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Abstract— Virtual prototypes are simulators used in the con-
sumer electronics industry. They enable the development of
embedded software before the real, physical hardware is avail-
able, hence providing important gains in speed of development
and time-to-market.

Transaction-level Modeling (TLM) is a widely used technique
for designing such virtual prototypes. Its main insight is that
many micro-architectural details (i.e. caches, fifos and pipelines)
can be omitted from the model as they should not impact the
behavior perceived from a software programmer’s point-of-
view.

In this paper, we shall see that this assumption is not always
true, specially for low-level software (e.g. drivers). As a result,
there may be bugs in the software which are not observable
on a TLM virtual prototype, designed according to the current
modeling practices. We call this a faithfulness issue.

Our experience shows that many engineers are not aware
of this issue. Therefore, we provide an in-depth and intuitive
explanation of the sort of bugs that may be missed. We claim
that, to a certain extent, modified TLM models can be faithful
without losing the benefits in terms of time-to-market and
ease of modeling. However, further investigation is required
to understand how this could be done in a more general
framework.

I. INTRODUCTION

Developing today’s high-tech consumer electronic devices

is a real challenge, mainly because of the complexity and

the time-to-market pressure. Most of the functionality of

these devices is often grouped into a single integrated circuit,

which is then called a system-on-chip (SoC).

The design of such systems is a joint development of

custom hardware (the SoC itself) and software (drivers,

etc). In this context, a virtual prototype is a model of the

hardware intended for simulation. It allows the development

of software before the real, physical hardware is available.

A. Virtual prototypes and the design flow

Register-transfer level (RTL) models are the traditional

entry point in the SoC design flow. They specify precisely

the hardware logic needed for manufacturing the physical

chip. RTL models are also executable. They can simulate

the behavior of the hardware very precisely.

Nevertheless, the simulation of complex, system-level RTL

models is very slow, and they become available too late in the

design flow. Using them for software development becomes

not feasible in practice [1].

B. Transaction-Level Modeling

Transaction-Level Modeling (TLM) is a widely used tech-

nique for designing virtual prototypes [2].

Conceptually, a virtual prototype in TLM is a set of com-

ponents, which represent hardware blocks (typically: CPUs,

DMAs, memories, timers) connected through interconnec-

tions. An interconnection transports transactions, which are

abstractions of data.

The TLM approach relies on the assumption that many

micro-architectural details (like caches, fifos, and pipelines)

are only optimizations; in other words, they should not

impact the behavior of the hardware as perceived from a

software programmer’s point-of-view. Consequently, these

details are dropped from the virtual prototype, which is

expected to remain precise in what concerns the functionality.

Because they are less detailed, TLM virtual prototypes are

able to achieve very high simulation speed while requiring

far less modeling effort with respect to RTL. Thus, they

effectively address the aforementioned complexity and time-

to-market issues.

C. Motivation and faithfulness issues

As we shall see in details in Section III, there is a wide

variety of modern architectures that implement aggressive

optimizations which may change the memory accesses’ se-

mantics (what we call the memory model [3]).

Because the TLM virtual prototypes do not include such

architectural details, some behaviors of the software on

the real system (and the bugs in particular) may not be

reproducible when running on the virtual prototype. We call

this a faithfulness issue.

D. The importance of faithfulness

Ensuring that a model is faithful is essential so that

software bugs can be found in simulation. Indeed, debugging

and reproducibility are some of the major selling points of

the TLM virtual prototyping approach.

Many other techniques also require faithfulness. For in-

stance, formal verification [4] and stateless model check-

ing [5] can be used to prove properties of a SoC by analyzing

a model composed of the virtual prototype and the embedded

software. Of course, if the virtual prototype is not faithful,
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any property that has been proven through these techniques

cannot be guaranteed to be valid on the real system.

E. Who should be concerned?

Most high-level applications will not suffer from this as

they should use APIs that hide the interaction with the hard-

ware. However, when implementing device drivers, low-level

synchronization primitives or operating system supporting

software, one should be aware of the memory model of the

system. It is also the case when implementing lockless data-

structures.

Finally, note that the TLM virtual prototyping approach

targets low-level software development (there are better

techniques to help developing high-level software, like the

simulators included in the iPhone [6] and Android [7] SDKs).

Hence, the faithfulness of TLM with respect to the memory

model concerns the large majority of TLM users.

F. Coping with the issue

At first sight, it could seem that including the relevant

micro-architectural details in the virtual prototype is the only

way to guarantee its faithfulness. However, this goes against

the very principle of Transaction-level Modeling, because

it would imply a much higher modeling effort, and lower

simulation speed. Moreover, the absence of details in a TLM

virtual prototype is also beneficial for software robustness: a

piece of software that has been validated on a less-detailed

virtual prototype is more likely to run correctly on any real

hardware that constitutes a particular implementation of it.

We are currently working on the definition of a methodol-

ogy that would ensure faithfulness without losing the benefits

of TLM in terms of speed of development and time-to-

market. We also wish to avoid seriously breaking the way

people understand and write transaction-level models by

incorporating this methodology within the existing modeling

approach.

In this context, we have an initial prototype that we

will present briefly later on. However, as a first step, this

paper focuses on providing a detailed understanding of the

aforementioned faithfulness issues.

G. Contributions and structure of the paper

The main contribution of this paper is related to the study

of the faithfulness issues in the current TLM modeling prac-

tices. We give precise and simple examples for which a TLM

virtual prototype may hide software bugs and we explain why

straightforward approaches do not lead to practical solutions.

Based on these examples, we sketch the method we are

considering to build faithful TLM models.

The rest of this paper is organized into four parts.

• Section II presents some technical background on the

implementation of virtual prototypes and the current

modeling practices.

• Section III introduces some common architecture opti-

mizations that are usually not captured in current virtual

prototypes.

• Section IV shows how this may lead to software bugs

being missed.

• Section V gives some hints on a promising technique

to modify TLM models so that they are faithful with

respect to some sorts of architectural details.

II. SOME BACKGROUND ON MODELING

A. The SystemC standard

In this section, we will briefly present SystemC [8], the

current industry standard language for developing virtual

prototypes. Strictly speaking, SystemC is a C++ library and

a discrete-event simulation engine.

In a discrete-event simulation, the state of the model

changes only at a discrete set of points in simulated time.

Models are composed of processes and events. During sim-

ulation, each process can only be running, ready or waiting.

A scheduler puts ready processes to run, checks whether

waiting processes are ready, and advances the simulated time

when all processes are waiting.

There are two kinds of processes in SystemC,

SC_THREADs and SC_METHODs. They differ only on

the type of stack management and have exactly the same

expressiveness [9]. Therefore, and to avoid confusing the

term SystemC processes with operating system processes,

we will restrict ourselves to SC_THREADs.

SystemC implements cooperative multitasking, i.e. a run-

ning SC_THREAD only yields control to others at well-

defined points in its execution. This is opposed to preemptive

multitasking wherein execution of tasks interleaves on a non-

user controlled fashion on uniprocessors and may overlap on

multiprocessors [10]. SC_THREADs yield control exactly at

the points where they call wait(e) to wait for an event e

to be notified by another SC_THREAD; or wait(t) to wait

for t units of simulated time.

B. The TLM-2.0.1 library

OSCI TLM-2.0.1 [11] is a set of interfaces designed for

writing Transaction-level models on top of SystemC and

ultimately intended for IEEE standardization.

TLM-2.0.1 itself does not include any modeling guide-

lines. Instead, it defines an “interoperability layer” which is

intended to reduce the engineering effort needed to achieve

interoperability. This interoperability layer defines a base

protocol, and a generic payload.

The base protocol introduces a communication mechanism

called transaction. A transaction transports data between

connection points bound to SystemC modules (the sockets).

A socket can be either initiator or target depending on

whether it initiates the transfers.

The generic payload contains an address, the data, a

response status and a command which can be either a read,

a write or an ignore (the later is intended for extensions).

Additional primitives can be added using an extension mech-

anism. Interoperability is only guaranteed if these extensions

can be ignored by the rest of the components in the virtual

prototype.



Transactions are implemented as method calls, which can

be of two kinds:

• Blocking: the method call returns when the transaction

is complete. The code that actually implements the

transaction is executed in the context of the calling

SC_THREAD.

• Nonblocking: the method call returns immediately.

The code that actually implements the transaction is

executed in a different SC_THREAD. The caller receives

a notification when the transaction is finished.

In this paper, we only consider blocking transactions. The

TLM-2.0.1 sockets can automatically convert one type of

method call into another, spawning extra SC_THREADs when

needed.

C. Integrating embedded software

There are several techniques to integrate software within

a virtual prototype. Instruction Set Simulators (ISS) read in-

structions one-by-one from the binary code (compiled to the

target processor) and simulate their execution. Variants may

use dynamic translation [12] techniques. Native wrappers

may either wrap the source directly into the virtual prototype,

link with a binary compiled into native code [2], or use

virtual machines [13].

Broadly speaking, all these techniques will:

• transform reads and writes from the software into

read() and write() transactions that are performed

by a SC_THREAD in a component that corresponds to

the processor;

• add calls to wait() in order to avoid starvation due to

the cooperative nature of the SystemC simulator.

D. Modeling practices

In this paper, we will focus on virtual prototypes intended

for software development. These models, also known as

Programmer’s View (TLM-PV) [14], allow a fast and accurate

execution of embedded software and are widespread in the

virtual prototyping community. The main idea is that the

embedded software should run, unmodified (or with minimal

modifications, depending on the technique), both on the

TLM-PV model and on the real chip.

In the sequel, the term TLM will be always referring

to TLM-PV. We consider multi-core, bus-mapped, shared-

memory systems and we take into account TLM prototypes

written in SystemC, with the TLM-2.0.1 library.

A typical virtual prototype is shown on Figure 1. In

this figure, the software calls write() using one of the

techniques highlighted on the previous section. The data and

address are packaged into a transaction which is forwarded

through the interconnection and to the corresponding imple-

mentation in the target component. wait() statements may

be placed to model the time taken before and after the code

that implements the effect of the method call. No details such

as arbitration, caches, fifos are part of the virtual prototype,

favoring simplicity and simulation speed.

Interconnection

Embedded
software

Wrapper/ISS

Hardware
block

...

...

write();

...

write_impl() {

   ...

}

{

{
write_impl(addr, data) {

wait(42);

memory[addr] = data;

wait(23);

}

Fig. 1. A typical virtual prototype

III. MODERN ARCHITECTURES AND RELAXED

CONSISTENCY

Branch prediction [15], out-of-order execution [16], the

pipeline [17] and compiler optimizations [18], [19] are all

designed to improve performance of each individual thread

by reordering reads and writes to the memory. Such reorder-

ings are invisible to the issuing thread by construction, but

can lead to undefined behavior in a multi-threaded system.

On multi-core architectures, when a processor issues a

write, the value is usually first kept in a cache. The cache

provides a notion of locality, saving time in situations such

as when the processor writes to the same address more than

once.

The requests are then collected in a hardware write buffer,

and pushed to memory at a later time. This is often designed

to be very efficient, and to exploit the parallelism, but there

is a drawback: the order in which requests are issued is not

necessarily the order in which they are performed.

Different architectures provide different guarantees on

what can be reordered. The next section will illustrate these

ideas through an example.

A. Example 1

Figure 2 presents part of the code from the implementation

of a lock algorithm (Dekker) for critical sections [3]. It

involves two processors (P1 and P2) and three variables in

the memory (x, y and z). P2’s assertion will be violated if

P1 writes to the variable z, that is, if both processors enter

the critical section.

Before entering critical section, P1 writes 1 to x and reads

y. The code of P1 relies on the assumption that, if the read

of y returns 0, then P2 has not yet tried to enter the critical

section. P2 operates in a similar way. While this is code

works in a sequentially consistent [20] system, implementing

systems that provide this view involves serious compromises

in performance [3].

A more realistic architecture is depicted in Figure 4.

This hardware platform includes a very common micro-



Initially x = y = z = 0

P1 P2

write(x, 1);

if(read(y) == 0) {

// Crit. section

write(z, 1);

}

write(y, 1);

if(read(x) == 0) {

// Crit. section

assert(read(z) == 0);

}

Fig. 2. A (bugged) sketch from Dekker’s algorithm

P1 P2

write(x, 1);

mfence();

if(read(y) == 0) {

// Crit. section

write(z, 1);

}

write(y, 1);

mfence();

if(read(x) == 0) {

// Crit. section

assert(read(z) == 0);

}

Fig. 3. A possible fix of Figure 2 using mfence()

architectural feature known as write buffers, which is present

in most of today’s processors. In this system, writes are

allowed to be delayed in such a way that both reads by

processors P1 and P2 will return 0. Consider for instance

the execution shown in the same figure.

B. A possible fix to Example 1

Fortunately, when hardware designers introduce such opti-

mizations, they also provide special operations that allow to

avoid this bug. This can be done, for instance, by enforcing

that the write buffers are flushed so that a value of 0 returned

by P2’s read of x effectively implies that P2’s write to y

happens before P1’s respective read.

Take for instance the mfence() operation, which is

present in architectures like amd64 and x86 (with the SSE

instruction set extension) [21]. Its semantics guarantees that,

upon completion, all previous (in the program order) opera-

tions are visible to all other processors. Then, Figure 3 shows

a possible fix of the code of Figure 2 using mfence(). Ac-

tual implementations of mutual exclusion algorithms make

heavy use of this kind of special operations.

IV. DISCUSSION ON THE EXAMPLE 1

In this section, we discuss what happens when the soft-

ware from the Example 1 is embedded on a SystemC/TLM

virtual prototype. We show that, with the current modeling

practices, this virtual prototype will hide the bug that we

had exposed in this software in Section III-A. We also argue

that straightforward modifications that could be proposed to

solve the problem do not lead to practical solutions.

A. Constructing a virtual prototype for Example 1

First, we will show how a typical virtual prototype for the

Example 1 is constructed: Using a simple wrapper technique

(described in Section II-C), the software from the Example

1 is embedded into two SC_THREADs, respectively T1 and

T2, as shown in Figure 5. Then, these SC_THREADs are put

into two SystemC components that represent the processors.

P1 P2

1) y

2) x
6) z

3) x
5) z

4) y

1) P2 writes to y (delayed in a write buffer)

2) P2 reads x == 0;

3,4,5) P1 writes to x, reads y == 0 and writes to z;

6) P2 reads z == 1, which violates the assertion.

Fig. 4. Real system: write buffers

A third component, representing the memory, is modeled

following the guidelines presented in Section II-C. It has an

array storage which effectively stores the data. Calls to

wait() in the implementation are used to model the time

that it takes to read and store data in the memory.

For brevity, we have omitted from Figure 5 the imple-

mentation of the base classes Initiator and Target.

The Initiator class should declare a TLM initiator

socket; transform read()s and write()s, performed by the

software, into transactions; and forward these transactions

through the aforementioned socket. The class Target should

declare a TLM target socket; receive transactions from this

socket; and forward reads to read_impl() and writes to

write_impl().

The last step is to instantiate and connect the components

using a bus model that routes transaction at addresses x, y

and z to the memory.

B. Possible executions of the virtual prototype

Now, we need to understand what happens during the

simulation of this virtual prototype.

We call a step the sequence of instructions executed by a

SC_THREAD from the point the scheduler puts it to execute

to the point where it finishes execution or yields control back

to the scheduler by calling wait().

The set of all possible executions of the virtual prototype is

obtained by interleaving the steps of T1 and T2. The Figure 6

respectively the steps of T1 and T2 with dashed and solid

lines. In this figure, there are paths that lead to either 1) P1,

or 2) P2, or 3) none of them deciding to enter the critical

section. However, there is no possible execution that leads

to both P1 and P2 deciding to enter the critical section.

The conclusion is that, when executing the software on

this virtual prototype, the mutual exclusion property appears

correct. Nevertheless, we have shown in Section III-A that

such software has a bug that shows up on the real system.

This demonstrates that the current TLM modeling practice

may hide software bugs.



SC_MODULE(P_1):

public Initiator {

SC_CTOR(P_1) {

SC_THREAD(T_1);

}

void T_1() {

write(x, 1);

if(read(y) == 0) {

// Crit. section

write(z, 1);

}

}

};

SC_MODULE(P_2):

public Initiator {

SC_CTOR(P_2) {

SC_THREAD(T_2);

}

void T_2() {

write(y, 1);

if(read(x) == 0) {

// Crit. section

assert(read(z) == 0);

}

}

};

SC_MODULE(Mem): public Target {

data[SIZE] storage;

data read_impl(addr a) {

wait(42);

data d = storage[a]; // effect

wait(23);

return d;

}

void write_impl(addr a, data d) {

wait(42);

storage[a] = d; // effect

wait(23);

}

};

Fig. 5. Pseudo-code of a typical virtual prototype implementation of the Example 1
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Initial state
a step of T1 during which the

instruction foo of P1 is executed

foo

a step of T2 during which the

instruction bar of P2 is executed

bar

P1 enters the critical section P2 enters the critical section

Fig. 6. Possible executions of Example 1

Let us have a look at the bug again. We have shown

in Section III-A that in some architectures, P2’s write to

y could be delayed by a write buffer in such a way that P1

will read the previous value (y == 0).

The key to understand why the virtual prototype cannot

reproduce this behavior is in what we call the effect of a

transaction: the portion of code that effectively implements

its behavior. The lines that implement the effect of transac-

tions in Figure 5 are marked as such. These lines will be

executed somewhere between the call and the return of each

transaction. Because of the way we have implemented the

memory, the effect of transactions will become visible for all

the components at the same time. There is no way to have one

component observe a value, and another component observe

another (previous) value, which is a necessary condition to

reproduce the bug.

V. WRITING FAITHFUL MODELS

The first (non-)solution that we would like to mention

is to include all the relevant micro-architectural details in

the virtual prototype. This alternative increases complexity,

requires a very big modeling effort, and leads to poor

performance, contradicting the advantages of using a TLM

model in the first place.

A much more reasonable approach is to model the actual

semantics of the underlying architecture not in terms of

implementation (what a particular cache does), but in terms

of specification (what caches may be expected to do). There

is a large literature on memory consistency models, a field

of research that tries to understand and specify formally

how software threads interact with memory on complex

architectures. Some of these models have operational seman-

tics which describe the meaning of the program as a non-

deterministic sequence of steps, much easier to understand

and implement than hundreds of pages of documentation.

Therefore, a practical way to write a faithful model is to

have writes and reads implement the operational semantics

of a memory model that is equivalent (or weaker) than that

of the real system.

We have done some experiments aiming at the implemen-

tation of such operational semantics in TLM models. The

idea is to enrich the structure of a TLM model by inserting

additional components that play the role of write buffers.

Their behavior is non-deterministic: they either delay the



Initially x = y = 0

P1 P2

write(x, 1); while(read(x) != 1);

write(y, 1);

P3

while(read(y) != 1);

assert(read(x) == 1);

Fig. 7. Example 2

write() operations, or push them to memory immediately.

These additional components can be organized in many

ways: flat or hierarchic, static or dynamic. This is very

important for characterizing memory models, because some

of these structural organizations will result in more global

behaviors being exposed than others. We have a working

prototype in which we can: (i) experiment with different

ways of plugging the additional components into a real TLM

model; (ii) or use exhaustive search or simulation for finding

bugs.

With this prototype, we were able to design a model whose

set of behaviors includes some execution that exposes the

bug in Example 1. Therefore, an exhaustive search eventually

finds the bug, since the search space is small in this example.

However, in its current form, this framework is not general

enough to capture all possible architectural features present

in modern systems.

For instance, consider the ARM test taken from [22] §6.4

in Figure 7. In this example, P1 writes to x; P2 waits for

the write to x, then writes to y; and P3 waits for the write

to y, then reads x. On an ARM architecture, P3 may read

x == 0, which means that P3 may perceive the write from

P2 before the write of P1. This type of behavior cannot be

captured by the kind of structure that our current prototype

implements.

VI. CONCLUSION AND FURTHER WORK

We have shown that the current TLM modeling practices

can lead to virtual prototypes that are not faithful with respect

to common, modern micro-architectural features. In other

words, there exist behaviors of the real chip that matter for

the embedded software, and that cannot be reproduced on

the virtual prototype.

This is an issue for low-level software development, which

means that a large part of the TLM community should be

concerned. Yet our experience shows that many engineers in

the industry are not aware of it.

To find a practical solution to this faithfulness problem,

without sacrificing simplicity and performance, we have

proposed a technique that exploits non-determinism. We have

a prototype that is able to detect some software bugs, but

is still far from being general. In addition, it may not be

always possible to perform exhaustive exploration of the non-

determinism if the state space is too big. We intend to tackle

both problems in our future work.

We are also currently exploring alternative techniques that

would benefit from existing work on memory consistency

models, and we intend to adapt the results on this field to

our case, where systems have not only memory, but also

hardware blocks that contain registers with a varied range of

different behaviors.
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