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Selfstress States Identification and 
Localization in Modular Tensegrity Grids

R. Sánchez, B. Maurin, M.N. Kazi-Aoual, and R. Motro

Laboratoire de Mécanique et Génie Civil, UMR CNRS 5508, Université Montpellier 2

ABSTRACT: The design of a modular tensegrity grid requires the determination of its selfstress states, before 
choosing an appropriate combination defining the system’s initial stresses. However, the computation of the vectorial 
basis associated with selfstress states generally produces results that are difficult to exploit. We therefore propose 
two different strategies to identify and localize selfstress states in a modular tensegrity grid more pertinently. The first is 
based on a heuristic approach that exploits the system’s structural composition of modularity and regularity. The second is 
numerical and aims at redefining the vectors of the basis in a more convenient and useful way. Two methods based on 
transformations of the vectorial basis of selfstress states have been developed for a minimal number of involved 
components. Finally, we suggest a selfstress state classification based on the number of components and their localization as 
well as on their mechanical behavior.
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1. BACKGROUND AND OBJECTIVES

Tensegrity systems have been initially investigated by
engineers or artists like R. B. Fuller [1] and K. Snelson
[2]. Developments have lead to the identification of
basic modules that could be assembled to create grids
[3]. The realization of several physical systems has
demonstrated the feasibility of such conceptual design.
Examples of a plane and a curved grid, both realized at
Montpellier University, are presented in Fig. 1.

Various structural compositions can be considered
according to their basic module (triplex, quadruplex, or
hexaplex, see Fig. 2). Such structure could be envisaged
for building grids with specific boundary geometries
that can meet different architectural requirements.

From a mechanical point of view, tensegrity grids
are selfstressed equilibrate spatial structures
composed of compressed struts connected to cables in
tension. These initial stresses contribute to the
system’s rigidity and stability. The rigidity is increased
by including the geometric stiffness in the tangent

stiffness of each component, but also by the fact that
all the cable elements are rigid provided they remain
tensioned. The intensity of the selfstress should hence
ensure their non slackening when external actions are
considered. In the opposite case, a slackening of
cables results in a rigidity loss and in possible
mechanisms and instability phenomena. However, an
excessive selfstress level is also inappropriate since it
can lead to premature fatigue and disproportionate
sizing of the components.

As a consequence, the determination of the suitable
initial stresses distribution and intensity is a key point
for a tensegrity grid design. Such a calculation requires
characterizing the relationship between the grid form
and the initial stresses in the components. This stage is
called form-finding and can be achieved according to
two approaches [4]: the form controlled ones, where
possible stresses are determined from a given shape,
and the force controlled ones, which consists in
calculating the shapes associated to specified stresses.
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Once the distribution and intensity of the initial
stresses have been chosen, the designer has secondly
to analyze the mechanical behavior of the structure
(stiffness and resistance). It can lead to other stresses

specification until a suitable behavior is ensured. The
last stage of the design is related to the realization of
the grid. The main issue is the installation and
assembling strategy to follow in order to obtain the

Figure 1. Plane and curved modular tensegrity grid.

  
a) b) c)

Figure 2. Grids based on triplex (a), quadruplex (b) or hexaplex (c) modules.
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required stresses in the components. Several
approaches have been proposed for that purpose [5].

This study deals with the form controlled strategy
and is devoted to the initial stresses identification for
modular tensegrity grids. The objective is to propose
adapted methods for the localization of the selfstress
states in this type of structure. The calculations used
until now to determine the initial stresses are most of
the time based on the computation of the kernel of the
system equilibrium matrix to provide a basis of the
vectorial subspace of the selfstress states. However,
the results obtained by this approach are generally
difficult to exploit for engineers. For instance, the null
space basis for a square grid composed of 6×6
quadruplex modules has 124 selfstress vectors. Two
of them, directly stemming from the computation, are
shown in Fig. 3 (the red and blue colors respectively
correspond to the compression and tension
intensities). The difficulty to interpret and to exploit
such result is observable. Nevertheless, the designer
has to determine a pertinent combination of these
vectors in order to define the grid selfstress. The latter
has indeed an incidence on the stiffness, strength and
stability of the structure, and a precise and adapted
knowledge of the different selfstress states is
therefore necessary.

The objective of this study is to propose useful and
user friendly methods to identify and to localize more
pertinently the selfstress states in a modular
tensegrity grid. The first approach is based on a
heuristic construction using the system structural
composition properties of modularity and regularity
(symmetry and periodicity of the components). The
second strategy is numerical and its objective is to
rewrite the vectors of the basis in a more convenient
and useful way. Two methods have been thus
developed, based on several transformations of the
selfstress states vectorial basis, to have a maximum
of zero terms in the vectors.

2. SELFSTRESS STATES

IDENTIFICATION AND LOCALIZATION

2.1 Tensegrity Selfstress Basis
In a tensegrity system, the equilibrium of one node i
connected to elements j may be expressed as [6]

(1)

where fi are the external actions acting upon the node
Nij and the internal normal forces in an element j
(tension or compression). Hence, the equilibrium of
the whole system, with b component and D degrees of
freedom, may be written

(2)

where [A] is the equilibrium matrix (D rows and b
columns), {F} is the vector of external actions 
(D components) and {q} is the vector of the force
density coefficients (b components). The force density
coefficients are the ratios of the normal forces divided
by the component lengths; they allow to write in a
more convenient way the equilibrium matrix (length
calculations are unnecessary).

If no external action is considered on the structure,
it comes

(3)

The selfstress states are hence the elements of a basis
for the kernel of the equilibrium matrix, i.e. a basis for
the vectorial subspace of the solutions of Eqn. (3)

(4)

Moreover, the number of selfstress states is
(5)

(where rA is the rank of the equilibrium matrix [A]).
The s vectors {Si} form the selfstress states basis

[S]. They can be numerically computed by numerous
software that calculates the kernel of a given matrix
(Matlab®, Mathematica®, Maple® etc.). However, as

s b rA= −

S Ker A{ } ∈ [ ] .

A q[ ]{ } = { }0 .

A q F[ ]{ } = { }

f Ni ij
j

{ }+ { } =∑ 0

Figure 3. Quadruplex grid and two computed selfstress states.
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shown in Fig. 3, the obtained selfstress states are
generally difficult to understand and to use by the
engineer. 

2.2 Modular Tensegrity Beams
Beams composed by a linear assembly of tensegrity
modules have been initially studied at Montpellier
University [7]. One of the first steps was to determine
the number of selfstress states according to the number
of modules. A formula, depending on the nature of the
module, has been put forward [8]. An example of a
quadruplex beam is presented in Fig. 4.

If this beam has three quadruplex modules, the
identification of the four selfstress states can be
achieved according to the structural composition.
Since every module keeps its individual selfstress
state after assembling, the three corresponding
selfstress states can be easily localized (SS 1 to 3,
see Fig. 5). They are determined from the computed
basis by using the simplex method where force
density coefficients are specified on some elements
[9]. For instance, the first selfstress state (SS 1) is
obtained by prescribing a compression equal to –1
for one strut of the first module and equal to 0 for
one strut of the other modules. The same procedure
occurs for the second and third modules (SS 2 and
3). Nevertheless, one selfstress state remains to be
identified (SS 4). Several representations are
possible, depending on the linear combinations of
the selfstress basis considered for writing the
associated vector. We have chosen to consider the

case of a maximum number of zeros in this vector,
that is to say a minimum of involved components.
This method will be presented in section 2.4.2. The
result is not unique, but two interesting possibilities
are illustrated in Fig. 5 (SS 4). We observe that, for
these two vectors, the elements involved are located
within the central module.

2.3 Selfstresses and Structural
Composition
As previously shown for tensegrity beams, the
repetitiveness and regularity of the modules may be
used to identify the selfstress states in a modular
tensegrity grid [10]. If we consider a simple case,
based on assembling of 2D modules (Fig. 6), the
evolution from one to several modules is
characterized in the selfstress states basis [S] by the
periodicity of non-zero terms of the vector {S1}
associated to one single module.

This approach may be extended to 3D modular
tensegrity grids. An application is presented in Fig. 7 for
a 2 ×฀3 quadruplex grid. The direct computation of the
rank of equilibrium matrix indicates that this structure
has nine selfstress states (s = 9 with Eqn. 5). However,
the use of the grid structural composition allows
localizing them without complicated calculations:
a. Since each module has one selfstress state, six

repetitive selfstress states are generated in the
system.

b. Since each line composed of three modules has
one selfstress state (the “central” SS 4 in a 1 ×฀3

 ...   ... 

s = 1 s = 2 s = 4 s = 6

MX

s = 2(MX –1)

Figure 4. Number of selfstress states in a quadruplex beam.

SS 1 SS 2 SS 3 

SS 4 

Figure 5. The four selfstress states in a 3 × 1 quadruplex beam.
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quadruplex beam shown in Fig. 5); we obtain two
repetitive selfstress states.

c. One selfstress state remains located within the
entire 2 ×฀3 grid. Such a state may be represented
as in Fig. 7 (SS 9) with a maximum number of
zeros in the corresponding vector.

These nine selfstress states may be this way easily
localized in the system. Such a result could be
helpful for the engineer who has to generate the grid
selfstress by a linear combination of these vectors.

A second example is presented in Fig. 8 for a 4×4
quadruplex grid. All the selfstress states can be
determined and localized by using an identical approach
without any computation. Thus, 16 repetitive SS
corresponding to the modules (a), 16 other repetitive 
SS associated with the 1 × 3 beams (b) and 12 repetitive
SS for the 2 ×฀3 grids located within the structure (c) can
be identified. This finally gives 44 selfstress states; the
result is confirmed by a numerical computation of 
s = 44.
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Figure 6. Modular periodicity in a 2D example.

a) SS 1 to 6 b) SS 7 to 8
c) SS 9

Figure 7. Selfstress localization in a 2 × 3 quadruplex grid (s = 9).

 

a) SS 1 to 16

b) SS 17 to 32 c) SS 33 to 44

Figure 8. Selfstress localization in a 4 × 4 quadruplex grid (s = 44).
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An extension of this method is proposed in the case
of a MX by MY quadruplex grid. The number of the
associated selfstress states is then (see Table 1)
• s = MX MY if MX ≤ 2 and MY ≤ 2.
• s = a + b + c if MX > 2 and MY ≤ 2, with a = MX

MY (total number of modules), b = MY (MX – 2)
(number of 1×3 horizontal beams) and c = (MY –
1) (MX – 2) (number of 2×3 horizontal grids).

• s = a + b + c + d + e if MX > 2 and MY > 2, with
a, b and c as defined above, d = MX(MY – 2)
(number of 1 ×฀3 vertical beams) and e = (MX – 1)
(MY – 2) (number of 2 ×฀3 vertical grids).

2.4 Selfstress Reduction
Together with the grids’ structural composition, we
have developed numerical approaches to identify the
selfstress states in modular tensegrity grids. The
objective is to reduce the number of elements that are
involved in each selfstress state. This requires
maximizing the number of null terms in the
corresponding vectors of the basis. This problem of
finding a convenient sparse and localized basis for the
kernel of a matrix is known as “the sparse null space
basis problem” and has been already studied by
different authors [11, 12]. It has been shown that, in
general and for large matrices especially, it is not
possible to find an algorithm which always converges
to the optimal solution in a reasonable time.

Several numerical tests have led us to consider two
different approaches: the Gauss conditioned method
and a specific “reduction” method developed in our
group. Both processes produce interesting and useful
results in the case of modular grids, because of their
specific matrices. Their application to tensegrity
systems in general may, however, not always be
optimally efficient.

2.4.1 Gauss Conditioned Method
The initial vectorial basis [iS] coming from the
software computation (Matlab®, Mathematica®,
Maple® etc.) is first transposed and organized in
accordance with the number of zeros in every line 
(Fig. 9, top). The two first lines are selected and their
consecutive pairs of coefficients are considered until
two non-zero values form a first couple. A linear

Figure 10. 3 × 3 quadruplex grid (s = 19).

Figure 9. Gauss conditioned method.

Table 1. Number of selfstress states in a Mx by MY quadruplex grid 

Mx 1 2 2 3 3 3 4 4 4 5 5 6 7 8 9 10 
MY 1 1 2 1 2 3 2 4 5 5 6 6 7 8 9 10 
s 1 2 4 4 9 19 14 44 59 79 99 124 179 244 319 404 
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combination of these lines is then used to have null
terms in the second line (Fig. 9). However, this
operation is successful only if the number of zeros in
the second line increases. In the opposite, another pair
of coefficients is tested. The matrix is then reorganized
to have the maximum number of zeros in the second
line. The elimination process is then repeated between
the second and the third lines. In the end of the
process, a “reduced” matrix [rS] is obtained. A “zero”
value is defined on the basis of numerical tests that
have shown that the best compromise is to consider a
given number as null if its absolute value is smaller
than 10–6.

This approach is successful in the case of structures
composed with a limited number of modules and,
consequently, of selfstress states. The results show a

practical limit close to s < 15, which is few (e.g. a 2 ×
4 quadruplex grid). No mathematical evidence has
been put forward yet to explain this limit. For larger
structures, we have obtained satisfactory results by
developing a specific “reduction method”.

2.4.2 Reduction Method
This approach is based on the transformation of the
initial matrix [iS] (b rows and s columns, b × s) to s
“reduced” vectors {iSj} (j = 1 to s), with a maximum
of zero terms, by using appropriate vectors of
coefficients {αj}:

(6)

Three steps are required and illustrated by the
calculation of {α1} and [rS1]:

r
j

i
jS S{ } =  { }α

Figure 11. Initially computed basis [iS] for a 3 × 3 quadruplex grid.
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• First, the matrix [iS] is transformed into an
auxiliary matrix [aS](b′ ×฀s) built by selecting the
lines which are not multiple. For instance, the
first line iS1 is compared to another line k which
is eliminated if iSk = λiS1 (multiple lines, λ real
number). The matrix [aS] is then organized with
the line with the fewest multiples at the top, and
the line with the most multiples at the bottom.

• A square matrix [sS](s ×฀s) is then extracted from
[aS] by selecting the first line (with the fewest
multiples) and (s – 1) independent ones among the
other lines. It should, however, be ensured that the
rank of [sS] is equal to s.

• The vector {α1}(1 × s) is thus calculated
according to

[sS]{α1} = {I1} with I11 = 1 and I1k = 0 (7)
for 1 > k ≥ s (1st column 
of the identity matrix).

It comes 

{α1} = [sS]–1 {I1} (8)
and the searched first vector is 

[rS1] = [iS]{α1} = [iS][sS]–1{I1}.

This process is repeated for j = 2 to s, by considering
the vector {Ij} as the jth column of the s × s identity
matrix. The s obtained vectors generate therefore the
reduced basis [rS]. It is hence is equal to 

(9) r i sS S S .  =   
−1

Figure 12. Reduced basis [rS] for a 3 × 3 quadruplex grid.
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2.5 Application
An example is proposed for a 3 × 3 quadruplex grid
with 19 selfstress states (Fig. 10). The computation of
the initial basis with a software leads to the 19
vectors represented in Fig. 11. We observe that some
of them (1, 2, 3, 8, 13, 15, 16, 19) are convenient
since few elements are involved. However, the other
selfstress states are more difficult to understand and
to exploit. The basis [rS] obtained after transformation
of [iS] with the reduction method is represented in
Fig. 12. All the selfstress states are then optimally
localized and accessible to further analysis:
• The 9 repetitive selfstress states associated to the

modules (1, 2, 4, 5, 8, 10, 12, 14, 15);
• The 6 repetitive selfstress states of the 1 × 3

beams (3, 6, 7, 9, 11, 13);
• The 4 repetitive selfstress states associated to the

2 × 3 grids (16, 17, 18, 19).
The identification of repetitive selfstress states is,

however, coincidental and not controlled. Their
localization is not always ensured for larger grids.
However, the results obtained with the method we
suggest are more convenient and diagnostic compared
with those given by the initial basis [iS]. 

3. INITIAL STRESSES

CLASSIFICATION

On the basis of the results shown above, we propose a
classification of the selfstress states (Fig. 13):

• If a selfstress state matches with the mechanical
behavior of the elements, that is to say tractions for
cables and compressions for struts, it is called
compatible, or non-compatible in the opposite case.

• If a selfstress state involves all the components of
the structure, it is called total, or partial if at least
one element is not concerned.

• For a partial selfstress state, three cases occur: 1)
In the case of a sub-domain defined for
generating a self-equilibrate and stable system, a
partial selfstress state is called modular. 2) If the
sub-domain is not self-equilibrated and stable,
such a state is called restricted. 3) If the partial
selfstress state involves several components
diffusely distributed within the system, it is
called diffuse.

These definitions only apply to selfstress states.
However, initial forces in a tensegrity system can also
be a consequence to its anchorage on supports. The
boundary conditions may indeed generate additional
initial stresses even if no external action is considered.
In the case of a non isostatic anchoring, forces in some
elements can occur in association with reactions at the
supports. We prefer to distinguish these initial stresses
and to call them exostress states (ES). They are not
self-equilibrated and require non isostatic boundary
conditions.

For instance, a 2 × 2 quadruplex grid has 4 four
modular selfstress states when it is not fixed (Fig. 14, a).

Compatible

Non-compatible

Total

Partial

Modular

Restricted

Diffuse

Selfstress State} } }
Figure 13. Selfstress classification.

a) 4 modular SS

b) 5 ES due to the boundary conditions

Figure 14. Selfstresses and exostress in a 2 × 2 quadruplex grid.
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However, if the nodes at the corners of the lower plane
are pinned on the supports, then five additional
exostresses can appear. Four of them are in this plane
and involve pairs of aligned cables connecting two
supports; the fifth one is more complex and concerns
numerous components spatially distributed in the grid
(Fig. 14, b).

The distinction between selfstresses and exostresses
is important for further developments. The writing of
the vectorial basis [S] could be indeed perturbed by the
additional exostresses if non isostatic anchoring
conditions are considered. In this case, the engineer
should be able to distinguish them for an accurate
analysis. In the presented example, such splitting is not
difficult. Nevertheless, further developments are
required to identify efficiently selfstresses and
exostresses in general. 

4. CONCLUSIONS

The computation of the vectorial basis of selfstress
states in a tensegrity structure generally does not
provide satisfactory results. Hence, two strategies for
the identification and localization of selfstress states in
a modular tensegrity grid are proposed. The first
approach uses the regularity and repetitiveness of the
components; several results are presented for a
quadruplex grid. The second strategy is based on a
maximum of zero terms in the writing of the selfstress
vectors. Two methods to reduce the number of the
components involved are presented with illustrative
examples. Consequently, a classification of selfstress
states is proposed with reference to the number and
localization of the involved components and
compatibility with their mechanical behavior. In case
of a partial selfstress state, localization may be labeled

modular, restricted or diffuse. The difference between
selfstresses and exostresses due to boundary
conditions is brought forward.
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