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Form-Finding of Nonregular Tensegrity Systems

Li Zhang1; Bernard Maurin2; and René Motro3

Abstract: The potential applications of tensegrity structures are not only increasing in civil engineering but also in fields like biome-

chanics. The key step in designing tensegrity, the form-finding problem, has been investigated by many researchers but until now they

have tended to focus on methods for regular shapes. Since there is an increasing need for design tools devoted to more various and

complex systems, the objective of this paper is to present the form-finding of nonregular tensegrity structures with a numerical approach.

It is based on the dynamic relaxation method with kinetic damping, and new tensegrity configurations in more intricate and creative forms

can be obtained this way. During the form-finding process, either the force or length of some elements can be fixed by an appropriate

choice of related stiffnesses. The application of the process is illustrated by several numerical examples. It can be concluded that an

improvement in tensegrity form-finding has been achieved extending research from regular shapes toward “freer” shapes.

Keywords: Stiffness; Structural analysis; Shape.

Introduction and Objectives

Tensegrity systems, according to the definition given by Motro

�2003�, may be described as follows: “A tensegrity system is a

system in a stable self-equilibrated state comprising a discontinu-

ous set of compressed components within a continuum of ten-

sioned components.” Like many self-stressed reticulated systems,

tensegrity structures are attractive since they represent lightweight

systems and the transparency they convey provides new sources

of inspiration for architects and civil engineers �Fest et al. 2004;

Motro 2003; Sultan and Skeleton 2003�.

At the same time, biologists have shown that a pertinent

modeling for the mechanical behavior of the cytoskeleton of liv-

ing cells can be obtained by tensegrity systems �Ingber 1997;

Stamenović 2005�. The cytoskeleton �see Fig. 1� is a structure

composed of different polymer filaments in traction �microfila-

ments� and in compression �microtubules� and their prestress

acts on the rigidity of the cell and finally on its metabolism.

However, the geometry and topology of the filament nets are

complex, even chaotic, and current tensegrity models do not

fit such configurations. Researchers are therefore looking for

new methods allowing the design of tensegrity structures with

complex shapes. In the “Laboratory of Mechanics and Civil En-

gineering” �University Montpellier 2� and in the “Lightweight

Structures for Architecture” research group �School of Architec-

ture Languedoc-Roussillon�, various nonregular physical tenseg-

rity models have been built �some are shown in Fig. 2�. The first

was called “cloud” by Motro, clearly suggesting that such a sys-

tem relies on “free form” tensegrity.

At this point it is useful to classify tensegrity systems into

three types: First, regular systems characterized by all the cable

elements being of the same length, let us say “c”, and all the

strut elements of the same length “s” �the “Simplex” is the best

known�; second, semiregular systems that present a minimal

number of different lengths, that is to say the fewest possible

groups, a group being composed of identical length elements; and

finally, nonregular systems where no constraint on the lengths is

specified.

The major obstacle in the design of a tensegrity structure is

related to determining its equilibrium configuration, which is

known as form-finding. Two main form-finding groups classified

as “form controlled” or “force controlled” have been proposed.

The first is illustrated by the work carried out by several people,

in particular the sculptor K. Snelson �Motro et al. 2002�. The

equilibrium and stability of the systems he created were based on

a heuristic approach with experimentation on a trial and error

basis. This occasionally gave very impressive results; we used

this approach to generate the models presented in Fig. 2. The

second group was developed using theoretically modeled form-

finding methods to meet the mechanical requirements. Several

procedures have been proposed, initially based on static equilib-

rium methods but currently dealing with the force density method

and dynamic relaxation technique �Motro 2003; Williamson et al.

2003; Nishimura and Murakami 2001; Sultan et al. 2001�.

The force density method has shown its efficiency in determin-

ing regular shapes, even if the choice of the force density coeffi-

cients often proves to be difficult. A unique set of coefficients is

associated with every equilibrated system with the result that

an arbitrary or nonadapted choice is more likely to fail than to

converge to a solution. A multiparametered approach has been

proposed to try to overcome this issue and to investigate irregular

shapes �Vassart and Montro 1999�. This is mathematically based

on the control of the rank of the “connectivity coefficient matrix.”

However, it works for simple systems like triplex or quadruplex
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with few groups of elements �one group being associated with

one force density coefficient� but is seemingly difficult to extrapo-

late to structures comprising a large number of groups, particu-

larly if the system is irregular.

On the other hand, the dynamic relaxation method appears to

be more attractive in investigating nonregular tensegrity shapes.

Indeed, it offers several possibilities for controlling the evolution

of the form since we can specify a constant internal force in some

elements and also act on the stiffness of each component, or both

of these.

The aim of this paper is thus to illustrate the possibility of

generating complex and various nonregular tensegrity systems by

using this numerical method.

Interactive Form-Finding by Dynamic
Relaxation Method

The form-finding process starts from an initial specified geometry.

At the same time, self-stresses in some or all the components are

arbitrarily specified. Hence, apart from particular cases or chance

situations, the system cannot be in equilibrium. Hence the struc-

ture is set into motion by the unbalanced internal forces. The

displacements are computed using the dynamic relaxation method

based on calculating a sequence of decreasing energy peaks and

this leads the system to reaching the steady equilibrium state.

Even though this method is now well known, its basic principles

will be summarized here to present the parameters chosen to gen-

erate irregular tensegrity shapes.

The equation governing the above motion is Newton’s second

law. For any node i in direction x at time t we have Rix
t =MixV̇ix

t ,

where Rix
t is the residual internal force, Mix a fictitious lumped

mass associated to the components, and V̇ix
t nodal acceleration.

Considering a central difference writing, the expression for accel-

eration at time t is

V̇ix
t = 1/�t�Vix

t+�t/2 − Vix
t−�t/2� �1�

where �t=small time interval. The velocity at time t+�t /2 can

be rewritten as Vix
t+�t/2=Vix

t−�t/2+�t /MixRix
t . The efficient value of

Mix=� /2�t2Si max is given by the stability condition �Barnes

1988� where �=convergence parameter constant for the whole

structure; and Si max=“nodal stiffness” associated with the stiffness

of the components and is generally chosen as

Si max = �
Ni

�EA/L0 + T/L� �2�

where Ni=number of elements connected to node i;

EA /L0=their axial linear stiffness �L0 corresponds with the un-

strained fabrication length�, and T /L=their geometric stiffness

�T and L=, respectively, force and length at the considered time�.

The velocity is then Vix
t+�t/2=Vix

t−�t/2+2Rix
t / ���tSi max� and the

new geometry at time t+�t is xt
t+�t=xi

t+�t /Vix
t+�t/2. Following this

updating of geometry, the new force in an element is given by

Tt+�t = Ts + �EA/L0�s�Lt+�t − Ls� �3�

where Tsand �EA /L0�s=, respectively, initial specified force and

linear stiffness of the element; Ls and Lt+�t=length at initial start-

ing geometry and length at time t+�t. The new residual force at

node i is then

Rix
t+�t = �

Ni

�T/L�t+�t�x j − xi�
t+�t �4�

The kinetic energy at the time increment t+�t /2 can be expressed

by �nodes1/2Mi�Vi
t+�t/2�2. If the current kinetic energy is found to

be less than the previous value, a peak has been passed. The

velocities are then set to zero and node coordinates calculated at

the time of this peak. This could be quadratically interpolated by

considering the kinetic energy values at t+�t /2 , t−�t /2, and

t−3�t /2 �Barnes 1988�; the velocities at the midpoint of the first

time step are given by V�t/2=�t / �2M�Rr, Rr being the residual

internal force at the restarting position.

The process repeats until the system reaches a steady equi-

librium state according to a specified maximum outbalanced

force. If in this resulting geometry some elements touch each

other, which means that the system is not physically feasible, the

Fig. 1. Cytoskeleton polymer nets of living cell

Fig. 2. Free-form tensegrity experimental physical models
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topology �removal of an element for instance� or the form �modi-

fication of some stiffness values� has to be modified until no

contact occurs.

Strategies for Stiffness Choice

Three cases can be considered for choosing the value of EA for

one element. This provides different ways of controlling the evo-

lution of the resulting shapes. We will illustrate these features in

the examples presented below.

1. Set EA to zero. The force in the element thus holds constant

at the specified value Ts. In this case, we observe that the

length of the element at final equilibrium state may vary

radically when compared with its initial value. It must be

emphasized that if the number of elements with a specified

constant force increases, the chance of finding a correspond-

ing equilibrated solution decreases.

2. Set EA to a realistic value. Since it is necessary here to

specify the element unstrained length L0, this value will offer

the possibility of controlling the shape. Note that in this case,

the modifications in lengths are smaller than in �1�.

3. Set EA to a lower value compared to the other components

�for example EA=1000 for struts and EA=10 for the element

considered�. This decreasing stiffness amplifies the influence

of the L0 value compared to situation �2� and, as a conse-

quence, leads to greater effects on the final form. In general,

modifying the L0 of the elements with low stiffness was seen

to provide effective control of the resulting shape of the

system.

Applications

Nonregular Triplex

The system shown in Fig. 3 is an irregular triplex. Various situa-

tions will be compared in this example by considering different

constant internal forces in some elements. Four cases are pre-

sented in Table 1; the associated constant self-stress values are

written in bold numbers. The starting geometry is the same in all

cases. We choose to set EA=1000 for struts and EA=10 for

cables �EA=0 for the elements with an imposed force�. In all our

applications, we use �t=1,�=1 and a maximum outbalanced

force of the system equal to 10−4 �all values are nondimensional�.

The calculation results are given in Table 1. They show that for

the elements holding constant self-stress values, the final lengths

vary radically compared with the initial lengths. This corresponds

in fact to the necessary adjustment to reach the final equilibrium

state.

Stella Octangula

The topology used for this application corresponds to one of

D. Emmerich’s proposals and is represented in Fig. 4 �Motro and

Raducanu 2003; and Motro et al. 2002�. The system is designed

on the basis of a triangular antiprism: struts lie on the triangular

bracing faces along the bisecting direction: one of their ends is an

apex of a layer triangular face and the other end is in the second

Table 1. Element Forces and Lengths in Initial and Final States for Nonregular Triplex

Self-stresses Lengths

Final value Final value

Elements Initial value Case 1 Case 2 Case 3 Case 4 Initial value Case 1 Case 2 Case 3 Case 4

1-2 −3.0 −3.0 −1.666 −1.390 −0.645 1.498 1.870 1.500 1.500 1.502

3-4 −3.0 −3.0 −2.045 −1.997 −0.806 1.977 1.962 1.979 1.979 1.982

5-6 −3.0 −3.0 −1.727 −1.647 −0.793 1.977 2.331 1.980 1.980 1.982

1-6 0.6 2.197 1.390 1.072 0.600 1.660 1.910 1.783 1.734 1.402

2-3 0.6 2.925 1.825 1.726 0.600 1.044 1.273 1.164 1.155 1.311

4-5 0.6 2.300 1.473 1.517 0.600 1.660 1.926 1.796 1.803 1.683

2-4 0.6 1.024 0.707 0.600 0.252 1.183 1.231 1.195 1.080 1.144

2-6 0.6 0.848 0.413 0.600 0.217 1.183 1.211 1.162 0.993 1.141

4-6 0.6 0.800 0.195 0.600 0.227 1.000 1.019 0.962 0.504 0.965

1-3 0.6 1.327 0.600 0.695 0.310 1.000 1.069 0.841 1.009 0.973

1-5 0.6 0.747 0.600 0.172 0.252 1.000 1.014 0.518 0.960 0.967

3-5 0.6 0.843 0.600 0.309 0.206 1.000 1.023 0.650 0.973 0.963

Note: Associated constant self-stress values are denoted by boldface.

Fig. 3. Nonregular triplex
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parallel plane. There are 6 struts, 18 cables connected to 12

nodes; for each strut one node is connected to two cables only and

the corresponding equilibrium is thus realized into a plane. The

length of struts is roughly 19 and roughly 11 for cables.

The equilibrium geometry is investigated by prescribing initial

forces in strut and cable elements �−10 and 20, respectively�. For

struts the stiffness is EA=1000 and for cables EA=10. An equi-

librium state is then obtained: the strut compressions are at

present roughly −33 and the cable tensions roughly 19. Even if

the process started with different specifications of initial forces,

we observe that, in final equilibrium state, the absolute values of

the ratio between the force and the reference length in all ele-

ments are almost the same �approximately 1.79�.

The two examples above show that the dynamic relaxation

method works effectively for finding an equilibrated state of

tensegrity based on a given topology of a regular shape.

Free-Form Tensegrity

In this application, the final topology of the whole system is not

fixed and specified in advance. The process starts from a simple

structure and more and more elements are then added step by

step. The computational sequence is the following: starting from a

quadruplex �Fig. 5, a regular shape�, another vertical strut 9–10

is next inserted �Fig. 6�. To keep Nodes 9 and 10 in equilibrium

state, it is necessary to add six cables �three connected to Node 9

and another three to Node 10�. It is interesting to note that

other possibilities exist for adding these new elements but we

have chosen the simplest way. Following the same procedure,

three other struts �11–12; 13–14; 15–16� and 18 cables are added

to the system step by step; the topologies are shown in Fig. 7–9,

Fig. 4. Stella octangula

Fig. 5. Quadruplex tensegrity

Fig. 6. Five-strut tensegrity module �new vertical strut is added in

middle�

Fig. 7. Six-strut tensegrity module
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respectively. Finally, 8 struts and 36 cables are connected to 16

nodes.

Parameters EA=1000 are now chosen for struts and EA=10

for cables and an initial tension and compression specified for all

cables and struts �2 and −1, respectively 1�. An equilibrium state

is then obtained with this given topology and data. In the resulting

shape, a minimum distance of 0.481 is verified between any two

spatial elements so that no contact occurs. Strut compression

ranges from −2.854 to −4.328 and cable tension from 0.346 to

3.453. We observe that the tensions in Elements 2–4, 5–9, and

3–11 are, respectively, 0.640, 0.391, and 0.346, and are thus lower

than the values in other cables. A topology analysis shows that

there are more than three cables connected to Nodes 1, 2, 3, 6, 10,

and 12. Since some of these elements can be regarded as redun-

dant, they are removed from the system. This is the case for

Cables 1–3, 6–10, and 2–12. Keeping all other parameters iden-

tical as previously, the form-finding process is then restarted. Fi-

nally, a new geometry is obtained �Fig. 10� with an equilibrated

self-stress state. Strut compression ranges from −2.680 to −4.342

and cable tension from 0.758 to 3.049 with a minimum distance

between elements equal to 0.611.

In this example only two different lengths �19.998 and 32.950�

are necessary for the eight struts at the starting configuration.

During the form-finding process, one strut after another is added

to the system randomly. To keep this strut stable, a number of

cables are added to its ends. Many possibilities exist for such

topology modifications and the designer can choose the most suit-

able solution.

Conclusion

There is a growing need for numerical methods devoted to form-

finding in more complex, varied, and creative tensegrity shapes.

The dynamic relaxation method can be used for this purpose since

it provides control either of the force or of the length of an ele-

ment by an appropriate choice of stiffnesses, giving the designer

effective ways to guide the evolution of the system. Numerous

applications are presented to illustrate the generation of nonregu-

lar tensegrity configurations and, thus, to show the efficiency of

the process and the role of the chosen parameters. During the

shape-finding process, the geometry or topology can also be al-

tered. In the final equilibrium position, contact between elements

may occur or some internal forces in an element change their sign

�a cable could thus become a strut and vice versa�. The system is

hence not “topologically fixed” but may evolve so as to adapt

itself to the successive equilibrium positions.

Notation

The following symbols are used in this paper:

A � cross-section area;

E � Young modulus;

L � actual current length;

Ls
� length at initial starting position;

L0 � unstrained fabrication length;

Mix � fictitious lumped mass associated to node i;

Ni � number of elements connected to node i;

Rr
� residual internal force at restarting position;

Rix
t

� residual �unbalanced� internal force;

Si max � nodal stiffness;

T � actual internal force in element;

Ts
� initial specified internal force in element;

Vix
t

� nodal velocity at time t;

V̇ix
t

� nodal acceleration;

Fig. 8. Seven-strut tensegrity module

Fig. 9. Eight-strut tensegrity module

Fig. 10. Computed free-form tensegrity
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x � displacement direction;

�t � small time interval; and

� � convergence parameter.
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