
HAL Id: hal-00559724
https://hal.science/hal-00559724v1

Submitted on 1 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Soft ”tensegrity like” panel: conceptual design and
form-finding

Bernard Maurin, René Motro, Vinicius Raducanu, Nicolas Pauli

To cite this version:
Bernard Maurin, René Motro, Vinicius Raducanu, Nicolas Pauli. Soft ”tensegrity like” panel: concep-
tual design and form-finding. Journal of the International Association for Shell and Spatial Structures,
2008, 49 (2), pp.77-87. �hal-00559724�

https://hal.science/hal-00559724v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


SOFT “TENSEGRITY LIKE” PANEL: CONCEPTUAL DESIGN 

AND FORM - FINDING 

B. Maurin1, R. Motro1 V. Raducanu2 and N. Pauli2 

1
Laboratoire de Mécanique et Génie Civil, UMR CNRS 5508, Université Montpellier 2, CC 48, 34095 Montpellier cedex 5, 

France, maurin@lmgc.univ-montp2.fr, motro@lmgc.univ-montp2.fr,  

2
Laboratoire Structures Légères pour l’Architecture, Ecole Nationale Supérieure d’Architecture de Montpellier, 34093 

Montpellier cedex 5, France, vinicius.raducanu@montpellier.archi.fr, nicolas.pauli@fmontpellier.archi.fr 

Editor’s Note: Manuscript submitted 15 March 2007; revision received 14 April 2008; accepted 28 July. This paper is open 
for written discussion, which should be submitted to the IASS Secretariat no later than April 2009. 

ABSTRACT 

A new type of “tensegrity like” panel is presented, using a conceptual design based on a structural composition 

comprising two parallel layers of tensile membrane with, in between, a woven structure of bent strips. A 

prototype has been made to demonstrate its feasibility and a mechanical study is performed to investigate the 

relationship between the shape of the panel and its internal initial forces. The objective is to write the structure 

governing equations and, then, to propose different form-finding approaches. The form control method therefore 

allows determining the tension in the membranes according to specified panel geometry. The force control 

strategy provides the form of the undulating strip in accordance to a required tension in the membranes. Several 

numerical calculations, based on the prototype characteristics, are presented. Potential applications are then 

discussed, mainly for façade cladding as well as a possible adaptation of the panel to curved surfaces. 

Keywords: Tensegrity panel, tensile membrane, form-finding 

1. BACKGROUND

Originally investigated by engineers or artists like 

R. B. Fuller [1] and K. Snelson [6], tensegrity 

systems were subsequently studied for modules 

with varying structural complexity, for instance the 

triplex (figure 1, left) or the expanded octahedron 

(figure 1, right). 

Figure 1. Basic tensegrity modules 

Since these systems are selfstressed spatial 

structures in equilibrium composed of compressed 

struts connected to tensioned cables, the purpose 

was to determine the relationship between their 

geometry and the distribution of internal forces in 

the elements. Such study is called form-finding and 

is a necessary stage in tensegrity system design. 

Two groups of methods may be employed [3]: the 

form controlled ones, where possible forces are 

determined from a given shape, and the force 

controlled ones, which consist in calculating the 

shapes associated with specified forces. A load 

analysis can obviously be performed only after the 

form-finding stage which determines the initial 

form and forces. 

The studies on tensegrity modules have led to the 

development of grids based on the assembly of 

modules [2]. One example is presented in figure 2 

consisting of horizontal upper and lower layers of 

cables with internal tilted components in between 

(struts and cables).  

The next step has entailed with the design of woven 

tensegrity grids [4, 5]. This is based on a 

bidirectional weave of tilted struts; it is then 

impossible to isolate a module is this grid. 
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Tensioned cables create two horizontal upper and 

lower layers; internal elements (cables and struts) 

are located in between (figure 3, left). 

Figure 2. Tensegrity grid composed of identical modules 

A 10m by 10m grid was built at Montpellier 

University to test the scale one feasibility (Tensarch 

project, 2000; figure 3, right). 

2. CONCEPTUAL DESIGN OF THE SOFT

“TENSEGRITY LIKE” PANEL 

The soft “tensegrity like” panel results from 

numerous experimental treatments based on 

physical models. It is composed of two flat layers of 

tensile membrane with undulating strips in between. 

The inner strips are compressed and equilibrate the 

tension in the membranes. Since they are not 

straight, they are also bent and define waves. 

Additional peripheral cables connect the 

membranes to the extremities of the strips to ensure 

the membrane tensions. 

Figure 3. Woven tensegrity grid (Tensarch project) 

A prototype (figure 4) has been made in 

collaboration with the company Ferrari, one of the 

leaders in the manufacture of composite textiles and 

membranes. The size of this squared panel is 

roughly 2.2 m by 2.2 m for 0.22 m width. We 

emphasize on these small dimensions and 

consequently choose to call this system a “panel” 

preferably to a “grid” or a “structure”. The 

membrane is a fabric developed by Ferrari and 

called Defender 7761 composed of PVC coated 

steel threads. 

Each of the 14 undulating strips (7 parallels in two 

orthogonal directions) has 3 repetitive identical 

interior wave segments (same amplitude and 

wavelength) and 2 identical boundary segments. 

They are constructed from a fiber glass composite 

material manufactured by pultrusion with a mm35  

by mm3  cross sectional area. In this prototype, the 

strips are connected to the membrane with rivets 

(figure 5). 
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Figure 4. Soft “tensegrity like” panel (external view) 

Figure 5. Panel internal view 

3. FORM-FINDING OF THE SOFT

“TENSEGRITY LIKE” PANEL 

3.1. Objective of the study 

The purpose is to determine the relationships 

between the geometrical characteristics of the panel 

(dimensions, shape of an inner strip) and the 

internal forces in the elements (tension in the 

membranes, bending moment and compression in 

the strips). 

Such a study corresponds to a form-finding analysis 

and could be envisaged according to a form control 

or a force control strategy. In the form control 

method, the designer specifies the dimensions of the 

panel (side length and height) and will determine 

the corresponding tension in the membrane. In the 

force control method, the membrane tension is 

imposed and the panel dimensions resulting from an 

appropriate strip shape are determined. The 

presented study is based on seven steps: 

- The geometrical parameters are first presented as 

well as the chosen mechanical hypothesis. 

- After that, an analysis of one half strip allows 

writing its static equilibrium and to calculate its 

internal forces (compression and bending moment 

at characteristic points). 

- Then, one half-wave segment of an undulating 

strip is isolated to determine the precise 

relationships between its actions (internal forces 

and external forces exerted by the membranes) and 

its geometry. 

- The obtained results allow proposing a solving 

method devoted to the form control strategy and to 

the force control strategy. 

- The approach is after that completed by analyzing 

the boundary segment of a strip. 

- Finally, the calculation of the strip geometry is 

presented. 

3.2. Panel description and hypothesis 

The panel dimensions are given in figure 6. They 

are dependant on the shape of the undulating strips. 

Hence, the panel height corresponds to the strip 

wave amplitude a and the side length is a multiple 

of the strip wavelength l  (added to the distances 'l  

of the boundary segments). For instance, the side 

length of the prototype panel is m20.2'23 ≈+ ll  

with m22.0≈a . The length of the strip over one 

wavelength is L . 

The upper points of the panel are labeled A to G 

and the lower H to K. 

If we consider one strip from a mechanical point of 

view, the actions may be divided into two 

categories: 
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- the internal forces: the compression axial force N 

and the bending moment M. 

- the “external” forces due to the two membranes 

and to the two peripheral cables. 

The tension in the upper membrane generates 

external forces between the points BC (i.e. the force 

BCT ), CD ( CDT ), DE ( DET ) and EF ( EFT ). The 

lower membrane creates tension forces between HI 

( HIT ), IJ ( IJT ) and JK ( JKT ). Since the interior wave 

segments have the same shape (amplitude and 

wavelength), these forces are identical. The tensions 

in the two membranes are hence constant and equal. 

As a result, the membrane external forces are 

TTTTTTTT ======= JKIJHIEFDECDBC . This 

property will be used in the next step of the study to 

solve the equilibrium equations of a strip (3.3). 

Figure 6. Panel dimensions 

In this case of an uniform membrane tension and 

since the distance between two parallel strips is 

equal to the wavelength l , the relationship 

between the membrane tension mT  and the 

external membrane force T  acting on the points 

C, D, E and H, I, J, K is mTT l= . 

The peripheral cables are parallel to the 

membranes and connect them to the extremities of 

the boundary strips. The tensions in these cables 

create pulling external forces ABT  and FGT on the 

boundary segments. The panel symmetry leads to 

FGAB TT = . 

The last point deals with the material behavior of 

the composite strip. We will henceforth assume 

that this behavior is elastic linear. 

3.3. Analysis of one half strip 

This part aims to write the static equilibrium of a 

half strip divided in segments and to determine the 

resulting internal forces at the cutting sections. 

Because of the symmetry, a strip is divided in four 

segments (AH, HC, CI and ID, see figure 6). The 

actions (internal forces N and M, external tensions 

due to the membranes and to the cables) acting on 

the extremities of every part are represented in 

figure 7. 

The equilibrium of the different parts leads to 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=++=+
=++=+

=++=+
==+

IDICDDDEI

CICHIIIJC

HCHBCCCDH

ABHHHIAB

and:IDPart

and:CIPart

and:HCPart

and:AHPart

NaMMTNTN

NaMMTNTN

NaMMTNTN

TaMNTT

 (1) 

Since 8 equations are written for 14 unknowns, 5 

conditions must be at least specified. They are 

fixed by the geometrical repetitiveness of the 

interior strip segments, leading to a uniform 

membrane tension and identical external forces: 

TTTTTT ===== IJHIDECDBC   (2) 

Moreover, the horizontal equilibrium of nodes B 

and F gives TTT == BCAB . 

Hence, the resulting internal forces at the ends of 

the different segments are 

TNNNNH 2DIC ====   and 

TaMMMM ==== DICH    (3) 

The bending moment in the strip is thus the same 

at the upper and lower points. The resulting 

actions at the segment extremities (the sum of the 

internal and external forces) are represented in 

figure 8. 
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Figure 7. Actions on the different segments of one half strip 

Figure 8. Actions for a uniform membrane tension 

3.4. Analysis of one half-wave segment 

One half of a strip segment wave is isolated, for 

instance the part ID (figure 9). Its amplitude is 

equal to a and the half wavelength is 2/l . The 

length of this half-wave segment is equal to 2/L . 

The objective of this analysis is to obtain a 

relationship between the strip geometry 

(amplitude a and segment length L ) and the 

compression force TNN 2DI == . 

Figure 9. Half-wave segment of the strip 

The bending moment M, written in a global 

coordinate system ),( yx
rr

, is [7] 

TyaM )2( −=  (4) 

Two close plane cross-sections 1S  and 2S  of the 

strip, initially parallel before bending, have a 

relative angle equal to θd  and are distant from sd  

(length of the strip neutral axis between 1S  and 

2S , verifying 222 ddd yxs +≈ , see figure 10).The 

behavior of the composite material is elastic linear 

with a Young’s modulus equal to E. 

Figure 10. Relative rotation of two sections 

The normal relative strain ε  of a strip fiber 

bearing a normal stress σ  and located at the 

distance 'y  of the neutral axis is 

'
d

d
y

s

θ
=ε  which also verifies '

1
yM

EIE
=

σ
=ε

 (5) 
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(where I is the strip cross-section second moment 

of inertia). Therefore 

)2(
d

d 2 ya
s

−α=
θ

 with 
EI

T
=α2  (6)

Since θ≈ sindd sy , it comes 

θα−=α−=
θ

sin2
d

d
2

d

d 22

2

2

s

y

s
  and so 

sss d

d
sin4

d

d

d

d
2 2

2

2 θ
θα−=

θθ
(7) 

By integrating 

( ) 1
22

cos4
d

d
C

s
+θα=

θ
   (8) 

The constant 1C  may be determined by 

considering that for the point I ( 0=x  and 0=y ) 

the angle θ  is equal to zero 

2

d

d
α=

θ
a

s
  and thus )4(

222
1 −αα= aC  (9) 

The governing relationship is then 

( ) 2/122 1
4

1
cos2

d

d
−α+θα=

θ
a

s
  or 

( ) 2/1222 )
2

(sin)
22

(1
d

d θ
α

−α=
θ

a
a

s
(10) 

It can be rewritten as 

2/122

2

)sin1(

d2
d

ϕ−
ϕ

=α
k

sa   with the parameters 

α
=

a
k

22
 and 

2

θ
=ϕ   (11) 

If we consider that at middle height (point P with 

4/l=x  and 2/ay = ) the angle is 0θ=θ  and 

0
d

d
=

θ
s

, then 

0cos4 10
2 =+θα C  and )

2
1(arccos

20
k

−=θ   (12) 

The length of the half-wave segment 2/L  may be 

calculated by integration and considering that for 

0=s  (point I) then 0=θ  ( 0=ϕ ) and for 
4

L
s =

(point P) then 0θ=θ  (i.e. 
2

0θ=ϕ ) 

∫∫
θ

ϕ−
ϕ

=α=α
2/

0 2/122

2
4/

0

2 0

)sin1(

d2

4

1
d

k
Lasa

L

 (13) 

Since k and 0θ depend on T, it is rewritten as 

∫
θ

ϕ−
ϕ

=
2/

0 2/122

0

)sin1(

d2

4 kEI

TLa
 or )(

4
T

EI

TLa
∏=

 (14) 

This equation is highly useful because it provides 

a relationship between the external force T due to 

the uniform membrane tension and the shape of 

the strip (amplitude a, segment length L). It will 

be used during the form-finding procedures. 

3.5. Form control strategy 

This aims to give to the designer the possibility of 

determining the uniform membrane tension mT  

from a specified geometry (strip amplitude a and 

wavelength l ). By considering that the amplitude 

and the strip rigidity EI are imposed, the approach 

is as follows: 

A. From a given value for the strip segment length 

L, the corresponding external force T is calculated 

by using (14) 

)(
4

T
La

EI
T ∏=    (15) 

This equation is however non linear and in the 

form of )(TfT = . 

We solve it by using the fixed point method: from 

an initial estimated value 0
T , the iterative 

sequence )(1 ii
TfT =+  is performed until it 

converges to the sought value of T. 

B. The associated wavelength l  is subsequently 

determined. Since )2(cosdcosdd ϕ=θ≈ ssx  and 

∫∫
θ

ϕ==
2/

0

4/

0

0

d)cos(2d4/ sx
l

l , we have 
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∫
θ

ϕ−
ϕϕ

α
=

2/

0 2/1222

0

)sin1(

d)2(cos24

ka
l (16) 

Then, the membrane tension is calculated with 

l/TTm = . 

C. By repeating this approach for different values of 

the length L, the curves )(LT , )(Ll  and )(LTm  are 

obtained. By writing differently the data, it gives the 

curve )(lmT  and thus the search relationship 

between the membrane tension mT  and the strip 

wavelength l  (that defines the panel dimensions). 

D. The last step consists in evaluating the 

maximum normal stress in the strip to check if it 

remains admissible by the material. For a 

rectangular b by t sectional area, we have 

)2
6

(
6 max

2

max
max +=+=σ

t

a

tb

T

tb

N

tb

M ml
 (17) 

A numerical application is presented relative to 

the prototype panel ( cm22=a , strip cross-

section moment of inertia 4mm75.78=I , 

composite MPa00036=E  and ultimate bending 

strength MPa0001f =u ). The graphs in figure 11 

show the variation of the wavelength and of the 

membrane tension according to the length L. 

More exploitable curves )(lmT  and )(max lσ , used 

in the form control strategy, are also presented in 

figure 12. 

For the prototype panel, the wavelength is roughly 

cm60≈l . The membrane tension is therefore 

daN/m17≈mT  with MPa75max ≈σ . This 

membrane tension is very low, mainly because of 

practical reasons. The experimental panel was 

assembled “by hand” and the technological 

choices (rivets…) posed difficulties for having 

higher forces. 

Figure 11. Curves )(Ll  and )(LTm  

Figure 12. Form control strategy: curves )(lmT  and )(max lσ

3.6. Force control strategy 

This approach aims to give the possibility of 

determining the panel dimensions, depending on 

an appropriate strip shape (wavelength l ), from a 

specified uniform membrane tension mT . 

The approach is as follows (we consider that the 

strip rigidity EI is imposed): 

A. From a given value for the force T, the 

corresponding wavelength l  is calculated 

according to (16). The associate membrane 
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tension is then l/TTm = . 

B. The length L can then be obtained with (15) 

T

T

a

EI
L

)(4 ∏
=  (18) 

C. By repeating this procedure for different values 

of the tension T, the curves )(Tl , )(TTm  and 

)(TL  are obtained. Differently written, it gives 

the relationship )( mTl  between the panel 

dimension and the membrane tension. 

D. Then, the length )( mTL , necessary to build the 

panel, and the maximum normal stress )(max mTσ , 

coming from (17), are given. 

An application is presented for the prototype 

panel ( cm22=a , mm35  by mm3  composite 

strip with MPa00036=E ). The graphs in figure 

13 illustrate the variation of the wavelength l  and 

of the membrane tension mT  with the force T. 

Figure 13. Curves )(Tl  and )(TTm

The curve presented in figure 14 shows the 

relationship between the strip wavelength l and 

the membrane tension mT . This means that, from 

a required tension, the designer can determine the 

appropriate value of the wavelength and, thus, can 

extrapolate the size of the panel. 

The corresponding values for the length L and for 

the maximum normal stress maxσ  can then be 

determined according to the membrane tension. 

These curves are presented in figure 15. Figure 14. Force control strategy: curve )( mTl  

Figure 15: Force control strategy: curves )( mTL  and )(max mTσ  
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3.7. Form-finding for a strip boundary wave 

Once the membrane tension and the strip 

wavelength have been calculated, the shape of the 

strip boundary segments must be determined. 

The objective is to calculate, from the given 

uniform membrane tension mT , the length 'L  of a 

strip boundary segment and its associate 

horizontal distance 'l . 

We isolate for that purpose the segment KG 

(figure 16). The tension in the peripheral cable is 

determined according to the uniform membrane 

tension mTTT l==FG . 

Figure 16. Strip boundary wave 

Then, the equilibrium of the segment KG leads to 

the same equations as previously written (section 

3.4), excepted different values for the coefficients 

1C  and k :  )2(' 222
1 −αα= aC  and )/(2' α= ak . 

The following governing relationship is obtained 

∫∫
θ

∏=
ϕ−

ϕ
=α=α

2/'

0 2/122

2
'

0

2 0

)('
)sin'1(

d2
'd T

k
Lasa

L

 

with )
'

2
1(arccos'

20
k

−=θ (19) 

Hence, the length of the strip boundary wave 'L  

and its corresponding horizontal distance 'l  are 

T

T

a

EI
L

)('
'

∏
=   and 

∫
θ

ϕ−
ϕϕ

α
=

2/'

0 2/1222

0

)sin'1(

d)2(cos21
'

ka
l  (20) 

Moreover, the maximum normal stress is 

)1
6

(
6

' max

2

max
max +=+=σ

t

a

tb

T

tb

N

tb

M ml
 (21) 

An application is performed considering the 

experimental panel ( cm22=a , mm35  by mm3  

composite strip with MPa00036=E ) and, as 

measured on the prototype, cm60≈l . The graphs 

presented in figure 17 show the variation of the 

length 'L , the distance 'l  and of the maximum 

stress max'σ  according to the membrane tension. 

Figure 17. Curves )(' mTL , )(' mTl  and )('max mTσ  for a strip boundary wave 
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In the prototype panel, the distance cm20'≈l  

was measured. It confirms that the membrane 

tension mT  is close to daN/m16 . 

The first and second curves are important because 

they clearly show that, from a given strip cross-

section, there is a limit value to the membrane 

tension. For daN/m30≈mT  it comes cm5'≈l , 

and this horizontal distance appears to be close to 

a practical limit for the construction of a panel. If 

the required membrane tension is higher, the cross 

sectional area of the strip have to be increased. 

Hence, this study at the boundary defines the strip 

dimensioning according to the membrane tension. 

We note that, since it depends on the strip rigidity 

EI , this parameter can be changed either by 

modifying the strip cross sectional area (value of 

I) or choosing an other material (value of E).

3.8. Shape of a strip wave segment 

When all the dimensions and forces have been 

determined, the geometry of the undulating strips 

must be accurately defined. The objective of this 

section is to calculate the shape of one wave 

segment of the strip (for instance the part IP, see 

figure 9). The whole strip geometry can then be 

easily obtained by symmetry and replication. 

The x and y coordinates of one point located on a 

wave strip segment can be calculated by 

considering the angle θ  as the shape parameter 

(figures 9 and 10). We have therefore 

∫
θ

ϕ−
ϕϕ

α
=

2/

0 2/1222 )sin1(

d)2(cos21
)θ(

ka
x  and 

∫
θ

ϕ−
ϕϕ

α
=

2/

0 2/1222 )sin1(

d)2(sin21
)θ(

ka
y   (22) 

An application is performed for the prototype 

panel with a membrane tension equal to 

daN/m17  (hence angle °=θ 21.560  for the point 

P at mid-height). A discrete geometry is obtained 

by calculating the position of several points. The 

shape computed for five points I, P’, P’’, P’’’ and 

P (four portions) is represented in figure 18. 

The length of the portions varies and decreases 

close to the point I. Since this also corresponds to 

the zone where the normal stress in the strip is 

maximal, this discretization is appropriate for a 

FEM analysis. 

Figure 18. Shape of the strip wave segment (part IP) 

4. DISCUSSION

The objective of this paper is to present the 

conceptual design and form-finding of a 

“tensegrity like” soft panel. Developments are 

currently pursued in three main directions. 

A. Mechanical behavior analysis: The knowledge 

of the panel dimensions and initial forces provides 

the necessary data for a FEM analysis with 

various loading cases. This aims to study the 

system strength and stiffness, including a possible 

slackening of the membranes and cables leading 

to instability phenomena. Experimental testing 

using tachometry measurements are currently 

performed to be compared with the numerical 

results (figure 19, left and middle). 

B. Curved panel generation: When the panel is not 

fixed, mechanisms occur perpendicularly to the 

flat membranes and the strips can rotate relatively. 

The panel may therefore be deformed by flexing 

to generate an anticlastic shape. Numerical 

studies, using imposed displacements on the 

edges, are pursued (figure 19, right) in association 

with experimental testing. 

C. Applications: This panel may be characterized 

by its light weight and flexibility when it is not 

fixed on the edges. In contrast, when boundary 

conditions are imposed, the first behavior analysis 

results show a good rigidity compared to its own 

weight. Some applications may be therefore 

anticipated, mainly for surface cladding (roofing 
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or wall) made of flat or curved precast panels 

fixed onto a rigid structure. Moreover, the two 

layers of membranes can be of various types 

(waterproofed, solar filtration effects…) and offer 

the possibility of inserting in between air, or 

material for thermal, or acoustic insulation. 

Figure 19. FEM analysis, experimental testing and anticlastic panel generation 

5. CONCLUSION

Following the construction of a flat soft 

“tensegrity like” panel prototype, a mechanical 

analysis is presented to determine the governing 

relationships between the system geometry and its 

initial forces. A first form-finding approach is thus 

proposed to provide a form control method. It 

allows determination of the tension in the 

membrane layers from a given strip geometry 

(amplitude and length of a wave segment). A 

force control strategy allows then calculating the 

characteristics of the strip (amplitude and 

wavelength) according to a required membrane 

tension. The boundary segment of a strip is also 

analyzed to give information for its cross-section 

dimensions. Finally, the geometry of the 

undulating strip is calculated. Several results are 

presented, dealing with the prototype panel, and 

by considering different levels of membrane 

tension or strip wavelength. 

The results obtained are exploitable for a load 

analysis under external actions. Perspectives deal 

with the study of the panel mechanical behavior, 

the possibility to flex it to generate curved shapes 

and structural cladding applications. 
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