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THE CHARACTERISTIC POLYNOMIALS OF ABELIAN

VARIETIES OF DIMENSIONS 4 OVER FINITE FIELDS

SAFIA HALOUI, VIJAYKUMAR SINGH

Abstract. We describe the set of characteristic polynomials of abelian vari-
eties of dimension 4 over finite fields.

1. Introduction and results

The aim of this paper is to give a description of the set of characteristic polyno-
mials of abelian varieties of dimension 4 as it was done in [1] for dimension 3.

It is well known that the characteristic polynomial of an abelian variety of di-
mension g over Fq (with q = pn) is monic, with integer coefficients, of degree 2g
and that the sets of its roots consist of couples of complex conjugated numbers of
modulus

√
q. Any polynomial having those properties is called a Weil polynomial.

Obviously, every Weil polynomial of degree 8 has the form

p(t) = t8 + a1t
7 + a2t

6 + a3t
5 + a4t

4 + qa3t
3 + q2a2t

2 + q3a1t+ q4

for certain integers a1, a2, a3 and a4. In Section 2 we prove the following proposition
which gives a characterization of the quadruples (a1, a2, a3, a4) corresponding to
Weil polynomials of degree 8 (see [8, 4, 1] for a characterization of Weil polynomials
of lower degrees):

Theorem 1.1. Let p(t) = t8+a1t
7+a2t

6+a3t
5+a4t

4+qa3t
3+q2a2t

2+q3a1t+q4

be a polynomial with integer coefficients. Then p(t) is a Weil polynomial if and only
if either

p(t) = (t2 ±√
q)2h(t)

where h(t) is a Weil polynomial, or the following conditions hold:

(1) |a1| < 8
√
q,

(2) 6
√
q|a1| − 20q < a2 ≤ 3a2

1

8
+ 4q,

(3) −9qa1 − 4
√
qa2 − 16q

√
q < a3 < −9qa1 + 4

√
qa2 + 16q

√
q,

(4) −a3
1

8
+ a1a2

2
+qa1−(2

3
(
3a2

1

8
−a2+4q))3/2 ≤ a3 ≤ −a3

1

8
+ a1a2

2
+qa1+(2

3
(
3a2

1

8
−

a2 + 4q))3/2,
(5) 2

√
q|qa1 + a3| − 2qa2 − 2q2 < a4,

(6)
9a4

1

256
− 3a2

1a2

16
+ a1a3

4
+

a2
2

6
+ 2qa2

3
+ 2q2

3
+ ω + ω ≤ a4 ≤ 9a4

1

256
− 3a2

1a2

16
+ a1a3

4
+

a2
2

6
+ 2qa2

3
+ 2q2

3
+ jω + j2ω

where

ω = 1
24

(

8(− 3a2
1

8
+ a2 − 4q)6 + 540(− 3a2

1

8
+ a2 − 4q)3(

a3
1

8
− qa1 − a1a2

2
+ a3)

2

−729(
a3
1

8
− qa1 − a1a2

2
+ a3)

4
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+i9|a
3
1

8
− qa1 − a1a2

2
+ a3|(−(

a3
1

8
− qa1 − a1a2

2
+ a3)

2 − 8
27
(− 3a2

1

8
+ a2 − 4q)3)3/2

)1/3

,

ω1/3 = |ω|1/3e arg(ω)i
3 and j = e

2iπ
3 .

Now it remains to give criterions to determine when a Weil polynomial is the
characteristic polynomial of an abelian variety of dimension 4. Since the charac-
teristic polynomial of a non-simple abelian variety is a product of characteristic
polynomials of abelian varieties of smaller dimensions and our problem is already
solved for smaller dimensions [8, 4, 1], it is sufficient to consider the simple case.

By results of Honda and Tate, the characteristic polynomial of a simple abelian
variety of dimension 4 over Fq has the form p(t) = h(t)e where h(t) is an irreducible
Weil polynomial and e is an integer. Xing [10] and Maisner and Nart [2] gave
independently a description of characteristic polynomials of abelian varieties of
dimension 4 with e > 1. Therefore, we can restrict our attention to the case e = 1,
that is, p(t) is irreducible.

If p(t) is irreducible, the determination of the possible Newton polygons for p(t)
(Section 3) gives us the following proposition:

Theorem 1.2. Let p(t) = t8+a1t
7+a2t

6+a3t
5+a4t

4+qa3t
3+q2a2t

2+q3a1t+q4

be an irreducible Weil polynomial. Then p(t) is the characteristic polynomial of an
abelian variety of dimension 4 if and only if one of the following conditions holds:

(1) vp(a4) = 0,
(2) vp(a3) = 0, vp(a4) ≥ n/2 and p(t) has no root of valuation n/2 in Qp,
(3) vp(a2) = 0, vp(a3) ≥ n/2, vp(a4) ≥ n and p(t) has no root of valuation n/2

in Qp,
(4) vp(a1) = 0, vp(a2) ≥ n/2, vp(a3) ≥ n, vp(a4) ≥ 2n and p(t) has no root of

valuation n/2 nor factor of degree 3 in Qp,
(5) vp(a1) = 0, vp(a2) ≥ n/3, vp(a3) ≥ 2n/3, vp(a4) = n and p(t) has no root

of valuation n/3 and 2n/3 in Qp,
(6) vp(a1) ≥ n/3, vp(a2) ≥ 2n/3, vp(a3) = n, vp(a4) ≥ 3n/2 and p(t) has no

root in Qp,
(7) vp(a1) ≥ n/4, vp(a2) ≥ n/2, vp(a3) = 3n/4, vp(a4) = n and p(t) has no

root nor factor of degree 2 and 3 in Qp,
(8) vp(a1) ≥ n/2, vp(a2) ≥ n, vp(a3) = 3n/2, vp(a4) ≥ 2n and p(t) has no root

nor factor of degree 3 in Qp.

The p-ranks of abelian varieties in cases (1), (2), (3), (4), (5), (6), (7) and (8)
are respectively 4, 3, 2, 1, 1, 0, 0 and 0. The abelian varieties in case (8) are
supersingular.

It is possible to make condition (8) of Theorem 1.2 more explicit. Indeed, in [6],
Singh, McGuire and Zaytsev gave the list of irreducible characteristic polynomials
of supersingular abelian varieties of dimension 4 , where q is not a square. We
complete the classification by finding the list in the case q is a square in the following
proposition (see Section 4).

Theorem 1.3. The polynomial p(t) is the irreducible characteristic polynomial of
a supersingular abelian variety of dimension 4 if and only if one of the following
conditions holds

• q is a square and (a1, a2, a3, a4) belongs to the following list:
(1) (−q1/2, 0, q3/2,−q2), p 6≡ 1 mod 15,
(2) (q1/2, 0,−q3/2,−q2), p 6≡ 1 mod 30,
(3) (0, 0, 0, 0), p 6≡ 1 mod 16,
(4) (0,−q, 0, q2), p 6≡ 1 mod 20,
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(5) (0, 0, 0,−q2), p 6≡ 1 mod 24,
• q is not a square and (a1, a2, a3, a4) belongs to the following list:

(1) (±√
pq, q, 0,−q2), p = 2,

(2) (±√
pq, 2q,±q

√
pq, q2), p = 3,

(3) (0, 0, 0, 0),
(4) (0,−q, 0, q2),
(5) (0, q, 0, q2), p 6= 5,
(6) (0, 0, 0,−q2), p 6= 2,
(7) (±√

pq, 2q,±q
√
pq, 3q2), p = 5.

2. The coefficients of Weil polynomials of degree 8

In this section, we prove Theorem 1.1. It is clear that a Weil polynomial with a
real root must have the form

p(t) = (t2 ±√
q)2h(t)

where h(t) is a Weil polynomial. Conversely, these polynomials are Weil polynomi-
als.

Let p(t) = t8 + a1t
7 + a2t

6 + a3t
5 + a4t

4 + qa3t
3 + q2a2t

2 + q3a1t+ q4 ∈ Z[t] be
a polynomial with no real root. Then the set of the roots of p(t) consists of pairs
of complex conjugated numbers, say ω1, ω1, . . . , ω4, ω4. Letting xi = −(ωi +ωi) we

have p(t) =
∏4

i=1(t
2+xit+q). Arguing as in [1], p(t) is a Weil polynomial if and only

if the polynomials f+(t) =
∏4

i=1(t− (2
√
q+xi)) and f−(t) =

∏4

i=1(t− (2
√
q−xi))

have only real and positive roots.

First, we determine a necessary and sufficient condition of some polynomial of
degree 4 having all real roots.

Let f(t) = t4 + r1t
3 + r2t

2 + r3t + r4 be a monic polynomial of degree 4 with
real coefficients. Looking at the table of variation of f(t), we see that there exists
some r4 for which f(t) has all real roots if and only if f ′(t) has all real roots. This
condition is equivalent to

∆f ′ ≥ 0(1)

where ∆f ′ is the discriminant of f ′(t).
The discriminant of f(t) is a polynomial of degree 3 in r4 which we will denote

∆f (t) (that is, ∆f (r4) is the discriminant of f(t)). It is well known that if f(t) has
all real roots then ∆f (r4) ≥ 0. Moreover, the function which associate to r4 the
number of roots of f(t) is constant on the intervals delimited by the roots of ∆f (t)
(because ∆f (r4) = 0 when f(t) has a multiple root).

When r4 is very big, the graph of f(t) doesn’t touch the x-axis and therefore
f(t) has no real roots. Thus if γ3 is the biggest root of ∆f (t), by the previous
discussion, f(t) has no real root for r4 ∈]γ3; +∞[.

We deduce that if (1) is satisfied then ∆f (t) must have 3 real roots γ1 ≤ γ2 ≤ γ3
and f(t) has all real roots if and only if

γ1 ≤ r4 ≤ γ2.(2)

The roots of ∆f (t) can be found using Cardan’s method. Let us recall quickly
what it is.

Given a polynomial h(t) = t3 + u2t+ u3, we set δ = −u2
3 − 4

27
u3
2. Then h(t) has

all real roots if and only if δ ≥ 0. If this is the case, the roots of h(t) are γ1 = ω+ω,

γ2 = jω+ j2ω and γ3 = j2ω+ jω where j = e
2iπ
3 and ω = (−u3+i

√
δ

2
)1/3. Moreover,

with the convention ω1/3 = |ω|1/3e arg(ω)i
3 , we have γ1 ≤ γ2 ≤ γ3.
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In the general case, we have h(t) = v0t
3+v1t

2+v2t+v3 and we conclude using the

fact that 1
v0
h(t− v1

3v0
) = t3+u2t+u3 with u2 = − v2

1

3v2
0
+ v2

v0
and u3 =

2v3
1

27v3
0
− v1v2

3v2
0
+ v3

v0
.

For i = 1, 2, 3, 4, let si denote the ith symmetric function of the xi’s (that is,
∏4

i=1(t+xi) = t4+
∑4

i=1 sit
4−i). Expanding the expression p(t) =

∏4

i=1(t
2+xit+q),

we find:

s1 = a1

s2 = a2 − 4q

s3 = a3 − 3qa1

s4 = a4 − 2qa2 + 2q2.

Now, in order to simplify the calculation, we remark that f+(t) and f−(t) have

all real roots if and only if the polynomial f(t) =
∏4

i=1(t+xi− a1

4
) has. Therefore,

it is equivalent to apply our results to f(t).
Expanding the expression of f(t), we find that f(t) = t4 + r2t

2 + r3t+ r4, where

r2 = −3s21
8

+ s2

r3 =
s31
8

− s1s2
2

+ s3

r4 = − 3s41
256

+
s21s2
16

− s1s3
4

+ s4.

Substituting s1, s2, s3 and s4 with their expressions in a1, a2, a3 and a4 we
obtain

r2 = −3a21
8

+ a2 − 4q

r3 =
a31
8

− qa1 −
a1a2
2

+ a3

r4 = −3a41
256

+
qa21
2

+
a21a2
16

− a1a3
4

− 2qa2 + 2q2 + a4.

We have

∆f (t) = 256t3 − 128r22t
2 + 16r2(r

3
2 + 9r23)t− r23(4r

3
2 + 27r23).

Now, we use Cardan’s method. Set

u2 = − r42
48

+
9r2r

2
3

16

u3 =
r62
864

+
5r32r

2
3

64
− 27r43

256

δ = −u2
3 −

4

27
u3
2 =

r23(−8r32 − 27r23)
3

1769472
.

Suppose that (1) is satisfied. Then δ ≥ 0 and the roots of ∆f (t) are

γ1 = ω + ω +
r22
6

γ2 = jω + j2ω +
r22
6

γ3 = j2ω + jω +
r22
6
.
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where

ω =
1

24

(

8r62 + 540r32r
2
3 − 729r43 + i9|r3|(−r23 −

8

27
r32)

3/2

)1/3

.

Substituting r2, r3 and r4 with their expressions in a1, a2, a3 and a4 we obtain
condition (6) of Theorem 1.1.

Next we have to determine when (1) is satisfied. We have:

∆f ′ = −16(8r32 + 27r23).

Therefore, (1) is equivalent to

r2 ≤ 0 and − (
−2r2
3

)
3/2

≤ r3 ≤ (
−2r2
3

)
3/2

.

This gives us the second inequality of condition (2) and condition (4) of Theorem
1.1.

Finally, we determine when the polynomials f+(t) and f−(t) have only positive
roots.

For i = 1, 2, 3, let r+i and r−i denote the respective ith coefficients of f+(t) and

f−(t). Expending the expressions f+(t) =
∏4

i=1(t − (2
√
q + xi)) and f−(t) =

∏4

i=1(t− (2
√
q − xi)), we find:

r+1 = −8
√
q − s1

r+2 = 24q + 6
√
qs1 + s2

r+3 = −32q
√
q − 12qs1 − 4

√
qs2 − s3

r+4 = 16q2 + 8q
√
qs1 + 4qs2 + 2

√
qs3 + s4

and

r−1 = −8
√
q + s1

r−2 = 24q − 6
√
qs1 + s2

r−3 = −32q
√
q + 12qs1 − 4

√
qs2 + s3

r−4 = 16q2 − 8q
√
qs1 + 4qs2 − 2

√
qs3 + s4.

Substituting s1, s2, s3 and s4 with their expressions in a1, a2, a3 and a4 we obtain

r+1 = −8
√
q − a1

r+2 = 20q + 6
√
qa1 + a2

r+3 = −16q
√
q − 9qa1 − 4

√
qa2 − a3

r+4 = 2q2 + 2q
√
qa1 + 2qa2 + 2

√
qa3 + a4

and

r−1 = −8
√
q + a1

r−2 = 20q − 6
√
qa1 + a2

r−3 = −16q
√
q + 9qa1 − 4

√
qa2 + a3

r−4 = 2q2 − 2q
√
qa1 + 2qa2 − 2

√
qa3 + a4.

Suppose that f+(t) and f−(t) have all real roots. Then by [7, §2, Lemma], f+(t)
and f−(t) have only positive roots if and only if (−1)ir+i > 0 and (−1)ir−i > 0 for
i = 1, 2, 3, 4. This gives us the remaining conditions of Theorem 1.1 and concludes
the proof.

Remark. We could have used [7, §2, Lemma] to determine when a polynomial of
degree 4 has only real roots but the computation and the results would have been
longer.
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3. Newton polygons

Let p(t) be an irreducible Weil polynomial. By [3], p(t)e is the characteristic
polynomial of a simple abelian variety, where e the least common denominator of
vp(f(0))/n where f(t) runs through the irreducible factors of p(t) over Qp. Thus
p(t) is the characteristic polynomial of an abelian variety of dimension 4 if and only
if e is equal to 1 that is, vp(f(0))/n are integers.

In order to determine when this condition is satisfied, we consider the Newton
polygon of p(t) (see [9]). Each of its edges define a factor of p(t) over Qp. The
degree of this factor is the length of the projection onto the x-axis of the edge and
all the roots of this factor have a valuation equal to the slope of the edge. Therefore
e = 1 implies that the length of the projection onto the x-axis of any edge times its
slope is a multiple of n.

We graph the Newton polygons satisfying this condition and in each case, we
give a necessary and sufficient condition to have e = 1. The obtained results are
summarized in Theorem 1.2.

Ordinary case: vp(a4) = 0

The Newton polygon of p(t) is represented in Figure 1 and we always have e = 1.

0

n

2n

3n

4n

1 2 3 4 5 6 7 8

Figure 1. Ordinary case

p-rank 3 case: vp(a4) > 0 and vp(a3) = 0

The only Newton polygon for which e = 1 is represented in Figure 2.

0

n

2n

3n

4n

1 2 3 4 5 6 7 8

Figure 2. p-rank 3 case

This is the Newton polygon of p(t) if and only if vp(a4) ≥ n/2. If this condition
holds, p(t) has a factor in Qp of degree 2 with roots of valuation n/2 and e = 1
if and only if this factor is irreducible, that is, if and only if p(t) has no root of
valuation n/2 in Qp.
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p-rank 2 case: vp(a4) > 0, vp(a3) > 0 and vp(a2) = 0

The only Newton polygon for which e = 1 is represented in Figure 3.

0

n

2n

3n

4n

1 2 3 4 5 6 7 8

Figure 3. p-rank 2 case

This is the Newton polygon of p(t) if and only if vp(a3) ≥ n/2 and vp(a4) ≥ n.
If these conditions hold, p(t) has a factor in Qp of degree 4 with roots of valuation
n/2 and e = 1 if and only if this factor has no root in Qp, that is, if and only if p(t)
has no root of valuation n/2 in Qp.

p-rank 1 case: vp(a4) > 0, vp(a3) > 0, vp(a2) > 0 and vp(a1) = 0

There are two Newton polygons for which e = 1. One is represented in Figure
4.

0

n

2n

3n

4n

1 2 3 4 5 6 7 8

Figure 4. p-rank 1 first case

This is the Newton polygon of p(t) if and only if vp(a2) ≥ n/2, vp(a3) ≥ n and
vp(a4) ≥ 2n. If these conditions hold, e = 1 if and only if p(t) has no root of
valuation n/2 nor factor of degree 3 in Qp.

The other Newton polygon is represented in Figure 5.
This is the Newton polygon of p(t) if and only if vp(a2) ≥ n/3, vp(a3) ≥ 2n/3

and vp(a4) = n. If these conditions hold e = 1 if and only if p(t) has no root of
valuation n/3 and 2n/3 in Qp.

p-rank 0 case: vp(a4) > 0, vp(a3) > 0, vp(a2) > 0 and vp(a1) > 0

There are three Newton polygons for which e = 1. One is represented in Figure
6.

This is the Newton polygon of p(t) if and only if vp(a1) ≥ n/3, vp(a2) ≥ 2n/3,
vp(a3) = n and vp(a4) ≥ 3n/2. If these conditions hold, e = 1 if and only if p(t)
has no root in Qp.

The second Newton polygon is represented in Figure 7.
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0

n

2n

3n

4n

1 2 3 4 5 6 7 8

Figure 5. p-rank 1 second case

0

n

2n

3n

4n

1 2 3 4 5 6 7 8

Figure 6. p-rank 0 first case

0

n

2n

3n

4n

1 2 3 4 5 6 7 8

Figure 7. p-rank 0 second case

This is the Newton polygon of p(t) if and only if vp(a1) ≥ n/4, vp(a2) ≥ n/2,
vp(a3) ≥ 3n/4 and vp(a4) = n. If these conditions hold, e = 1 if and only if p(t)
has no factor of degrees 1, 2 and 3 in Qp.

The last Newton polygon is represented in Figure 8; the corresponding abelian
varieties are supersingular.

This is the Newton polygon of p(t) if and only if vp(a1) ≥ n/2, vp(a2) ≥ n,
vp(a3) ≥ 3n/2 and vp(a3) ≥ 2n. If these conditions hold, e = 1 if and only if p(t)
has no root nor factor of degree 3 in Qp.

4. Supersingular case

In [6], Singh, McGuire and Zaytsev gave the list of irreducible characteristic
polynomials of supersingular abelian varieties of dimension 4 , where q is not a
square. Here we derive the list when q is a square.
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0

n

2n

3n

4n

1 2 3 4 5 6 7 8

Figure 8. Supersingular case

Let p(t) be an irreducible supersingular Weil polynomial of degree 8, where q
is a square. By Honda-Tate Theorem, 1

q4 p(
√
qt) is a cyclotomic polynomial of

degree 8 i.e; 1
q4 p(t

√
q) = Φm(t) such that φ(m) = 8 or m ∈ {15, 16, 20, 24, 30}.

Therefore for eachm above, p(t) = qgΦm( t√
q ) gives a supersingular Weil polynomial

of degree 8. Let p(t) =
∏

i

pi(t) be the decomposition in irreducible factors of p(t)

over Qp with π =
√
qζn as a root, where ζn is primitive nth root of unity. To

determine the dimension of the corresponding abelian variety, recall from [3], p(t)e

is a characteristic polynomial of an abelian variety of dimension 4e, where e is the

least common denominator of
vp(π)

vp(q)
deg pi(t) =

deg pi
2

. Since p(t) = qgΦm( t√
q ),

deg pi = deg ri where Φm(t) =
∏

i

ri(t). But from chapter IV.4 in [5], we have

deg ri = r where r is the multiplicative order of p in ( Z

mZ
)∗.

Hence, e = 1 if r is even. In each case ofm above, since φ(m) = 23, r is either even or
r = 1. The later case only happens when p ≡ 1 mod m. Hence, p(t) = qgΦm( t√

q ),

where p 6≡ 1 mod m is an irreducible characteristic polynomial of a supersingular
abelian variety of dimension 4, for each m ∈ {15, 16, 20, 24, 30}.
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Institut de Mathématiques de Luminy, Marseille, France, and, Claude Shannon In-

stitute, Dublin, Irland

E-mail address: haloui@iml.univ-mrs.fr,vijaykumar.singh@ucdconnect.ie


