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STRUCTURAL MORPHOLOGY OF TENSEGRITY SYSTEMS 

R. Motro*

Laboratory of Mechanics and Civil Engineering, umrCNRS 5508, Université Montpellier II, 

cc048, 34095 Montpellier cedex 5, France 

Abstract 

The coupling between form and forces, their structural morphology, is a key point for 

tensegrity systems. In the first part of this paper we describe the design process of the 

simplest tensegrity system which was achieved by Kenneth Snelson. Some other simple 

cells are presented and tensypolyhedra are defined as tensegrity systems which meet 

polyhedra geometry in a stable equilibrium state. A numerical model giving access to more 

complex systems, in terms of number of components and geometrical properties, is then 

evoked. The third part is devoted to linear assemblies of annular cells which can be folded. 

Some experimental models of the tensegrity ring which is the basic component of this 

“hollow rope” have been realized and are examined. 

Keywords: Tensegrity; morphology; form finding; rings; hollow rope 

1. Introduction

The coupling between forms and forces is one of the main topics of Structural Morphology. 

This coupling is very strong for systems in tensegrity state, currently called “tensegrity 

systems”. Since some years the number of publications on tensegrity systems is increasing. 

The aim of this paper is to focus on the morphogenesis of tensegrity systems since earlier 

cells to present tensegrity rings studied by our research team. Among publications devoted 

to mechanical behaviour of tensegrity systems, the work carried out by Schenk [2] provides 

an interesting literature review.  

2. From Simple to Complex Cells

2.1 Introduction 

The problem of form finding is central in the study of tensegrity systems. Since the very

beginning of their creation, by Snelson, and Emmerich, who realized the concept that has 

been enounced by Fuller, the definition of cells catches the interest of the designers. The 
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following paragraphs illustrate the main steps between the simplest system, the so-called 

“simplex” and the last complex systems which are actually designed. This is a way from 

simplicity to complexity with a set of several models: physical models, form models based 

on polyhedra, force models mainly based either on force density or on dynamic relaxation. 

2.2 The double x and the simplest cell 

Among different explanations concerning the design of the first tensegrity cell with nine 

cables and three struts, the most convincing one, according to my own opinion, can be found 

in the patent delivered to Kenneth Snelson [3] 

A key explanation is developed in this patent (see Figure 1). The basic idea is contained 

in X-shape which is an assembly of two struts and four cables the whole system being in self 

equilibrium. By cutting one of the four cables of the X-shape, the remaining system acts like 

an hydraulic jack along the direction of this cable (we called it the “strut effect” since it is 

equivalent to a strut under compression). 

Figure 1. Strut effect along direction 1-2 

This idea was used by Kenneth Snelson after a specific work on the assembly of 

components by mean of a rhombus of cables [1]: “one to another” and “one to the next” 

sculptures have opened the way to the “Double-X”. In this third sculpture, we can see that 

Snelson assembled two “X-shapes” with a rhombus of cables in-between. Several other 

cables were added in order to prevent a motion of the “X-shapes” out of their own plane. 

The next step was to assemble three “X-shapes” together using again three rhombuses of 

cables. This assembly theoretically ends up with twelve cables, but three of them are 

common to two rhombuses: nine cables only remained. Each of the three “X-shape” played 

the role of a strut. This assembly was finally composed of nine cables and three struts and 

constituted the simplest tensegrity system which could be realized in three dimensional 

space. Some authors call it the “simplex” (Figure 2).  

2.3 Simple systems 

The first attempts to create new elementary cells were based on some simple characteristics: 

• Use of single straight struts as compressed components

• Use of polygonal compressed components (chains of struts)

• Choice of only one set of cable length (“c”)

• Choice of only one set of strut length (“s”)
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Figure 2. Double-X , Triple-X , Simplex 

2.3.1 Prismatic cells 

The simplex, evoked in the previous paragraph, can also be seen as the result of the 

transformation of a straight triangular prism. The equilibrated self stress geometry is defined 

by the relative rotation of the two triangular bases equal to 30° degrees (see Figure ). 

Clockwise and anticlockwise solutions can be used. 

Figure 3. Equilibrium geometry  

It can be demonstrated (see [4]) that, for p-prism, the relative rotation has to satisfy the 

following relation 

( )
p2

2p

⋅
−⋅π

±=θ (1)

2.3.2 From polyhedra to tensypolyhedra 

The so-called “form controlled method” [5] was mainly used by David Georges Emmerich. 

The problem is to know if there is a possibility to design a tensegrity cell by keeping the 

node coordinates in the geometry of a regular (or a semi regular) polyhedron. It is possible 

for some cases, and not for others. 

When it is possible to insert struts inside the polyhedron and to establish a self stress state 

of equilibrium, we suggested to use the denomination “tensypolyhedron”. Olivier Foucher 

[6] realized a comprehensive study from which I extract two examples among polyhedra,
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which can not be classified as tensypolyhedra.  

These two examples correspond to systems comprising six struts with eighteen cables for 

the truncated tetrahedron, and six struts with twenty four cables for the expanded 

octahedron. 

a) Truncated tetrahedron

This semi regular polyhedron has four triangular faces and four hexagonal faces. It is

impossible to obtain a tensegrity system in its initial geometry (see Figure 4(a)). The

hexagonal faces are not planar, and it is visible on the corresponding physical model at its

top hexagon (see Figure 4(b)).

(a) (b)

Figure 4. Truncated tetrahedron wit six struts inside (initial geometry and physical model) 

This result has been validated by calculations made with a numerical model based on 

dynamic relaxation by Belkacem [7]. Il can also be checked on the specific software that we

developed in our laboratory in order to identify the states of self stress (“Tensegrite 2000”). 

But it also useful to make a very simple remark: if we consider one of the nodes, let say 

A, it can be seen that a necessary condition of equilibrium is to have the corresponding strut 

in position as shown on Figure 5(a) (a simple symmetry consideration has to be done). But 

in this case the other end of the strut would not be on an other node; Figure 5(b) shows the 

situation and simultaneously the impossibility of equilibrium in the original shape. 

b) Expanded octahedron (icosahedron)

The second example of a six struts system is related to the geometry of the regular

polyhedron known as icosahedron. It is possible to compute the shape resulting from the

insertion of the struts. The number of cables of this tensegrity system is equal to twenty four,

and it is less than the number of edges of the icosahedron (thirty).
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(a) (b) 

Figure 5. Truncated tetrahedron: research for equilibrium geometry  

Figure 6. Comparison between icosahedron geometry and expanded octahedron geometry 

The two geometries can be compared on basis of the ratio between the length of struts “s” 

and the distance between two parallel struts “d”. For the icosahedron this ratio is equal to 

approximately 1.618 (that is the “golden” ratio), for the associated tensegrity system it is 

equal to exactly 2. This resulting tensegrity system can be seen as the expansion of an 

octahedron, since there are at the end eight triangles of cables (the same as the number of 

triangular faces for an octahedron), and the three pairs of struts can be understood as the 

splitting of the three internal diagonals. 

d

s s 

d
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c) The Spinning icosahedron

Since it is not possible to design a regular icosahedron with six equal struts, we tried to build

one with six struts, one of them being greater than the five others. The basis of this design is

a prismatic pentagonal system; a central strut is placed on the vertical symmetry axis. This

axis becomes a rotation axis. The lengths of the struts and of the cables are calculated in

order to reach an equilibrium state which is characterized by the fact that the twelve nodes

occupy the geometrical position of the apices of an icosahedron. The name is chosen by

reference to this axis of rotation and to the icosahedron.

(a) (b) 

Figure 7. Spinning icosahedron: perspective and in plane views 

It can be noticed also that this system can be classified as a “Z” like tensegrity system 

according to the classification submitted by Anthony Pugh [8]. There are only two cables 

and one strut at each node, except for the central strut. 

2.3.3 Complex compressed components: circuit like systems 

Among all tensegrity systems, some are characterized by the specific topology of their 

compressed components. These components are no more single struts, but chains of struts. 

Two examples are presented. 

a) Cuboctahedron

For this example the continuum of cables is exactly mapped on the edges of a 

Cuboctahedron, which is one of the semi regular polyhedra (also called Archimedean

polyhedra). There are four triangular compressed components. Each of them constitutes a

circuit of struts (a circuit is a particular case of chain). These triangles are intertwined and 

their equilibrium is ensured simultaneously by a hexagon of cables and the effect of the 

three other triangles for three of the apices of each hexagon. This is a case of

tensypolyhedron (Figure 8).
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Figure 8. Cuboctahedron tensegrity system 

b) Mono circuit tensypolyhedron

This second case is a very interesting one; the chain of fifteen struts is closed and creates a

circuit which is the only compressed component. The continuum of tensioned components is

a polyhedron with two pentagonal parallel faces, five quadrangular and ten triangular faces.

We will develop a study on “tensegrity rings” in the following paragraphs, based on this

specific cell.

Figure 9. Mono circuit tensypolyhedron 

3. Toward Complexity

3.1 Introduction 

If the elementary cells were based on polyhedra, it became obvious that it could be 

interesting to design more complex systems, with many different lengths for cables and 

struts. Specifically, we had this need not for architectural structures, but for a specific 

problem in biology: the cytoskeleton of human cells can be analogically compared to 

tensegrity systems as far as their common mechanical behaviour is concerned. The first 

attempts were developed with force density method by Nicolas Vassart [4] and allowed to 
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work on multi parameter systems. But this method is not very well adapted for very complex 

systems since it is difficult to control the final shape. Therefore we began to work on 

physical models before developing a numerical method which gives some first interesting 

results. 

3.2 Preliminary physical models 

It is useful to begin with physical models, because it is the best way to understand the 

complexity of the design with all implied parameters. Conversely a virtual model is certainly 

easier to use in terms of the number of resulting solutions, but before modelling a process it 

is necessary to understand the different difficulties which can occur and to develop an 

adapted virtual model for taking these particularities into account. The first complex system 

was achieved some years ago and was called “cloud n°1”. 

Figure 10. Cloud n°1 

We developed then a more systematic process at the school architecture in Montpellier. 

Figure 11 is an illustration of the models which have been built during a workshop. 

Figure 11. Cloud n°2 
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4. Numerical Models Toward Complex Systems

4.1 Introduction 

It was necessary to model and to generalize the process through numerical methods. This 

work has been achieved by Zhang et al. [9]. 

The form-finding process that we use started from an initial specification of the 

geometry. At the same time, self stresses in some or all the components are also arbitrarily 

specified. Hence, excepted particular cases or lucky situations, the system can not be in 

equilibrium. A motion of the structure is then caused by the unbalanced internal forces. The 

displacements are computed by using the dynamic relaxation method that is based upon the 

calculation of a sequence of decreasing energy peaks and leads the system to reach the 

steady equilibrium state. 

4.2  Contact check 

During form-finding process, the minimum distance between two spatial line segments 

should be checked for avoiding contact. It is necessary especially when system geometry is 

complex and several algorithms for checking can be used [10]. If in final equilibrium state 

some elements touch each other (which means improper topology or geometry chosen by 

designer), then the topology or the geometry has to be modified until no contact is ensured. 

It can be done in a “slight way” by modifying stiffness values or more roughly by changing 

the topology. 

4.3 Applications 

4.3.1 “Stella octangula” 

The used topology for this application corresponds with one of David Georges Emmerich’s 

proposals and is represented in Figure 12 (see references [1] and [7]). The system is 

designed on the basis of a triangular anti-prism: struts lie on the triangular bracing faces 

along the bisecting direction, one of their ends is an apex of a layer triangular face and the 

other end is in the second parallel plane. There are 6 struts, 18 cables connected to 12 nodes 

and, for each strut one node is only connected to two cables: the corresponding equilibrium 

is thus realized into a plane. The length of all struts is roughly 19 and roughly 11 for all 

cables. (all values are a dimensional). 

Figure 12. Stella octangula 
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We investigated the equilibrium geometry by dynamic relaxation method by prescribing 

initial stresses in struts and cable elements (–10 and 20 respectively). For struts the stiffness 

is EA = 1000 and for cables EA = 10; parameters Δt =1 and λ=1 (λ is a convergence 

parameter; the maximum outbalanced force of the system is 10-4. 

An equilibrium state is then obtained: the compressions in struts are roughly -33 and the 

tensions in cables roughly 19. Even though the process is started from an arbitrary initial self 

stress specification, in final equilibrium state the absolute values of the ratio between the 

normal force and the reference length (i.e. the force density coefficient [1]) in all elements 

are almost the same (the absolute value is approximately 1.79). 

4.3.2 “Free form tensegrity” 

No topology of the whole system is specified in advance for that example. The process is 

started from a simple system and, next, more and more struts and cables are added step by 

step. The computational sequence is summarized as follows: the process starts from a 

quadruplex (Figure 13(a), simple regular shape), and another vertical strut 9-10 is added 

(Figure 13(b)). To keep nodes 9 and 10 in equilibrium state, it is necessary to add six cables 

(three connected to node 9 and another three to node 10). Note that other possibilities exist 

for adding these new elements but we have chosen the simplest way. Following the same 

procedure, three other struts (11-12 ; 13-14 ; 15-16) and eighteen cables are added to the 

system step by step; the topologies are respectively shown in Figure 14(a), (b) and (c). 

In the system represented in Figure 14(b), there are 8 struts and 36 cables connected to 16 

nodes. Calculation parameters are EA = 1000 and for cables EA = 10; parameters Δt =1 and

λ=1; the maximum outbalanced force of the system is still 10-4.; initial tension and 

compression in all cables and struts are respectively 2 and –1. 

An equilibrium state is obtained by the dynamic relaxation method based on this given 

topology. The minimum distance between any two spatial elements is 0.481; the 

compression in struts is between –2.854 and –4.328, the tensions in cables between 0.346 

and 3.453. The result shows that the tensions in element 4-6, 9-1, and 11-5 are respectively 

0.640, 0.391 and 0.346. They are lower when compared with the values in other cables and 

by topology analysis it can be found that there are more than three cables connected to nodes 

1, 4, 5, 6, 9, and 11. Since some of these cables can be regarded as redundant elements, they 

are removed from the system. This is the case for cables 4-6, 9-1 and 11-5. Keeping all other 

parameters the same as previously, form-finding process is restarted. Finally, a new 

geometry and equilibrated self stress state are obtained (Figure 14(c)). The compressions in 

struts range from –2.680 to –4.342; the tensions in cables are between 0.758 and 3.049 and 

the minimum distance between any two spatial elements is 0.611. There are 33 cables and 8 

struts connected respectively to 16 nodes in the whole system. 

In this example only two different lengths (19.9 and 32.9) for the eight struts are 

necessary at the starting configuration. During the form-finding process, one strut following 

another one is added to the system randomly. To keep this strut in stability, a certain number 

of cables are added to its ends. Many possibilities exist for such topology modifications and 

the designer can choose the more suitable solution. 
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(a) (b) (c)

Figure 13. From four struts to six struts 

(a) (b) (c)

Figure 14. From seven struts to eight struts 

It is a matter of fact that after many years of work on structural morphology of tensegrity 

systems, it is now possible to design free form systems. These cells can be used alone or in 

assemblies for architectural or other purposes. It will then be possible to use the structural 

principle of tensegrity systems with its advantages and disadvantages. 

5. Linear Assemblies

5.1 Introduction 

In his book devoted to a first approach of tensegrity, Anthony Pugh [8] showed three models 

which attracted my attention. A first one comprised four triangular compressed components 

inside a net of tensile ones. The overall geometry was organized according to a 

cuboctahedron, one of the semi regular polyhedra. The second model was very surprising 
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since the struts constituted a single circuit with 15 nodes and 15 compressed components. 

For this model, the cables are the edges of a polyhedron with two pentagonal bases. The 

third one is a twenty-strut four-layer circuit pattern system. There are represented on Figure 

15. This presentation concerns only the second cell.

Figure 15. Three "circuit systems"  

5.2 Structural composition principle 

5.2.1 Basic idea and developments 

When I decided to build a physical model of the fifteen-strut circuit pattern (Figure 16), I 

needed to use five vertical plastic “mounting” struts that I removed at the end of the process, 

but it became obvious that a general method, valid for many other cells could be developed, 

starting on a geometrical basis. It is necessary to have a geometrical description of the nodes 

position, and then a topological process can lead to different structural compositions 

according to a prescribed objective: single-circuit system, or mp-circuit system (m circuits 

of p struts). In the Figure 15, the second system is a mono-component system all the struts 

constitute a single circuit. The left hand side system comprises four 3-strut circuits, and the 

right hand side system comprises five 4-struts circuits. 

Figure 16. Module assembly 

5.2.2 Fifteen-strut tensegrity ring 

This idea is illustrated for the fifteen-strut circuit pattern system. The geometrical basis is a 
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straight prism with pentagonal basis (Figure 17(a)). 

(a) (b) (c)

Figure 17. First step: five lateral struts implementation  

The vertical edges will be removed at the end of the process. In each of the lateral 

quadrangular faces one strut is implemented along a diagonal, respecting a five-order 

symmetry of rotation (Figure 17(b)). Additional nodes and struts are created according to the 

following rules: each new node lays on a bisector line of the pentagon, which is a cross 

section of the initial straight prism, at mid height (Figure 17(c)). Their position on this 

straight line can be variable, but these new nodes have to be outside of the prism. It could be 

chosen other geometrical positions for these nodes, but it is necessary to respect some 

regularity for these first cells. The resulting cell will be a regular one, with only length for 

the struts and one length for the cables. It is then necessary to link this new node with two 

others, by adding two struts. 

Figure 18. Addition of two supplementary struts 

These struts have a common node (“e” on Figure 18), one of them is linked to a bottom

2 supplementary  struts 
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node “b”, the other to a top node of the pentagonal prism “t”. 

Figure 19. Addition of eight other struts 

The addition of eight other struts is realized according to the same process to end up with 

a tensegrity cell with fifteen struts and thirty cables: five for each basis and four per external 

node (these cables are linked to the four angles of each lateral quadrangular face of the 

initial prism). 

5.2.3 Tensegrity rings 

Since the whole components, cables and struts are inside a hollow tube shape, these 

tensegrity cells are grouped under the denomination “tensegrity rings” (Figure 20). 

Figure 20. Tensegrity rings 

It is simple to act on the geometrical parameters, namely the height “h” of the cell, the 
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interior radius “r” and the exterior radius “R” in order to meet some criteria of architectural 

type. The overall geometry can also be described with the height, one of the radii and the 

thickness of the tube. At this stage only regular systems have been studied, but there is no 

doubt that other possibilities are opened in the field of irregular shapes. 

5.3  Physical models 

5.3.1 Context 

It is always useful to build some physical models so as to check some parameters and 

procedures. Apart the initial plastic models, we built two sets of tensegrity rings during a 

first workshop at Istituto Universitario de Archittetura de Venetia (February 2006). Two 

geometries were experimented: hexagonal and pentagonal shapes. The size of the models is 

characterized by struts of one meter length. 

5.3.2 Hexagonal tensegrity ring 

The model presented on Figure 9 was satisfying according to the building process that we 

adopted with a first stage taking a straight prism as basis. 

Figure 21. Hexagonal tensegrity ring 

5.3.3 Foldable tensegrity ring 

These models allowed us to verify a hypothesis on the possibility of folding procedures. 

Generally the introduction of finite mechanisms which lead to more compact systems can be 

realized either by struts shortening or cables lengthening. Mixed solutions may also be used. 

Our hypothesis concerned the folding policy. We chose to act only on the polygonal 

circuits lying on the two bases. We begin (Figure 22(a)) by removing the upper polygon of 

cables. When the top polygon is completely removed (Figure 22(c)), the lower half part of 

the ring is still rigid at first order. When the lower polygonal circuit of cables is removed 

(Figure 22(d)), the tensegrity ring is completely flat. It will, of course, be necessary to 

validate this experiment with a numerical model. But it appears that two possibilities can be 

investigated: the first one corresponds strictly to the above description. A second one could 
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be to act simultaneously on the two bases: in this case the whole cell would be folded on its 

median plane, which could be of interest for some applications  

(a) (b)

(c) (d)

Figure 22. Folding of an hexagonal tensegrity ring 

Figure 23. Unfolding a tensegrity ring 
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The reverse process has been tested: the Figure 23 illustrates this experiment, which 

begins by the top. When the top polygon of cables is put in place the half top part recovers 

its rigidity. 

5.4  Perspectives of the "hollow rope" 

This study could have been done a long time before, if we look to the book of Pugh. Perhaps 

some people took interest in it, but it seems a comprehensive study could be very promising 

since many applications can take benefice of the properties of these tensegrity rings. Several 

ideas are now investigated. “The hollow rope” is one of them, architectural applications 

seem also to interest people. 

The simplest application is to add several tensegrity units by their basis creating so a kind 

of “hollow rope”. The units can be identical or not in terms of height. If the two bases are 

not parallel, new curved mean fibber are created. A spatial curve could be designed, 

provided some overall stability cables are added to the whole tube. Many solutions are 

available. 

The idea of “hollow rope” was soon described with other structural compositions, which 

did not rely on tensegrity principle. Robert Le Ricolais, and also Maraldi developed their 

own solutions. Some descriptions of their projects are provided in Ref. [11]. 

Figure 24. The hollow rope 

Several parameters can be adjusted. According to the size of the global system, and to an 

appropriate size of tubes and cables, a pedestrian bridge could be designed on this structural 

composition, since the inner free space could receive the walking floor. An optimization of 

the involved parameters (height, inner radius, outer radius) has to be achieved, with possible 

addition of longitudinal stiffening cables. A pertinent utilization of irregular cells would 

allow to designing curve shapes. 

At another scale, our studies on cytoskeleton of human cells lead us to model several 
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components like actine filaments and microtubules, which are chains of polymers. The 

hollow rope would certainly model correctly these microtubules, taking into account fluids 

interaction. 

These first studies on rings provided the roots for more intensive research, which is 

carried on in our laboratory. The foldabilitty of these rings is tested on more sophisticated 

models. 

      Figure 25. Physical model for a tensegrity ring 

6. Conclusion

In this paper the structural morphology of tensegrity systems is presented from the simplest 

cell, the so-called “simplex”, to more complex ones like pentagonal and hexagonal 

tensegrity rings. The assembly of tensegrity rings provides interesting structural solutions 

like the “hollow rope”, but one of their main features is their foldability which could be the 

key for pertinent applications. Other assemblies like woven double layer tensegrity grids can 

be derived from simple cells, constituting a way from simplicity to complexity. 
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