 10 + 10 × 10 = 120. Finally, the net profit from selling one product (unit 

selling price less price of raw item and production cost) is 300, the unit 

holding cost rate is 8, and the unit cost of scrap items is 20. The latter equals 

the cost of purchasing a raw item minus its salvage value. 

 Given the number NS of inspection stations, their chains, and the 

CONWIP inventory level S, we can calculate the adjusted visit ratios, yield 

rate, TH and SC following the analysis of the previous section. The mean 

profit rate, J, of the system is given by 

  J = 300TH –20TH
C

C−1 – 8S – 10NS – 10 × 10 

where the first term is profit from sales and the others are cost of scrap 

items, inventory holding costs, fixed cost for NS inspection stations and 

variable inspection cost for 10 machines.  

 To maximize J we perform an exhaustive evaluation of inspection 

station allocations using the following 

 

Algorithm 2: 

1. Initialize the maximum profit rate J
*
 = 0. Initialize the allocation of 

inspection stations, setting NS = 1 (in this case, all machines belong to 

chain 1). 

2. Compute the yield rate C and the visit ratios Vi, i = 1, …, K + NS, for 

the current allocation of inspection stations. 

3. For S = 1, 2, …, compute G(S), TH and SC from equations (15)–(17) 

and the component of the profit rate 

 f(S) = 





 −−

−
C

C

SG

SG 1
20300

)(

)1(
– 8S. 

 If f(S) < f(S – 1) for some S ≥ 2, then the optimal CONWIP level for 

the current allocation is S – 1 with corresponding profit rate 

 J = f(S – 1) – 10NS –100. 
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4. Keep the maximum profit rate J
*
 along with the corresponding 

allocation and CONWIP level in the memory: if J > J
*
, set J

*
 = J. 

5. Generate another allocation of inspection stations and go to step 2. 

Repeat until NS = 10, in which case each machine has its own 

inspection station. If J
*
 = 0, then the system is not profitable. 

 

 Step 3 of the algorithm gives the optimal CONWIP level for any fixed 

allocation of inspection stations. This is justified as follows. Maximizing J 

with respect to S is equivalent to maximizing f(S). The function G(S – 

1)/G(S) is concave and increasing (Shanthikumar and Yao 1988) for a class 

of closed queueing networks including systems with constant processing 

rates, as the CONWIP line studied herein. The coefficient 300 – 20(1 – C)/C 

in f(S) is positive or negative. If it is positive, then f(S) is concave and, 

therefore, the smallest value S – 1 for which f(S) < f(S – 1) is the globally 

optimal value; otherwise, f(S) negative and decreasing, so the optimal 

nonzero CONWIP level is 1. 

 Table 1 shows the optimal arrangement of inspection stations and the 

corresponding CONWIP levels and profit rates for NS = 1, …, 10. The 

location of each inspection station is described by the index of the last 

machine in the chain.  

 

insert Table 1 about here 

 

 In all cases, there is always one inspection station after the last machine 

M10. We see that installing just one more inspection station in the middle of 

the line maximizes the profit rate. If we double the probabilities of 

scrapping and rework, then a maximum profit rate of 542.8 is achieved 

when three inspection stations are located after machines 3, 6 and 10, and 

for CONWIP level S = 29. For a twenty-machine system with the original 
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parameter values, the optimal design achieves a profit rate of 360.2 and 

involves three inspection stations located after machines 6, 13 and 20, and 

CONWIP level S = 38. 

 Since there is always an inspection station at the end of the line, the 

number of different allocations is 2
K –1

, where K is the number of machines. 

Algorithm 2 requires about 220 seconds on an Intel® Core™ 2 Duo 

1.33GHz processor to evaluate possible designs for the 20-machine 

CONWIP line. The CPU time is roughly doubled for each additional 

machine. 

 To design larger systems with reasonable computational effort other 

methods that avoid exhaustive search must be developed. A greedy 

approach is to start with NS = 1 and increase the number of stations one at a 

time until J starts to decrease. This approach gives the optimal design when 

J is a concave or unimodal function of NS. For example, for the 10-machine 

line whose results are shown in Table 1 and for the other two experiments 

discussed above, the profit rate is unimodal in NS (although not concave) in 

the sense that it has a single local (and, therefore, global) maximum. 

However, despite the experimental evidence, because unimodality is not 

established for the general case, the greedy algorithm may not converge to 

the optimal design. Genetic search algorithms may be used to deal with the 

presence of multiple local optima. 

 

5. Conclusions 

We have conducted a workflow analysis of production lines with quality 

inspection stations located at intermediate stages of the production process. 

Each inspection station inspects all items that complete a specific chain of 

consecutive operations. An operation can be conforming, repairable, 

reworkable, or unacceptable. Conforming items continue to the next chain 

of operations. Repairable items are processed locally (off-line) and become 

conforming. Reworkable items are sent back for rework to the 
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corresponding machines which performed the defective operations. 

Disposable items are replaced by new raw items, which are released into the 

first machine of the production line. For each operation, the probabilities of 

the various types of quality failures may depend on the number of times this 

operation has already been performed on the same item. Using these 

probabilities, we derive expressions for the mean workload intensity of each 

machine and each inspection station per conforming end item. This 

information, combined with queueing network formulas, is used to 

optimally allocate inspection stations and determine the inventory control 

policy for a make-to-stock production line with random demand. 

 The analysis presented herein can be extended in several directions. 

 Inspection errors, concerning conforming items classified as 

nonconforming and vice versa, can be incorporated into the probabilities of 

scrap and conforming items. In this case, the expressions derived need 

modifications to take into account additional rework loops which emanate 

from the points at which the errors of previous inspections are detected. If 

the inspection errors involve only conforming items mistaken scrap, then 

this can be taken into account by increasing the probabilities of 

nonconforming operations by the corresponding error and decreasing the 

probabilities of conforming operations by the same amount; thus, no 

additional rework loops are needed for this type of error. 

 Random inspection, where only a fraction of items are inspected, could 

also be incorporated. As previously, modifications are needed for additional 

rework loops from the points at which previously undetected errors are 

discovered. 

 Reworkable operations may require shorter processing times than the 

original operations of the same type. Also the processing times may not be 

exponential random variables and machines may have local buffers of 

limited capacity. Finally, queueing disciplines other than FIFO could be 

considered. All the above generalizations can be taken into account using 

approximate queueing analysis or decomposition methods (Kim et al. 1995, 
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Narahari and Khan 1996, Li 2004, Pradan and Damodaran 2008). 
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M1 M2 Mi Mi+1 MK (a) Raw 
 items 

(b) Immediate scrapping 
(c) Scrapping after inspection; 

     probabilities: ti,x, i = 1, …, K 

(d) Rework loops;  

      probabilities: ri,x, i = 1, …, K 

(e) Rework routings bypass conforming operations 

output 
buffer 

s1,x s2,x si,x si+1,x sK,x 

 

IS 

 

Figure 1.  Flows in a production line with rough inspection at each stage and 

inspection and repair at end: (a) raw items; (b) items classified as 

nonconforming at the exit of each stage are scrapped and replaced by new 

raw items; (c) nonconforming items detected after inspection at IS are 

scrapped and replaced by raw items; (d, e) rework routings. 

 

 

M1 

(a) 

Scrapping 

Rework 

output 
buffer 

M2 M3 M4 

(b) (c) 

 

IS=1 IS=2 

 

Figure 2.  Flows in a production line with four machines and two 

inspection/repair stations: (a) raw items entering the chain of station IS = 1; 

(b) items entering the chain of station IS = 2; (c) conforming products. 
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Table 1. Optimal designs for various values of NS. 

Number of stations Optimal design 

NS  Location of inspection stations S J 

1 10 30 707.3 

2 5, 10 30 713.8 

3 3, 6, 10 30 709.2 

4 2, 4, 7, 10 30 701.9 

5 2, 4, 6, 8, 10 30 693.6 

6 1, 2, 4, 6, 8, 10 30 684.4 

7 1, 2, 3, 4, 6, 8, 10 30 675.1 

8 1, 2, 3, 4, 5, 6, 8, 10 30 665.8 

9 1, 2, 3, 4, 5, 6, 7, 8, 10 30 656.4 

10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 30 646.9 
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