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1. INTRODUCTION

The main issue in the study of repetitive elongated strut,

or strut-and-cable structures consists in trying to

optimize computation methods, making them as simple

and as fast as possible. This is particularly true when the

main characteristic of these structures is their geometric

complexity. Thus, we were interested in finding an

equivalent continuous media with globally the same

properties as the discrete structure but easier to study;

getting this equivalent continuous media would help to

simplify the mechanical studies. The concept of

homogenization, relatively new in this kind of

structures, will enable us to translate the mechanical

behaviour on a macroscopic scale of a beam for example

from the microscopic behaviour of a basic cell. So the

periodic character of the structure could usefully be

taken into account, since we would only need to study

one single cell as compared to other methods for which

the difficulty increases with the number of modules.

In this paper, we study a class of innovative systems

in the field of spatial structures: systems in a selfstress

state. There exist reticulate strut-and-cable systems,

where the rigidity and the stability are conditioned by

the existence of a selfstress state. In a modular

structure of this family, each module can have a

different self-stress level, and in horizontal quadruplex

assemblies with more than two modules, it has been

established that the number of selfstress states is

higher than that of the modules. Interested reader can

examine the literature concerning tensegrity systems

for classical issues, our introduction is dedicated to

new approaches of homogenization.

Concerning this specific topic, homogenization

techniques based on the use of asymptotic development

in double scale can be mentioned: these techniques

have been developed by Verna & Caillerie [1] and [2]

who studied the behaviour of platelike lattices in static

configuration (N, X and W beams); in their study, the

displacements and the tensions in the struts are written

in the form of an asymptotic development compared to

a small parameter ε. The macroscopic behaviour of the

beam is obtained by exploiting different orders of the

parameter ε in equilibrium equations. Tollenaere [3]

uses the same procedure in the case of free vibrations,
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first of all on a one-dimensional system composed of

concentrated masses and springs, then in the case of

vibrations of the platelike lattices with pin jointed

nodes. Ohayon [4] uses the method of asymptotic

developments in double scale to study the harmonic

vibrations of a heterogeneous ring with a repetitive

configuration. The advantage of this approach is that the

equivalent continuum model still keeps all the degrees

of freedom of the discrete model, which enables a back

path to local behaviour. On the other hand this method

is characterised by a very heavy mathematical

formalism, which restricts its application to only very

simple geometries. Another technique is simultaneously

developed, it is based on a concept of energy

equivalence.

Noor et al. [5] and [6] use this method to study

three-dimensional beamlike lattices with pin jointed

nodes and rigid nodes. To define the fields of

displacement they use a Taylor series development

along the longitudinal axis of the beam where they

make the strain and the strain gradient appear. Noor &

Nemeth [7] take an hypothesis of micro-polar

continuous media into account, and they define fields

of displacement and rotation along the three spatial

directions. Compared with finite element computation,

they obtain results of less than 2% error on the

displacements and the rotations.

Dow et al. [8] suggest a more general approach than

that of Noor by writing a matricial formulation; they

use a polynomial approximation of the field

displacement (order of 3). The 60 coefficients that

appear, are identified by using linear elasticity

equations (strain-displacement relations). According to

the geometric complexity of the basic cell, a reduction

of the number of coefficients is suggested, either by

determining the rank of a transformation matrix, or by

introducing kinematic hypotheses on the continuum

model (for example the Love-Kirchhoff hypotheses).

McCallen and Romstad [9] use the concept of

energy equivalence in the hypothesis of geometrical

non-linearities on a simple flat structure (X cell). They

use the notion of generalized stress in the cross-section

so as to write the strain energy in the lattice model. This

approach is also used in other particular applications: in

dynamic approaches Abrate and Sun [10] model a

beamlike lattice taking into account viscous damping,

Banks et al.[11], Juang et al.[12] use the continuum

model for the dynamic identification of a lattice. Yang

et al.[13] use this approach for the dynamic testing of

spatial structures and Bazant [14] studies the problem

of checking the buckling situations for rigid node

lattices with the continuum model.

In our work, aiming to homogenize systems in

tensegrity state, we use the concept of energy

equivalence as developed by Dow et al. [8], but taking

into account the selfstress. That is to say, the total

strain energy stored in the discrete system will be the

sum of two terms, one caused by the elastic rigidity of

the elements and the other by the initial selfstress. It

must be recalled that we may as well apply this

procedure for tensegrity systems assuming that the

assemblies of the different modules be linear. In other

terms, they constitute repetitive beams. Once the

assemblies of modules become two-dimensional, such

as the grids, the procedure is invalid.

The research of equivalent continuum media is

made in the vicinity of the initial, non-deformed

configuration. But it is possible to apply this procedure

in the geometric non-linear behaviour situations. And

this is our objective in the future (this work is on

progress), to use these equivalent rigidities in the beam

finite element rigidity matrix to try to approach the

geometric non-linear behaviour of beams with several

modules. In this stage, we proceed step by step, and for

each load step we recalculate the equivalent rigidities

associated with the new configurations.

2. THE SELFSTRESS CONTINUUM

MODEL

It could be useful to remember at this point that the

equivalent continuum model we are looking for will

also be selfstressed. Characterized on one hand by the

six terms of rigidity (longitudinal rigidity E
—–
A, the

flexural rigidities E
—–
Iy and E

—–
Iz, shearing rigidities G

—–
Ay

and G
—–
Az and torsional rigidity G

—–
J ) and on the other

hand by the coupling terms cij. These coupling terms

are null in the case of a cell with symmetrical

geometry. The equilibrium of a continuum beam for

which transversal shearing is taken into account can be

translated by the following equation:

(1)
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Where the index « 0 » indicates elastic rigidity of the

elements, and the index « q » indicates rigidity due to

initial selfstress.

N is the axial force, My and Mz the bending

moments according to the axes y and z, Vy and Vz the

shear forces according to y and z and Ct the torsion

couple around the neutral axis. εx is the longitudinal

strain of the beam, k0
y and k0

z the bending curvatures

associated respectively to My and Mz, γ 0
xy and γ 0

xz the

transverse shear strain, k0
t is the torsion strain.

The strain energy Uc of a continuum beam without

coupling terms is expressed as follows:

(3)

Where ky and kz are the correction shear factors.

3. THE DISCRETE SELFSTRESS

MODEL

The expression of the total strain energy of a pin

jointed structure in a selfstress state is:

(4)

Where [KEA] is the matrix of linear stiffness, [KG] is

the matrix of the initial stresses given in the case of an

element (k) expressed in the local reference axis:

(5)

where is the coefficient of force density, and :

(6)

The variables in the expression (4) are the nodes

displacements; they must be transformed and

expressed in function of the variables appearing in 

the continuum model, (1) and (3). Then a simple

comparison between the two expressions will enable
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the deduction of the equivalent rigidity. The procedure

for this transformation will now be summarized in the

following paragraphs.

3.1. First transformation [T1]
This transformation consists in defining a field of

displacement (u, v and w), in the form of a polynomial

expansion of 3-order, with respect to the local cell

reference. The choice of such an order of expansion is

sufficient to model the tensegrity modules, the second

order of polynomial is sufficient for modelling the

three modules of tensegrity firstly studied in this paper.

By contrast, the third order is necessary for modelling

other modules of tensegrity such as the expanded

octahedron (a module with 6 struts and 24 cables).

u (x,y,z)=a1+a2x+a3y+a4z+a5x
2+a6xy+.......+a20z

3

v (x,y,z)=b1+b2x+b3y+b4z+b5x
2+b6xy+.......+b20z

3 (7)

w (x,y,z)=c1+c2x+c3y+c4z+c5x
2+c6xy+.......+c20z

3

A total of 60 coefficients appear in this field of

displacement (ai, bi and ci with i = 1,20), these

coefficients are calculated with respect to strains and

strains gradients using the equations of elasticity. Once

these coefficients have been determined, the

polynomial expansion is then applied to all degrees of

freedom of the base cell (3xn); n is number of nodes.

(8)

Or in an abbreviated form: {u}i = [T1]{u}ε,

where {u}i is the displacements vector defined by the

finite elements model of dimension n, {u}ε the vector

of the strains and of their derivatives of dimension 60,

and [T1] the first matrix of rectangular transformation

of dimension (3nx60). This matrix obviously depends

only on the geometry of the cell. In reference [8],
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Dow et al. clearly explain the calculation procedure of

the (3nx60) coefficients.

From this transformation, the strain energy of the

base cell can be written in function of the vector {u}ε:

(9)

3.2. Second transformation [T2]
The following transformation consists in reducing the

number of variables of the vector {u}ε. As long as the

freedom degrees number of the base cell is less than

60, which is in fact often the case, linearly dependent

variables can be found among these components.

These can then be eliminated by calculating the rank

of the matrix of the first transformation matrix [T1].

The transformation matrix [T2] enables to link of

the strain vector {u}ε of dimension 60 with the new

strain vector obtained after transformation matrix [T2]:

{u}ε = [T2] {µ}ε (10)

{µ}ε is the new strain vector obtained after

transformation [T2]. It must be recalled that the first

six components of {u}ε must be preserved in {µ}ε for

decomposition in the third transformation. By

substituting the vector {µ}ε in the expression of the

strain energy given by (9):

(11)

is obtained.

3.3. Third transformation [T3]
The following transformation consists in decomposing

the strain vector {µ}ε obtained after the previous

transformation in two parts; the first noted {α}ε,

includes the six strain components appearing in the

strain energy expression (3), the second part of the

vector {µ}ε is written as {β}ε; this vector assembles

the remaining variables.

The transformation matrix [T3] operates this

decomposition with the following formula:

(12)

(13)

That can be put as follows:

(14)

with:

(15)

3.4. Fourth transformation [T4]
This transformation consists in expressing the vector

{β}ε in function of the vector {α}ε. The transformation

matrix [T4] links these two vectors, with the following

expression:

(16)

The new strain energy expression after transformation [T4],

is noted U*
d ; by introducing the expression (16) in (13):

(17)

is obtained.

To show how to calculate the matrix [K*], the

matrix [D] is decomposed in four sub-matrices.

(18)

where {F}α, {F}β are the force vectors associated

respectively with the two vectors {α}ε and {β}ε. The

technique of static condensation consists in reducing

the size of the system (18) by expressing the vector

{β}ε in function of the vector {α}ε.

{β}ε = − [D22]
–1[D21]{α}ε. (19)

and the system (18) is reduced leading to the following

form:

[D11] − [D12][D22]
–1[D21]{α}ε = {F}α (20)

[K*]{α}ε = {F}α (21)

Thus the expression of the matrix K* is deduced:

[K*]=[D11]−[D12][D22]
–1[D21] (22)

At the end of these developments, it can be noted that

only the components of the vector {α}ε appear in the

expression of the strain energy U*
d given by (17); they

are the same strain components that appear in the
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Figure 1. Loadings conditions for the six degrees of freedom.

expression (1). Consequently, a simple analogy

between the matrix [K*] and the matrix given by the

expression (1) enables the deduction of the equivalent

rigidity and the coupling terms of the discrete system.

4. LOADINGS CONDITIONS IN THE

FINITE ELEMENT METHODS

Aiming to validate the results by finite element

methods in the calculation of the equivalent rigidities,

we applied loadings conditions on the cell along the

six degrees of freedom. They are displayed for a

triangular disposition ( such as “simplex” case), in the

Figure [1] below:

As an example, in order to calculate the axial

stiffness EA and the torsional rigidity GJ (and

eventually the coupling term C16 between EA and GJ),

it is sufficient to apply a unit load Fx = 1 along the

degree of freedom number 1; the cell will undergo,

besides the average axial lengthening d1, an average

rotation d6. By writing the two equations which

include the displacements d1 and d6, we obtain:

(23)

Let us proceed similarly, by applying then a unitary

couple Mx = 1 along the degree of freedom number 6.

The displacements due to a unitary couple are noted d′1
and d′6. Therefore we may report the following system:

EA

h
d C d

C d
GJ

h
d

1 16 6

16 1 6

1

0

+ =

+ =

(24)

Working with these two systems, we can calculate the

axial stiffness EA and the torsional stiffness GJ and

eventually the coupling term C16 between the two. We

use the same method to calculate the flexural stiffness

EI, the shear stiffness GA and the coupling terms

between them. For more details, the reader may refer

to the reference [16].

5. NUMERICAL APPLICATIONS

Three tensegrity cells are concerned in this study,

the simplex, the regular quadruplex (vertical

quadruplex) and the half-cuboctahedron quadruplex

(horizontal quadruplex). Before developing the

numerical applications, it is important to remember

that the notion of repetitive cell is defined as the

assemblies of two cells for the first two cases (Fig 2

and 9). The third case is devoted to only one cell

(Fig 15).

For the three cells, the geometrical and mechanical

characteristics of the struts and cables are:

Cable cross-section: Ac = 0.28 cm2 ; Strut cross-section:

Ab = 3.25 cm2

Young’s modulus: Ec = 40 000 Mpa (cables); Eb = 200 000

Mpa (struts)

EA

h
d C d

C d
GJ

h
d

′ ′

′ ′

1 16 6

16 1 6

0

1

+ =

+ =
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Figure 2. Discrete model and continuum model.

Table 1. Simplex geometry

Nodes X(cm) Y(cm) Z(cm)

1 –95.4 57.7 0

2 –95.4 –28.9 –50

3 –95.4 –28.9 50

4 0 –50 –28.9

5 0 0 57.7

6 0 50 –28.9

7 95.4 57.7 0

8 95.4 –28.9 –50

9 95.4 –28.9 50

Table 2a. Selfstress state of the simplex

Element Node Node Selfstress tension Element Node Node Selfstress tension

number 1 2 value T0k daN number 1 2 value T0k daN

1 (cable) 1 2 100 12 (strut) 3 6 –254,2

2 (cable) 2 3 100 13 (cable) 5 9 173.2

3 (cable) 1 3 100 14 (cable) 6 7 173.2

4 (cable) 1 6 173.2 15 (cable) 4 8 173.2

5 (cable) 2 4 173.2 16 (cable) 8 9 100

6 (cable) 3 5 173.2 17 (cable) 7 9 100

7 (cable) 4 5 200 18 (cable) 7 8 100

8 (cable) 5 6 200 19 (strut) 5 8 –254,2

9 (cable) 4 6 200 20 (strut) 6 9 –254,2

10 (strut) 1 4 –254,2 21 (strut) 4 7 –254,2

11 (strut) 2 5 –254,2

Table 2b. Equivalent rigidities of the simplex

Simplex Energy Method F.E.M.

EA in daN 9 237 9 262

EIy=EIz in daNcm2 332 240 742 346 909 090

GAy=GAz in daN 26.719 29 873

GJ in daNcm2 2 862 296 2 895 473

5.1. The simplex
In order to validate the suggested approach, the

results obtained are, first of all, compared to those

obtained with the finite element method (Table 2b),

and those for the following initial selfstress tension

vector (T°):

Examining this table, the coupling terms can be

noted to be null and the equivalent rigidity of flexion

(EIy=EIz) and of shearing (GAy=GAz) are identical

according to y and z. This is justified by the fact that

the simplex has symmetry in the y-z plane. The

equivalent axial rigidity EA and the torsional rigidity

GJ are nearly exact: with an approximation of 99.7%

for EA and 98.8% for GJ. For the equivalent deflection

rigidity EI and the equivalent shearing rigidity GA, the

values obtained are respectively 95.7% and 89.4% of

the “exact value”.

Now let us observe, on the following four Figures,

the influence of the initial selfstress on the equivalent

rigidities of the simplex. The initial rigidity is

characterised by the selfstress coefficient δ which is

varying from 0 to 15.
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Figure 3. Equivalent axial rigidity EA.
Figure 4. Equivalent torsional rigidity GJ.

Figure 5. Equivalent rigidity EI. Figure 6. Equivalent shearing rigidity GA.

Where b is the 

number of elements

Figure 3 shows that the evolution of the axial

rigidity EA in function of the selfstress is almost non-

linear, but that in the other three figures (Fig. 4, 5 and

6), the evolution of GJ, EI and of GA with respect to 

the evolution of the initial selfstress is linear.

Moreover, these four figures show a very important

result, it concerns the values of certain equivalent

rigidities at zero selfstress (in its reference

configuration). Figures 3 and 4 do in fact show that

axial rigidity EA and torsional rigidity GJ at zero

selfstress are null (initial point of the two curves). In

other words, the “simplex” in its reference

configuration has neither axial rigidity nor torsional

rigidity. This result can be explained by the fact that

the structure has one infinitesimal mechanism

following, which associates a vertical displacement

and a rotation around a vertical axis.

To explain the non-linear relationships obtained in

Figure [3] between axial rigidity EA and the selfstress

coefficient δ, we have to underline that the

transformation [T4] depends on selfstress. In order to

q
T

L
for k b

k

k

k

( )
( )

( )= =δ ∗
0

1,

confirm this non linear behaviour, we proposed to

compare the results obtained with the finite element

method when studying the influence of selfstress on

EA axial rigidity of simplex. The following figure [7]

shows the nonlinear behaviour obtained with the two

methods, in spite of the fact that non linearity is little

less apparent in the finite element method. It is useful

to recall that the equivalent axial rigidity is obtained

by a load value equal to 103 daN shared between the

three high nodes of a simplex module.

To evaluate quantitatively the contribution of the

initial selfstress to the equivalent rigidities, the

evolution of the adimensional equivalent rigidities

(which is the ratio between the equivalent rigidity

computed for a given δ and the equivalent rigidity

corresponding to δ = 1) in function of the evolution of

the selfstress coefficient, is traced (Fig. 8). On this

figure, the non-linear evolution of the axial rigidity EA

is confirmed. Then, the importance of the contribution

of the initial selfstress to the axial rigidity EA and to

the torsional rigidity GJ, can be measured. For a

selfstress coefficient varying from 1 to 15, the value of

EA increases from 9 237.8 daN to 114 209 daN, that is

a ratio over 12. As for the value of GJ, it varies

between 2 862 296 daNcm2 and 42 934 170 daNcm2,
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Figure 7. Comparison of results for the equivalent axial

rigidity EA. Figure 8. Adimensional equivalent rigidities of the simplex.

Table 3. Quadruplex geometry

Nodes x(cm) y(cm) z(cm)

1 –100 –50 –50

2 –100 50 –50

3 –100 –50 50

4 –100 50 50

5 0 0 –50

6 0 –50 0

7 0 50 0

8 0 0 50

9 100 –50 –50

10 100 50 –50

11 100 –50 50

12 100 50 50

which corresponds to a ratio of near 15. In contrast to

this couple, the evolution of the deflection rigidity EI

and of shearing rigidity GA are almost horizontal. For

the same evolution of the selfstress coefficient, the

value of EI increases from 332 240 742 daNcm2 to 

353 466 964 daNcm2 which corresponds to a ratio of

1.063 and the value of GA increases from 26 719 daN

to 27 620 daN with a ratio of 1.033.

5.2. The vertical quadruplex
Here again, the results are compared to those obtained

by the finite element method (Table 4), and those for a

vector of initial selfstress tension (T°) daN, such as:

(T°)=(100, 100, 100, 100, 282.84, 282.84, 282.84,

282.84, 223.6, 223.6, 223.6, 223.6, –300, –300, –300,

–300, 100, 100, 100, 100, 223.6, 223.6, 223.6, 223.6,

–300, –300, –300, –300).

The obtained results on the quadruplex are clearly

similar to those of the previous application, so the

general conclusions are practically the same as for the

simplex. The axial equivalent rigidity EA and torsional

GJ, are given with a more precise result than the

simplex (99.7% for the EA and 99.9% for the GJ). For

the equivalent deflection rigidity EI and the equivalent

shearing rigidity GA, the obtained values are

respectively 89.3% and 92.3% of the “exact value”.

We then tried to evaluate the influence of the initial

selfstress on the equivalent rigidities of the quadruplex,

keeping the same variation of the selfstress coefficient.

Here too, figure 10 shows that the evolution of the axial

rigidity EA in function of the selfstress is almost non-

linear. In the other three figures, by contrast, (Fig.11, 12

and 13), the evolution of GJ, EI and of GA in function

of the evolution of the initial selfstress are linear. These

figures also show that the quadruplex (Fig. 9), in its

reference configuration, i.e. at zero selfstress, has

neither axial rigidity nor torsional rigidity. This result

can also be explained, in the same way, by the fact that

zz
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y

y

xx

11
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12

4

6
8
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5

Figure 9. Discrete model and Continuum model.
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Table 4. Equivalent rigidities of the vertical

quadruplex

Quadruplex Energy method F.E.M.

EA 6339 6355

EIy=EIz 319 916 942 285 714 285

GAy=GAz 26.188 24 183

GJ 4 000 023 4 000 000

Figure 10. Equivalent axial rigidity EA.

1,00x105

8,00x104

6,00x104

4,00x104

2,00x104

0.00

−2 0 2 4 6 8 10 12 14 16

E
A

 (
d
a
N

)

Selfstress level

6,00x107

5,00x107

4,00x107

3,00x107

2,00x107

1,00x107

0.00

−2 0 2 4 6 8 10 12 14 16

G
J
 (

d
a
N

.c
m

2
)

Selfstress level

−2 0 2 4 6 8 10 12 14 16

E
I 
(d

a
N

.c
m

2
)

Selfstress level

3,50x108

3,45x108

3,40x108

3,35x108

3,30x108

3,25x108

3,20x108

3,15x108

−2 20 4 6 8 10 12 14 16

G
A

 (
d
a
N

)

Selfstress level

2,85x105

2,80x105

2,75x105

2,70x105

2,65x105

2,60x105

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

N
o
n
 d

im
e
n
s
io

n
a
l 
e
q
u
iv

a
le

n
t 
ri
g
id

it
ie

s

Selfstress level

 EA

 EI

 GA

 GJ

Figure 11. Equivalent torsional rigidity GJ. Figure 12. Equivalent deflection rigidity EI.

Figure 13. Equivalent shearing rigidity GA.

Figure 14. Adimensional equivalent rigidities of the quadruplex.

the structure has one or several infinitesimal

mechanisms following these two directions.

The quantitative contribution of the initial selfstress

to the equivalent rigidity is easier to see in figure 14,

where the evolution of the adimensional equivalent

rigidity of the quadruplex in function of the evolution

of the coefficient of selfstress is shown. There again,

the considerable contribution of the selfstress to the

axial rigidity EA and to the torsion rigidity GJ can 

be measured, and an almost horizontal evolution for the

rigidity of flexion EI and of shearing GA. To be more

specific, the value of EA increases from 6339 daN to

83 890 daN, which means a ratio of more than 13. The

value of GJ increases from 4 000 023 daNcm2 to 

59 997 946 daNcm2, a ratio of nearly 15. At this point,

the selfstress coefficient is also equal to 15, that is to
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Table 5. Quadruplex geometry

Nodes x y z

1 –50 –50 –25

2 –50 50 –25

3 50 –50 –25

4 50 50 –25

5 –50 0 25

6 0 –50 25

7 0 50 25

8 50 0 25
Figure 15. Discrete model and Continuum model.

say that the slope of evolution of the torsional rigidity

GJ is exactly equal to 45°. The value of EI increases

from 319 916 942 daNcm2 to 347 914 516 daNcm2

corresponding to a ratio of 1.087 and the value of GA

increases from 26 188 daN to 28 347 daN with a ratio

of 1.082. This means that the equivalent rigidity

following these two loads is, for a large part, that of the

elastic rigidity of the elements.

5.3. The horizontal quadruplex, 
an atypical case
The quadruplex homogenized horizontally is an

atypical case; the structure can be seen on figure 15 to

have no symmetry with respect to the plane

perpendicular to the axis of homogenization (yz

plane). This why the equivalent deflection rigidity and

of shearing rigidity following the two axes y and z are

different, and moreover, several coupling terms appear

between the different loads. In a previous study on the

mechanical behaviour of this same cell, Kebiche et al.

(15) showed that under axial load for example, the

section represented by the nodes 3, 4 and 8 undergoes

several types of strain, and since only the final state of

the section is known, the part played by the

displacements in each strain cannot be deduced. But it

is difficult to find the equivalent rigidities and the

coupling terms with the finite element method.

Whereas the approach suggested in this study gives us

these parameters whatever the complexity of the

geometry of the structure.

The results obtained on this module for several

values of initial selfstress (the coefficient of selfstress

varies from 0 to 10) are presented in the following

figures; we have observed the equivalent rigidity and

certain coupling terms, the most important being: P16,

P36, P46, P13, P14 and P34.

The first three figures represent the equivalent

rigidity, where we have grouped those cases (Fig.18)

of the same size order. The figures 16 and 17 show

respectively the evolution of the axial rigidity EA and

the shear rigidity GAy following the axis y in function

of the selfstress. For these two rigidities, the evolution

is highly non-linear, at the end of this non-linearity 

(q0 = 10) the curve tends to become horizontal, which

means that beyond a certain value of the selfstress, the

evolution of this equivalent rigidity is stationary. In

figure 16 the evolution of GJ, EIy and EIz can be seen

to be linear, the influence of the selfstress on the

torsion rigidity GJ is greater than the other two. The

flexion rigidity EIy is « two and a half times » greater

than the deflection rigidity EIz ; but the contribution of

the selfstress is the same to both rigidities since the

two curves are parallel. Finally it is to be noted that the

shear rigidity GAz following z is practically nil.

As for the coupling terms, in figure 19 the most

important contribution to the selfstress is recorded on

term P36. This term translates the coupling between

torsion and deflection along z direction; on the other

two terms P16 and P46, the influence of the selfstress

is much less important, and the evolution is

practically horizontal. Figure 20 shows a non-linear

evolution of certain coupling terms, the term P34 that

translates the coupling between the deflection

following a transversal axis and the shearing

following the other axis, presents a digressive non-

linear evolution. The more the selfstress increases,

the more the coupling decreases, until a certain value,

where it becomes independent of the selfstress. The

term P13 which translates the coupling between the

axial load and the deflection following z presents a

progressive non-linear evolution until a certain value,

the tangent becomes horizontal and the evolution

becomes independent of the selfstress. The term P14

also presents a non-linear evolution, this non-

linearity is less apparent on the figure, only for a

problem of scale.
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Figure 16. Equivalent deflection rigidity EA. Figure 17. Equivalent shearing rigidity GAy.

Figure. 18. Equivalent rigidities of the horizontal quadruplex.

Figure 19. Coupling terms.
Figure 20. Coupling terms.

Finally, and in order to define the amount of the

contribution of the selfstress to the horizontally

homogenized quadruplex, the last two figures show

the evolution of the adimensional equivalent rigidity

(Fig.21) and the adimensional coupling terms (Fig.22)

in function of the coefficient of selfstress. In this

category of results, we are not interested in the form of

the evolution, but in the relative contribution of the
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Figure 21. Adimensional equivalent rigidities.

Figure 22. Adimensional coupling terms.

selfstress from one rigidity to another. Thus, it can be

noted in figure 19 that the most important contribution

is on the torsion rigidity GJ and then the deflection

rigidity following z. In this figure the form of the non-

linearity of EA and GAy does not appear just for a

problem of scale. In figure 20, the most important

contribution of the selfstress is on the coupling term

P36 followed by the other coupling terms.

6. CONCLUSION

To obtain continuum equivalent properties of systems

in selfstress state, an approach based in energy

equivalence is suggested. It enables to obtain the

parameters that characterize the equivalent continuum

model, whatever can be the geometric complexity of

the basic cell and the selfstress implemented. In our

approach, we have added the transformations

necessary on the deformation energy due to the

selfstress of the discrete model. Next, a simple analogy

with the expression of the total strain energy of the

continuum model enables to obtain the equivalent

rigidity and the coupling terms of the discrete model.

The comparison of the results obtained by this method

with those obtained with a direct method (finite

element method) gives very satisfactory results.

For each tensegrity module studied, two categories

of results have been presented. The first concerns the

form of the evolution of the equivalent rigidities and

their coupling in function of the selfstress: some

behaviours were noted to be linear and others not,

namely in the case of the horizontal quadruplex. In the

second category of results, we presented the evolution

of the adimensional equivalent rigidities and their

coupling in function of the selfstress. In this category,

we showed that the contribution of the selfstress to

certain parameters is very important, and to others

almost null.
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