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We establish an invariance principle where the limit process is a Hermite-type process. We also prove that this limit process is multifractional. Our main result is a generalization of results from [6] and [11] to a multifractional setting. It also generalizes the main result of [3] to a non-Gaussian framework.

Introduction

Hermite processes have attracted a lot of attention for many years because they have nice properties as they generalize fractional Brownian motion [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF][START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF]. Let m ∈ N * and H ∈ (1/2, 1). The Hermite process W m,H of order m and Hurst index H can be defined for instance in terms of Dobrushin-Wiener-Itô integrals [START_REF] Dobrushin | Gaussian and their Subordinated Self-Similar Random Generalized Fields[END_REF] as, for every t ∈ [0, ∞),

W m,H (t) = R m f m,H (x 1 , • • • , x m , t)d B x1 • • • d B xm (1) 
with

f m,H (x 1 , • • • , x m , t) = C(m, H) exp(it(x 1 + • • • + x m )) -1 i(x 1 + • • • + x m )|x 1 • • • x m | (2H-2+m)/2m
where C(m, H) is a normalizing constant and d B is the complex random measure corresponding to a standard Brownian motion B. Notice that for m = 1, the Hermite process W 1,H is the fractional Brownian motion with Hurst index H.

An important property of Hermite processes is the invariance principle [START_REF] Davydov | The invariance principle for stationary processes[END_REF][START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF][START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF][START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF], which can be stated as follows. Let X = {X j } j∈N be a Gaussian stationary sequence of centered random variables with E[X 2 0 ] = 1 and satisfying the property

E[X 0 X j ] ∼ cj 2(H-1)/m as j → ∞ ( 2 
)
where c is a positive real number. Notice that (2) is a long range property. We consider a function φ ∈ L 2 (e -x 2 /2 dx) with Hermite rank equal to m, and define the partial sum S N φ,H (t) for every N ∈ N and t ∈ [0, ∞) as

S N φ,H (t) = 1 N H ⌊N t⌋ j=1 φ(X j ). (3) 
The invariance principle establishes that the finite-dimensional distributions of S N φ,H converge, as N goes to infinity, to the Hermite process W m,H with a suitable constant C(m, H).

As fractional Brownian motion, Hermite processes of index H are H-self-similar and H ′ -Hölder-continuous if and only if H ′ < H. As other fractional processes, a drawback of Hermite processes lies in the strong homogeneity of their properties, which are governed by the Hurst index H. In order to generalize fractional processes to less homogeneous processes, multifractional processes have been introduced, as for instance the class of multifractional Brownian motions [START_REF] Benassi | Gaussian processes and Pseudodifferential Elliptic operators[END_REF][START_REF] Peltier | Multifractional Brownian motion: definition and preliminary results[END_REF]. Multifractional processes have locally, but not globally, the same properties as fractional processes. These properties are governed by a function h that substitute for the constant H.

As for fractional Brownian motion and other Hermite processes, some nontrivial multifractional Gaussian processes satisfy invariance principle. Indeed, it is proven in [START_REF] Cohen | Invariance principle, multifractional Gaussian processes and long-range dependence[END_REF] the following result. Let a Gaussian field {X j (H)} (j,H)∈N×(1/2,1) satisfying some long-range assumptions and a continuous function h taking its values in (1/2, 1). Then, the finite-dimensional distributions of the process

t → S N h (t) = ⌊N t⌋ j=1 X j (h(j/N )) N h(j/N ) (4) 
converge to those of a centered Gaussian process S h with covariance given for t, s ≥ 0 by:

E[S h (t)S h (s)] = t 0 dθ s 0 dσ R h(θ), h(σ) |θ -σ| h(θ)+h(σ)-2 (5) 
where R is a continuous function and derived from long-range assumptions of the field {X j (H)} (j,H)∈N×(1/2,1) . The process S h is multifractional. If the function h is constant, then the process S h is a fractional Brownian motion. The result above is then a generalization of classical invariance principle [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF].

In this work, we generalize invariance principles presented above. We study the asymptotic behavior of a sequence generalizing both (3) and (4). In particular, this sequence is defined from a Gaussian field {X j (H)} j,H satisfying long-range properties, a function φ ∈ L 2 (e -x 2 /2 dx) with Hermite rank equal to m and a Hurst function h. We get as a limit a multifractional process S m,h that depends on the integer m and the function h. If the function is a constant H, then the limit process is the Hermite process with Hurst index H and Hermite order m. If the integer m is equal to 1, then the limit process corresponds to a Gaussian multifractional process of the class obtained in [START_REF] Cohen | Invariance principle, multifractional Gaussian processes and long-range dependence[END_REF].

The paper is organized as follows. In Section 2 we recall some definitions and preliminary results about Hermite polynomials and multiple stochastic integrals, which are used throughout the paper. In Section 3 we establish the main result of the paper. Section 4 is devoted to the proof of the main result.

Preliminaries

In this section we give some definitions and recall some results we use throughout this paper.

For each positive integer m ∈ N, the mth Hermite polynomial P m of is defined as, for every x ∈ R,

P m (x) = (-1) m e x 2 /2 d m
dx m e -x 2 /2 . The family of the Hermite polynomials {P m , m ∈ N} is an orthogonal basis of the space L 2 (e -x 2 /2 dx) defined by

L 2 (e -x 2 /2 dx) = φ : R → C, φ measurable and R |φ(x)| 2 e -x 2 /2 dx < ∞
with the inner product •, • defined as, for every φ 1 and φ 2 in L 2 (e -x 2 /2 dx),

φ 1 , φ 2 = R φ 1 (x)φ 2 (x)e -x 2 /2 dx √ 2π
and whose the corresponding norm will be denoted as • . For every function φ ∈ L 2 (e -x 2 /2 dx), there exists an integer m φ such that φ, P m φ = 0 and φ, P m = 0 for every m = 0, • • • , m φ -1. The integer m φ is called the Hermite index of the function φ. Hence, for every φ ∈ L 2 (e -x 2 /2 dx),

φ = ∞ m=0 φ, P m m! P m = ∞ m=m φ φ, P m m! P m (6) 
where the convergence of the series holds for the norm • . If X and Y are two Gaussian random variables N (0, 1), then, for every j and k in N * ,

E[P j (X)P k (Y )] = k!E[XY ] k if k = j, 0 if k = j. (7) 
As a consequence, for every φ ∈ L 2 (e -x 2 /2 dx) and X ∼ N (0, 1),

E[|φ(X)| 2 ] = ∞ m=0 φ, P m 2 m! < ∞ (8) 
Others objets we strongly use in this paper are multiple Wiener-Itô integrals [START_REF] Dobrushin | Gaussian and their Subordinated Self-Similar Random Generalized Fields[END_REF][START_REF] Itô | Multiple Wiener integral[END_REF]. Many notions of multiple Wiener-Itô integrals with respect to Brownian motion exist and are used to define processes as Hermite processes [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF][START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF]. Here we have chosen to use the so-called Dobrushin-Wiener-Itô integrals introduced in [START_REF] Dobrushin | Gaussian and their Subordinated Self-Similar Random Generalized Fields[END_REF]. Let d ∈ N * , f : R d → C be a squareintegrable function, and B = {B x } x∈R be a standard Brownian motion in R. In this paper the Dobrushin-Wiener-Itô integral of f is denoted

R d f d B ⊗d or R d f (x 1 , • • • , x d )d B x1 • • • d B x d .
It is well-defined if f is even and symmetric, that is, if f satisfies, for every (

x 1 , • • • , x d ) ∈ R d , f (x 1 , • • • , x d ) = f (-x 1 , • • • , -x d ),
and for every permutation

ς on {1, • • • , d}, f (x 1 , • • • , x d ) = f (x ς(1) , • • • , x ς(d) ).
We refer the reader to [START_REF] Dobrushin | Gaussian and their Subordinated Self-Similar Random Generalized Fields[END_REF] for the precise definition of R d f d B ⊗d . Here we only recall some properties that we use in the proof of the main result. The integral R d f d B ⊗d is Gaussian if and only if d = 1. In any case, it is a centered random variable and we can express its variance as

E R d f d B ⊗d 2 = d! R d |f (x 1 , • • • , x d )| 2 dx 1 • • • dx d .
We have a substitution formula for multiple integrals, using the self-similarity of the Brownian motion. For every a > 0, we have the equality in distribution

R d f (x 1 , • • • , x d )d B x1 • • • d B x d dist. = a d/2 R d f (ax 1 , • • • , ax d )d B x1 • • • d B x d . (9) 
Another formula for change of variables is applied in this paper and is a consequence of Proposition 4.2 of [START_REF] Dobrushin | Gaussian and their Subordinated Self-Similar Random Generalized Fields[END_REF]. Let z : R → C be a bounded and measurable function satisfying z(x) = z(-x) and |z(x)| = 1 for every x ∈ R. Then, we have the equality in distribution

R d f (x 1 , • • • , x d )d B x1 • • • d B x d dist. = R d f (x 1 , • • • , x d )z(x 1 ) • • • z(x d )d B x1 • • • d B x d . ( 10 
)
By linearity of the integral and the bounded convergence theorem, we can prove the following convergence lemma. Lemma 1. Let {f N } N be a sequence of even and symmetric functions in L 2 (R d , C). We assume that there exist two even and symmetric functions f and

f * in L 2 (R d , C) such that, for a. e. x ∈ R d , lim N →∞ f N (x) = f (x) and sup N |f N (x)| ≤ f * (x). Then, lim N →∞ E R d f N d B ⊗d - R d f d B ⊗d 2 = 0.
To conclude this section, we mention a result that relate Hermite polynomials to multiple integrals. Let ψ be an even and symmetric function in L 2 (R, C), m be a positive integer and P m be the mth Hermite polynomial defined as previously. The random integral R ψ(ξ)d B ξ defines a centered Gaussian variable. If E R |ψ(ξ)| 2 dξ = 1 then we have almost surely

P m R ψ(x)d B x = R m ψ(x 1 ) • • • ψ(x m )d B x1 • • • d B xm . ( 11 
)

Main result

We let m ∈ N * and define b m = 1 -1 2m .

We consider the Gaussian field

X = {X n (H), n ∈ N, H ∈ (b m , 1)} defined as, for every n ≥ 0 and H ∈ (b m , 1), X n (H) = π -π exp(inx)g(H, x)|x| 1/2-H d B x ( 12 
)
where B is a standard Brownian motion and g : (b m , 1) × (-π, π) → C is a measurable function satisfying the following properties.

• For every (H, x) ∈ (b m , 1) × [-π, π], g(H, x) = g(H, -x). This property ensures that the field X is real.

• For every H ∈ (b m , 1), π -π |g(H, x)| 2 |x| 1-2H dx = 1 (13) so that E[X n (H) 2 ] = 1.
• The function g is twice continuously differentiable on (b m , 1) × (-π, π). We then define, for every (H, x) ∈ (b m , 1)×(-π, π), g 0 (H) = g(H, 0) and g 1 (H, x) =

x 0 (∂g/∂ξ)(H, ξ)dξ so that g = g 0 + g 1 and, for every compact set K of (b m , 1),

lim x→0 sup H∈K |g 1 (H, x)| + ∂g 1 ∂H (H, x) = 0.
The assumptions above ensure that the covariance function satisfies the uniform long-range property of [START_REF] Cohen | Invariance principle, multifractional Gaussian processes and long-range dependence[END_REF]. In particular, for every compact set K ⊂ (b m , 1), we have

lim j-k→∞ sup (H1,H2)∈K 2 (j -k) 2-H1-H2 E[X j (H 1 )X k (H 2 )] -R(H 1 , H 2 ) = 0 ( 14 
)
where

R(H 1 , H 2 ) = g 0 (H 1 )g 0 (H 2 ) R exp(ix)|x| 1-H1-H2 dx (15) for every (H 1 , H 2 ) ∈ (b m , 1).
We consider a continuously differentiable function h : [0, ∞) → (1/2, 1) and a function φ ∈ L 2 (e -x 2 /2 dx) with Hermite rank equal to m ∈ N * . We let

h := 1 + h -1 m : [0, ∞) → (b m , 1) .
We define for every t ≥ 0 and N > 0

S N φ,h (t) := ⌊N t⌋ j=1 φ(X j (h N j )) N h(j/N ) , (16) 
with

h N j := 1 + h(j/N ) -1 m = h(j/N ).
Now we can state the main result of this paper.

Theorem 1. As N → ∞, the finite-dimensional distributions of S N φ,h converge to those of S m,h defined for every t ≥ 0 as

S m,h (t) := R m f m,h (x 1 , • • • , x m , t)d B x1 • • • d B xm (17)
with, for every

(x 1 , • • • , x m , t) ∈ R m × [0, ∞), f m,h (x 1 , • • • , x m , t) = t 0 exp iθ m l=1 x l g(θ)|x 1 • • • x m | 1/2-e h(θ) dθ where g = φ, P m m! g 0 • h m .
The process S m,h is continuous (up to a modification) and locally self-similar: for every t ≥ 0,

dist. lim ε→0 + S m,h (t + εu) -S m,h (t) ε h(t) u≥0 = {T m,h,t (u)} u≥0
where dist.

lim ε→0 + stands for the limit in distribution in the space of continuous functions endowed with the uniform norm on every compact set and, for every u ≥ 0,

T m,h,t (u) = g(t) R m exp (iu m l=1 x l ) -1 i( m l=1 x l )|x 1 • • • x m | e h(t)-1/2 d B x1 • • • d B xm .
Theorem 1 establishes that sequences of processes defined as (16), in particular from a Hurst function h, converge to multifractional processes with Hurst function h. This has been observed in [START_REF] Cohen | Invariance principle, multifractional Gaussian processes and long-range dependence[END_REF] in the particular case φ ≡ 1 where the limit process is S 1,h , which is a centered Gaussian process of covariance

(t, s) → E[S 1,h (t)S 1,h (s)] = t 0 dθ s 0 dσR(h(θ), h(σ)) (18) 
with R defined by (15). Theorem 1 is then an extension of the main result of [START_REF] Cohen | Invariance principle, multifractional Gaussian processes and long-range dependence[END_REF], which assumes φ ≡ 1, to any case where φ ∈ L 2 (e -x 2 /2 dx).

If we assume that h ≡ H ∈ (b m , 1), then Theorem 1 is the main result of [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF][START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF]. In particular, the limit process S m,H can be written as W m,H in (1) with the constant

C(m, H) = φ, P m m! g 0 H m = φ, P m m!   R H, H R e iξ |ξ| 1-2 e H dξ   m/2
where

H := 1 + H -1 m ∈ (b m , 1) .
Hence, Theorem 1 generalizes results from [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF] and [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF] to a multifractional setting.

Proof of Theorem 1

The proof of Theorem 1 is organized as follows. In Subsection 4.1 we establish a technical lemma we then use throughout the proof of Theorem 1. We prove the convergence of S N φ,h in Subsection 4.2 and the regularity properties of S m,h in Subsection 4.3.

Technical lemma

In the following lemma, we prove for every T > 0 the existence of a function f T that is useful in the sequel of the proof to establish uniform bounds.

Lemma 2. For every T > 0, there exists a function f T ∈ L 2 (R m , R) so that, for almost every x ∈ R m and for every t ∈ [0, T ] and H ∈ [min h, max h],

e it P m l=1 x l -1 |x 1 • • • x m | H-1/2 m l=1 x l (1 + |ln |x 1 • • • x m ||) ≤ f T (x), Proof. For every (x 1 , • • • , x m ) ∈ R m we define L(x 1 , • • • , x m ) = (1 + |ln |x 1 • • • x m ||) 2 and f T (x 1 , • • • , x m ) =
H∈{min e h,max e h}

T 2 1 | P m l=1 x l |≤1 + 4| m l=1 x l | -2 1 | P m l=1 x l |>1 |x 1 • • • x m | 2H-1 L(x 1 , • • • , x m )
We fix T > 0. For every t ∈ [0, T ], we can write

e it P m l=1 x l -1 m l=1 x l 2 max H∈[min e h,max e h] L(x 1 , • • • , x m ) |x 1 • • • x m | 2H-1 ≤ f T (x 1 , • • • , x m ) 2 .
It is then enough to prove that, for H ∈ {min h, max h}, the function

(x 1 , • • • , x m ) → T 2 1 | P m l=1 x l |≤1 + 4| m l=1 x l | -2 1 | P m l=1 x l |>1 |x 1 • • • x m | 2H-1 L(x 1 , • • • , x m )
is integrable. We successively make the substitutions

y j = x 1 + • • • + x j for every j ∈ {1, • • • , m}, z k = y k /y k+1 for every k ∈ {1, • • • , m -1} and z m = y m to get R m T 2 1 | P m l=1 x l |≤1 + 4| m l=1 x l | -2 1 | P m l=1 x l |>1 |x 1 • • • x m | 2H-1 L(x 1 , • • • , x m )dx 1 • • • dx m = R m T 2 1 |ym|≤1 + 4|y m | -2 1 |ym|>1 |y 1 (y 2 -y 1 ) • • • (y m -y m-1 )| 2H-1 L(y 1 , y 2 -y 1 , • • • , y m -y m-1 )dy 1 • • • dy m = R t 2 1 |zm|≤1 + 4|z m | -2 1 |zm|>1 |z m | 2m(H-1)+1 dz m R dz m-1 |1 -z m-1 | 2H-1 |z m-1 | 2(m-1)(H-1)+1 × • • • • • • × R dy 1 |1 -z 1 | 2H-1 |z 1 | 2H-1 L m k=1 z k , (1 -z 1 ) m k=2 z k , • • • , (1 -z m-1 )z m .
The right-hand side above can be bounded by a finite sum of terms of the form

R t 2 1 |zm|≤1 + 4|z m | -2 1 |zm|>1 |z m | 2m(H-1)+1 dz m R dz m-1 |1 -z m-1 | 2H-1 |z m-1 | 2(m-1)(H-1)+1 × • • • • • • × R dy 1 |1 -z 1 | 2H-1 |z 1 | 2H-1 | ln |z k || µ | ln |1 -z j || ν (19)
where k, j, µ and ν are integer. The terms of the form (19) are finite since H ∈ (1-1/(2m), 1) and Bertrand's test. This concludes the proof.

Convergence of S N φ,h

We first deal with the study of S N Pm,h defined for every t ≥ 0 by

S N Pm,h (t) = ⌊N t⌋ j=1 P m (X j (h N j )) N h(j/N ) .
From now on, we denote

m l=1 d B x l by d B ⊗m x when x = (x 1 , • • • , x d ).
Lemma 3. The process S N Pm,h is equal in distribution to the process S N m,h defined for every t ≥ 0 by

S N m,h (t) = (-N π,N π) m d B ⊗m x 1 N ⌊N t⌋ j=1 m l=1 exp(ijx l /N )g(h N j , x l /N )|x l | 1/2-h N j .
Proof. Using ( 11) we obtain, almost surely,

P m (X j (h N j )) = (-π,π) m m l=1 exp(ijx l )g(h N j , x l )|x l | 1/2-h N j d B x l .
We then have

S N Pm,h (t) = ⌊N t⌋ j=1 1 N 1-m/2 (-π,π) m d B ⊗m x m l=1 exp(ijx l )g(h N j , x l )|N x l | 1/2-h N j .
Making the substitution x → x/N and using (9) we get

S N Pm,h dist. = t → ⌊N t⌋ j=1 1 N (-N π,N π) m d B ⊗m x m l=1 exp(ijx l /N )g(h N j , x l /N )|x l | 1/2-h N j .
This concludes the proof by linearity of the multiple integral.

Now we aim to prove the convergence of S N m,h (t) in L 2 (Ω, R) for every t. To this goal, we introduce the functions

f N : [0, ∞) × R m → C (t, x) → 1 (-N π,N π) m (x) 1 N ⌊N t⌋ j=1 m l=1 exp(ijx l /N ) g(h N j , x l /N ) |x l | h N j -1/2
and we state the following lemma. Lemma 4. For every t ≥ 0, there exists a function

f * t ∈ L 2 (R m , R) so that, for every x ∈ R m and N ∈ N, |f N (t, x)| ≤ f * t (x).
Proof. We have

f N (t, x) = 1 (-N π,N π) (x) i m l=1 x l /N 1 -e -i P m l=1 x l /N ⌊N t⌋ j=1 e ij P m l=1
x l /Ne i(j-1)

P m l=1 x l /N i m l=1 x l G N j (x)
where

G N j (x) = m l=1 g(h N j , x l /N ) |x l | h N j -1/2 .
We write

f N (t, x) = f N,1 (t, x) -f N,2 (t, x) with f N,1 (t, x) = I (-N π,N π) (x) i m l=1 x l /N 1 -e -i P m l=1 x l /N ⌊N t⌋ j=1 1 i m l=1 x l × G N j (x) e ij P m l=1 x l /N -1 -G N j-1 (
x) e i(j-1)

P m l=1 x l /N -1 = I (-N π,N π) (x) i m l=1 x l /N 1 -e -i P m l=1 x l /N G N ⌊N t⌋ (x)
e i⌊N t⌋

P m l=1 x l /N -1 i m l=1 x l and f N,2 (t, x) = I (-N π,N π) (x) i m l=1 x l /N 1 -e -i P m l=1 x l /N × ⌊N t⌋ j=1
e i(j-1)

P m l=1 x l /N -1 i m l=1 x l G N j (x) -G N j-1 (x) .
We first deal with f N,1 . Because g is bounded, there exists M 1 > 0 such that for every x and

N f N,1 (t, x) ≤ M 1 e i⌊N t⌋ P m l=1 x l /N -1 |x 1 • • • x m | h N ⌊N t⌋ -1/2 m l=1 x l .
Then, by Lemma 2, there exists a function f t,1 ∈ L 2 (R m , R) so that for every x and N , e i⌊N t⌋

P m l=1 x l /N -1 |x 1 • • • x m | h N ⌊N t⌋ -1/2 m l=1 x l ≤ f t,1 (x),
so that we get

f N,1 (t, x) ≤ M 1 f t,1 (x). ( 20 
)
Now we deal with f N,2 . By using Taylor formula we obtain, for almost every x,

G N j (x) -G N j-1 (x) ≤ max | h ′ | N max H∈[min e h,max e h] -ln |x 1 • • • x m | |x 1 • • • x m | H-1/2 m l=1 g H, x l N + 1 |x 1 • • • x m | H-1/2 m k=1 ∂g ∂H H, x k N m l=1,l =k g H, x l N .
Since g and ∂g/∂H are bounded, there exists a constant M 2 > 0, which depends only on h and g, such that for almost every x and every

N f N,2 (t, x) ≤ M 2 N
⌊N t⌋ j=1 e i(j-1)

P m l=1 x l /N -1 | m l=1 x l | max H∈[min e h,max e h] 1 + |ln |x 1 • • • x m || |x 1 • • • x m | H-1/2 .
As for f N,2 , by Lemma 2, there exists a function f t,2 ∈ L 2 (R m , R) so that for almost every x and every N and j, e i(j-1)

P m l=1 x l /N -1 m l=1 x l max H∈[min e h,max e h] 1 + |ln |x 1 • • • x m || |x 1 • • • x m | H-1/2 ≤ f t,2 (x) 
, so that we get

f N,2 (t, x) ≤ M 2 f t,2 (x). (21) 
Hence, taking

f t = M 1 f t,1 + M 2 f t,2
and combining (20) and ( 21) we conclude the proof.

The convergence of S N m,h can now be established.

Lemma 5. For every t ≥ 0, as N → ∞, S N m,h (t) converges in L 2 (Ω, R) to S ∞ m,h (t) given by S ∞ m,h (t) = R m d B ⊗m x t 0 exp iθ m l=1 x l g 0 h(θ) m |x 1 • • • x m | 1/2-e h(θ) dθ.
Proof. Because of Lemmas 1 and 4, it suffices to prove that the function f N (t, x) converges for almost every x to f ∞ (t, x) defined by

f ∞ (t, x) := t 0 exp iθ m l=1 x l g 0 h(θ) m |x 1 • • • x m | 1/2-e h(θ) dθ.
We let

G N j,0 (x) = g 0 (h N j ) m |x 1 • • • x m | 1/2-h N j and G N j,1 (x) = G N j (x) -G N j,0 (x) 
where G N j (x) is defined as in the proof of Lemma 4. We also consider the same decomposition f N = f N,1f N,2 as in the proof of Lemma 4 and we let

f N,1 = f N,1,0 -f N,1,1 and f N,2 = f N,2,0 -f N,2,1
where, for κ ∈ {0, 1},

f N,1,κ (t, x) = I (-N π,N π) (x) i m l=1 x l /N 1 -e -i P m l=1 x l /N G N ⌊N t⌋,κ (x) 
e i⌊N t⌋

P m l=1 x l /N -1 i m l=1 x l and f N,2,κ (t, x) = I (-N π,N π) (x) i m l=1 x l /N 1 -e -i P m l=1 x l /N × ⌊N t⌋ j=1
e i(j-1)

P m l=1 x l /N -1 i m l=1 x l G N j,κ (x) -G N j-1,κ (x) .
Because h and g 0 are continuously differentiable we get, for almost every x,

lim N →∞ f N,1,0 (t, x) = g 0 h(t) m e it P m l=1 x l -1 i|x 1 • • • x m | e h(t)-1/2 m l=1 x l and lim N →∞ f N,2,0 (t, x) = t 0 e iθ P m l=1 x l -1 i m l=1 x l h ′ (θ) ∂ ∂H g 0 (H) m |x 1 • • • x m | H-1/2 H= e h(θ) dθ, so that lim N →∞ (f N,1,0 (t, x) -f N,2,0 (t, x)) = f ∞ (t, x).
Now we deal with f N,1,1 and f N,2,1 . We remark that we can express G N j,1 (x) as

G N j,1 (x) = |x 1 • • • x m | 1/2-h N j m k=1 g 1 h N j , x k N g 0 (h N j ) k-1 m l=k+1 g h N j , x l N .
Then, because of Lemma 2 and the boundedness of g 0 and g, there exist a constant M 3 > 0 and a function f t,3 ∈ L 2 (R m , R) such that for almost every x,

f N,1,1 (t, x) ≤ M 3 f t,3 (x) m k=1 sup H∈[min e h,max e h] g 1 H, x k N ,
so that lim N →∞ f N,1,1 (t, x) = 0. Similarly, using Lemma 2, there exist a constant M 4 > 0 and a function f t,4 ∈ L 2 (R m , R) such that for almost every x, 

f N,2,1 (t, x) ≤ M 4 f t,4 (x) 
g 1 H, x k N + ∂g 1 ∂H H, x k N ,
so that lim N →∞ f N,2,1 (t, x) = 0 and then lim

N →∞ f N,2,1 (t, x) -f N,2,1 (t, x) = 0,
which concludes the proof.

The following lemma establishes that the convergence of S N φ,h can be reduced to the one of S N Pm,h and, as a consequence of Lemma 3, to the one of S N m,h . Lemma 6. For every t ≥ 0, we have

lim N →∞ E S N φ,h (t) - φ, P m m! S N Pm,h (t) 2 = 0.
Proof. Since [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF] we have

E S N φ,h (t) - φ, P m m! S N Pm,h (t) 2 = E      ⌊N t⌋ j=1 1 N h(j/N ) ∞ n=m+1 φ, P n n! P n (X j (h N j ))   2    = ⌊N t⌋ j=1 ⌊N t⌋ k=1 1 N h(j/N )+h(k/N ) ∞ n=m+1 φ, P n 2 (n!) 2 E[P n (X j (h N j ))P n (X k (h N k ))].
Because of ( 7) and (13) we get, for every n ≥ m + 1,

E[P n (X j (h N j ))P n (X k (h N k ))] = n!E[X j (h N j )X k (h N k )] n ≤ n!|E[X j (h N j )X k (h N k )]| m+1 , so that E S N φ,h (t) - φ, P m m! S N Pm,h (t) 2 ≤ ∞ n=m+1 φ, P n 2 n! ⌊N t⌋ j=1 ⌊N t⌋ k=1 |E[X j (h N j )X k (h N k )]| m+1 N h(j/N )+h(k/N )
.

Let η > 0. Using the representation of the field X, there exists N η ∈ N * such that, for |j -k| > N η and

N ∈ N * , |E[X j (h N j )X k (h N k )]| ≤ η, so that ⌊N t⌋ j=1 ⌊N t⌋ k=1 |E[X j (h N j )X k (h N k )]| m+1 N h(j/N )+h(k/N ) ≤ ⌊N t⌋ j=1 ⌊N t⌋ k=1 1 |j-k|≤Nη N h(j/N )+h(k/N ) + η ⌊N t⌋ j=1 ⌊N t⌋ k=1 1 |j-k|≥1 |E[X j (h N j )X k (h N k )]| m N h(j/N )+h(k/N ) . There exists C 1 (η) > 0 such that ⌊N t⌋ j=1 ⌊N t⌋ k=1 1 |j-k|≤Nη N h(j/N )+h(k/N ) ≤ C η N 2 min h-1 .
Moreover, because of the assumptions on X, there exists a constant C 2 > 0, which is independent on η, such that, for every j, k and N ,

|E[X j (h N j )X k (h N k )]| ≤ C 2 |j -k| h N j +h N k -2 .
We then obtain

⌊N t⌋ j=1 ⌊N t⌋ k=1 |E[X j (h N j )X k (h N k )]| m+1 N h(j/N )+h(k/N ) ≤ C η N 2 min h-1 + ηC 2 N 2 ⌊N t⌋ j=1 ⌊N t⌋ k=1 1 |j-k|≥1 j -k N m(h N j +h N k -2)
.

Hence, for every η > 0 lim sup

N →∞ E S N φ,h (t) - φ, P m m! S N Pm,h (t) 2 ≤ ηC 2 ∞ n=m+1 φ, P n 2 n! t 0 t 0 |θ -σ| h(θ)+h(σ)-2 dθdσ.
The constants ∞ n=m+1 φ, P n 2 /n! and t 0 t 0 |θ -σ| h(θ)+h(σ)-2 dθdσ are finite since (8) and h > 1/2 respectively. This concludes the proof. Now we conclude this subsection by the following lemma. Lemma 7. As N → ∞, the finite-dimensional distributions of S N φ,h converge to those of S m,h , which can be defined for every t ≥ 0 as:

S m,h (t) := φ, P m m! R m f ∞ (t, x 1 , • • • , x m )d B x1 • • • d B xm . (22) 
Proof. We fix n ∈ N, (t 1 , • • • , t n ) ∈ [0, ∞) n and a Lipschitz bounded function Ψ : R n → R.

We define φ m = φ, P m /m!. We have

E Ψ S N φ,h (t 1 ), • • • , S N φ,h (t n ) -E[Ψ(S m,h (t 1 ), • • • , S m,h (t n ))] ≤ E N 1 + E N 2 (23) 
where

E N 1 = E Ψ S N φ,h (t 1 ), • • • , S N φ,h (t n ) -Ψ φ m S N Pm,h (t 1 ), • • • , φ m S N Pm,h (t n ) and E N 2 = E Ψ φ m S N Pm,h (t 1 ), • • • , φ m S N Pm,h (t n ) -E[Ψ(S m,h (t 1 ), • • • , S m,h (t n ))]
Because Ψ is Lipschitz and using Cauchy-Schwartz inequality, there exists C 1 > 0 so that, for every N ,

E N 1 ≤ C 1 n j=1 E S N φ,h (t j ) -φ m S N Pm,h (t j ) 2 .
Then, since Lemma 6, lim

N →∞ E N 1 = 0. ( 24 
)
Because Lemma 3 we have

E N 2 = E Ψ φ m S N m,h (t 1 ), • • • , φ m S N m,h (t n ) -Ψ(S m,h (t 1 ), • • • , S m,h (t n )) .
Thus, as for E N 1 , because Ψ is Lipschitz and using Cauchy-Schwartz inequality, there exists C 2 > 0 so that, for every N ,

E N 2 ≤ C 2 n j=1 E φ m S N m,h (t j ) -S m,h (t j ) 2 .
As a consequence, from Lemma 5, lim

N →∞ E N 2 = 0. ( 25 
)
We conclude the proof by combining (23), ( 24) and (25).

Continuity and local self-similarity of S m,h

We first prove the local self-similarity in the sense of the finite-dimensional distributions.

Then we prove the continuity of S m,h . Finally, we establish a tightness property for the family ε -h(t) (S φ,h (t + εu) -S φ,h (t)) u≥0 ε>0 using Kolmogorov lemma [START_REF] Billingsley | Convergence of Probability Measures[END_REF] to conclude with the proof of the local self-similarity property in the space of continuous functions. By making the substitution θ → εθ + t, we get For almost every x ∈ R m , every u and t, lim ε→0 f2 (t, u, x, ε) = g(t)

exp (iu

m l=1 x l ) -1 i( m l=1 x l )|x 1 • • • x m | e h(t)-1/2
By an integration by part, we have f2 (t, u, x, ε) = ε m( e h(εu+t)-e h(t)) g(εu + t) exp (iu We fix T > 0 and U > 0. As a consequence of the identity above and because of the regularity of h and g, there exists a constant M T,U > 0 such that, for every u ∈ [0, U ], t ∈ [0, T ], ε ∈ (0, 1] and x ∈ R m , | f2 (t, u, x, ε)| ≤ M T,U f T +U,2 (x) (26)

where f T +U,2 (x) is defined in Lemma 2. Since f T +U,2 is square integrable and because of Lemma 1, this proves the local self-similarity of S m,h in the sense of the finite-dimensional distributions.

To prove the continuity of the S m,h we use Kolmogorov lemma. By making the same calculations as above we have, for every t > s > 0, E (S φ,h (t) -S φ,h (s))

2 = m!(ts) This prove the tightness of the family ε -h(t) (S φ,h (t + εu) -S φ,h (t)) u≥0 ε>0 thanks to

Kolmogorov lemma [START_REF] Billingsley | Convergence of Probability Measures[END_REF], and then the local self-similarity property of S φ,h .

  e h,max e h]

Sxx

  m,h (t + εu) -S m,h (t) ε h(t) l f1 (t, u, x, ε)d B x1 • • • d B xm where f1 (t, u, x, ε) = ε 1-h(t) l g(εθ + t)|x 1 • • • x m | 1/2-e h(εθ+t) dθ.Since[START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF] and (9) we haveS m,h (t + εu) -S m,h (t) ε h(t) u≥0 dist. = R m f2 (t, u, x, ε)d B x1 • • • d B xm u≥0 with f2 (t, u, x, ε) = u 0 ε m( e h(εθ+t)-e h(t)) exp iθ m l=1 x l g(εθ + t)|x 1 • • • x m | 1/2-e h(εθ+t) dθ.

  l )|x 1 • • • x m | e h(εu+t)-1/2 +ε u 0 ε m( e h(εθ+t)-e h(t))exp (iθm l=1 x l ) -1 i( m l=1 x l )|x 1 • • • x m | e h(εθ+t)-1/2 × g ′ (εθ + t) + h ′ (εθ + t) g(εθ + t)(ln (ε m )ln |x 1 • • • x m |) dθ

  2h(s) R m f2 (s, 1, x, ts) 2 dx 1 • • • dx m If ts < 1, because of (26) we then haveE (S φ,h (t) -S φ,h (s)) 2 ≤ m!M 1,1 (ts) 2h(s) R m f 2,2 (x) 2 dx 1 • • • dx m ,which concludes the proof of the continuity of S φ,h . Finally, in a similar way as just previously there exists a constant C > 0 such that, for every u and v satisfying |u -v| < 1,

E S φ,h (t + εu) -S φ,h (t + εv) ε h(t) 2 ≤ C|u -v| 2h(t) ,
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