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Abstract

We discuss the influence of short-range electrostatic forces, so called dipolar forces, between the

tip of an atomic force microscope (AFM) and a surface carrying charged adatoms. Dipolar forces

are of microscopic character and have their origin in the polarizability of the foremost atoms on

tip and surface. In most experiments performed by non-contact AFM, other forces such as binding

forces dominate the interaction. However, in the experiments presented by Gross et al. [Science

324, 1428 (2009)], where the charge state of individual gold atoms adsorbed on a thin dielectric

layer was determined, binding forces are negligible as the tip-sample distance is relatively large.

We develop a model which mimics the experimental tip-sample geometry of the aforementioned

experiments. The model includes van der Waals and long-range electrostatic interactions, as well

as the short-range electrostatic interaction based on the self-consistent description of electronic

polarization effects on neutral and charged adatoms. The model is based on a calculation of the

electrostatic energy of the tip-sample geometry.

Our calculations of non-contact AFM imaging as well as of bias spectroscopic curves are in

good agreement with the experimental ones presented by Gross et al. It is demonstrated that the

short-range dipolar force is mainly responsible for the contrast observed in topography imaging

above charged species. However, it is the long-range capacitive force which is responsible for the

detection of the charge state in bias spectroscopy. We discuss implications of our findings on future

experiments which aim to detect single charges by means of Kelvin probe force microscopy.

PACS numbers: 07.79.Lh, 41.20.Cv, 34.20.-b

Keywords: noncontact-AFM; atomic resolution; short-range forces; electronic polarization; charge identifi-

cation
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I. INTRODUCTION

Atomic force microscopy (AFM)1 in the so called non-contact mode (nc-AFM)2,3 was

used for the first time by Giessibl4 to measure the semiconducting surface of Si(111)7x7 with

atomic resolution. Since then, nc-AFM developed to an almost standard tool for imaging

not only semiconducting, but also metallic and insulating surfaces with atomic resolution

(cf. Ref.[5]). Although nc-AFM imaging with atomic resolution is now routinely achieved,

there is still a debate about the microscopic origin of the contrast formation.

For semiconducting surfaces there is an agreement on the fact that the contrast is basically

obtained due to the covalent bonding between the foremost tip atom and the surface atoms.

For semiconducting surfaces with well known adsorbates, the distance dependence of these

covalent binding forces can, for example, be used in comparison with theoretical calculations

to chemically identify the adsorbed atom species6. In other experiments with very small tip-

sample separation, the angular component of the binding forces contributes to the contrast

formation7,8, which results in subatomic features in the images. However, also for larger

tip-sample separations, atomic scale contrast has been observed on Si(111)7x7 Ref.[9]. In

this work, the authors use a non-reactive oxidized silicon tip and explain that the tip-sample

interaction is dominated by the dipole moment induced in the tip due to the surface charge

distribution and not by covalent bonding.

For metal surfaces, the origin of the atomic contrast in nc-AFM imaging is less clear.

Some works point out that for both, a clean and thus reactive silicon tip as well as for a tip

contaminated by a metal atom, the tip-sample interaction would be dominated by strong

covalent binding. However, this can not explain several experimental results where only

weak orbital overlap was suggested and the decay length of the force was two times larger

above the surface than for the tunneling current10,11. These results could only be modelled

by using a tip carrying a water molecule, which resulted in only weak interaction due to van

der Waals (vdW) forces, dipole-dipole interactions, and charge transfer12.

In the case of insulating surfaces, the interaction forces are multifold and strongly depend

on the system under investigation. Most of the work done on insulators concentrate on two

main issues: the polarity of the tip as well as the influence of dipolar interaction. It was

Giessibl that first proposed an electrostatic imaging mechanism for ionic crystals based on

a polarizable tip13. The proposed decay length of the interaction force in this model is
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about one order of magnitude per Å and thus sufficiently small to explain atomic scale

contrast on ionic surfaces. In a series of papers using different model tips on ionic as well

as oxide surfaces, Shluger et al. point out the importance of the polarization of both, tip

and sample surface14–18. These extensive calculations consider, in particular, polarization

effects; however, it seems difficult to separate them from the different other interactions

also described in these works. The polarization is induced by the electric field of the tip.

The most prominent effect due to a polar tip is the local polarization of the surface which

goes along with (vertical) displacements of surface atoms. The importance of knowing the

polarity of the tip when interpreting the imaging mechanisms on ionic surfaces has been

discussed in detail by different groups19,20.

When it comes to imaging of local charges and surface potentials, Kelvin probe force mi-

croscopy (KPFM)21,22 is the method used in most experimental setups. KPFM is a method

working in combination with nc-AFM and which is based on the minimization of the electro-

static interaction between the tip and the sample. Electrostatic tip-sample interactions have

been widely studied in the long-range regime on the experimental and on the theoretical

level23–29 within the frame of nc-AFM and KPFM30–34. Long-range electrostatic forces cause

capacitive forces connected to the capacitance of the tip/counter-electrode capacitor as well

as Coulombic forces connected to the presence of charges within it.

For conducting surfaces it is well established, that KPFM reveals the so called local

contact potential difference (LCPD) with a lateral resolution in the order of the tip front

end35–40. For insulating surfaces and nanoscale contrast, the contrast mechanisms are much

more complex since not only the exact geometry of the tip-sample system has to be consid-

ered, but also charges and (induced) dipoles within the system (polarization effects)41–43.

Electrostatic forces in the short-range regime are known to occur since atomically-

resolved LCPD images have already been reported on semi-conducting surfaces: Si(111)7×7

Refs.[31,44–47], Si(111)5
√

3× 5
√

3-Sb Ref.[48], GaAs(110) Ref.[49] and InSb(001) Ref.[50],

and on two bulk dielectric surfaces: TiO2(110) Refs.[41,42] and KBr(001) Ref.[43]. However,

the microscopic origin of these short-range electrostatic forces and the way they are coupled

to the nc-AFM/KPFM imaging remains unclear, which has triggered intensive experimen-

tal and theoretical efforts in that field. Some groups initiated theoretical studies on the

contribution of short-range electrostatic (SRE) forces43,47,50,51 in nc-AFM/KPFM combined

experiments. In a recent series of papers43,52,53, Loppacher et al. have detailed how SRE
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forces may develop between a biased metallic tip carrying an atomic asperity such as a single

atom or a small ionic cluster and the (001) facet of a bulk alkali halide single crystal. The

results point out that these originate from the dynamic polarization of the atomic cluster

and of surface atoms owing to the combined influence of the biased tip and of the Madelung

surface potential of the ionic crystal13. In Ref.[47], Sadewasser et al. have shown that po-

larization effects were responsible for the atomic scale KPFM contrast on the Si(111)-7×7

including Pb adatoms, as well. Their results point toward a relation between the changes

in the LCPD over distinct atomic sites and the variations of the surface local electronic

structure due to a charge polarization induced by the tip-surface interaction. More recently,

Bieletzki et al.54 have also stated that the strong dipole in MgO thin films deposited on

Ag(111) leads to specific KPFM and topographical imaging conditions depending on the

charge state of the tip. More recently even, Masago et al.55, using a theoretical approach

based on DFT calculations, stressed the influence of the polarizability of atomic species in

the apparent LCPD on Si surfaces and reach markedly similar conclusions as those of the

present work.

Most of the aforementioned results indicate that polarization effects play a key role in

the occurrence of SRE forces with two consequences in nc-AFM and KPFM: (i) They con-

tribute to the total interaction force and are thus involved in the ∆f signal used to perform

“topographical images” and (ii) despite about a few tens of pico-newtons43,56, they must

be considered for interpreting the LCPD atomic scale contrast owing to their cross-coupled

distance- and bias voltage-dependence. To a first approximation, SRE forces should be

proportional to the square of the applied bias voltage Vb. Thus, in both KPFM and spec-

troscopy curves where the frequency detuning ∆f is recorded as a function of the applied

bias voltage Vb [∆f(Vb) parabolas], it should be possible to detect the SRE contributions to

the total interaction.

Besides imaging by means of KPFM, the aforementioned single point spectroscopy ∆f(Vb)

parabolas and similar detection methods are more frequently used to detect local charges and

charge transfer. Since the first experiments by Terris et al.57 where triboelectrification was

measured with a sensitivity of a few charges only, single charges58–61, dipole moments62–64

as well as the charge state of individual point defects65 have been detected.

Due to their fundamental physical origin, SRE forces are ubiquitous. They are more

and more under discussion since in recent years nc-AFM and KPFM are used to investigate
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single charges and local surface potentials on the nanometer length scale. In this work,

we focus on the SRE interactions and ask two questions in regard to the imaging and the

spectroscopy of charged species:

• can SRE forces alone be responsible for the atomic scale image contrast?

• is single charge detection on the nanometer scale possible?

These two questions have been raised by recent experimental results presented by Gross

et al.56. The authors present a set of experimental results combining single electron charge

sensitivity and atomic lateral resolution the latter, however, in topography imaging and

not in KPFM. The investigated system is a charged or neutral gold atom adsorbed on

a thin dielectric layer (NaCl) on a metal surface. The tip carries a foremost gold atom.

Different charge states of the adatoms are clearly resolved in nc-AFM topography images

and bias spectroscopy can be used to identify the charge state of the gold adatom. Note

that for the reported experimental tip-sample distances (> 4.5 Å), any interaction due to

covalent binding can be excluded and only vdW and electrostatic forces have to be regarded.

Therefore, these experiments are an ideal model case in order to study the role of dipolar

forces in nc-AFM experiments.

In the present work, we clarify the role of SRE interaction in the topography imaging

mechanism of single charges and we give the limits for lateral resolution in single charge

detection. Thereto, we develop a relatively simple analytical model which mimics the ex-

perimental tip-sample geometry as presented by Gross et al. and we use it to calculate the

experimental images (line profiles) as well as the spectroscopy curves. In addition to the well

known vdW forces66 and the long-range electrostatic forces23,67 for a known tip geometry,

our model includes a self-consistent description of the SRE interaction including electronic

polarization effects. Our purpose is to show how SRE contribution can reproduce trends and

orders of magnitude reported in the experiments by Gross et al.56. However, it is not our

intention to fit their results since that would require a fully atomistic description involving

a complex simulation process14–18.
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FIG. 1: Geometry of the problem. The tip consists of a macroscopic metallic body with a conical

shape. The tip apex is described by a sphere with a radius R. The tip is grounded with regard to

the counter-electrode on top of which lies a thin dielectric consisting of two mono-layers of an ionic

film. The tip apex carries a neutral, but polarizable single atom. On top of the dielectric lies an

adatom that may carry a single electron charge. The geometrical parameters of the problem are

defined similarly to those in the work by Gross et al.56.

II. ELECTROSTATIC MODEL

A. Framework

The geometry of the problem is shown in Fig. 1. It accurately mimics the geometry of

the problem as defined in the work by Gross et al.56. Our parameters are defined similarly

as well. The tip consists of a metallic macroscopic body with a conical shape. The apical

part of it is depicted by a sphere with a radius R. The apex carries a neutral single metallic

atom in topmost position. The atom has an electronic polarizability α. The tip is grounded

with regard to the metallic counter-electrode located below a thin dielectric with a thickness

hd and biased at a potential Vb. In Ref.[56], the dielectric is made of two mono-layers of

NaCl deposited on a Cu(111) substrate. Thus, typically hd ' 3 Å. On top of the dielectric

lies a metallic adatom that may carry a net single electron charge q = q̃ × e, e being the

elementary charge unit (1.6 × 10−19 C). Hence, q̃ = ±1, or q̃ = 0. It is assumed that the

surface adatom has the same electronic polarizability α as the one present on the tip apex.
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Consistently with Ref.[56], the tip atom and the adatom are supposed to be Gold atoms. We

therefore use the corresponding polarizability for that metal. In Ref.[68], pseudopotential

calculations give an estimate for the dielectric susceptibility of Gold χd = αε0: 0.04×10−39 <

χd (F.m2) < 0.09 × 10−39. Thus, we will consider in the following χd = 0.06 10−39 F.m2

and, hence, α = 6.78× 10−30 m3. The instantaneous tip-surface separation is z, as defined

in the figure. Even though the interfacial atoms are depicted with a spatial extension as in

Ref.[56], they are treated as punctual objects in the model. Thus, it is important to notice

that our definition of the tip-surface separation is similar to the one in the work by Gross

et al.

When brought “close enough” to the surface, the tip becomes subject to forces, with

essentially two origins69: (i) Electrostatic forces comprise capacitive, Coulombic and what

we henceforth refer to as SRE forces, so called dipolar forces, and (ii) vdW forces, among

which are London dispersion forces if the interacting species do not carry permanent dipoles,

as in the present situation. Dipolar forces, as we define them, have a microscopic origin and

are connected to the ability of the atoms at the interface to get polarized owing to the dual

influence of the biased electrodes and of the presence of the charge within the tip/counter-

electrode capacitor. Thus, the tip atom and the surface adatom carrying the charge q may

acquire net dipolar moments, −→p tip and −→p ad, respectively. It is important to notice that

these forces have a significantly different microscopic origin compared to vdW forces. This

statement is justified in the following.

These forces have distinct decay lengthes, which permits to split their influence between

the long-range (LR) regime (z > 1 nm) and the short-range (SR) regime (z < 1 nm).

Therefore, the total force acting between the tip and the surface may be written as:

−→
F tot =

−→
F LR +

−→
F SR =

[−→
F el

LR +
−→
F vdW

LR

]
+

[−→
F el

SR +
−→
F vdW

SR

]
(1)

The origins of LR- and SR-vdW forces are well-established. They are very briefly discussed

in the following sections. At this stage, we focus on the electrostatic force, especially on the

SR part of it, which has been under discussion in a few recent publications, as detailed in

Sec. I.

In the present work, an expression of the SRE force regarding the system depicted in

Fig. 1 is derived. The starting point of the approach is the expression of the electrostatic

energy for the complete tip/vacuum/charge/dielectric layer/counter-electrode interface, W el
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described in Eq. (2). The vertical component of the total electrostatic force acting on the

tip F el
tot = F el

LR + F el
SR will then be derived as F el

tot = −∂W el/∂z. The constitutive equation

of the electrostatic energy for the system under investigation is

W el =

[
−1

2
C0V 2

b + qφ0 +
1

2
qφim

]
LR

+

[
−1

2
−→p tip ·

−→
E ext

tip −
1

2
−→p ad ·

−→
E ext

ad

]
SR

(2)

The first bracket stands for the usual electrostatic energy of the tip/vacuum/dielectric

layer/counter-electrode capacitor including the inner charge, as described for instance in

Refs.[70,71]. In our problem, this term has a macroscopic origin since it depends on the ge-

ometry of the capacitor. Therefore, forces with a LR character will be associated with it. As

said before, this term may be interpreted as the superposition between a purely capacitive

force and Coulombic forces. C0 depicts the capacitance of the former capacitor including

neither the inner charge q nor the microscopic dipoles −→p tip and −→p ad. This defines a void

capacitor, the capacitance of which may be derived upon integration over its geometry. φ0

is the electrostatic potential which develops within the void capacitor at the location of

the surface adatom, that is, the location of the charge q. φim is the electrostatic potential

induced by the set of image charges of q within both metallic electrodes at its location.

Although usual in electrostatics72, the second bracket in Eq. (2) is less usual when

dealing with nc-AFM. It depicts the electrostatic energy of microscopic dielectrics, here the

tip atom and the charged adatom, when polarized by an external field. In the present case,

on the microscopic level, we may expect that the adatom gets polarized by the electric field

which develops between the tip and the counter-electrode referred to as
−→
E ext

ad .
−→
E ext

ad results

from the superposition of two components: the field within the void capacitor plus the field

induced by the image charges of the charged adatom within the metallic electrodes. Thus,

the adatom will acquire a dipolar moment −→p ad. Simultaneously, the tip atom gets polarized

(dipolar moment −→p tip) by the electric field
−→
E ext

tip that may be built in the same manner: the

field of the void capacitor, the field induced by the image charges of the charged adatom

within the electrodes, but also the Coulombic field developed by the charge itself.
−→
E ext

ad does

not include the latter term since a charge can not influence itself.

Thus, the expressions of the microscopic dipoles −→p ad and −→p tip and those of the external

electric fields
−→
E ext

ad and
−→
E ext

tip are to be derived. For that purpose, few assumptions are

required.
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B. Main assumptions

It is assumed that the dipoles −→p ad and −→p tip have a microscopic origin because they are

only connected to the electronic polarizability of the adatom and of the tip atom, α. Hence,

any depolarizing field is considered, as it should be the case with an extended dielectric.

In order to keep the model as simple as possible, it is retstated that the tip atom and the

surface adatom consist of the same material. Therefore they have the same polarizability α,

which is not strictly correct if the adatom is charged.

The influence of the thin dielectric layer within the capacitor is described by means of an

effective dielectric permittivity εeff , instead of ε0. This would be correct if one was dealing

with a planar capacitor, which is false due to the shape of the tip apex. However, we show

that dipolar forces have a SR character. Therefore, the strongest effects are expected to

occur when the adatom is placed right below the tip atom at a distance of a few Angströms.

Then, the “local capacitor” influencing the adatom is mainly localized within an almost

planar area corresponding to the foremost part of the spherical apex73. This assumption

is valid for R � z. The capacitance of a planar capacitor, the electrodes of which are

at a distance of h from each other, is C = ε0/h. When including a dielectric with a

permittivity εd and a thickness hd between the electrodes, the capacitance becomes: 1/C =

(h − hd)/ε0 + hd/εd. Therefore: C = εeff/h, with εeff = ε0εd/[εd(1 − hd/h) + ε0hd/h].

Considering parameters corresponding to the geometry of the problem: h ' 8 Å, hd ' 3 Å,

εd = 5ε0 (NaCl), εeff ' 1.4ε0. Thus, the influence of the discontinuous dielectric within

the capacitor consists in replacing ε0 by an effective dielectric permittivity with a slightly

larger value. The preceding assumption implies that the dielectric is treated as a continuous

medium. Hence, no microscopic description of it is considered.

Following the preceding elements, the polarizing fields influencing the adatom and tip

atom referred to as
−→
E dip

ad and
−→
E dip

tip , respectively (cf. Sec. II D), are calculated by assuming

a planar geometry of the tip, which implies R � z as well.

We do not address the influence of quantum effects in the problem and stick to a classical

description. Hence, we attempt to describe neither the interaction between the adatom and

the ionic layer nor the stability of the tip atom at the apex and the way its polarization

might influence the local electronic density of the apex, thus modifying the resulting dipole,

by screening effects for instance. In this approach, the interfacial atoms are somewhat frozen
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and the resulting interaction felt by the tip is measured at distances much larger than the

tip atom/apex or adatom/ionic layer distances. These assumptions look reasonable in that

the experimental results by Gross et al. are performed for tip-surface separations larger

than 4 Å and at 5 K, which ensures the atomic stability of the tip apex and of the adatom

over the surface. Nevertheless, from a classical point of view, the polarized tip atom creates

an image dipole within the metallic apex, very close to the source dipole, with the same

strength as it. Thus, because those dipoles are very close to each other, we assume that this

ultimately produces an equivalent dipole built as their vectorial summation (cf. Appendix).

Because the problem is being treated in a classical manner, it is assumed that no wave

function overlap between the electrons of the tip atom and those of the adatom takes place.

In other words, so called “chemical SR interactions” are not taken into account. This implies

that the tip-surface separation remains larger than 4-5 Å, which is indeed the case in the

work reported by Gross et al. At these distances, this also implies that the Madelung surface

potential of the NaCl thin film is too weak to significantly modify the local electrostatic

potential, owing to its exponential-like decay43,74. Thus, the influence of the Madelung

potential on the resulting SRE force is not described. As a consequence, it must be noticed

that the present description significantly differs from the models by Bocquet et al.43 and

Giessibl13 on a bulk alkali halide crystal, for which polarization effects uniquely stem from

the Madelung surface potential.

For the sake of clarity, the way the analytical expressions are derived is not detailed

in the text. We rather discuss the main issues deriving from the formal expressions. The

details of the analytical method and the required calculations are extensively detailed in the

Appendix.

C. Long-range part of the total force

The preceding elements give the following expression for the force acting between the tip

and the surface in the LR regime:

FLR = F vdW
LR + F el

LR = F vdW
LR − ∂

∂z

[
−1

2
C0V 2

b + qφ0 +
1

2
qφim

]
(3)

F vdW
LR depicts the London dispersion force between the tip and the surface. It consists of two

contributions. The first one is calculated in a cone+sphere/plane geometry, as described in
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Ref.[67] (Eq. 2.4). The cone is 1 µm-high with a 10◦ open angle. The sphere has a radius R

(cf. Fig. 1), the value of which is specified in the following. The second vdW contribution

is calculated between the surface adatom and the spherical apex of the tip66:

F vdW
ad⇀tip(d) = −4πCvdW ρR3

[
1

(d + 2R)4d3
+

1

(d + 2R)3d4

]
, (4)

with d being the distance between the sphere’ surface and the adatom center measured

along the axis connecting it to the sphere’s center. When assuming an interface consisting

of similar materials, for example a gold adatom interacting with a gold tip, CvdW scales as

α2 and is connected to the Hamaker constant of the tip-surface interface, H, according to

H = π2ρ2CvdW , where ρ stands for the atomic density of the material. For gold, ρAu =

6× 1028at.m−3 and for metals, it is known66 that H = 1− 5× 10−19 J. In the following, we

take HAu = 3× 10−19 J. Therefore CvdW = 0.8× 10−77 J.m6.

The capacitive force involving the capacitance of the void capacitor C0 was derived from

Ref.[67] as well (Eq. (2.3)). The expressions of the potentials φ0 and φim are derived by

neglecting the influence of the conical part of the tip apex. They are calculated by the process

of image charges of the charge q between the counter-electrode and the sphere standing for

the apex of the tip, similarly to the method extensively detailed in Refs.[70–72].

D. Short-range part of the total force

The SR part of the total force is:

FSR = F vdW
SR + F el

SR = F vdW
SR − ∂

∂z

[
−1

2
−→p tip ·

−→
E ext

tip −
1

2
−→p ad ·

−→
E ext

ad

]
(5)

F vdW
SR depicts the SR London dispersion force between the interfacial atoms, that is the tip

atom and the adatom. The latter component occurs whether the adatom is charged or not.

Most of the time, when the interacting atoms may be assumed as punctual objects, the inter-

action is described by a Lennard-Jones potential scaling as r−6. Hence: F vdW
SR = −6CvdW /r7.

According to the estimated value for CvdW , one has used: F vdW
SR (nN) ' −500/r7(Å).

We now focus on the description of the dipolar force. The expressions of the microscopic

dipoles −→p tip and −→p ad and of the external fields
−→
E ext

tip and
−→
E ext

ad are to be found. However, the

microscopic dipoles arise from the local electric field felt by the tip atom or by the adatom75

12



including, in addition to the external field, the mutual influence of the dipoles on each other,

thus ensuring the self-consistency of the model. Therefore,

−→p tip,ad = ε0α
−→
E loc

tip,ad, (6)

with

−→
E loc

tip,ad =
−→
E ext

tip,ad +
−→
E dip

tip,ad. (7)

−→
E dip

tip (
−→
E dip

ad ) is the dipolar field induced by the polarized adatom (the polarized tip atom), its

set of image dipoles, but also by the image dipoles of the polarized tip atom (the polarized

adatom), influencing the tip (the adatom). The preceding equation states that the polariz-

abilities of the tip atom and of the adatom are similar, consistent with our assumption.

Physically, the external fields
−→
E ext

tip,ad are both proportional to Vb and q [visible in Eqs.

(A.13), (A.14), (A.15) and (A.19), (A.20) in the Appendix). Besides, the self-consistency

of the approach implies that −→p tip,ad stem from polarization effects, that is from a field, or

a potential, able to trigger them. In turn, the dipolar fields
−→
E dip

tip,ad 6=
−→
0 if and only if

−→p tip,ad 6=
−→
0 . This requires either Vb 6= 0, or q̃ 6= 0 (in this case, the Coulombic potential

created by the charge is 6= 0). For instance, the case Vb 6= 0 and q̃ = 0 gives rise to dipolar

forces because a neutral adatom may be polarized. Conversely, the peculiar case Vb = 0 and

q̃ = 0, implies
−→
E ext

tip,ad =
−→
0 and thus

−→
E dip

tip,ad =
−→
0 because −→p tip,ad =

−→
0 . Then no dipolar

forces occur, and the resulting SR force is only driven by the SR-vdW interaction.

The formal expressions of the external and local electric fields are given in appendix. The

lateral (x axis) and vertical (z axis) expressions of −→p ad and −→p tip are derived by solving a set

of linear equations [cf. Appendix, Eqs. (A.17) and (A.22)]. Finally, the vertical component

of the SRE force, F el
SR, may be derived by differentiation with respect to z [Eq. (5)], and thus

the expression of the total force may be obtained. The problem thus rationalized relies on

two main parameters, namely, the polarizability of the interfacial atoms α and the Hamaker

constant of the interface H.

The microscopic origin of the dipolar forces described here differs significantly from the

origin of vdW forces between atoms or molecules, among which are London dispersion forces

(generic term FvdW in the model), but also Debye or Keesom forces (not described as they

are irrelevant with the present setup). London dispersion forces stem from the net dipolar

13



interaction resulting from the instantaneous electronic polarization of the interacting atoms.

They occur whether the interacting atoms are charged or not and whether a bias voltage

is applied or not. Debye forces stem from the interaction between an atom or a molecule

carrying a permanent dipole and an induced dipole. Keesom forces stem from the interaction

between two permanent dipoles subject to random orientation due to thermal motion. Here,

dipolar forces do rely on the electric biasing of the electrodes and on the presence of net

charges within the tip-surface interface because the induced fields polarize the interfacial

atoms that subsequently self-influence themselves. Furthermore, they do not require the

atoms to carry permanent dipoles and are not sensitive to thermal effects because the atomic

positions are considered to be frozen and the electronic polarization is independent of the

temperature.

III. ANALYTICAL RESULTS AND COMPARISON WITH EXPERIMENTAL

RESULTS

A. SR-electrostatic versus SR-vdW forces: strength, lateral resolution and dis-

tance dependence

In Fig. 2(a), the SR force including vdW and dipolar contributions, FSR = F vdW
SR + F el

SR,

is drawn as a function of the lateral position of the tip depicted by its angle θ with respect to

the charged adatom (θ = 0, cf. Fig. 1). The force curves have been computed with Vb = 0

for two tip-surface separations, z = 4.8 and 5.1 Å and above q̃ = −1 (charged adatom) and

q̃ = 0 (neutral adatom). The unchanged parameters are: polarizability for gold α = 6.78 Å3,

dielectric thickness hd = 3.0 Å (two NaCl layers), and εeff = 1.4ε0. These force profiles are

to be compared to the experimental ones shown in Fig. 2(B) of Ref.[56] measured on Au−

and Au0, for which the LR background force has been subtracted. In addition, we have

assumed the two atoms are far enough apart (' 27 Å in the experimental work) to avoid a

potential cross-influence in the resulting force measured on top of each of them.

Let us consider the case q̃ = 0 first [neutral adatom, green curves in Fig. 2(a)]. No

dipolar force occurs because Vb = 0 and q̃ = 0. The resulting interaction is only driven by

the SR-vdW force, as stated in Sec. II D. We stick to the experimental values of the force

measured at z = 4.8 Å in Ref.[56] [yellow curve in Fig. 2(B) of the reference]. The numerical
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FIG. 2: (Color online). (a) Tip-adatom SR force including SR-vdW and dipolar contributions as a

function of the angular position of the tip with respect to the adatom located in θ = 0. The force

profiles have been computed with Vb = 0 and z = 4.8 Å (continuous curves) and 5.1 Å (dotted

curves), ont top of q̃ = −1 (black curves) and q̃ = 0 (green curves). The full width at half-maximum

for the black curve (q̃ = −1, z = 4.8 Å) is ∆θ = ±0.44 rad. The comparison between the numerical

results and the experimental curves from Gross et al.56 is good (cf. text). (b) Distance dependence

of the tip-adatom SR force computed with Vb = 0 on top of q̃ = −1 (black dots) and on top of

q̃ = 0 (squares). The latter curve merely consists of the SR-vdW force component (∝ z−7). The

fit of the curve measured on top of q̃ = −1 (continuous red curve) has been obtained with a z−6

function. The experimental values of the force derived from Gross et al. are depicted with blue

squares. The horizontal error bars depict a possible uncertainty in the z position of the tip of 2%

only. The discrepancy between SRE and SR-vdW forces is well visible.

estimate of the force gives -8.5 pN whereas the reported experimental force rather is -14 pN.

This discrepancy may be reduced if one considers a sphere-sphere vdW interaction instead

of vdW interaction between atoms treated as punctual objects. The vdW interaction force

between spheres may be derived from Eq. (1) in Ref.[76]. With two gold atoms (144 pm

radius) 4.8 Å far apart then F vdW,max
SR =-12 pN. Even though the calculations look more

accurate, we keep on using the vdW interaction between punctual objects in the following

in order to: (i) be consistent with the punctual-like description of the charged adatom for

the electrostatic interaction and (ii) not bring further uncertainty in the calculations, as the

value of the Au− radius was not found.

When now considering the curve computed on top of q̃ = −1 at z = 4.8 Å [continuous
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black curve in Fig. 2(a)], the numerical estimate gives -24.5 pN and the experimental value

of the force reaches -27 pN. At z = 5.1 Å(dotted black curve), the force has decayed down to

-16.9 pN, corresponding to a max/min ratio of 1.45 within ∆z = 30 pm only. Therefore in

the present situation, SR-vdW forces are not able to account for the experimental variations

observed on top of Au−, which states that SRE forces weight significantly in the total force

upon the polarizability and the charge state of the interfacial atoms.

In Fig. 2(a), it is restated that the calculations are performed with (i) both q̃ = 0 or

q̃ = −1 adatoms lying on the dielectric’ surface and hence located at the same separation

with regard to the tip atom when placed above them and (ii) with the same polarizability

α for them. Thus, this allows us to strictly compare SRE and SR-vdW forces, while getting

rid of the topographical influence and of the chemical nature of the underlying adatoms,

respectively. We are aware that these assumptions are problematic. Indeed, regarding issue

(i), it is known that, when adsorbed on a NaCl thin film, Au− embeds within the surface by

about 0.4 Å, whereas the neutral gold atom remains at the surface77. Regarding issue (ii), it

is obviously expected α(Au−) > α(Au0). Nevertheless, a rather good agreement is observed

between the calculations and the experiments. We think this stems from the two following

effects that actually balance each other: the underestimation of the tip-Au− separation,

which implies an overestimation of the force [as it decays quickly with z; cf., Figs. 2(a) and

2(b)], and an underestimation of the force on top of Au−, as all the SR forces increase with

α.

The force profile as a function of the lateral position of the adatom allows us to draw

conclusions regarding the lateral resolution of neutral and charged adatoms in the ex-

perimental images. This requires first to define a criterion stating unambiguously what

the lateral resolution is. We stick to the following criterion: two objects separated by

a distance d over the surface are assumed as being resolved by the tip if the full width

at half maximum (FWHM) of their respective force profile [∆x
(1)
FWHM and ∆x

(2)
FWHM , re-

spectively] do not overlap, that is d > (∆x
(1)
FWHM + ∆x

(2)
FWHM)/2. In the range 4.8-

5.1 Å, the calculated FWHM force profile on the negatively charged adatom or on the

neutral one does not vary much: θFWHM ' ±0.44 rad. Therefore, at z = 4.8 Å,

∆xFWHM(Au−)=∆xFWHM(Au0)=2z × tan(θFWHM) = 4.5 Å. The experimental values are:

∆xFWHM(Au−)' 5 Å and ∆xFWHM(Au0)' 7.5 Å. If the comparison to the experiments is

good in the case of Au−, which testifies to the importance of the SRE forces contribution,
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there is a significant discrepancy with Au0. At this stage, this is not yet understood. But,

regarding the spatial extension of the force profile on a single electron charge, the “apparent

size” of a charged adatom is a few Angströms only. This is a somewhat unexpected result in

that a naive view of the problem might have expected a usual Coulombic z−1 dependence,

thus preventing any high-resolution imaging of these objects from being performed.

In Fig. 2(b), the distance dependence of the total SR force on top of an adatom with

q̃ = −1 is reported (black dots) and compared to the experimental data from Gross et

al. (blued squares). These have been derived for few tip-surface separations given in the

reference [Fig. 2(B); z = 4.8, 5.15, and 6.0 Å]. The agreement between the experimental

and the numerical data is still good, within however deviations due to the limitations of

the model and to the experimental error bars. For instance, the z error bars shown in Fig.

2(b) correspond to ±2% only. The best fitting function for the force was found to be z−6

(continuous red line). For comparison, we have as well drawn the SR-vdW curve (i.e. on

top of Au0) scaling in z−7 (black squares), the behavior of which is significantly different.

This trend is fully consistent with the one shown in Fig. (S1B) of the supporting online

material of Ref.[56]. Thus, SRE forces decay almost as fast as SR-vdW, but their strength

may prevail on the SR-vdW contribution upon the polarizability and/or the charge state of

the interfacial atoms.

B. SR- versus LR-electrostatic forces: influence on the charge state characteriza-

tion

A major aspect of the work by Gross et al. deals with the detection of single electron

charges by means of the measurement of the LCPD. The authors showed that the LCPD

might selectively be shifted upon the sign of the charge of the underlying adatom (positive,

neutral or negative). We hereafter detail the bias voltage dependence of the total force

derived from the model upon the sign of the adatom and discuss how the LR-electrostatic

component may influence the detected LCPD.

In order to stick to the experimental results of Gross et al. shown in Fig. (3A) of the

reference, the spectroscopic curves are reported in terms of frequency shift (∆f) as a function

of the dc bias. For that purpose, the expression of ∆f is derived from the force F according

to a simplified expression, only valid when using small oscillation amplitudes78,79 as this is
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FIG. 3: (Color online). (a) Geometry used to compute the spectroscopic curves shown in panel

(b). (b) ∆f vs. dc bias spectroscopic curves computed for q̃ = +1 (red), q̃ = 0 (green), and q̃ = −1

(black) at z = 5.8 Å. The tip apex’s radius has been set equal to R = 50 Å. The numerical curves

are found to be in good agreement with the experimental results measured on top of Au0 and Au−.

Note also that the way the LCPD is shifted (larger values with negatively charged adatoms and

vice-versa) is consistent with the experimental findings. To assess the influence of SRE forces, the

curves have been plotted with (continuous lines) and without (dotted lines) the SR components.

SRE forces do not contribute significantly to shift the LCPD upon the charge state of the adatom

(similar positions of the parabolas’ maxima), but rather shift the total force. Therefore, with the

present setup, the LR-electrostatic interaction is solely responsible for the observed LCPD shift

(∆V = +80 or -100 mV). (c) ∆f(Vb) curves computed above q̃ = −1 (black curve) and q̃ = +1

(red curve) upon similar conditions as (b), except that the LR components are set equal to 0.

The shaded area depicts the range of bias shown in (b). Over that range, the variation of the

SRE-connected ∆f is very small, despite a strong splitting between parabolas’ maxima.

the case in Gross’ experiments:

∆f = − f0

2k

∂F

∂z
. (8)
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In Fig. 3, ∆f vs. VDC curves are reported. They have been computed on top of an adatom

with q̃ = +1, q̃ = 0 or q̃ = −1. We have used the experimental parameters given in

Ref.[56]: k = 1800 N/m and f0 = 23000 Hz. The curves are computed at constant height,

z = 5.8 Å with a tip radius R = 50 Å and an additional adatom with a charge state q̃ = −1,

located 10 Å aside the one on top of which the spectroscopic measurement is performed

[cf. Fig. 3(a)]. This is consistent with the geometry of the spectrometric measurements

performed by Gross shown in Figs. 3(A), (B) and (C). Note that the spectroscopic curve

computed on top of q̃ = +1 is for predictive purpose as no equivalent curve is reported

in the experimental work. Let us focus on the curves corresponding to the total force

first [continuous lines labeled as LR+SRvdW+SRE in Fig. 3(b)]. The qualitative behavior

between numerical and experimental results is good and similar trends are observed. First,

over a similar range of voltage (±400 mV), the numerical values of ∆f range from -2.4

down to -4.4 Hz, while the experimental range is -2.4..-3.3 Hz. We assign this discrepancy

to our assumption of a sphere-plane capacitor for the calculation of the potential φ0 and

φim in the LR-electrostatic interaction. Second, negatively charged adatoms have a larger

LCPD than neutral and positively (not shown in the experimental results) charged ones.

The gap voltage between q̃ = 0 and q̃ = −1 is ∆V =+80 mV, to be compared to the

experimental value: ∆V '+30 mV. Third, a larger attractive force occurs on top of q̃ = ±1

(more negative shift) than on q̃ = 0, consistent with the experimental findings and with the

results of the preceding section. Fourth, the maxima of the numerical curve measured on

top of q̃ = 0 is not centered around 0, but rather around VDC = +80 mV, to be compared

to the 180 mV-experimental value. This effect stems from the electrostatic influence of the

additional adatom q̃ = −1 located nearby in the capacitor, which contributes to the positive

shift of the LCPD, consistent with what is observed on top of q̃ = −1. This is also the effect

that makes the LCPD calculated on top of q̃ = +1 almost zero since the total charge within

the capacitor is then zero.

We now discuss the relative weight between LR and SR forces in ∆f(Vb) spectroscopic

curves. To first order, dipolar forces scale as V 2
b (cf. Appendix), but the bias-dependence of

the total force as well stems from the LR-electrostatic part of the interaction. In order to

understand what force component is the most significant in the bias dependence, spectro-

scopic curves computed without SR forces, that is only with the LR components, are drawn

in the figure [dotted curves labeled as LR in Fig. 3(b)]. The parabolas are not bias-shifted,
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but ∆f -shifted (less negative values), upon removal of SRE forces. Indeed, when investi-

gating the bias dependence of the mere SRE forces above q̃ = −1 and q̃ = +1 upon similar

conditions [geometry, height; cf. Fig. 3(c)], it is found that over the range ±400 mV (shaded

area in the figure), the curvature of the parabolas is very weak, corresponding to ∆f changes

of about 0.1 Hz. However, a large splitting between parabolas’ maxima (∆VDC = 19 V)

is observed, which states that SRE forces are extremely sensitive to the charge state of

the adatom as soon as LR-electrostatic forces are not present in the tip/dielectric/counter-

electrode capacitor. Conversely, when these are present, the spectroscopic curves become

weakly influenced by SRE components, which fully agrees with the pioneer work by Terris et

al.57. In this case, any attempt to accurately fit ∆f(Vb) experimental data requires a precise

calculation of the electric field within the capacitor40,80,81, and therefore a precise knowledge

of its geometry.

C. SR- versus LR-electrostatic forces: influence on the lateral resolution

We here address the issue of the lateral resolution as a function of SR- and LR- contribu-

tions. The conditions to achieve high-resolution imaging rely on SR interactions, including

dipolar as well as SR-vdW forces, but also on the tip sharpness, that is the size of the tip

apex.

For that purpose, we mimic the experimental situation shown in Fig. 2(A) of the work

by Gross et al. A negatively charged adatom (q̃ = −1) lying on the thin dielectric is placed

at a distance d = 25 Å from a neutral adatom (q̃ = 0). In Fig. 4, ∆f profiles are reported as

a function of the tip size and force components. These are derived from the corresponding

force profiles calculated at z = 4.8 Å with Vb = 0 according to the same method as before.

For each case reported in the figure, we have plotted the total force including LR and SR

components (red curves) and solely the LR component (including vdW and electrostatics,

black curves). The LR force is calculated for tip apexes corresponding to: (i) a hemispherical

apex with R=20 Å [Fig. 4(a), R ' d], (ii) same as (i) with R=45 Å [Fig. 4(b), R > d], (iii)

same as (i) with R=200 Å [Fig. 4(c), R � d], and (iv) same as (i) with R = 1000 Å [Fig.

4(d)].

Let us first discuss the influence of the LR interaction on the calculated ∆f profiles. As

expected, the LR interaction increases with the size of the macroscopic tip and produces a
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FIG. 4: (color online). ∆f profiles computed from the corresponding force profiles calculated at

z = 4.8 Å with Vb = 0. The charged adatom (q̃ = −1) is placed in x = 0 and the neutral adatom

is placed at a distance d corresponding to x = −25 Å. Cases a-, b-, c- and d- correspond to a tip

with hemispherical apex R=20 Å (R ' d), R=45 Å (R > d), R=200 Å (R � d) and a flat apex

with an area equivalent to a hemispherical apex of radius R = 1000 Å, respectively. For each case,

the total force (red curves) or the total force minus the SR components (black curves) has been

used to derive the ∆f profile.

∆f offset ranging from -1 Hz in Fig. 4(a) up to -47 Hz in Fig. 4(d). At the distances used

in the experimental setup, it is the LR electrostatic interaction which dominates over the

LR-vdW one for the sharpest tip. This can be seen in Fig. 4(a) where the different contrast

of the black curves above Au0 and Au− is caused by the LR electrostatic interaction only.

In the present case of zero bias (Vb = 0, and hence φ0 = 0) and a tip radius R which is much

larger than the distance z (R > 5z), the LR electrostatic interaction only depends on the

charge and the induced potentials φim [see Eq. (2)] and preserves a more or less constant

strength (' 2 Hz) for all tip sizes. It is always centered around the charged adatom, however,

its lateral confinement is decreasing with increasing tip size. Other than the LR electrostatic

forces which are constant in the present setup, the LR-vdW forces scale with the volume

of the tip. This is why for the flat tip calculated in Fig. 4(d) it is the LR-vdW which

21



produces the largest part of the interaction. The LR-vdW is not sensitive to the charge;

consequently, the maximum contrast is now centered between the two adatoms and no longer

above the charged one. Please note that the LR-vdW part contains two contributions. One

describes the interaction between the adatoms and the macroscopic tip; the other describes

the interaction between the surface and the macroscopic tip. It is the first one which causes

the parabolic shape of the black curve in Fig. 4(d), the latter one just adds a constant offset

to the calculated ∆f .

All the previously described LR interactions produce a more or less structured background

in the ∆f profiles due to a convolution with the macroscopic tip shape. As soon as SRE

forces are present, the convolution with the tip apex does not prohibit resolving charged

adatoms. The main reason is that SRE forces are able to spatially and selectively pin

the force on top of each adatom because they prevail on SR-vdW forces, as discussed in

subsection II D. However, the lateral resolution depends on the exact shape of the apex.

Surprisingly, a tip with an apex the size of which is significantly larger than the separation

between the species to be resolved, provides the maximum of lateral resolution. Indeed, the

influence of LR components is then averaged over the area of the tip, whereas the spatial

distribution of the SR dipolar and vdW forces remains unchanged as they are not apex-

size dependent. Conversely, this tip will provide no sensitivity to the charge state of the

adatoms because the LR-electrostatic contribution will weight too much in the resulting

bias dependence of the total force, as described in subsection III B. A very sharp tip [case

(i)] will provide high resolution as well, as the one used by Gross et al. to perform their

experiments, R ' 5− 10 Å. Between these extreme cases, the resolution will depend on the

size of the tip apex, as discussed, for instance, in Ref.[82].

IV. SUMMARY AND CONCLUSION

We present a model which explains in detail the nc-AFM experiments reported by Gross

et al.56. In these experiments, nc-AFM is used first to image the topography of charged

and neutral gold atoms adsorbed on a thin dielectric layer deposited on a metal substrate.

Second, frequency shift ∆f as a function of bias voltage Vb curves are used to identify the

charge state of these adatoms.

Our model mimics the experimental tip-sample geometry and accounts for both LR- and
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SR-vdW, as well as electrostatic forces. The geometry consists of a metallic tip and a metal

substrate covered by two monolayers (3 Å) of a dielectric film. On both, tip and surface, there

is a (polarizable) gold atom adsorbed. The SR chemical binding forces and displacements

of atoms are not included since in the experiments, the closest tip-sample distance is larger

than 4.5 Å. All material constants in our model are chosen according to values given in the

literature. The model is based on the calculation of the electrostatic energy for the complete

geometrical system. In addition to the well known terms of LR- and SR-vdW, as well as the

LR-electrostatic terms, our model includes a less common term of SR-electrostatic (SRE)

forces stemming from the self-consistent description of electronic polarization at the tip-

surface interface including the contribution of image charges and image dipoles. These SRE

interactions, so called dipolar forces, have a microscopic origin due to the polarizable atoms

adsorbed on the tip front end and on the surface. The polarization of these atoms is due to

the biased electrodes (metallic tip and counter-electrode), as well as to charges within the

tip/counter-electrode capacitor.

The previously described SRE interactions are weak in comparison to SR binding forces.

The experiments by Gross et al. were performed at distances larger than 4.5 Å and therefore

serve as model case experiments since SR binding forces are negligible. In this model case,

it is found that the interaction responsible for the atomic scale topographical contrast in nc-

AFM is not determined by SR-vdW, but rather dominated by SRE interactions. However, for

the identification of the charge state of the adsorbed atoms by means of ∆f(Vb) spectroscopy,

our calculations clearly point out that the experimentally observed variation of the LCPD

is dominated by the LR-electrostatic interactions. Thus, a different interaction allows for

the discrimination of charged adatoms in topography imaging and in ∆f(Vb) spectroscopy,

respectively.

These findings allow us to draw conclusions regarding experimental strategies to improve

the spatial resolution on isolated charged species and/or high spectroscopic sensitivity to

their charge state. In particular, the proposed experimental geometries might be the key to

success in order to investigate surfaces that will be influenced or even destroyed when the

tip apex approaches within the range of atomic binding distances.

• The topographical appearance of charged adatoms adsorbed on a dielectric relies on

SRE forces, their high-resolution imaging requires a polarizable tip apex, but not

mandatorily ultra-sharp. The latter issue however, would obviously facilitate the high-
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resolution. Polarizable tips might be achieved by using a properly-grafted polarizable

molecule at the tip apex, or by using a tip coating consisting of a high-K material, for

instance.

• The charge sensitivity in either the spectroscopic signature or KPFM measurements

is hindered by LR-capacitive forces. In order to increase sensitivity, SRE contribution

should be predominant. Thereto, two suggestions can be made. The first one is to

increase the SRE contribution by using both, a polarizable tip apex as well as a sharp

tip in order to increase the local electric field. The second concept is to make the

tip/counter-electrode capacitance as small as possible. For that purpose, using a bulk

insulator instead of a thin layer might be advantageous.

Choosing such experimental conditions would allow, for example, the detection of the

local charge distribution within a single dipolar molecule.
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APPENDIX

The geometry of the parameters defined hereafter is detailed in Fig. 5.

A. Summary of the analytical method and main assumptions

The vertical component of the SR dipolar force to calculate derives from the classical

equation:

F el
SR = − ∂

∂z

[
−1

2
−→p tip ·

−→
E ext

tip −
1

2
−→p ad ·

−→
E ext

ad

]
, (A.9)
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FIG. 5: Geometry of the parameters defined in the model and description of the image dipole

process for the calculation of the dipolar fields, Edip
ad and Edip

tip . For that calculation, the metallic

tip apex is assumed as being planar (cf. text). Owing to the image process, this plane as well as

the counter-electrode plane are antisymmetrical. Indexes (0) refer to the real dipoles. The set of

image dipoles within the tip apex are numbered with a prime (′). For the calculation of the dipolar

fields, we have solely used the set of images dipoles depicted in the figure (cf. text).

where
−→
E ext

tip and
−→
E ext

ad are the external electric fields influencing the foremost tip atom and

the surface adatom, respectively. These are produced by the biased void capacitor, the

charged adatom and its set of image charges within the metallic electrodes.

In addition to the latter external fields, the self-consistency of the problem is ensured by

the assumption that the adatom is as well polarized by the dipolar field of the tip atom and

vice versa:

−→p tip,ad = ε0α
−→
E loc

tip,ad, (A.10)

with:
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−→
E loc

tip,ad =
−→
E ext

tip,ad +
−→
E dip

tip,ad (A.11)

−→
E dip

tip is the dipolar field polarizing the foremost tip atom. It originates from the following:

• the polarized adatom

• the set of image dipoles of the polarized adatom within the metallic electrodes

• the set of image dipoles of the polarized tip atom within the metallic electrodes

−→
E dip

ad is the dipolar field polarizing the surface adatom. It originates from:

• the polarized tip atom

• the set of image dipoles of the polarized adatom within the metallic electrodes

• the set of image dipoles of the polarized tip atom within the metallic electrodes

The dipolar field in a point M of the space produced by an isolated dipole −→p located in a

point O, such that
−−→
OM = rêr, is:

−→
E dip(M) =

1

4πε0

3(−→p · êr)êr −−→p
r3

(A.12)

Once
−→
E ext

tip,ad are calculated, the combination of Eqs. (A.12), (A.11) and (A.10), allows the

derivation of a linear set of equations for the x and z components of −→p tip and −→p ad.

Because SRE forces have a very narrow lateral extension, the calculation of the dipolar

fields is performed by assuming a planar geometry of the tip-surface interface, which means

we assume R � z. Hence, due to the effect of the image dipoles process, the planar

electrodes become antisymmetrical planes. Since −→p tip belongs to the tip apex plane, it is

oriented perpendicularly to this plane, that is, along the z axis. As discussed in the text, we

group −→p tip and its image with regard to the tip plane, which ultimately implies to replace

ptip,z with 2ptip,z in the calculations. Conversely, −→p ad cannot be projected along a single

direction.

Calculating
−→
E dip

tip and
−→
E dip

ad by using the image dipoles process leads formally to an infinity

of image dipoles of −→p tip and −→p ad. Nevertheless, because the dipolar field decreases as

r−3 [Eq. (A.12)] and because the distance between each image dipole and the real dipole

26



increases as the number of images under consideration increases, we restrict the calculation

of the dipolar field to the image dipoles depicted in Fig. 5. This configuration stands for

the minimum set of images that ensures the antisymmetry condition on the tip apex as

well as the coupling between −→p tip and −→p ad and their first images. Thus, with this level

of approximation,
−→
E dip

tip is derived by only considering interactions with −→p (0)
ad (real adatom

dipole), −→p (1′)
ad , 2−→p (1)

tip , and 2−→p (2′)
tip [cf. Fig. (5)]. Similarly,

−→
E dip

ad is derived by considering

interactions with 2−→p (0)
tip (real tip atom dipole), 2−→p (1)

tip ,
−→p (1)

ad and −→p (1′)
ad .

B. Local electric field felt by the charged adatom: Eloc
ad

We seek the expression of the local electric felt by the charged adatom
−→
E loc

ad =
−→
E ext

ad +
−→
E dip

ad

[cf. Eq. (A.11)].

(i) The external electric field acting on the charged adatom
−→
E ext

ad consists of two compo-

nents: (a) the field of the void capacitor that may locally be assumed as a planar capacitor

(R � z), referred to as
−→
E ext,0, and (b) the field produced by the image charges of the charge

within the metallic electrodes of the capacitor, that is the spherical apex of the tip and the

counter-electrode, referred to as
−→
E ext

im⇀ad,

−→
E ext

ad =
−→
E ext,0 +

−→
E ext

im⇀ad. (A.13)

When assuming that the void capacitor has a planar geometry, the expression of the electric

field becomes trivial:

−→
E ext,0 =

Vb

hd + z
ẑ. (A.14)

The electric field produced by the image charges of the charge may be derived by recurrence,

−→
E ext

im⇀ad =
q

4πεeff

∞∑
n=0

[
1

[2z + 2dn]2
− 1

[2hd + 2dn]2

]
ẑ, (A.15)

with dn = n(hd + z) and n ∈ N. Therefore,
−→
E ext

ad has a single vertical component. When

considering both the convergence of the series and the computing time for the calculations,

it is found that n = 20 is an optimal choice for shrinking the series.

(ii)
−→
E dip

ad states for the dipolar field influencing the surface adatom. The vectorial pro-

jection along x and z axes gives:
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−→
E dip

ad =
1

4πε0


6ptip,z

r3 cos θ sin θ − 6ptip,z

r′3 cos θ′ sin θ′ + 2pad,x

(
1

(2x)3
+ 1

(2z)3

)
,

2ptip,z

r3 (3 cos2 θ − 1) +
2ptip,z

r′3 (3 cos2 θ′ − 1) + 2pad,z

(
1

(2hd)3
+ 1

(2z)3

)
.

(A.16)

Therefore, the equation giving the expression of the dipolar moment of the adatom becomes:

−→p ad = ε0α
−→
E loc

ad = ε0α

 Edip
ad (ptip,z; pad,x)

Eext
ad + Edip

ad (ptip,z; pad,z)
(A.17)

As expected, the dipole of the polarized adatom has two vectorial components. The x

component may be derived and put in a simple shape, that is at lowest order in α. We get:

pad,x =
α

4π
6ptip,z

(
cos θ sin θ

r3
− cos θ′ sin θ′

r′3

)
(A.18)

Therefore, it may be seen that the x component of the dipole of the polarized adatom stems

from the z (i.e. vertical) component of the tip dipole.

C. Local electric field felt by the tip atom: Eloc
tip

We now seek the expression of the local electric felt by the tip atom:
−→
E loc

tip =
−→
E ext

tip +
−→
E dip

tip .

(i) Contrary to
−→
E ext

ad ,
−→
E ext

tip consists of three components: (a) the field of the void capacitor
−→
E ext,0 already found, (b) the field of the image charges of the charge within the metallic

electrodes of the capacitor, and (c) the Coulombic field due to the charged adatom. However,

the two latter components are derived in a row and give the expression of the electric field

referred to as
−→
E ext

ad+im⇀tip,

−→
E ext

tip =
−→
E ext,0 +

−→
E ext

ad+im⇀tip. (A.19)

We get

−→
E ext

ad+im⇀tip =
2q

4πεeff

∞∑
n=0

[
z + 2dn

[(z tan θ)2 + (z + 2dn)2]3/2
− 2hd + z + 2dn

[(z tan θ)2 + (2hd + z + 2dn)2]3/2

]
ẑ

(A.20)

with dn = n(hd + z). For the same reason as before, the calculations are performed with

n = 20. Contrary to
−→
E ext

im⇀ad,
−→
E ext

ad+im⇀tip is not zero for n = 0, which actually gives the

Coulombic electric field produced by the charge influencing the tip.
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(ii)
−→
E dip

tip states for the dipolar field influencing the tip atom. We get:

−→
E dip

tip =
1

4πε0

[
4ptip,z

(2(hd + z))3
+

6

r3
(pad,x cos θ sin θ + pad,z(cos2 θ − 1))

]
ẑ (A.21)

Therefore, the second equation giving the expression of the dipolar moment of the tip atom

is:

−→p tip = ε0α
−→
E loc

tip = ε0α

 0

Eext,0 + Eext
ad+im⇀tip + Edip

tip (ptip,z; pad,x; pad,z)
(A.22)

The tip dipole has solely a vertical component, as expected from the symmetry conditions.

The set of linear equations (A.17) and (A.22) gives the expressions of pad,z and ptip,z, which

ultimately gives the expression of F el
SR [right-hand side in Eq. (5)].
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36 J. Colchero, A. Gil, and A. Beró, Phys. Rev. B 64, 245403 (2001).

37 Th. Glatzel, S. Sadewasser, and M. Ch. Lux-Steiner, Appl. Surf. Sci. 210, 84 (2003).

38 A. Gil, J. Colchero, J. Gomez-Herrero, and A. Baro, Nanotechnology 14, 332 (2003).

39 U. Zerweck, Ch. Loppacher, T. Otto, S. Grafström, and L. M. Eng, Phys. Rev. B 71, 125424

(2005).

40 K. Sajewicz, F. Krok, and J. Konior, Jap. J. Appl. Phys. 49, 025201 (2010).

41 A. Sasahara, C. L. Pang, and H. Onishi, J. Phys. Chem. B 110, 13453 (2006).

42 G. H. Enevoldsen, Th. Glatzel, M. C. Christensen, J. V. Lauritsen, and F. Besenbacher, Phys.

Rev. Lett. 100, 236104 (2008).

43 F. Bocquet, L. Nony, Ch. Loppacher, and Th. Glatzel, Phys. Rev. B 78, 035410 (2008).

44 S. Kitamura, K. Suzuki, and M. Iwatsuki, Appl. Surf. Sci. 140, 265 (1999).

45 S. Kitamura, K. Suzuki, M. Iwatsuki, and C. Mooney, Appl. Surf. Sci. 157, 222 (2000).

46 T. Arai and M. Tomitori, Phys. Rev. Lett. 93, 256101 (2004).

47 S. Sadewasser, P. Jelinek, C.-K. Fang, O. Custance, Y. Yamada, Y. Sugimoto, M. Abe, and S.

Morita, Phys. Rev. Lett. 103, 266103 (2009).

48 K. Okamoto, K. Yoshimoto, Y. Sugawara, and S. Morita, Appl. Surf. Sci. 210, 128 (2003).

49 Y. Sugawara, T. Uchihashi, M. Abe, and S. Morita, Appl. Surf. Sci. 140, 371 (1999).

50 F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski, and M. Szymonski, Phys. Rev. B 77,

235427 (2008).

51 K. Okamoto, Y. Sugawara, and S. Morita, Jpn. J. Appl. Phys. 42, 7163-7168 (2003).

52 L. Nony, F. Bocquet, Ch. Loppacher, and Th. Glatzel, Nanotechnology 20, 264014 (2009).

53 L. Nony, A. Foster, F. Bocquet, and Ch. Loppacher, Phys. Rev. Lett. 103, 036802 (2009).

54 M. Bieletzki, T. Hynninen, T. M. Soini, M. Pivetta, C. R. Henry, A. S. Foster, F. Esch, C.

Barth, and U. Heiza, Phys. Chem. Chem. Phys. 12, 3203 (2010).

55 A. Masago, M. Tsukada, and M. Shimizu, Phys. Rev. B. 82, 195433 (2010).

56 L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, G. Meyer, Science 324, 1428 (2009).

57 B. Terris, J. Stern, D. Rugar, and H. Mamin, Phys. Rev. Lett. 63, 2669 (1989).

58 Ch. Schönenberger and S. Alvarado, Phys. Rev. Lett. 65, 3162 (1990).

59 E. Bussmann, N. Zheng, and C. Williams, Appl. Phys. Lett. 86, 163109 (2005).

60 Y. Azuma, M. Kanehara, T. Teranishi, and Y. Majima, Phys. Rev. Lett. 96, 016108 (2006).

31



61 R. Stomp, Y. Miyahara, S. Schär, Q. Sun, H. Guo, and P. Grütter, Phys. Rev. Lett. 94, 056802

(2005).

62 T. D. Krauss and L. E. Brus, Phys. Rev. Lett. 83, 4840 (1999).
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