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We describe the set of characteristic polynomials of abelian varieties of dimension 4 over finite fields.

Introduction and results

The aim of this paper is to give a description of the set of characteristic polynomials of abelian varieties of dimension 4 as it was done in [START_REF] Haloui | The characteristic polynomials of abelian varieties of dimensions 3 over finite fields[END_REF] for dimension 3.

It is well known that the characteristic polynomial of an abelian variety of dimension g over F q (with q = p n ) is monic, with integer coefficients, of degree 2g and that the sets of its roots consist of couples of complex conjugated numbers of modulus √ q. Any polynomial having those properties is called a Weil polynomial. Obviously, every Weil polynomial of degree 8 has the form p(t) = t 8 + a 1 t 7 + a 2 t 6 + a 3 t 5 + a 4 t 4 + qa 3 t 3 + q 2 a 2 t 2 + q 3 a 1 t + q 4 for certain integers a 1 , a 2 , a 3 and a 4 . In Section 2 we prove the following proposition which gives a characterization of the quadruples (a 1 , a 2 , a 3 , a 4 ) corresponding to Weil polynomials of degree 8 (see [START_REF] Waterhouse | Abelian varieties over finite fields[END_REF][START_REF] Rück | Abelian surfaces and Jacobian varieties over finite fields[END_REF][START_REF] Haloui | The characteristic polynomials of abelian varieties of dimensions 3 over finite fields[END_REF] for a characterization of Weil polynomials of lower degrees): Theorem 1.1. Let p(t) = t 8 + a 1 t 7 + a 2 t 6 + a 3 t 5 + a 4 t 4 + qa 3 t 3 + q 2 a 2 t 2 + q 3 a 1 t + q 4 be a polynomial with integer coefficients. Then p(t) is a Weil polynomial if and only if either

p(t) = (t 2 ± √ q) 2 h(t)
where h(t) is a Weil polynomial, or the following conditions hold:

(1)

|a 1 | < 8 √ q, (2) 6 √ q|a 1 | -20q < a 2 ≤ 3a 2 1 8 + 4q, (3) -9qa 1 -4 √ qa 2 -16q √ q < a 3 < -9qa 1 + 4 √ qa 2 + 16q √ q, (4) 
-

a 3 1 8 + a1a2 2 + qa 1 -( 2 3 ( 3a 2 1 8 -a 2 + 4q)) 3/2 ≤ a 3 ≤ - a 3 1 8 + a1a2 2 + qa 1 + ( 2 3 ( 3a 2 1 8 - a 2 + 4q)) 3/2 , (5) 2 √ q|qa 1 + a 3 | -2qa 2 -2q 2 < a 4 , ( 6 
)
9a 4 1 256 - 3a 2 1 a2 16 + a1a3 4 + a 2 2 6 + 2qa2 3 + 2q 2 3 + ω + ω ≤ a 4 ≤ 9a 4 1 256 - 3a 2 1 a2 16 + a1a3 4 + a 2 2 6 + 2qa2 3 + 2q 2 3 + jω + j 2 ω where ω = 1 24 8(- 3a 2 1 8 + a 2 -4q) 6 + 540(- 3a 2 1 8 + a 2 -4q) 3 ( a 3 1 8 -qa 1 -a1a2 2 + a 3 ) 2 -729( a 3 1 8 -qa 1 -a1a2 2 + a 3 ) 4 +i9| a 3 1 8 -qa 1 -a1a2 2 + a 3 |(-( a 3 1 8 -qa 1 -a1a2 2 + a 3 ) 2 -8 27 (- 3a 2 1 8 + a 2 -4q) 3 ) 3/2 1/3 , ω 1/3 = |ω| 1/3 e arg(ω)i 3 and j = e 2iπ 3 .
Now it remains to give criterions to determine when a Weil polynomial is the characteristic polynomial of an abelian variety of dimension 4. Since the characteristic polynomial of a non-simple abelian variety is a product of characteristic polynomials of abelian varieties of smaller dimensions and our problem is already solved for smaller dimensions [START_REF] Waterhouse | Abelian varieties over finite fields[END_REF][START_REF] Rück | Abelian surfaces and Jacobian varieties over finite fields[END_REF][START_REF] Haloui | The characteristic polynomials of abelian varieties of dimensions 3 over finite fields[END_REF], it is sufficient to consider the simple case.

By results of Honda and Tate, the characteristic polynomial of a simple abelian variety of dimension 4 over F q has the form p(t) = h(t) e where h(t) is an irreducible Weil polynomial and e is an integer. Xing [START_REF] Xing | The characteristic polynomials of abelian varieties of dimension three and four over finite fields[END_REF] and Maisner and Nart [START_REF] Maisner | Abelian surfaces over finite fields as jacobians[END_REF] gave independently a description of characteristic polynomials of abelian varieties of dimension 4 with e > 1. Therefore, we can restrict our attention to the case e = 1, that is, p(t) is irreducible.

If p(t) is irreducible, the determination of the possible Newton polygons for p(t) (Section 3) gives us the following proposition: Theorem 1.2. Let p(t) = t 8 + a 1 t 7 + a 2 t 6 + a 3 t 5 + a 4 t 4 + qa 3 t 3 + q 2 a 2 t 2 + q 3 a 1 t + q 4 be an irreducible Weil polynomial. Then p(t) is the characteristic polynomial of an abelian variety of dimension 4 if and only if one of the following conditions holds:

(1) v p (a 4 ) = 0, (2) v p (a 3 ) = 0, v p (a 4 ) ≥ n/2 and p(t) has no root of valuation n/2 in Q p , (3) v p (a 2 ) = 0, v p (a 3 ) ≥ n/2, v p (a 4 ) ≥ n and p(t) has no root of valuation n/2 in Q p , (4) v p (a 1 ) = 0, v p (a 2 ) ≥ n/2, v p (a 3 ) ≥ n, v p (a 4 ) ≥ 2n and p(t) has no root of valuation n/2 nor factor of degree 3 in Q p , (5) v p (a 1 ) = 0, v p (a 2 ) ≥ n/3, v p (a 3 ) ≥ 2n/3, v p (a 4 ) = n and p(t) has no root of valuation n/3 and 2n/3 in Q p , (6) v p (a 1 ) ≥ n/3, v p (a 2 ) ≥ 2n/3, v p (a 3 ) = n, v p (a 4 ) ≥ 3n/2 and p(t) has no root in Q p , (7) v p (a 1 ) ≥ n/4, v p (a 2 ) ≥ n/2, v p (a 3 ) = 3n/4, v p (a 4 ) = n and p(t) has no root nor factor of degree 2 and 3 in Q p , (8) v p (a 1 ) ≥ n/2, v p (a 2 ) ≥ n, v p (a 3 ) = 3n/2, v p (a 4 ) ≥ 2n and p(t) has no root nor factor of degree 3 in Q p . The p-ranks of abelian varieties in cases (1), ( 2), ( 3), ( 4), ( 5), ( 6), [START_REF] Smyth | Totally positive algebraic integers of small trace[END_REF] and [START_REF] Waterhouse | Abelian varieties over finite fields[END_REF] are respectively 4, 3, 2, 1, 1, 0, 0 and 0. The abelian varieties in case ( 8) are supersingular.

It is possible to make condition (8) of Theorem 1.2 more explicit. Indeed, in [START_REF] Singh | On the characteristic polynomial of frobenius of supersingular abelian varieties of dimension up to 7 over finite fields[END_REF], Singh, McGuire and Zaytsev gave the list of irreducible characteristic polynomials of supersingular abelian varieties of dimension 4 , where q is not a square. We complete the classification by finding the list in the case q is a square in the following proposition (see Section 4).

Theorem 1.3. The polynomial p(t) is the irreducible characteristic polynomial of a supersingular abelian variety of dimension 4 if and only if one of the following conditions holds

• q is a square and (a 1 , a 2 , a 3 , a 4 ) belongs to the following list:

(1) (-q 1/2 , 0, q 3/2 , -q 2 ), p ≡ 1 mod 15, (2) (q 1/2 , 0, -q 3/2 , -q 2 ), p ≡ 1 mod 30, (3) (0, 0, 0, 0), p ≡ 1 mod 16, (4) (0, -q, 0, q 2 ), p ≡ 1 mod 20,

(5) (0, 0, 0, -q 2 ), p ≡ 1 mod 24, • q is not a square and (a 1 , a 2 , a 3 , a 4 ) belongs to the following list:

(1) (± √ pq, q, 0, -q 2 ), p = 2, (2) (± √ pq, 2q, ±q √ pq, q 2 ), p = 3, (3) (0, 0, 0, 0), (4) (0, -q, 0, q 2 ), (5) (0, q, 0, q 2 ), p = 5, (6) (0, 0, 0, -q 2 ), p = 2, (7) (± √ pq, 2q, ±q √ pq, 3q 2 ), p = 5.

The coefficients of Weil polynomials of degree 8

In this section, we prove Theorem 1.1. It is clear that a Weil polynomial with a real root must have the form

p(t) = (t 2 ± √ q) 2 h(t)
where h(t) is a Weil polynomial. Conversely, these polynomials are Weil polynomials.

Let p(t) = t 8 + a 1 t 7 + a 2 t 6 + a 3 t 5 + a 4 t 4 + qa 3 t 3 + q 2 a 2 t 2 + q 3 a 1 t + q 4 ∈ Z[t] be a polynomial with no real root. Then the set of the roots of p(t) consists of pairs of complex conjugated numbers, say ω 1 , ω 1 , . . . , ω 4 , ω 4 . Letting

x i = -(ω i + ω i ) we have p(t) = 4 i=1 (t 2 +x i t+q). Arguing as in [1], p(t) is a Weil polynomial if and only if the polynomials f + (t) = 4 i=1 (t -(2 √ q + x i )) and f -(t) = 4 i=1 (t -(2 √ q -x i )
) have only real and positive roots.

First, we determine a necessary and sufficient condition of some polynomial of degree 4 having all real roots.

Let f (t) = t 4 + r 1 t 3 + r 2 t 2 + r 3 t + r 4 be a monic polynomial of degree 4 with real coefficients. Looking at the table of variation of f (t), we see that there exists some r 4 for which f (t) has all real roots if and only if f ′ (t) has all real roots. This condition is equivalent to

∆ f ′ ≥ 0 (1)
where

∆ f ′ is the discriminant of f ′ (t).
The discriminant of f (t) is a polynomial of degree 3 in r 4 which we will denote ∆ f (t) (that is, ∆ f (r 4 ) is the discriminant of f (t)). It is well known that if f (t) has all real roots then ∆ f (r 4 ) ≥ 0. Moreover, the function which associate to r 4 the number of roots of f (t) is constant on the intervals delimited by the roots of ∆ f (t) (because ∆ f (r 4 ) = 0 when f (t) has a multiple root).

When r 4 is very big, the graph of f (t) doesn't touch the x-axis and therefore f (t) has no real roots. Thus if γ 3 is the biggest root of ∆ f (t), by the previous discussion, f (t) has no real root for r 4 ∈]γ 3 ; +∞[. We deduce that if (1) is satisfied then ∆ f (t) must have 3 real roots γ 1 ≤ γ 2 ≤ γ 3 and f (t) has all real roots if and only if

γ 1 ≤ r 4 ≤ γ 2 . ( 2 
)
The roots of ∆ f (t) can be found using Cardan's method. Let us recall quickly what it is.

Given a polynomial h(t) = t 3 + u 2 t + u 3 , we set δ = -u 2 3 -4 27 u 3 2 . Then h(t) has all real roots if and only if δ ≥ 0. If this is the case, the roots of h(t) are γ 1 = ω + ω, γ 2 = jω + j 2 ω and γ 3 = j 2 ω + jω where j = e , we have γ 1 ≤ γ 2 ≤ γ 3 .

In the general case, we have h(t) = v 0 t 3 +v 1 t 2 +v 2 t+v 3 and we conclude using the fact that 1 v0 h(t-v1 3v0 ) = t 3 +u 2 t+u 3 with u 2 = -

v 2 1 3v 2 0 + v2 v0 and u 3 = 2v 3 1 27v 3 0 -v1v2 3v 2 0 + v3 v0 .
For i = 1, 2, 3, 4, let s i denote the ith symmetric function of the x i 's (that is,

4 i=1 (t+x i ) = t 4 + 4 i=1 s i t 4-i ).
Expanding the expression p(t) = 4 i=1 (t 2 +x i t+q), we find:

s 1 = a 1 s 2 = a 2 -4q s 3 = a 3 -3qa 1 s 4 = a 4 -2qa 2 + 2q 2 .
Now, in order to simplify the calculation, we remark that f + (t) and f -(t) have all real roots if and only if the polynomial f (t) = 4 i=1 (t + x i -a1 4 ) has. Therefore, it is equivalent to apply our results to f (t).

Expanding the expression of f (t), we find that f (t) = t 4 + r 2 t 2 + r 3 t + r 4 , where

r 2 = - 3s 2 1 8 + s 2 r 3 = s 3 1 8 - s 1 s 2 2 + s 3 r 4 = - 3s 4 1 256 + s 2 1 s 2 16 - s 1 s 3 4 + s 4 .
Substituting s 1 , s 2 , s 3 and s 4 with their expressions in a 1 , a 2 , a 3 and a 4 we obtain

r 2 = - 3a 2 1 8 + a 2 -4q r 3 = a 3 1 8 -qa 1 - a 1 a 2 2 + a 3 r 4 = - 3a 4 1 256 + qa 2 1 2 + a 2 1 a 2 16 - a 1 a 3 4 -2qa 2 + 2q 2 + a 4 .
We have

∆ f (t) = 256t 3 -128r 2 2 t 2 + 16r 2 (r 3 2 + 9r 2 3 )t -r 2 3 (4r 3 2 + 27r 2 3
). Now, we use Cardan's method. Set

u 2 = - r 4 2 48 + 9r 2 r 2 3 16 u 3 = r 6 2 864 + 5r 3 2 r 2 3 64 - 27r 4 3 256 δ = -u 2 3 - 4 27 u 3 2 = r 2 3 (-8r 3 2 -27r 2 
3 ) 3 1769472 .

Suppose that (1) is satisfied. Then δ ≥ 0 and the roots of ∆ f (t) are

γ 1 = ω + ω + r 2 2 6 γ 2 = jω + j 2 ω + r 2 2 6 γ 3 = j 2 ω + jω + r 2 2 6 .
where

ω = 1 24 8r 6 2 + 540r 3 2 r 2 3 -729r 4 3 + i9|r 3 |(-r 2 3 - 8 27 r 3 2 ) 3/2 1/3 .
Substituting r 2 , r 3 and r 4 with their expressions in a 1 , a 2 , a 3 and a 4 we obtain condition (6) of Theorem 1.1.

Next we have to determine when (1) is satisfied. We have:

∆ f ′ = -16(8r 3 2 + 27r 2 
3 ). Therefore, ( 1) is equivalent to

r 2 ≤ 0 and -( -2r 2 3 ) 3/2 ≤ r 3 ≤ ( -2r 2 3 ) 3/2
. This gives us the second inequality of condition (2) and condition (4) of Theorem 1.1.

Finally, we determine when the polynomials f + (t) and f -(t) have only positive roots.

For i = 1, 2, 3, let r + i and r - i denote the respective ith coefficients of f + (t) and f -(t). Expending the expressions f

+ (t) = 4 i=1 (t -(2 √ q + x i )) and f -(t) = 4 i=1 (t -(2 √ q -x i ))
, we find:

r + 1 = -8 √ q -s 1 r + 2 = 24q + 6 √ qs 1 + s 2 r + 3 = -32q √ q -12qs 1 -4 √ qs 2 -s 3 r + 4 = 16q 2 + 8q √ qs 1 + 4qs 2 + 2 √ qs 3 + s 4 and r - 1 = -8 √ q + s 1 r - 2 = 24q -6 √ qs 1 + s 2 r - 3 = -32q √ q + 12qs 1 -4 √ qs 2 + s 3 r - 4 = 16q 2 -8q √ qs 1 + 4qs 2 -2 √ qs 3 + s 4 .
Substituting s 1 , s 2 , s 3 and s 4 with their expressions in a 1 , a 2 , a 3 and a 4 we obtain

r + 1 = -8 √ q -a 1 r + 2 = 20q + 6 √ qa 1 + a 2 r + 3 = -16q √ q -9qa 1 -4 √ qa 2 -a 3 r + 4 = 2q 2 + 2q √ qa 1 + 2qa 2 + 2 √ qa 3 + a 4 and r - 1 = -8 √ q + a 1 r - 2 = 20q -6 √ qa 1 + a 2 r - 3 = -16q √ q + 9qa 1 -4 √ qa 2 + a 3 r - 4 = 2q 2 -2q √ qa 1 + 2qa 2 -2 √ qa 3 + a 4 .
Suppose that f + (t) and f -(t) have all real roots. Then by [7, §2, Lemma], f + (t) and f -(t) have only positive roots if and only if (-1) i r + i > 0 and (-1) i r - i > 0 for i = 1, 2, 3, 4. This gives us the remaining conditions of Theorem 1.1 and concludes the proof.

Remark. We could have used [START_REF] Smyth | Totally positive algebraic integers of small trace[END_REF][START_REF] Maisner | Abelian surfaces over finite fields as jacobians[END_REF]Lemma] to determine when a polynomial of degree 4 has only real roots but the computation and the results would have been longer.

Newton polygons

Let p(t) be an irreducible Weil polynomial. By [START_REF] Milne | Abelian varieties over finite fields[END_REF], p(t) e is the characteristic polynomial of a simple abelian variety, where e the least common denominator of v p (f (0))/n where f (t) runs through the irreducible factors of p(t) over Q p . Thus p(t) is the characteristic polynomial of an abelian variety of dimension 4 if and only if e is equal to 1 that is, v p (f (0))/n are integers.

In order to determine when this condition is satisfied, we consider the Newton polygon of p(t) (see [START_REF] Weiss | Algebraic number theory[END_REF]). Each of its edges define a factor of p(t) over Q p . The degree of this factor is the length of the projection onto the x-axis of the edge and all the roots of this factor have a valuation equal to the slope of the edge. Therefore e = 1 implies that the length of the projection onto the x-axis of any edge times slope is a multiple of n.

We graph the Newton polygons satisfying this condition and in each case, we give a necessary and sufficient condition to have e = 1. The obtained results are summarized in Theorem 1.2.

Ordinary case: v p (a 4 ) = 0
The Newton polygon of p(t) is represented in Figure 1 p-rank 1 case: v p (a 4 ) > 0, v p (a 3 ) > 0, v p (a 2 ) > 0 and v p (a 1 ) = 0

There are two Newton polygons for which e = 1. One is represented in The other Newton polygon is represented in Figure 5. This is the Newton polygon of p(t) if and only if v p (a 2 ) ≥ n/3, v p (a 3 ) ≥ 2n/3 and v p (a 4 ) = n. If these conditions hold e = 1 if and only if p(t) has no root of valuation n/3 and 2n/3 in Q p . p-rank 0 case: v p (a 4 ) > 0, v p (a 3 ) > 0, v p (a 2 ) > 0 and v p (a 1 ) > 0

There are three Newton polygons for which e = 1. One is represented in Figure 6. This is the Newton polygon of p(t) if and only if v p (a 1 ) ≥ n/3, v p (a 2 ) ≥ 2n/3, v p (a 3 ) = n and v p (a 4 ) ≥ 3n/2. If these conditions hold, e = 1 if and only if p(t) has no root in Q p .

The second Newton polygon is represented in Figure 7. The last Newton polygon is represented in Figure 8; the corresponding abelian varieties are supersingular. This is the Newton polygon of p(t) if and only if v p (a 1 ) ≥ n/2, v p (a 2 ) ≥ n, v p (a 3 ) ≥ 3n/2 and v p (a 3 ) ≥ 2n. If these conditions hold, e = 1 if and only if p(t) has no root nor factor of degree 3 in Q p .

Supersingular case

In [START_REF] Singh | On the characteristic polynomial of frobenius of supersingular abelian varieties of dimension up to 7 over finite fields[END_REF], Singh, McGuire and Zaytsev gave the list of irreducible characteristic polynomials of supersingular abelian varieties of dimension 4 , where q is not a square. Here we derive the list when q is a square. Let p(t) be an irreducible supersingular Weil polynomial of degree 8, where q is a square. By Honda-Tate Theorem, 1 q 4 p( √ qt) is a cyclotomic polynomial of degree 8 i.e; 1 q 4 p(t √ q) = Φ m (t) such that φ(m) = 8 or m ∈ {15, 16, 20, 24, 30}. Therefore for each m above, p(t) = q g Φ m ( t √ q ) gives a supersingular Weil polynomial of degree 8. Let p(t) = i p i (t) be the decomposition in irreducible factors of p(t) over Q p with π = √ qζ n as a root, where ζ n is primitive nth root of unity. To determine the dimension of the corresponding abelian variety, recall from [START_REF] Milne | Abelian varieties over finite fields[END_REF], p(t) e is a characteristic polynomial of an abelian variety of dimension 4e, where e is the least common denominator of v p (π) v p (q) deg p i (t) = deg p i 2 . Since p(t) = q g Φ m ( t √ q ), deg p i = deg r i where Φ m (t) = i r i (t). But from chapter IV.4 in [START_REF] Serre | Local Fields[END_REF], we have deg r i = r where r is the multiplicative order of p in ( Z mZ ) * . Hence, e = 1 if r is even. In each case of m above, since φ(m) = 2 3 , r is either even or r = 1. The later case only happens when p ≡ 1 mod m. Hence, p(t) = q g Φ m ( t √ q ), where p ≡ 1 mod m is an irreducible characteristic polynomial of a supersingular abelian variety of dimension 4, for each m ∈ {15, 16, 20, 24, 30}.
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 12 and we always have e = 1. Ordinary case p-rank 3 case: v p (a 4 ) > 0 and v p (a 3 ) = 0The only Newton polygon for which e = 1 is represented in Figure2. p-rank 3 case This is the Newton polygon of p
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 4 p-rank 1 first case This is the Newton polygon of p(t) if and only if v p (a 2 ) ≥ n/2, v p (a 3 ) ≥ n and v p (a 4 ) ≥ 2n. If these conditions hold, e = 1 if and only if p(t) has no root of valuation n/2 nor factor of degree 3 in Q p .
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 7 p-rank 0 second case This is the Newton polygon of p(t) if and only if v p (a 1 ) ≥ n/4, v p (a 2 ) ≥ n/2, v p (a 3 ) ≥ 3n/4 and v p (a 4 ) = n. If these conditions hold, e = 1 if and only if p(t) has no factor of degrees 1, 2 and 3 in Q p .
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 8 Supersingular case

  (t) if and only if v p (a 4 ) ≥ n/2. If this condition holds, p(t) has a factor in Q p of degree 2 with roots of valuation n/2 and e = 1 if and only if this factor is irreducible, that is, if and only if p(t) has no root of valuation n/2 in Q p .p-rank 2 case: v p (a 4 ) > 0, v p (a 3 ) > 0 and v p (a 2 ) = 0The only Newton polygon for which e = 1 is represented in Figure3. This is the Newton polygon of p(t) if and only if v p (a 3 ) ≥ n/2 and v p (a 4 ) ≥ n. If these conditions hold, p(t) has a factor in Q p of degree 4 with roots of valuation n/2 and e = 1 if and only if this factor has no root in Q p , that is, if and only if p(t) has no root of valuation n/2 in Q p .
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