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Abstract 20 

Particles from channelled emissions of a battery recycling facility were size-segregated 21 

and investigated to correlate their speciation and morphology with their transfer towards 22 

lettuce. Microculture experiments carried out with various calcareous soils spiked with 23 

micronic and submicronic particles (1650 ± 20 mgPb.kg
-1

) highlighted a greater transfer 24 

in soils mixed with the finest particles. According to XRD and Raman spectroscopy 25 

results, the two fractions presented differences in the amount of minor lead compounds 26 
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like carbonates, but their speciation was quite similar, in decreasing order of abundance: 27 

PbS, PbSO4, PbSO4.PbO, α-PbO and Pb
0
. Morphology investigations revealed that 28 

PM2.5 (i.e. Particulate Matter 2.5 composed of particles suspended in air with 29 

aerodynamic diameters of 2.5 micrometers or less) contained many Pb nano balls and 30 

nano crystals which could influence lead availability. The soil-plant transfer of lead was 31 

mainly influenced by size and was very well estimated by 0.01M CaCl2 extraction. 32 

 33 

Keywords: lead, PM2.5 and PM10, soil-lettuce transfer, phytoavailability. 34 

 35 

1. Introduction 36 

  Due to its numerous past and present uses and high persistence, lead is a major 37 

environmental contaminant (Chen et al., 2006). Potentially toxic for living organisms 38 

even at low concentrations, lead constitutes a risk for humans who can absorb it in 39 

various ways (Canfield et al., 2003). In the context of contaminated gardens, elevated 40 

lead intake by humans can be due to the consumption of crop plants grown on soils with 41 

relatively high plant-available metal concentrations, ingestion of contaminated soil, 42 

either accidentally or intentionally (pica), inhalation of soil particles and drinking water 43 

with high soluble concentrations of metals (Alexander et al., 2006). The total quantities 44 

of lead emitted in the environment by industries have decreased sharply in recent 45 

decades (Glorennec et al., 2007) and are strictly controlled in Europe nowadays. Lead 46 

was recently classified as a substance of very high concern in the European REACH law 47 

(Regulation EC 1907/2006 of the European Parliament and of the Council of 18 48 

December 2006 concerning the Registration, Evaluation, Authorisation and Restriction 49 

of Chemicals). However, particles enriched with lead are still generated especially by 50 
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lead-recycling plants (Batonneau et al., 2004; Ohmsen, 2001) and constitue the main 51 

source of lead pollution for soils (Miquel, 2001; Donisa et al., 2000). 52 

 According to Zhang et al. (2005), emitted particles present a large granulometric 53 

spectrum in the atmosphere, but during the last decade the proportion of fine particle 54 

matter (PM) increased with the use of more effective filters in industry. Indeed PM10 are 55 

target species of the World Heath Organization (WHO, 2001) and the European Union 56 

Framework Directive on ambient air quality assessment (EU, 1999), due to their 57 

adverse effects on the environment and human health. While micrometric and sub-58 

micrometric fractions contribute very little to ambient particle mass, they may occur in 59 

substantial number concentrations. Most of the studies dealing with the characterization 60 

of metal-enriched particles in the ambient air provide information on quantitative 61 

measurements for PM10 fractions (EU directives 96/62 and 99/30) and very few on the 62 

sub-micronic fraction (Lazaridis et al., 2002). The lack of knowledge regarding metal 63 

speciation in the industrial particles results mainly from a lack of analytical tools, both 64 

sensitive and specific to the size of the particles. 65 

 These fine particles are hihgly reactive due to their high specific area and can be 66 

transported over long distances in the troposphere (Barrie, 1992). They could therefore 67 

present a greater impact on the biosphere than coarse particles (Fernandez Espinosa, 68 

2005). Ruby et al. (1992) concluded that the bioaccessibility of lead rises strongly in 69 

particles under 2.4 µm size. But, the phytoavailability of lead in industrial particles as a 70 

function of their size and speciation have not been studied yet. In comparison with zinc, 71 

lead generally shows a relatively low mobility in soils (Dumat et al., 2006). It can 72 

however migrate through the soil with dissolved organic matter (Cecchi et al., 2008) or 73 

be mobilized by certain plants (Arshad et al., 2008). Moreover, carried from the air to 74 
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the soils as fine particles, lead could be released more easily in soil solution 75 

(Komarnicki, 2005).  76 

 We therefore focused our study on the links between soil-plant transfer of lead, 77 

size and speciation of particles emitted by a lead recycling plant, currently the main 78 

source of atmospheric emissions (Cecchi et al., 2008). The objectives were the 79 

following: (i) the elemental and molecular characterisation of micrometer and 80 

nanometer sized lead-rich particles and (ii) to study the influence of particle 81 

characteristics on lead soil-plant transfer. 82 

 The physico-chemical characterization of industrial PM10 and PM2.5 particles 83 

collected in the plant was investigated using both bulk and micro analysis techniques: 84 

(i) MEB-EDS to determine the morphology and chemistry on the scale of a particle 85 

(Laskin et al., 2006; Choel et al., 2005); (ii) Raman microspectrometry to study particle 86 

speciation (Batonneau et al., 2004; 2006; Falgayrac et al., 2006; Sobanska et al., 2006). 87 

The transfer of lead from particles to the lettuce Lactuca sativa a widely grown garden 88 

vegetable was investigated in the laboratory: two different uncontaminated calcareous 89 

soils were spiked with PM10 and PM2.5 for soil-plant experiments with a biotest device 90 

that enabled careful study of rhizosphere and roots in addition to the transfer to the 91 

shoots (Chaignon and Hinsinger, 2003). The study was finally completed by CaCl2 92 

extraction experiments carried out according to Houba et al. (1996) to estimate lead 93 

phyto-availability. 94 

 The hypothesis tested throughout all these experiments was that particle 95 

characteristics have a significant influence on lead soil-plant transfer and translocation. 96 

 97 

2. Materials and methods 98 

2.1. Particle sampling and size separation. 99 
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 A secondary lead smelter which currently recycles batteries was chosen as a 100 

representative example of the smelter metal industry to develop a methodology aimed at 101 

the risk assessment of industrial lead particles. The plant of the Chemical Metal 102 

Treatment Company (STCM) is located in the urban area of Toulouse (43°38’12” N, 103 

01°25’34” E). According to the French authorities (DRIRE, 2007), 328 kg of Total 104 

Suspended Particles (TSP) including 31 kg of lead were emitted by this factory in 2007.  105 

 Three sources of particles corresponding to the three work units involving 106 

different steps in the process are identified in the plant: (i) the battery grinding unit 107 

where battery components are separated under wet conditions (ii) the smelter where lead 108 

pastes are processed in rotary furnaces at 1200°C and finally (iii) the refinery where 109 

lead is purified from unwanted metals or enriched. The same process has been used for 110 

thirty years in the plant. This study focuses on channeled emissions only generated by 111 

the furnace unit, considering the transfer towards the biosphere. The particle collection, 112 

performed three months after complete cleaning of the three work units (March, 12, 113 

2007), is therefore representative of that emission period. Our aim was to characterize 114 

the reactivity of the particles in relation with their previously determined speciation and 115 

size, not to follow one specific parameter over time. 116 

 1kg of particles was collected in polyethylene bags from the air-sleeve filters of 117 

the furnace, then sealed and transferred in sealed opaque containers for transport to the 118 

laboratory. Samples were passed through a 2-mm stainless steel AFNOR sieve. Process 119 

dust was stored in a cool (4°C) dark place with Merck desiccant. 120 

 Because 80 % of emitted particles were smaller than 10 µm, PM2.5 and PM10 were 121 

size-segregated by artificial resuspension in a Teflon bag (Batonneau et al., 2004; 122 

Young et al. 2002) and collected by impaction onto a PM10/2.5 Dekati inertial impactor. 123 

The cascade impactor consists of two successive stages with aerodynamic cut-off 124 
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diameters of 10 and 2.5 µm when it operates at 10 L/min airflow. PM10 present an 125 

aerodynamic diameter between 2.5 and 10 µm, whereas the PM2.5 stage collects 126 

particles < 2.5µm.  127 

 128 

2.2. Characterization of particles 129 

Elemental total contents of the two size fractions were determined by ICP-OES (IRIS 130 

Intrepid II XDL) after heated digestion with standard acid (HNO3, HCl and HF, 131 

Suprapur, Merk) in a PTFE vessel. Levels of C, H, S and O were determined after 132 

burning in an elemental analyser with coulometric-catharometric detection and IR.   133 

 X-ray diffraction patterns of PM10 and PM2.5 were recorded on an INEL 134 

diffractometer equipped with a curved detector CPS 120 and Co (Kα) radiation allowing 135 

a 120°/2θ detection. Crystallized compounds were identified by comparison with the 136 

diffraction patterns of the JCPDS database. The relative abundance of each crystallized 137 

phase detected in samples was qualitatively estimated by using the relative intensity of 138 

the strongest X-ray pattern peaks of each considered phase. It should be noticed that 139 

only crystallized phases with an abundance superior to 5 % in weight can be detected by 140 

XRD. 141 

 Particles were characterized using complementary microscopy and imaging 142 

techniques to determine elementary and molecular composition, size, morphology and 143 

heterogeneity of the individual lead-rich particles.  144 

 X-ray elemental mapping and secondary images were obtained using an 145 

Environmental Scanning Electron Microscope (ESEM) working in high-vacuum mode. 146 

The Quanta 200 FEI instrument was equipped with an energy-dispersive X-ray (EDX) 147 

detector. ESEM was operated at 10-25 kV. Particles were dispersed on carbon 148 
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substrates and analysed without further preparation. Because of the ESEM 149 

configuration, light element detection (C, N, and O) was ambiguous.   150 

 Raman microspectrometric measurements were carried out with a LabRAM 151 

confocal spectrometer (Jobin Yvon, Horiba Gr, France). The spot size of the laser 152 

focused by a 100×objective (numerical aperture (NA) = 0.90) was estimated to be 1 μm
2
 153 

in size. A liquid nitrogen-cooled CCD (Jobin-Yvon, 2048 pixels × 512 pixels) was used 154 

for detection. The Raman backscattering was excited at 632.8 nm provided by an 155 

internal, air-cooled, linearly polarized helium-neon laser. The laser power delivered to 156 

the sample was 8 mW. The microscope stage was XY-motorized and computer-157 

controlled for point by point scanning with 0.1 μm resolution, 1 μm reproducibility and 158 

90 mm × 60 mm spatial range. The glass plate with the impacted particles was mounted 159 

on the microscope stage without any further preparation. Data acquisition consisted in 160 

recording many spectra in point-by-point scanning mode with 1 μm as a minimum step, 161 

one accumulation and 30 s spectrum acquisition time. For identification of Raman 162 

spectra the experimental spectra were compared to reference spectra using Spectral 163 

Library Search ID 301 software (Thermo Galactic). 164 

 165 

2.3. Measure of soil-plant lead transfer performing microculture experiments  166 

 Lettuce was chosen because it is a common vegetable widely grown for human 167 

consumption and has recently been used by several authors for metal transfer studies 168 

(Khan et al., 2007; Waisberg et al., 2004; Alexander et al., 2006). Moreover, lettuce is 169 

often used around plants to estimate atmospheric pollution.  170 

 The biotest presented on figure 1  was first described by Niebes et al. (1993) and 171 

then adapted by Chaignon and Hinsinger (2003). A small PVC cylinder (25 mm inner 172 

diameter) was closed by a polyamide net (900 µm mesh) inserted into a larger cylinder, 173 
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itself closed by a finer polyamide mesh (30 µm, Fyltis/Nytel, Sefar filtration). A space 174 

of 3 mm was left between the net and the finer mesh, where the roots could develop as a 175 

mat.  176 

 Commercial lettuce seeds, “Batavia blonde dorée” cultivar, were surface sterilized with 177 

0.9% CaClO for 15 min and rinsed with deionised water. Three seeds were sown in the 178 

container on the surface of the coarser mesh. 179 

Lettuces were first grown hydroponically for 21 days to obtain a large flat mass of roots 180 

that fully covered the fine mesh.  181 

The devices were placed on top of troughs containing an aerated complete nutrient 182 

solution with the macroelements: 5 mM KNO3, 5 mM Ca(NO3)2, 2 mM KH2PO4 and 183 

1.5 mM MgSO4 and oligoelements: 9.11 µM  MnSO4, 1.53 µM ZnSO4, 0.235 µM 184 

CuSO4, 24.05 µM H3BO3, 0.1 µM Na2MoO4 and 268.6 µM Fe/EDTA. The height of the 185 

nutrient solution was adjusted daily to keep the fine mesh wet during the whole pre-186 

culture period. The experiment was conducted in a growth chamber (temperature 24 ± 187 

0.5 °C/18 ± 0.5 °C day/night cycles; photoperiod 16 h under daylight fluorescent lamps 188 

providing 400 µmol.m
-2

.s
-1

 [Philips 600W, Eindhoven, Netherlands] and 8 h darkness; 189 

relative humidity 70%).  190 

Then, the second step involved an eight-day soil-plant contact period: five replicate 191 

plants for each treatment were transferred onto the various soil samples.  192 

 Top soils of two calcic cambisol profiles (FAO, 1998) produced by quaternary 193 

alluvial deposits, were sampled. These two calcareous soils (noted soil-1 and soil-2) 194 

with various physicochemical properties (table 1) were chosen because that kind of soil 195 

happens to be observed around several battery recycling plants. Moreover, if the lettuce 196 

species could favor lead transfer, the choice of calcareous soils could reduce it. The 197 

soils differ by texture, soil cultivation, organic matter (OM) and CEC: soil-1 was 198 
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uncultivated loamy-sandy clay with 2% of OM and soil-2 was sandy-clayey loam under 199 

sunflowers with 1% of OM and a higher CEC. 200 

 These two soils were spiked with PM2.5 and PM10 up to [Pb] = 1650 ± 20 mg.kg
-1

.  201 

60 mg of particles were added per box containing 10 g of soil and were agitated for a 202 

day. Soils were turned over every fifteen days for four months. This long period was 203 

chosen to allow time for natural equilibration of the various sorption mechanisms in the 204 

soil (Alexander et al., 2006). The relatively high total lead soil concentration was 205 

chosen to be representative of a real soil pollution situation observed for atmospheric 206 

fallout from an STCM plant (Cecchi et al., 2008) and we wanted to be sure that enough 207 

lead was available for the plant in soil solution. Surveys of garden soils in several 208 

countries have shown wide ranges of concentrations of heavy metals. For example, 209 

Culbard et al. (1988) found concentrations of up to 14,100 mg Pb kg
-1

. Some soils were 210 

left without crops, to determine the pH possible variation due to soil solution influence. 211 

During the growth, pH was measured daily and nutrient solution level was maintained 212 

constant. pH of nutrient solution was 5.5±0.3 during the hydroponic and soil contact 213 

phases. 214 

This biotest device presents two main advantages: (i) the roots are physically separated 215 

from the soil which enables total recovery of the shoots, roots and soil; (ii) the thickness 216 

of the soil layer used enables it to be considered it as rhizosphere soil and provides 217 

enough rhizosphere material to evaluate root-induced changes in metal speciation.  218 

 Roots and aerial parts were collected and analysed separately after the soil plant 219 

contact period. Biomass was determined before oven-drying at 80°C for 48H. Lead 220 

bound to the outer root cell walls, called [Pb]adsorbed, was determined according to the 221 

method of acidic desorption as described by Ferrand et al. (2006): roots were shaken 222 

end over end with 40mL of 0.001M HCl for 3 min, and then 360 µL of 1 M HCl was 223 
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added to yield a final concentration of 0.01 M HCl. After shaking for another 5 min, the 224 

suspension was filtered through ashless paper. Then, plant roots and aerial parts were 225 

mineralized separately in a 1:1 mixture of HNO3 and H2O2 at 80°C for 4h. After 226 

filtration, the major and trace element concentrations were determined with an IRIS 227 

Intrepid II XDL ICP-OES. The concentration in roots after mineralization is considered 228 

as uptaken lead ([Pb]roots). The accuracy of the acidic digestion and analytical 229 

procedures was verified using the reference material Virginia tobacco leaves, CTA-230 

VTL-2, ICHTJ. 231 

 232 

2.4. Estimation of lead availability by CaCl2 extraction experiments 233 

 For the determination of the phytoavailable fraction, according to Menzies et al. 234 

(2007) neutral salts extractants provide the most useful indication. The 0.01 M CaCl2 235 

extraction procedure gives a good indication of lead phytoavailability (Meers et al., 236 

2007). The CaCl2 procedure, first described by Houba, et al. (1996), was performed on 237 

the two contaminated soils and particle samples (PM10 and PM2.5). 30 mL of 0.01 M 238 

CaCl2 solution was mixed with 3 g of soil (1:10 solid solution ratio) in 50ml 239 

polypropylene centrifugation tubes placed on a shaker table (Heidolph promax 1020) at 240 

50 oscillations/min for 2h, 20°C. After extraction, the tubes were centrifuged at 10,000 241 

g for 30 min (Avanti 30 centrifuge Beckman). The supernatant liquid was then filtered 242 

(0.22µm), acidified to 2% with distilled HNO3 (15M, suprapur 99.9%) and stored at 243 

4°C before analysis. That CaCl2 extraction procedure was performed on particles, 244 

reference soils, and the two spiked soils before and after culture. Extracted metal 245 

concentrations were determined by an IRIS Intrepid II XDL/ Thermo Electron 246 

Corporation model ICP-AES Calibration used reference materials (ion 915 from 247 

National Water Research Institute, Canada). 248 
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 249 

2.5. Statistical data treatment 250 

 The plant absorption and chemical extraction data obtained were subjected to 251 

analysis of variance (ANOVA) with one factor, using the software Statistica, Edition’98 252 

(StatSoft Inc., Tulsa, OK, USA). For each bioassay, mean values with different letters 253 

represent a significant difference (p < 0.05) as measured by the LSD Fisher test. Letters 254 

are reported on the figures and tables. 255 

 256 

3. Results  257 

3.1. PM10 and PM2.5 characterization:  258 

 Elemental concentrations in particles are shown in table 2. All results are given as 259 

the mean of the three replicates for each sample (PM10 and PM2.5) and standard 260 

deviations never exceed 7%. No significant difference except for Fe in the total 261 

elemental concentrations was observed in relation with the size of the particle. Major 262 

elements found in the samples were, by mass: Pb (27%), O (15%) and S (7.5%) for both 263 

fractions. High levels of Na (3-4%) were due to the industrial recycling process where 264 

Na is used to lower the melting point of Pb. Several other metals: Cd (2.5%), Zn (0.5%), 265 

Fe (0.1-0.4%) and Sb (0.1%) are also present. The remaining elements to complete to 266 

100% are expected to be chloride and other trace metals.  267 

 XRD patterns of PM10 and PM2.5 provide identification of major crystallized 268 

species in bulk samples. The results are presented in table 3. Particles are mainly 269 

composed of metallic sulfides, sulfates, oxides and perchlorates. A significant amount 270 

of Na2SO4 was found in PM10 samples. Regardless of the size, the major phases 271 

identified were the same and one more Fe species was detected for PM2.5. 272 
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 The ESEM-EDX analysis provided the morphology and elemental composition of 273 

individual particles in the two size fractions. PM10 samples exhibited both particles with 274 

a size range between 2 and 10 µm and large aggregates composed of many micron-sized 275 

particles without specific shapes (figure 2). The main elements detected by EDX in 276 

these aggregates were, by order of importance, Pb, S, Cl, Sn, Na, and Fe. The chemical 277 

complexity of aggregates did not allow the detection of minor elements. Elemental 278 

mapping recorded on PM10 showed the chemical heterogeneity of aggregates. PM2.5 279 

samples are composed of fine aggregates of few submicronic particles exhibiting 280 

characteristic features i.e. needles (< 100 nm), nano crystals (< 500 nm), cubes (~300 281 

nm) and balls (~500 nm). Elemental analysis of particles showed that needles mainly 282 

contain Pb and S, nano crystals are composed of Pb, S and Cl while Na and S are 283 

detected in cubic particles. Compared to the PM10 sample, numerous Pb only-rich 284 

nanoballs were observed in PM2.5 (figure 2). 285 

 Raman microspectrometry combines the analytical capability of Raman 286 

spectroscopy to distinguish in situ a wide range of chemical substances in aerosols with 287 

the spatial resolution of a confocal optical microscope (~1 µm
3
) which enables 288 

investigation of individual particles. The scanning of a large area of sample (300 µm
2
) 289 

by automated analyses enables the analysis of  a huge number of particles. The data 290 

treatment of all the spectra recorded in this area leads to the major and minor 291 

component identification. xPbO.PbSO4 (x = 1,2,3), PbSO4, -PbO, PbCO3, Na2SO4, 292 

and ZnSO4 were identified in both PM10 and PM2.5 samples as major species. The laser-293 

damaging effect generates complete and irreversible oxidation of PbS to PbSO4 as 294 

described previously (Batonneau et al., 2000). The Raman mapping of species within 295 

particles exhibits a large heterogeneity of particle composition. A typical Raman image 296 

of PM2.5 particles is shown in figure 3. A large number of particles are composed of 297 
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lead sulphate and are agglomerated with other compounds such as sodium sulphate or 298 

carbonates in both PM10 and PM2.5 size fractions. The results suggest that no significant 299 

differences in lead speciation are observed in accordance with the particle size. 300 

However, for the minor lead compounds (like carbonates) not exactly quantified by 301 

XRD, differences in percentages between the two size fractions could exist. 302 

 303 

3.2. Assessment of the available fraction with CaCl2 extraction 304 

 Figure 4A and 4B shows respectively total lead concentrations extracted by CaCl2 305 

and percentages of extracted lead with CaCl2 (relative, with respect to total lead 306 

concentrations in different subtracts) for various samples: the single particles, soil-1 and 307 

spiked soil-1 before and after an eight-day exposure of Lactuca sativa. 308 

Due to high levels of lead in particles (330,000 mg.kg
-1

), maximum lead quantities were 309 

extracted from PM10 and PM2.5. But, in comparison with total lead contents, lead in 310 

uncultivated spiked soils was 0.2% exchangeable, while PM10-2.5 presented a 0.01% 311 

exchangeability. Reference soils were under ICP-OES limit detection. After culture, a 312 

significantly greater lead quantity was extracted by CaCl2 for the soil spiked with the 313 

finest PM2.5 fraction than in PM10. A 1 unit pH decrease was measured after plant-soil 314 

contact while the pH values of the control soils (left without crops but with nutrient 315 

solution influence) remained constant. Concerning CaCl2 extraction, no significant 316 

differences were observed between the two particle sizes in the PM10-2.5 and spiked soil-317 

1 before culture; The same trends described above for soil-1 were also observed for soil-318 

2.  319 

 320 

3.3. Influence of lead exposure on plant growth. 321 
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Fresh biomass data are shown in figure 5. After eight days of soil-plant exposure, 322 

biomasses for aerial parts grown on spiked soils were slightly lower than in the 323 

respective unspiked soils. No significant biomass differences were observed among the 324 

two types of spiking (PM10-2.5). In controls, fresh weights were approximately 18.5 ± 2.5 325 

g for aerial parts and 3.7 ± 0.7 g for roots while in spiked soils, weights reached 12 ± 4 326 

g and 2.5 ± 1 g respectively. This slight influence of lead on plant biomass could be due 327 

to lead toxicity (Sharma & Dubey, 2005) or water status (Parys et al., 1998). 328 

 329 

3.4. Absorption and adsorption of lead in the lettuce  330 

 Figure 6 presents results of lead transfer from soil to the various compartments of 331 

the plant (roots and shoots) and the distribution  between adsorption (noted [Pb]adsorbed) 332 

and absorption for roots ([Pb]roots) respectively described in the materials and method 333 

section as lead only adsorbed at the root surface and lead truly taken up by the plant. 334 

Measurements on the reference samples (Tobacco leaf VTL-2) validated the assay: the 335 

concentration found was 21.4 ± 1.1 mg.kg
-1

, for a certified value of 22.1 ± 1.2 mg.kg
-1

. 336 

Several trends were observed dealing with the influence of the particle type, soil type 337 

and lead location. For both soils, a significant increase of lead adsorption on roots, 338 

absorption and translocation throughout the shoots was observed, when the finest 339 

particles were added in comparison with the PM10. Global uptakes ([Pb]adsorbed + 340 

[Pb]roots, + [Pb]shoots) were greater for soil 1 than for soil 2. The main lead fraction was 341 

adsorbed on root membranes where concentrations were up to 985 ± 147.kg
-1

 for PM10 342 

contaminated soils and up to 1281 ± 195 mg.kg
-1

 for PM2.5 contaminated soils. The soils 343 

spiked with PM10 allowed a lead uptake of 230 ± 24 mg.kg
-1

 by roots and a translocation 344 

to aerial parts of 7.7 ± 2.7 mg.kg
-1

. While in the PM2.5 spiked soils, root and shoot 345 

concentrations reached 275 ± 40 mg.kg
-1 

and 12.19 ± 3 mg.kg
-1

 respectively. 346 
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 347 

4. Discussion 348 

(1) Influence of particle size on soil-plant transfer and lead translocation. 349 

 Whatever the soil, for a given total lead concentration (1650 mg Pb.kg
-1

 soil), 350 

higher lead soil-plant transfer and translocation were observed for the finest particles. 351 

Roots exposed to PM2.5 spiked soils allowed a 20% greater lead uptake and a 30% 352 

increase in adsorbed lead. Shoots presented a 60% increase in translocated lead in PM10 353 

spiked soils. For the first time in industrial particles, the transfer of lead to the soil 354 

solution and its translocation throughout the plant is reported to increase as the particle 355 

size decreases. 356 

 Douay et al. (2006), measuring lead concentrations in lettuces in urban gardens 357 

(1572 mg Pb.kg
-1

) observed a shoot concentration of 5 mg Pb.kg
-1

 DW. The soil to plant 358 

metal transfer measured in this study (for one week of lead exposure) was relatively 359 

high in comparison with previously reported data in publications dealing with 360 

vegetables (BAPPET, 2007), probably because of particle size, but also due to 361 

numerous factors that influence the soil-plant transfer of metals (Kabata-Pendias, 2004; 362 

Dumat et al., 2001 & 2006; Costa & Morel, 1993; Oliver et al., 1994). 363 

 Root transfer factors (TF-roots) and shoot transfer factors (TF-shoots) were 364 

calculated as ratios between [Pb]roots, [Pb]shoots with [Pb]soil. TFr ranged from 0.10 to 365 

0.17 and TFs were between 0.005 and 0.007 (table 4). These relatively low values 366 

illustrate the known low mobility and availability of lead and are comparable to Khan et 367 

al.’s results (2008) reporting 0.15 for TFr and 0.07 for TFs. As transfer factors for 368 

vegetables decrease with increasing levels of lead in the soil (Zheng et al., 2007; Wang 369 

et al., 2006), we therefore expected a greater influence of particle size on transfer with a 370 

lower total lead concentration in soil.  371 
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 According to Sobanska et al. (1999), lead smelter emissions contain PbS, PbSO4, 372 

PbSO4.PbO, Pb, α-PbO compounds and numerous nano balls were observed for PM2.5. 373 

Dumat et al. (2001) and Cecchi et al. (2008) working on soils polluted by lead produced 374 

by industrial atmospheric fallout from smelters, concluded that lead chemical speciation 375 

strongly influences its bioavailability. The sequence of solubility constants from the 376 

CHESS data base for the lead is the following: PbCO3 > PbSO4 > PbO > Pb
0
. In water 377 

media and equilibrium conditions, lead carbonate and sulphate will be much more labile 378 

than PbO or Pb
0
 species. However, according to Birkefeld et al. (2006 & 2007) which 379 

used an in-situ method to study dissolution and phase transformation of lead particles 380 

from a smelter in different soils, the sequence of solubility is strongly dependent on soil 381 

characteristics (like texture, pH, lime amount...). They observed that PbO was rapidly 382 

covered by lead-hydroxy carbonates (hydrocerussite) in some soils while in other it was 383 

relatively stable. Moreover, according to the general review of Ruby et al. (1992), 384 

release of lead in the soil solution depends on particle size, speciation and soil 385 

geochemistry. In soil solution, ligands like fulvic acids or low weight organic acids 386 

excreted by roots can displace the equilibrium (Ferrand et al., 2006). Finally, as no 387 

significant difference among speciation forms was noticed between PM10 and PM2.5, all 388 

changes observed in reactivity were attributed to size differences. 389 

 Whatever the particle size, greater lead absorption by lettuce was observed for 390 

soil-1 than for soil-2. In comparison with soil-2, soil-1 has more clay, its CEC is higher 391 

and its level of lime is lower (see Table 1). According to Twining et al. (2004), we 392 

could expect that lead transfer would be higher for soil-2. However, several hypotheses 393 

can explain the results observed: (i) the higher amount of carbonates present in the soil-394 

2 could reduce lead absorption (Birkefeld et al., 2006 & 2007); (ii) the complex 395 

influence of soil organic matter on the transfer of metals (Yin et al., 2002; Inaba & 396 
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Takenaka, 2005); (iii) for the total lead concentration studied, the relatively high 397 

quantity of lead could be available in the soil solution (due to high solubility of the fine 398 

particles) reducing the influence of soil characteristics.  399 

 Total lead in the roots ([Pb]roots + [Pb]adsorbed ) reached 1500 mgPb/ kg dry weight. 400 

Lead in roots was predominantly adsorbed onto the cell walls, 80 % of the total lead in 401 

roots, and depends on the nature of the particles used for exposure: the uptake was 402 

greater for PM2.5 than PM10. According to Seregin et al. (2004), Pb
2+

 binds to the 403 

carboxy groups at the root surface reducing the translocation rate of lead (Pendergrass et 404 

al., 2006; Piechalak et al., 2002). To illustrate this phenomenon, the translocation 405 

factors or shoot/root ratios calculated indicate the ability of plants to transport metals 406 

from the roots toward the aerial parts (Ferrand et al., 2006): they ranged between 0.03 407 

and 0.04 (table 4). But considering the lower biomasses in roots than in shoots, we can 408 

also reason with lead quantities. Whatever the type of soil or spiking, the total lead 409 

quantity in shoots (Pbshootsdry weight) between 0.003 and 0.007 mg Pb translocated 410 

which represents up to 33% (PM2.5) of the total lead uptake. This percentage is not 411 

negligible with respect to risks concerning consumption of vegetables. 412 

 413 

(2) Behaviour of lead in the rhizosphere and assessment of lead availability 414 

 Relatively high lead transfer was observed for the lettuce cultivated on the two 415 

alkaline spiked calcareous soils. PM10-2.5 can therefore release lead in particular in the 416 

rhizosphere of Lactuca sativa. The lead availability estimated by the  CaCl2 procedure 417 

was greater for soils spiked with the finest particles and for both soils it increased after 418 

soil-plant contact: [Pb]CaCl2 in spiked soil with PM2.5 > [Pb]CaCl2 in spiked soil with 419 

PM10. Under the root activity influence, the CaCl2 lead extracted from polluted soils 420 

increased and a one-unit pH decrease in soil was measured. Lin et al. (2004) and Kidd 421 
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and Monterroso (2005) also observed that exchangeable lead was much higher in the 422 

rhizosphere than in the bulk soil. Producing exudates, plants can modify metal 423 

speciation and behaviour in the rhizosphere (Lin et al., 2004; Laperche, 1997; Welch, 424 

1995). This phenomenon has been particularly observed for calcareous soil by 425 

Chaignon and Hinsinger (2003). As pH influences metal solubility and transfer (Wang 426 

et al., 2006), the rhizosphere acidification could have displaced the equilibrium towards 427 

bicarbonates, which are less stable than carbonates (Sauvé et al., 1998). An effect of soil 428 

on particle solubility was also observed: particles present a CaCl2 exchangeability ten 429 

times lower than in spiked soil. Quantities extracted for particles were only up to 1.5% 430 

of the solution extraction. Mixed with soil for four months, particle solubility could 431 

therefore have changed. 432 

 In order to estimate the transfer of lead from polluted soils towards lettuce, 433 

relationships were sought between: lead mobilised by CaCl2 extraction performed on 434 

soils before culture and lead concentrations in lettuce (shoots and roots). Equations were 435 

obtained from 6 parameters (2 soils; uncontaminated, spiked with PM10 or PM2.5), and 436 

every condition was studied by 5 replicates finally involving 30 observations. 437 

Significant correlations were observed between lead concentrations in shoots (Equation 438 

1 below, with r
2
 = 0.8) or in roots (Equation 2 below, with r

2
 = 0.9) and lead extracted 439 

by CaCl2.  440 

Equation 1: [Pb]shoots=2.11×[Pb]CaCl2 + 2.13   r
2 
= 0.797  p<0.01  n = 30 441 

Equation 2: [Pb]roots=35.02×[Pb]CaCl2 + 4.24   r
2 
= 0.915 p<0.005  n = 30 442 

Both for PM10 and PM2.5, the CaCl2 chemical extraction was therefore a good indicator 443 

of soil-plant transfer. As previously shown by Pueyo et al. (2004), the 0.01 mol l
−1

 444 

CaCl2 extraction procedure seems to be a suitable method for the determination of 445 

phytoavailable lead. This test simplifies the matrix and could avoid in vivo tests. 446 
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 447 

Conclusions and perspectives 448 

 A significant size influence was found for soil-plant lead transfer and translocation 449 

throughout the lettuce when micronic and nanometric industrial particles were 450 

compared: roots exposed to PM2.5 spiked soils allowed a 20% greater lead uptake and a 451 

30% increase in adsorbed lead. Shoots presented a 60% increase in translocated lead in 452 

PM10 spiked soils. Our results highlight that source characteristics strongly influence 453 

metal transfer: total metal soil concentration is insufficient to estimate the risk induced 454 

by soils polluted by metals. Lead speciation was quite similar in PM10 and PM2.5 455 

particles i;e. PbS, PbO.PbSO4, PbO, PbCO3 and Pb
0
, were predominant however 456 

differences could exist for minor lead components. Moreover, the high amount of Pb-457 

rich nano balls and nano crystals much more dispersed for PM2.5 could influence the 458 

lead transfer in the rhizoshere acidified by plant root activity. Lead concentrations in the 459 

edible part of lettuces were very well estimated by 0.01M CaCl2 extraction. 460 

 In order to check the generality of the size influence of industrial particles on soil-461 

plant transfer, further experiments could be performed on other vegetables and various 462 

soils testing aging effects. Moreover, the study of other metals and metalloids measured 463 

in the particles will be performed. 464 

 465 
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Figure legends 673 

 674 

Figure 1 675 

Microculture device. 676 

 677 

Figure 2 678 

ESEM images of PM2.5 (A) and PM10 (B). 679 

 680 

Figure 3 681 

Raman image of PM2.5 particles after a smoothing procedure. Blue 4PbO.PbSO4, pink 682 

PbO.PbSO4, red Na2SO4 and green substrate. 683 

 684 

Figure 4 685 

Total contents (A) and relative contents (B) of lead extracted with CaCl2 on particles 686 

(white), spiked soils with lead particles of different size before (grey) and after (black) a 687 

seven-days exposure of Lactuca sativa, n=5. 688 

 689 

Figure 5 690 

Plant biomass data for aerial parts (black) and roots (grey). The error bars indicate the 691 

standard deviation while different letters show significant differences (p<0.05) as 692 

measured by an LSD fisher test (one-factor ANOVA ). 693 

 694 

Figure 6 695 

Lead concentrations in different plant compartments: A: adsorbed onto roots, B: root 696 

uptake and C: translocated in shoots. 697 

698 
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Table 1 699 

Physico-chemical characteristics of the two soils used for micro-culture experiments. 700 

 unit Soil-1 Soil-2 

pH  8.3 8.4 

CEC cmol+/kg 19.9 8.9 

Clay 

(g.kg
-1

) 

405 195 

Silt 261 390 

Sand 334 415 

C/N  9.15 8.9 

MO (g.kg
-1

) 18.8 12.5 

Total carbonates (g.kg
-1

) 36.8 98 

P2O5 Joret Hebert (g.kg
-1

) 0.28 0.215 

Cd (HF extraction) 

(mg.kg
-1

) 

0.22 0.175 

Pb (HF) 35.5 21 

Zn (HF) 101 48 

Cu (HF) 28.5 31 

 701 

 702 

 703 

704 
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 Table 2 705 

Total elemental analysis of particles. 706 

 Contents (mg.kg
-1

) ± 7% 

Sample Al As Cd Cu Fe O Na Ni Pb Sb Zn S C 

PM 2,5 10 867 25243 480 1395 149300 31691 41 272834 1266 5194 78100 12100 

PM10 52 841 23139 617 4010 150000 39697 97 267353 1361 5372 74300 11500 

 707 

 708 

709 
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Table 3 710 

Determination of main chemical speciation of lead in the PM10 and PM2.5 particles by 711 

X-Ray Powder Diffraction Analysis 
a 

712 

Sample Cristallized compound Estimated % of phases 

PM10 PbS, 

PbO.PbSO4, PbSO4, Pb(ClO4)2, Pb, 

Na2SO4 

CdS, Cd(ClO4)2, ZnO, ZnSO4 

55 

25 

10 

10 

PM2,5 PbS, 

PbO.PbSO4, PbSO4, Pb(ClO4)2, Pb, 

Na2SO4 

CdS, Cd(ClO4)2, ZnO, ZnSO4, FeS2 

55 

25 

10 

10 

 713 
a
 The major compounds are written in bold 714 

 715 

 716 

 717 

718 
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Table 4 719 

Tranfer factors in roots (TFr) and shoots (TFs) and translocation ratios. 720 

Soil TFs TFr Translocation 

S1 + PM10 0.005 0.14 0.03 

S1 + PM2.5 0.007 0.17 0.04 

S1 0.081 0.26 0.31 

S2 + PM10 0.004 0.10 0.04 

S2 + PM2.5 0.005 0.15 0.03 

S2 0.01 0.44 0.18 

 721 

 722 

723 
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Figure 1 724 

 725 
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Figure 2 749 

(A) 750 

 751 

 752 

(B) 753 

 754 
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Figure 3 761 

 762 

763 
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Figure 4 764 
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Figure 5 771 
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Figure 6 776 

(A) 777 
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