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ABSTRACT. We study the Hopf algebra of double posets and two of its Hopf subalgebras,
the Hopf algebras of plane posets and of posets "without N". We prove that they are free, cofree,
self-dual, and we give an explicit Hopf pairing on these Hopf algebras. We also prove that they
are free 2-As algebras; in particular, the Hopf algebra of posets "without N" is the free 2-As
algebra on one generator. We deduce a description of the operads of 2-As algebras and of By
algebras in terms of plane posets.
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Introduction

The Hopf algebra of double posets is introduced by Malvenuto and Reutenauer in [8]: a double
poset is a finite set with two partial orders (definition 1); the vector space Hpp generated by the
set DP inherits two products, here denoted by ~ and 4 (definition 2), and a coproduct A given
by the ideals of the posets (proposition 29), such that (Hpp,~>,A) is a graded, connected Hopf
algebra. Moreover, a Hopf pairing (—, —) is combinatorially defined on Hpp (definition 31).

We here study this Hopf algebra Hpp and some of its Hopf subalgebras: the Hopf algebra
of plane posets Hpp (definition 10), the algebra of WN posets Hyyap (definition 20) and the
algebra of plane forests Hpr. We shall say that a double poset P is plane if its two partial
orders <; and <, satisfy a certain compatibility condition . We shall say that a plane poset is
WN ("without N") if it does not contain N nor ! as plane subposets. Finally, plane forests
are plane posets whose Hasse graph is a rooted forest.

Note that Hpr is equal to the non commutative Connes-Kreimer Hopf algebra of plane
forests, introduced in [2, 5|. Using the involution ¢ permuting the two partial orders of any
double poset, we prove that the restriction of the pairing (—, —) to any of these subalgebras is
non-degenerate, with the possible exception of Hpp if the base ring does not contain Q.

The notion of 2-As algebra is introduced and studied in [6, 7]: a 2-As algebra is an algebra
with two associative products, sharing the same unit. We prove here that Hpp, Hpp and
Hywnp, with their products ~~ and 4, are free 2-As algebras. In particular, the last one is the
free 2-As algebra on one generator .: this gives an alternative description of free 2-As algebras.
As a consequence, the space of primitive elements of these Hopf algebras inherit a structure of
free Boo-algebras. Recall that a B.,-algebra is a vector space V with a family of linear maps
[—, —Jmn + A®™ ® A®™ — A for all m,n > 1; if we consider the unique coalgebra morphism

)

*y:T(V)®@T(V) — T(V), such that for all m,n € N* for all 1, - ,Zpm,y1, "+ ,yn € V:

(1@ @Tm)*v (@ @Yn)) = [T1,- ,Tmi Y1, YnlV,

where 7y is the canonical projection on V', then (T'(V'),*y,A) is a Hopf algebra. Here, T'(V) is
given its deconcatenation coproduct A (see [7] for more details and references about By, alge-
bras). Using the dual product of the coproduct Hyyap, we deduce a combinatorial description
of the operad of B,.-algebras, in terms of double posets.

This text is organised as follows: the first section introduces the algebra of double posets. It
is shown that (Hpp,~) and (Hpp, 4) are two free algebras, generated respectively by the set
of 1- and 2-indecomposable double posets (definition 5). We also prove that Hpp is, as a 2-As
algebra, by the set of double posets that are both 1- and 2-indecomposable.

We introduce plane and WN posets, as well as the corresponding Hopf algebras, in the second
section. We show that the condition for a plane poset P = (P, <p, <,) to be l-indecomposable
can be reformulated in terms of connectivity of the Hasse diagram of (P, <), a result that may
be false in general for double posets (proposition 19). We prove that Hpp and Hyynp are free
2-As algebras, the last one being generated by a single element.

The coproduct of Hpp is introduced in the third section. It is also proved that Hpp, Hpp
and Hyynp are 2-As bialgebras, in the sense of [6]. They are all free and cofree.

The fourth section deals with the pairing. We prove that its restrictions to Hpp, Hpp and
Hwnp are non-degenerate, using a total order on the sets of double posets and the involution ¢.

The last section is dedicated to a combinatorial description of the operad of B, algebras, with
the help of indexed WN posets. We first give an alternative description of the free 2-As algebra
on one generator, and deduce a description of the free By, algebras in terms of 1-indecomposable
decorated WN posets. The description of the operads B, and 2-As is a consequence of these
results.



The author thanks Professor Christophe Reutenauer for his helpful comments and remarks.

Notations.

1. In the whole text, K is a commutative field. Any algebra, coalgebra, Hopf algebra. . . of the
text will be taken over K.

2. Let H be a Hopf algebra. Its augmentation ideal is given a coassociative, non counitary

coproduct A defined by A(z) = A(z) —2®1—-1® .

1 Double posets

We refer to [10] for classical definitions and results on posets.

1.1 Definitions

Definition 1 [8] A double poset is a triple (P, <j,<s), where P is a finite set and <y, <o
are two partial orders on P. The set of isoclasses of double posets will be denoted by DP. The
set of isoclasses of double posets of cardinality n will be denoted by DP(n) for all n > 0.

Definition 2 Let P and Q) be two elements of DP.
1. We define P ~» @ € DP by:

e P~ (@ is the disjoint union of P and @ as a set.
e P and @ are double subposets of P ~~ Q.

eforallz € P,ye @, x <o yin P ~ @ and x and y are not comparable for <y in
P~ Q.

2. We define P4@Q € DP by:

e P4(Q) is the disjoint union of P and () as a set.
e P and () are double subposets of P4(Q).
e Forallz € P,y e @, x <1 yin P4Q and x and y are not comparable for <5 in P4Q).

Remark. The product ~» is called composition in [8].
Proposition 3 The products ~~ and 4 are associative.

Proof. Let us take P,Q,R € DP. Then (P ~~ Q) ~» R and P ~ (Q ~ R) are both equal
to the double poset S defined by:

e S is the disjoint union of P, Q) and R as a set.
e P. (@ and R are double subposets of S.

eftorallz e P,yeQ,z€ R,z <5y <9 zin S and x, y and z are not comparable for <y
in S.

So ~ is associative. The proof is similar for 7. O

Definition 4 Let us denote by Hpp the K-vector space generated by DP. We extend ~~
and 4 by linearity on Hpp. As a consequence, (Hpp,~>, 4) is a 2-A-algebra [6, 7|, that is to say
an algebra with two associative products sharing the same unit, the empty double poset 1.

Remark. We shall see that it is a free 2-As-algebra in theorem 9.



1.2 Indecomposable double posets
Definition 5 Let P be a double poset.

1. We shall say that P is 1-indecomposable if for any I C P:

(Ve eI, Vye P\1, x <9y and x,y are not <; -comparable) <= (I =0 or I = P).

2. We shall say that P is 2-indecomposable if for any I C P:

(Vzel Vye P\, x<yyand x,y are not <5 -comparable) <= (I =0 or [ = P).

3. We shall say that P is 1,2-indecomposable if it is both 1- and 2-indecomposable.

Remark. In other words, P is not 1-indecomposable if there exists ) C I,J C P, such that
P =1~ J; P is not 2-indecomposable if there exists ) C I, J C P, such that P = I4J.

Proposition 6 Let P be a double poset.

1. P can be uniquely written as P = P} ~» ... ~ Py, where Py, ..., Py are 1-indecomposable
double posets.

2. P can be uniquely written as P = P{4 ... 4 P/, where P|, ..., P| are 2-indecomposable double
posets.

Proof. We only prove the first point. The proof of the second point in similar, permuting
<y and <».

Ezistence. By induction on n = Card(P). If n = 1, then P is l-indecomposable, so we
choose £k = 1 and P; = P. Let us assume the result at all rank < n. If P is 1-indecomposable,
it can be written as P = P. If not, there exists ) C I,J C P, such that P = I ~» J. Then
the induction hypothesis holds for I and J. So I = Py ~ ... ~ Py and J = Ps1q ~ ... ~ Py,
where the P; are 1-indecomposable. Hence, P =1~ J = P} ~ ...~ P;.

Unicity. Let us assume that P = P ~ ...~ P, = Q1 ~ ... ~ @, where the P, and the
Q; are l-indecomposable. The P;’s and the Q);’s are part of P; let us consider I = Py N (). For
alz e l,ye Q \I=Q1N(Py~ ...~ B), z <9 y and x,y are not <;-comparable. As ()1
is 1-indecomposable, I = @1 or I = (). Let x € P be a minimal element for <5. There exists
1 <i <k, such that x € P;. If i > 2, then for any y € P, y <o x: contradicts the minimality of
x. So x € Py and, similarly, x € Q1. So I # (), so [ = Q1 and Q1 C P;. By symmetry, P, = Q1.
We then deduce that Py ~» ... ~ P, = Q2 ~ ... ~ @Q;. Using repeatedly the same arguments,
we prove that k =1, P, = Qo, ..., P, = Q. O

Remark. As a consequence, (Hpp,~-) is freely generated by the set of 1-indecomposable
double posets and (Hpp, 4) is freely generated by the set of 2-indecomposable double posets.

Lemma 7 Let P be a double poset.
1. If P is not 1-indecomposable, then P is 2-indecomposable.

2. If P is not 2-indecomposable, then P is 1-indecomposable.

Proof. Note that the first point is the contraposition of the second point. Let us assume
that P is not 2-indecomposable. We can write P = P{4...4P/, with [ > 2, P[,..., P/ 2-
indecomposable. Let ) C I C P, such that for all x € I, Vy € P\ I, x <5 y and z,y are not
<i-comparable.



Let us choose » € I. There exists 1 <1 < k, such that € P/. If y € P, with j # 4, then
r<yyifi<jorz> yifi>j, sox,yare <;-comparable. By hypothesis on I, y € I. So
P]( Clifj+#i.

Let us now choose j # i (this is possible, as { > 2) and y € Pj(. Theny € I and if z € P/, y, 2
are <j-comparable. So z € I and P/ C I. As a consequence, I = P and P is 1-indecomposable. [J

As an immediate consequence:

Proposition 8 Let P be a double poset, not equal to 1. One, and only one, of the following
conditions holds:

e P is 1,2-indecomposable.
e P is 1-indecomposable and not 2-indecomposable.

e P is 2-indecomposable and not 1-indecomposable.

1.3 The 2-As algebra Hpp

Theorem 9 As a 2-As algebra, Hpp is freely generated by the set of 1,2-indecomposable
double posets.

Proof. Let (A,.,*) be a 2-As algebra and let ap € A for all 1,2-indecomposable double
poset P. We have to prove that there exists a unique morphism of 2-As algebras ¢ : H — A,
such that ¢(P) = ap for all 1,2-indecomposable double poset P.

FEzistence. We define ¢(P) for P € DP(n) by induction on n in the following way:

. 6(1) =1
e If P is 1,2-indecomposable, ¢(P) = ap.

e If P is l-indecomposable and not 2-indecomposable, let us put P = P[4 --- 4 P/, where the
P’s are 2-indecomposable; then ¢(P) = ¢(P)) * -+ x ¢('P)).

e If P is not 1-indecomposable and 2-indecomposable, let us put P = Py ~» - -+ ~» P, where
the P;’s are 1-indecomposable; then ¢(P) = ¢(P1).--- .¢(Py).

By propositions 6 and 8, this perfectly defines ¢.

Let P,QQ € DP. Weput P=P; ~ -+~ Py and Q = Q1 ~ -+ ~ ), where the P;’s and
the @;’s are 1-indecomposable double posets. Then:

Poas Q=P s eeems Py Qp s e s Q)
s0, by definition of ¢:

P~ Q) =¢(P1) - ¢(Pr)d(Q1) -+ d(Qu) = ($(P1) - d(Pr))((Q1) - - d(Q1)) = ¢(P)(Q).
Similarly, we can prove that ¢(P4Q) = ¢(P) * ¢(Q). So ¢ satisfies the required properties.

Unicity. Such a morphism has to satisfy all the conditions of the existence part, so is equal

to ¢. O



2 Plane posets

2.1 Definition

Definition 10 A plane poset is a double poset (P, <p, <,) such that for all z,y € P, such
that x # y, « and y are comparable for < if, and only if, z and y are not comparable for <,.
The set of isoclasses of plane posets will be denoted by PP. For all n € N, the set of isoclasses
of plane posets of cardinality n will be denoted by PP (n).

Remark. Let P € PP and let z,y € P. Then (x <p y) or (x >p y) or (z <, y) or (z >, y).
Moreover, if x # y, then these four conditions are two-by-two incompatible.

We shall give a graphical representation of plane posets. If (P, <j,<,) is a plane poset, we
shall represent the Hasse graph of (P, <j) such that if z <, y in P, then y is more on the right
than z in the graph. This justifies the notations <, (h is for "high") and <, (r is for "right")
instead of <y and <s.

Examples.

1. Here are the plane posets of cardinal < 4:

PPO) = {0},
PP = {}
PPE) = {..,1},
PP3) = { ,z,z.,v,I,A},
...... e VLoV L DA AL Y
PP(4)

b\)YiA{\’EAMNMQ

We shall prove elsewhere [1] that Card(PP(n)) = n! for all n > 0.

2. Let F be a plane forest. We defined in [4, 3| two partial orders on F', which makes it a
plane poset. More precisely, the Hasse graph of (F,<j) is the graph F', the edges being
oriented from the root to the leaves. The partial order <, is defined by two vertices x,y
which are not comparable for <j in the following way: if F' = t;...t,, with z a vertex if
t; and y a vertex of t;,

o x <, yifi<jand x>, yifi>j.
e If i =4, then x <, y if F if, and only if z <, y in the forest obtained by deleting the

root of t;.

As a conclusion, the Hasse graph of (F, <p, <,) is the plane forest F itself. Such a plane
poset will be called a forest. The set of plane forests will be denoted by PF; for all n > 0,
the set of plane forests with n vertices will be denoted by PF(n). For example:
PF(1) =
PF(2) =

PF(3) =

{
{



Proposition 11 Let P € PP. We define a relation < on P by:
(<y)if(@<pyorz<,y).
Then < is a total order on P.

Proof. For any z € P, x <z as x <j, . Let us assume that x <y and y < z. Then three

cases are possible.
o (z<pyandy<pz)or(r<,yandy<,z). Then (z < 2) or (x <, 2),s0x < z.

e x <j yandy <, z. As P is plane, then x and z are comparable for <j or <,. If z <}, z
or x <, z, then x < z. It remains two subcases.

— If 2z <, z, then y <, z <, x, so y <, x. Moreover, x <j y, so, as P is plane, z = y
and finally x < z.

— If z < x, then z <p = <j vy, so z <, y. Moreover, y <, z, so, as P is plane, y = z
and finally z < z.

e z <, yand y <p z. Similar proof.
Let us assume that ¢ < y and y < z. Two cases are possible.
o (z<pyandy<pz)or(x<pyandy<,z). Then z =y.
e (x<,yandy<px)or (r<pyandy<,z). As P is plane, z = y.

So < is an order on P. Moreover, by definition of a plane poset, if z,y € P, then z < y or x > v,

so < is total. O

Notations.

1. Let n € N. We denote by g, the double poset with n elements such that for all x,y € @,
the following assertions are equivalent:

(a) z and y are comparable for <;.
(b) z and y are comparable for <s.
(c) z=y.
2. 11 is the double poset with two elements x,y such that x <; y and z <5 y.

3. 13 is the double poset with two elements x,y such that x <; y and y <, x.

Remark. Note that 11 and !} are not plane posets; g, is plane if, and only if, n = 0 or 1.

Proposition 12 Let P be a double poset. Then P is plane if, and only if, it does not contain
any double subposet isomorphic to @2, 17 or 15.

Proof. =—. Let z,y € P, z # y. If x,y are comparable for <y, then {z,y} # p2; moreover,
x,y are not comparable for <y as P is plane, so {z,y} # 11 and 1}. If x,y are not comparable
for <y, then {z,y} # 17 and !3; moreover, x,y are comparable for <g, so {z,y} # po.

<. Let x,y € P, x #y. As {z,y} # p2, x,y are comparable for <; or <5. As {z,y} # 11
and 13, they are not comparable for both of the partial order <; and <5. So P is plane. ]



2.2 Can every poset become a plane poset?

We here give a family of counterexamples of posets (X, <j) such that there does not exist a
partial order <, making (X, <p) a plane poset.

Proposition 13 Let N > 1. The poset Xy has 2N wvertices xq,..., x5 and yi, ..., Y5
indexed by Z/NZ. Its partial order is given by x; <p y; and x; <p Y77 Jor alli € Z/NZ. If
N > 3, there is no plane poset of the form (Xn,<p,<;).

Here are the Hasse graphs of X3 and Xjy:

Vil

Proof. Let us assume that there exists a plane poset (X,<p,<,). As z7 and x5 are not
comparable for <, they are comparable for <,. Let us assume for example that z7 <, x5
(the proof would be similar if zg >, z3). Let us prove by induction on ¢ that z; <, zz7.
Thls is immediate for 7 = 1. Let us assume that z; <, x;77. Then z; <, r;7 <j Y3, so

< Yz As N > 3, 27 and y;77 are not Comparable for <p, so r; <, Y7z If y— > Yo
then 7 < Y Sr yHl, so x; <, Y77 and z; <p Y7 Contradlctlon So Y1 <r Yigme U
YT 2r Tig, then v <,y <» yHQ, S0 Tiz <r Y7z and x5 <p Y contradiction. So

Vg1 <r T Finally, 277 <, yZ_H < i35, 80 X777 < T3 As they are not comparable for
<h, T <r Tigae We obtain o7 <, -+ <, a5 < xl, SO T = = 23 absurd. O

Remark. Note that X; =1 and Xy = X are plane posets.

2.3 Products on plane posets

Let P, be two plane posets. It is not difficult to see that P ~~ ) and P4(@ are also plane
posets. Moreover, if P is a plane poset, for any I C P, the double poset I is also plane. As a
consequence:

Proposition 14 Let P be a double poset.

1. We write P = Py ~~ ...~ Py, where the P; are 1-indecomposable. Then P is plane if, and
only if, Pi,..., P, are plane.

2. We write P = P{ ...} P/, where the P| are 2-indecomposable. Then P is plane if, and
only if, P{,..., P] are plane.

We denote by Hpp the subspace of Hpp generated by plane posets. It is a sub-2-As algebra
of Hpp. The following result is proved as theorem 9:

Theorem 15 As a 2-As algebra, Hpp is freely generated by the set of 1,2-indecomposable
plane posets.

2.4 Another description of indecomposable plane posets

Definition 16 Let P = (P, <) be a poset.

1. We define a relation Rp on P in the following way: for all x,y € P, R py if there exists
T = xg,T1, "+ , Ty, =y elements of P, such that x; and x;;1 are comparable for < for all
i €{0,---,n—1}. This relation is clearly an equivalence.



2. The equivalence classes for Rp of P will be called connected components of P. If P has
only one connected component, it will be said connected. By convention, () will not be
considered as connected.

Remark. The connected components of P are the connected components of the Hasse graph

of (P, =).

In the case of a double poset P = (P, <, <,), we can consider the two posets (P, <j) and
(P, <p).

Definition 17 Let P = (P, <, <,) be a double poset.

1. The connected components of (P, <j) will be called h-connected components of P. If P
has only one h-connected component, we shall say that P is h-connected.

2. The connected components of (P, <,) will be called r-connected components of P. If P
has only one r-connected component, we shall say that P is r-connected.

3. We shall say that P is biconnected if it both h- and r-connected.

For example, ., 1 and N are biconnected. These are the only biconnected plane posets of
degree < 4.

Lemma 18 Let P € PP, and let Py,--- , P, its h-connected components. For all i €
{1, ,k}, let us fix an element x; € P;. If i # j, x; and x; are not in the same h-connected
component of P, so are not comparable for <, so are comparable for <,.. We suppose that the
P;’s are indexed such that x1 <, -+ <, xr. Then P = P; ~» --+ ~ P,.

Proof. We have to show that if 1 <i < j <k, if y; € P; and y; € P}, then y; <, y; and y;
and y; are not comparable for <;. As P is a plane poset, the first assertion implies the second
one. As y;Rpx; and y;Rpx; there exists elements of P such that:

® S0 =i, - ,Sp =Yi, s and s;4; are comparable for all [ € {0,--- ,p —1}.
o tg=xj, - ,ty =y, t; and t;;1 are comparable for all [ € {0,---,¢q — 1}.

Note that all the s;’s belong to P; and all the ¢;’s belong to P;, by definition of the relation Rj.
We can suppose that the s;’s and the ¢;’s are all distinct. Let us first prove that s; <, tg by
induction on [. For [ = 0, this is the hypothesis of the lemma. Let us suppose that s;_1 <, to.
As s; and ty are not in the same h-connected component of P, they are not comparable for <y,
so they are comparable for <,. Let us suppose that s; >, tg. Then s; >, tg >, s;_1, so s; and
s;_1 are comparable for <,: contradiction, they are distinct elements of P and are comparable
for <p in the plane poset P. So s; <, to. As a conclusion, y; <, to. Similarly, an induction
proves that y; <, t; for all [, so y; <, y;. O

Proposition 19 Let P be a double poset.

1. (a) If P is h-connected, then it is 1-irreducible.
(b) If P is plane and 1-irreducible, then it is h-connected.

2. (a) If P is r-connected, then it is 2-irreducible.
(b) If P is plane and 2-irreducible, then it is r-connected.



Proof. We only prove the first point. The second point is proved similarly, permuting the
two partial orders of P.

1. (a) Let us assume that P is h-connected and not 1-irreducible. There exists ) C Q, R C P,
such that P = Q ~» R. Let us choose x € Q and y € R. As P is h-connected, there exists
Z1,...,T € P, such that 1 = z, xx =y, and z;, x;41 are <p-comparable for all 1 <¢ <k — 1.
As x1 € @ and z9, 1 are <p-comparable, necessarily zo € Q). Repeating this argument, we show
that x3,..., 2, € Q, so y € @Q; contradiction, @) and R are disjoint.

1. (b) Let us assume that P is not h-connected. By lemma 18, we can write P = Py ~» -+ ~~
P, with £ > 2, so P is not 1-irreducible. O

Remark. So a plane poset is l-irreducible if, and only if, it is h-connected. This result is
false for double posets that are not plane. For example, 13 ., is 1-irreducible but not h-connected.
We used here the double poset 7., which has three elements x,y, z such that:

o r <9y <2z

e r <y z, x,y and y, z are not comparable for <y.

2.5 WN posets
We define a subset of PP in the following way:

Definition 20 Let P be a double poset. We shall say that P is WN ("without N") if it

is plane and does not have any subposet isomorphic to 1 nor IN. The set of isoclasses of WN
posets will be denoted by WNP. For all n € N, the set of isoclasses of WN posets of cardinality
n will be denoted by WNP(n).

Lemma 21 1. Let P € DP. The following conditions are equivalent.
(a) P is WN.
(b) The h-connected components of P are WN.
(¢) The r-connected components of P are WN.

2. Let Py, P, € DP. The following conditions are equivalent:

(a) Py and Py are WN.
(b) Py~ Py is WN.
(C) Plépg is WN.

Proof. The first point comes from the fact that 1 and IN are h-connected and r-connected.
So P contains 1 or N if, and only if, one of its h-connected components contains 1 or N,

if, and only if, one of its r-connected components contains 1l or N. The second point comes
from the fact that the h-connected components of P, ~» P, are the h-connected components of
P; and P, and the r-connected components of P; 4 P, are the r-connected components of P; and
Ps. O

Remark. As a consequence, the subspace Hyynp of Hpp generated by WNP is a 2-As
subalgebra.

Proposition 22 1. Let P € PP. Then P s h-connected or P is r-connected.

2. Let P € WN'P. If P is biconnected, then P = ..

10



Proof. 1. By proposition 8, P is 1-indecomposable or 2-indecomposable, so is h-connected
or r-connected.

2. Let P be a WN double poset, of cardinal n > 2, h-connected and r-connected. We choose
P such that n is minimal. A direct consideration of double posets of cardinal 2 and 3 proves
that n > 4. Up to an isomorphism, we suppose that P = {1,--- ,n} as a totally ordered set. We
consider Q = P—{n}. by minimality of n, @ is not h-connected or not r-connected. For example,
let us assume that @ is not h-connected (the proof is similar in the other case, permuting <j,
and <,). We denote by Q1,- -+, Qk its h-connected components, such that Q = Q1 ~ -+ ~ Q.
Then k& > 2. As P is h-connected, for all i € {1,--- |k}, there exists z; € @Q;, such that z; <, n.
Moreover, P is r-connected, so there exists z € @), x <, n. Two cases are possible.

o Ifre @ U---UQk_1, up to a change of x, as P is h-connected, there exists y € Q1 U---U
Qr_1, such that y <p x and y <p n. Then the double subposet of P formed by z, y, xx

and n is isomorphic to [I. So P is not WN: contradiction.

o If z € Q, up to a change of x, we can suppose that there exists y € Qp, such that y <p x
and y <p n. Then z1 <, z <, n, so r1 <, n and z1 <; n: impossible, as P is a double
poset.

In both cases, this is a contradiction, so a WN double poset which is both A- and r-connected is
equal to .. 0

Hence, propositions 8 and 19 give:

Proposition 23 Let P be a WN poset, not equal to 1. One, and only one, of the following
conditions holds:

o P is equal to ..

e P is 1-indecomposable and not 2-indecomposable. Equivalently, P is h-connected and not
r-connected.

e P is 2-indecomposable and not 1-indecomposable. Equivalently, P is r-connected and not
h-connected.

We prove in the same way as theorem 9 the following result:
Theorem 24 As a 2-As algebra, Hyap is freely generated by ..

Notations. We denote by WP}, the set of h-connected WN posets and by WANP,. the set
of r-connected WN posets. These sets are graded by the order.

Theorem 24 implies that Hyyarp is isomorphic, as a Hopf algebra, to the Loday-Ronco 2-As
free algebra on one generator. As a consequence, we obtain the following result:

Proposition 25 We consider the formal series:

Ryap(z) = anrd(WNP(n))x",

n=0
oo

Pwarp, () = anrd(WNPh(n))x”,

n=1

Pynp, () = anrd(WNPr(n))x".
n=1

11



Then:

l+a2—V1—6x+a? 3—x—+vV1—6x+ 22

Pwnp, (1) = Pynp, (1) = 1 , Rynp(z) = 5
In particular, card(WNPp(n)) is the n-th hyper-Catalan number.
For example:
n 0111234 5| 6 7 8 9 10

WNP ()| 1[2]6]22]90]394 | 1806|8558 | 41 536 | 206 093
WANP,()[ [0 1[1[3]11]45 197 | 903 | 4279 | 20 793 | 103 049

—

The second row of this array is (up to the signs) sequence A086456 of [9]. The third row is
sequence A001003 (little Schroeder numbers). Moreover, if n > 2, then card( WNPp(n)) =
card(WN'P(n))/2.

Plane forests are examples of WN forests, and more precisely:

Lemma 26 Let P be a plane poset. Then P is a plane forest if, and only if, it does not
contain N .

Proof. =—>. Obvious.

<=. As P does not contain A, it does not contain 1 nor N, so is WN. We proceed by
induction on n = |P|. If n = 1, then n = . is a plane forest. Let us assume that all double

posets that do not contain A of cardinality < n are plane forests (n > 2). As n > 2, two cases
can hold by proposition 23:

e P is not h-connected. We can write P = P; ~» ... ~ Py, with £k > 2. By the induction
hypothesis, P, ..., P, are plane forests, so P is also a plane forest.

e P is not r-connected. We can write P = P4 ... 4P, with [ > 2, P,,..., P, r-connected.
By the induction hypothesis, P; is a plane forest. Let us take 1 <i <[ —1. Let z,y € B;,
not comparable for >;. We can assume that ¢ <, y without loss of generality. Let us
choose any z € P;. Then z,y <j z, so the subposet of P formed by z,y and z is equal to

A : contradiction. Hence, P; is totally ordered by >, so is equal to .¢™ for a particular
n;. As P; is r-connected, n; = 1. As a conclusion, P = .4 ... 4.4 P, so P is a plane tree.

In both cases, P is a plane forest. O

2.6 Can a poset become a WN poset?

Proposition 27 Let P = (P, <y) be a finite poset. There exists a partial order <, such that
(P, <p,<,) is a WN poset if, and only if, P does not contain any subposet isomorphic to

p p—
N.

Proof. =—. Let us assume that there exists such a P, and that P contains a subposet Q
equal to IN. Then, restricting <,., there exists a partial order <, on  making @ a plane poset

Q. It is easy to see that there are only two possibilities for Q: N or . As P contains Q, it is
not WN: contradiction.

<=. By induction on n = Card(P). It is obvious if n = 0,1. Let us assume the result at all
ranks < n.

12



First case. Let us assume that the Hasse graph of P is not connected. We can write
P =P U...UP, with £ > 2, where the P,’s are the connected components of the Hasse graph of
P. By the induction hypothesis, we can construct P, ..., P;. We then take P = P} ~> ... ~~» P.

Second case. We now assume that the Hasse graph of P is connected. Let M be the set of
maximal elements of P. We put:

I={zeP|VyeM, z<;y}

Let us first prove that I is non empty. Let & € P, such that the number of elements y € M with
x <p y is maximal. If x ¢ I, there exists z € M, such that x and z are not comparable for <j,
as it is not possible to have z <;, z by maximality of z. Moreover, there exists 2z’ € M, such that
x <p 2 (so z # 2'). As the Hasse graph of P is connected, up to a change of z,2’, there exists
y, such that y <p, 2,2’ (so y # x). As 2,2’ € M, they are not comparable for <j, so y # z, 2.
If y <p z, then y <p z and y <p m for all m € M such that = <; m: contradicts the choice of
x. If x <p y, then x <, 2: contradiction. So x and y are not comparable for <, (so x # z,2’).

Finally, the subposet Q = {x,v, 2,2’} of P is isomorphic to N: contradiction.

We obtain then two subcases:

e [ = P. Let 2,2/ € M. Then z,2/ € I, s0 2 <j, 2/, 2/ <j, z and finally z = 2/, so M is
reduced to a single element 2. Moreover, for all z € P, x < z. The induction hypothesis
holds on @ = P — {2}, and we take P = Q}..

e ) C I C P. Let ustake x € I and y € P\ I. Let us assume we don’t have = <p y. If
y <px,then,asxz €, forall z€ M, y <j, z and y € I: contradiction. So x and y are not
comparable for <; (and = # y). As y ¢ I, there exists z € M, y and z are not comparable
for <, (so y # z). There also exists 2’ € M, y <, 2/ (so 2 £ 7). Asz eI, v <, z,2. As
x and y are not comparable for <, x # z. As z and 2’ are two elements of M, they are
not comparable for <j, so z # z’. As x and y are not comparable for <;, y # z’. Finally,

the suposet Q = {x,y, 2,2’} of Q isomorphic to N: contradiction. So z <, .

We proved that for all z € I, for all y € P\ I, x <j y. The induction hypothesis holds for
Iand P\ I; we take P=14P\ I.

In all cases, we proved the existence of a convenient P. ]

3 Hopf algebra structure on Hpp

Definition 28 [8|. Let P = (P, <;1,<3) be a double poset and let I C P. We shall say that
Iisa 1-ideal of P ifforall x € I, y € P, x <; y implies that y € I. We shall say shortly ideal
instead of 1-ideal in the sequel.

Proposition 29 Hpp is given a Hopf algebra structure with the product ~ and the following
coproduct: for any double poset P,

AP)= > (P\DeI

I ideal of P

This Hopf algebra is graded by the cardinality of the double posets. Moreover, (Hpp, 4,A) is an
infinitesimal Hopf algebra.

Proof. It is proved in [8] that (Hpp,~>,A) is a Hopf algebra. We give here the proof again
for the reader’s convenience. Let us first show that A is coassociative. Let P € DP. If I is an
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ideal of P and J is an ideal of I, then clearly J is also an ideal of P. If K is an ideal of P\ I,
then clearly I U K is an ideal of P. As a consequence:

(Id® A) o A(P) = (A ® Id) o A(P) = > LRL® I

P=I1UIsLI3
I> and I3 LI I3 ideals of P

Let P,Q € DP and let I be an ideal of P ~» ). Then I N P is an ideal of P and I N is an
ideal of Q). In the other sense, if I is an ideal of P and J is an ideal of @), then I ~» J is an ideal
of P~ Q. So:

AP~Q) = Y. (PAD~(Q\)) @I~ J=AP)~ A@Q),

1, J ideals of P,Q

so (Hpp,~+,A) is a graded Hopf algebra.

Let P,Q € DP, non empty, and let I be an ideal of P4Q. If I N P is nonempty, then @) C 1.
So there are five types of ideals of P4Q: I =0, or I = P4Q, or I = @, or I is a non trivial ideal
of Q, or I N P is a non trivial of P and () C I. Hence:

AP4Q) = PiQ®1+1®PiQ+P®Q+ (PR1)1AQ)+A(P)4(1®Q)
= PiIQR14+1Q0PIQ+PRQ+(P®1)/AQ)-—PIQR1-PRQ
TFAP)I(12Q)-P®Q -1 P{Q
= (POIAQ)+AP)I(12Q)-POQ,

so (Hpp, 4,A) is an infinitesimal Hopf algebra. O
Examples.
A1) = .®.
A(V) = 21 ®@.4.®..
A = o141,
A(A) = ..0.+2. 01
AYV) = .®...4+31®..+3V ®.
A(R/) = leg.+Ve.+t01+t0.+.®1.
AV) c 1ot Ve ttoi 4100 t.0.1
ALYy = de.r.oVire..
A(i) = .el+1e1+le.
A(A) = (.. +3..01+3.@ A
Ay = colt.oAttoitnoltt.o.
A(j}) = BRI+ A+IRI+..01+.1®.
ACh) = 2.0l Ao 1. o1
AV = 1.2.+A®.+1@14+..0..+.0.1+.0 V
AN) = . +A.+101+..0..+.01.+.0 V
AN) = 2A®.+42.0V +..0..
A(Q) = Ve.+211+.0 A
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Remarks.

1. If P is a plane poset, then all its subposets are plane. If P is WN, then all its subposets
are WN. As a consequence, Hpp and Hyyap are Hopf subalgebras of Hpp.

2. Similarly, Hpr is a Hopf subalgebras of Hpp. It is the coopposite of the Connes-Kreimer
Hopf algebra of plane trees, as defined in [4, 5].

As (Hpp, 4,A) is an infinitesimal Hopf algebra, the coalgebra (Hpp,A) is cofree, see [6].
Similarly, Hpp and Hyyarp are cofree. From the results of [4]:

Corollary 30 1. The Hopf algebras Hpp, Hpp and Hwap are free and cofree.
2. The Hopf algebras Hpp, Hpp and Hywnp are self-dual.

3. If the characteristic of the base field is zero, the Lie algebras Prim(Hpp), Prim(Hpp)
and Prim(Hwnp) are free.
4 Hopf pairing of Hpp

Definition 31 Let P,Q be two elements of DP. We denote by S(P, Q) the set of bijections
o : P — @ such that, for all i,j € P:

e (i<;jinP)= (o(i) <2 0(j) in Q).

o (0(i) <1 0(j) in Q) = (i < j in P).

Remark. The elements of (P, Q) are called pictures in [§].

Theorem 32 We define a pairing (—, —) : Hpp @ Hpp — K by:
(P,Q) = card(5(P,Q)),

for all P,Q € DP. Then (—,—) is a homogeneous symmetric Hopf pairing on the Hopf algebra
%D'P = (HD'Pa 7y A)

Proof. See [8]. Let us consider the following map:
S(PL~ P, Q) —  |J  S(PLQ\I) x S(Py, 1)

T: I ideal of Q
o — (op,0p,) € S(P1,Q\ o(P2)) X S(Py,0(P2)).

The proof essentially consists in showing that T is a bijection. O

Examples. Here are the matrices of the pairing (—, —) restricted to Hpp(n), for n =1,2,3.

! ..
—’—' 1101
11 L1 2

—s
.
—s

T s <
OO |O O |
NHOOOO-(:
[\')OD—‘OOO>
W= = OO
wWlrR|~lo|~|lo
DWW | N[~




What is the transpose of 4 for this pairing?

Notations. Let P € DP. We put A..(P) = Z P, ® P,.

Pl,PQEDP
Pi~+P,=P
Remark.
1. In other words, if P = P; ~ ... ~ P, is the decomposition of P into 1-indecomposable

posets, then:
s

AP)=) (Pi~ ...~ P)& (Pip1 ~ ...~ P
i=0
2. Moreover, (Hpp,~,A.,) is an infinitesimal Hopf algebra, and the space of primitive ele-
ments for the coproduct A., is generated by the set of 1-indecomposable double posets.

Proposition 33 For all x,y,z € Hpp, (x4y,2) = (z @y, A (2)).

Proof. We take © = P,y = @,z = R three double posets. Let f € S(PsQ,R). We put
Ry = f(P) and Ry = f(Q). Let i € Ry and j € Ry. As f~1(i) <y f~'(4) by definition of %,
i <5 j in R. Moreover, as f~1(i) and f~!(j) are not comparable for <5 in P4Q, necessarily
1 and j are not comparable for <; in R. So R = R; ~» Rs. As a consequence, there exists a
bijection:

S(PtQ,R) —  |J S(PRi)xS(Q,Rs)
Q: Ri~Ro=R
f— (ip, fl@) € S(P,f(P)) x 5(Q, f(Q))-

It is clearly injective. Let us show it is surjective. If (g,h) € S(P,R1) x S(Q, Ry), with R =
Ry ~~ Ry, let us consider the unique bijection f : P4 — R such that fjp = g and fjg =h. If
i<1jin P4Q, theni,je Pori,jeQorie€ PandjeQ,sog(i) <sg(j) or h(i) <o h(j) or
1) € By and (i) € Ry, 50 [(3) <> () in R. 1 (i) <1 £(j) in R, then g(3) <1 g(j) in Ry or
h(i) <1 h(j) in Ry, 801 <9 jin P or in @, so i <9 j in P4Q. We proved that f € S(P4Q, R).
Finally:

(P4Q,R) = Card(S(P§Q,R)) = Y Card(S(P,R))Card(S(Q,Rs)) = (P ® Q,A(R)).
Ri~R2=R

0

4.1 Involution on DP

Notation. We define the following involution:

~

{ DP — DP
(P, <) — (P<, ).

Examples. For plane posets:

— . — 1

PRI I «— V 1. «+— A
<—>1 poes Y .I.HO
A<—>K/ .VH\} s v
.. « A 11 «+— K /\.<—>{\
Ao b N ou | Y ey

—_
(@)



Proposition 34 For all P, Py, P, € DP:
1. u(Py ~ Po) = u(P)4u(Ps) and u(Py§ Py) = o(Py) ~ o(Py).

2. P is 1-indecomposable (respectively 2-indecomposable) if, and only if, (P) is 2-indecomposable
(respectively 1-indecomposable).

3. P is plane if, and only if, t(P) is plane.

4. P is WN if, and only if, L(P) is WN.

Proof. 1-3 are obvious. The last point comes from the fact that ¢ permutes N and . O

4.2 Non-degeneracy of the pairing (—, —)
Let P be a double poset. We define:

{ Xp = Card({(z,y) € P* |z <1 y}),
Yp = Card({(z,y) € P*|z <2 y}).

Lemma 35 1. Let P,Q € DP(n), such that (P,Q) # 0. Then Xp < X,y and Yp >
Y, q)- Moreover, if Xp = X,y and Yp =Y, then P = 1(Q).

2. S(P,u(P)) is the set of automorphisms of the double poset P (so is not empty). Moreover,
if P is plane, then S(P,.(P)) is reduced to a single element.

Proof. 1. We assume that S(P,Q) # (: let us choose 0 € S(P,Q). If x <1 y in P, then
o(z) <a o(y) in @, so o(x) <1 o(y) in ¢(Q). As a consequence, Xp < X,(gy. If 2 < y in +(Q),
then z <1 y in Q, so 07 1(x) <2 07 (y) in Q. As a consequence, Yyq) < Yp.

Moreover, if Xp = X,(p) and Yp = Y(), then z <y y in P, if, and only if o(z) <1 o(y) in
L(P); x <o y in +(Q) if, and only if, 0~ (z) <2 ¢~ !(y) in P. In other terms, o is an isomorphism
of double posets from P to ¢(Q), so P = 1(Q).

2. Let 0 € S(P,u(P)). If x <y y in P, then o(z) <2 o(y) in ¢(P), so o(z) <1 o(y) in
P. As P is finite, this is in fact an equivalence. If o(z) <2 o(x) in P, then o(z) <1 o(x)
in «(P), so x <3 y. As P is finite, this is an equivalence. Finally, we obtain that o is an au-
tomorphism of P. In the other sense, if o is an automorphism of P, it is clear that o € S(P,t(P)).

Let us assume that P is plane and let us take o € S(P,¢(P)). As o is an automorphism, it
is increasing for <; and <., so it is also increasing for the total order < of proposition 11, so o
is the unique increasing bijection from P to P for <, that is to say Idp. ([l

Theorem 36 1. (=, =) is non-degenerate if, and only if, the characteristic of the base
field K is zero.

2. {—, =) upp is non-degenerate.

3. (= =) Hynp 15 non-degenerate.

Proof. Let us fix n € N we choose a total order on DP(n) such that, for any double posets
P,Q € DP(n):

((XP,YP) =+ (XQ,YQ), Xp < XQ and Yp > YQ) = (P > Q)
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Let P,Q € DP(n), such that (P,Q) # 0. Then Xp < X,y and Yp > Y, (). Moreover, if these
inequalities are equalities, P = +(Q); if (Xp,Yp) # (X, (@), Y. (@)), then P > +(Q) by choice of
the order on DP(n). In both cases, P > 1(Q).

We index the elements of DP(n) such that «(P;) < ... < «(P;). Then the matrix of
(= =)Hppm) In the bases ((t(P1),...,¢(P)) and (P,..., ) is lower triangular, with diag-
onal coefficients (P,.(P)) for P € DP(n). So it is invertible if, and only if, (P,¢(P)) is a
non-zero element of K for all P € DP(n). Hence, (—,—) is non-degenerate if, and only if,
(P,1(P)) = Card(Aut(P)) is a non-zero element of K for all P € DP.

1. For all n € N, Aut(p,) = S,,,, s0 (pn,t(pn)) = n!. Hence, (—, —) is non-degenerate if,
and only if, K is of characteristic zero.

2. As the set of plane poset is stable by ¢, we obtain that (—, —)|3,, is non-degenerate if, and
only if, Card(Aut(P)) # 0 for all P € PP. As Card(Aut(P)) = 1 if P is plane, this condition
is statisfied.

3. Similar proof. O

Remarks.
1. Note that Hpp is self-dual, even if K is not of characteristic zero, see corollary 30.

2. We could work over any commutative ring R, instead of a field K. Then it is possible to
prove similarly that (—, —) is non degenerate if, and only if, Q C R.

5 Operad of WN double posets

5.1 An alternative description of free 2-As algebras

The algebra of WN posets Hyyarp is given a coproduct, A, and two products, ~» and 4. Identi-
fying Hyynp and its dual (via the identification of the basis of WN posets with its dual basis),
we can give Hyynp another product x = A*, defined by:

PxQ= Y n(P,QRR,

REWNP

where n(P,Q; R) is the number of ideals I of R such that P = R\ [ and Q = I.
We also give it the coproduct A.. =~~*, defined by:

AP)= > Q@R

Q~R=P
Then (Hywap, *, ~, A.,) is a 2-As Hopf algebra, that is to say:

o (Hywap,* A..) is a Hopf algebra. Identifying the basis WAN'P and its dual basis, it is the
graded dual of (Hyynp,~, A).

o (Hynp,~,AL) is an infinitesimal Hopf algebra. Identifying the basis WA'P and its dual
basis, it is self-dual.

Moreover, the space of primitive elements of (Hyyap, A..) is generated by the set of h-connected
WN posets WNP,.
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Examples.

skl = L 4+1.4+2A 41
lx., = .I+I.+2V+I

uz:2n+N+M+ﬂ+QHQ+£

Proposition 37 Let ¢ : (Hywanp,~, 4) — (Hwap, *,~) be the unique morphism of 2-As
algebras sending . on .. Then, for any WN poset P:

s(P)= > (PQ)Q.

QEWNP

Proof. For any double poset P, there is only a finite number of double posets ) such that
(P, Q) # 0 (as if it is the case, @ and P must have the same number of vertices). We can define
a linear map:

Hwnr — Hwap

@ P — Y (PR

QEWNP

It is clear that ¢(.) = .. If P, and P, are two WN posets:

p(PLwB) = Y (P~ PQ)Q

QEWNP

= Y (PePAQ)Q

QEWNP

= Z (P, Q1)(P2, Q2)Q1 * Q2
Q1,Q26WN'P

= (1) *p(P);

p(PLEP) = > (PiiP,Q)Q

QEWNP

= Z (P1® Py, A(Q))Q

QEWNP

= Z (P, Q1) (P2, Q2)Q1 ~~ Q2
Q1,Q26WNP

= @(P1) ~ ¢(P2).
So ¢ = ¢. 0
Remarks.

1. As a consequence:

gouP)= Y n(PQ)Q,

QEWNP

where n(P, Q) is the number of bijections f : P — @, such that f is increasing for <j
and f~! is increasing for <,. Moreover, ¢ o is the unique morphism of 2-As algebras from

(HW./\/—'PaW,é) to (%WN'PaW’*) sending . to ..

2. As (Hwap,~, 4,A) and (Hyap, x, ~, AL) are two 2-As Hopf algebras, ¢ also satisfies
the assertion A, 0 ¢ = (¢ ® ¢) o A.

19



Corollary 38 The morphism ¢ is bijective. As a consequence, (Hyynp,*,~) is freely gen-
erated, as a 2-As algebra, by ..

Proof. The morphism ¢ is homogeneous. Let us fix an integer n € N. The matrix of
the restriction ¢ : (Hywap)n — (Hwap)n in the basis of WN posets of degree n is given
by the matrix in the same basis of the pairing (—, —)|#,yxp).- AS the pairing (—, —),,p 18
non-degenerate (theorem 36), this matrix is invertible, so ¢ is an isomorphism. O

5.2 The B,-algebra of connected WN posets

As a consequence, the space Prim(Hywap) = vect VWN'Py,) inherits a structure [—; =], of
Bo-algebra, defined for all m,n € N* by:

Prim(Hwap)®™ @ Prim(Hywap)®" — Prim(Hwnp)
Hwnp

where 7 is the canonical projection on Prim(Hywap) and my is defined by:

' { Prim(Hwap)®™ @ Prim(Hywap)®" — Hywap
" (PL®  ®Ppn)® Q1@ ®Qn) — (Pi~s o~ Pr)x(Q o~ Q)

Hence, for all Py,--- , Py, Q1,--+ ,Q, € WNPy:

[P, P Quy -+, Qul = > n(Pi...Pm,Q1...Qu; R)R.

REWNPy,

For example, [o, - v5e oo u]pg = P40

Theorem 39 Let B be a By-algebra and let © € B. There exists a unique Bso-algebra
morphism ¢ : Prim(Hywnp) — B, sending . to x. In other terms, Prim(Hwap) is the free
By algebra generated by ..

Proof. This result is proved in |7]. We here give a complete proof for the reader’s convenience.

Ezistence. By definition of a By-algebra, the tensor coalgebra T'(B) is given a structure of
Hopf algebra via the product *p, defined as the unique coalgebra morphism x5 : T'(B)®T(B) —
T(B), such that for all m,n € N*, for all 1, ,Zm, 41, ,Yn € B:

(11 @ @) kB (Y @+ @ yn)) = [1, - Tmi Y1+, Yn]B,

where 7 : T(B) — B is the canonical projection. As a consequence, denoting by ~»p the
concatenation product of T'(B), (T(B),*p,~p,A) is a 2-As Hopf algebra. As z € B =
Prim(T(B)), there exists a unique morphism v of 2-As Hopf algebra from Hyyarp to B, sending
. to z. We consider the diagram:

YRY
Hwanp @ Hyynp —T(B) @ T(B)

-
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The two triangles commute; the external diagram commutes as 1) is a morphism of 2-As algebras;
the trapeze also commutes. As a consequence, the rectangle commutes, so ¢ : Prim(Hyynp) —
B (well-defined as 1 is a morphism of coalgebras) is a morphism of B, algebras, sending . to x.

Unicity. If ¢/ is another By, algebra morphism sending . to x, then the following diagram
commutes:

T()RT (¥
Hwap @ Hwnp — %

Hwnp T(B)

By the universal property of the coalgebra T'(B), there exists a unique coalgebra morphism ¥,
making the diagram commuting:

T ST (3
Hwnr @ Hwnp ——= %

\LBOO Bool
w/

Prim(Hwap)

Hywnp ”

So ¥’ is a morphism of 2-As algebra. By the universal property of Hyynp (unicity), ¥’ = 9
O

defined earlier. So, considering the trapeze, ¢ = V| Prim(Hyynp)-

Remark. We can similarly describe the free B, algebra generated by a set D, using double
posets decorated by D, that is to say couples (P,d), where P is a double poset and d is a map
from P to D.

5.3 A combinatorial description of the 2-As operad
Definition 40

1. Let P € WNP and let Q C P. We shall say that @ is a complete subposet of P if for
2,2€Q,yeP, (e <py<pz=—=yeQ)and (z <, y <, 2= y € Q). In other terms, a
complete subposet is stable under intervals for <; and <,.

2. Let P and @ be elements of WN'P. Let (P;)icq be a family of elements of WANP indexed
by the elements of (). We shall say that it is a Q-family of P if:
e For all 1 € Q, P; is a complete subposet of P.
e P is the disjoint union of the P;’s.

e Forall i # j in @, © <j j in Q if, and only if, there exists x; € F;, x; € P}, x; <p, x5
in P.

e Foralli+# jin @, <, jin Q if, and only if, for all z; € P, x; € P}, x; <, x; in P.

3. We shall denote by ng(Pi,- -, Py; P) the number of Q-families (P/);cq of P, such that
P/ =P, foralliecq@.
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Remark. These concepts can be generalized to decorated double posets.

Notations. Let D be a set. We denote by WNPP the set of WN posets decorated by D,
that is to say couples (P,d), where P is a WN poset and d : P — D a map.

Proposition 41 Let (pg)aep be a family of elements of WNPP'. We consider the following
map:
(Hiaps* ) — (Hpwp: % ~)
QeWNP? — > ng(Py,-,Pa; P)P,
PEWN PP’

(1]

where @ is the non-decorated double poset subjacent to Q and d; is the decoration of the i-th
element of Q for alli € Q. Then = is the unique morphism of 2-As algebra which sends ., on
py for all d € D.

Notations. For all Q € WN'P(k), Pi,--- , P, € WNPP, we put:
FR.. p ={(P.F)/P e WNPPF = (P, -+, P) is a Q-family of P such that P} = P, for all i}.
Proof. For all d € D:

E(r)= >, n.(P;P)P= > bppP=P.

PeEWNPP PeWNPP
Let Q1,Q2 € WN'P. We denote by dy, - - - , dj, the decorations of the elements of Q1, di, 11, , dky 1+ks

the decorations of the elements of )2. Then:

(Q1~ Q2) = Z P.

Q1~Q2
PF)eFg 7
(PREFE Sy

(1]

There is an immediate bijection:

Q1 Q2 Q1+Q2
{ delv"' 7Pdk1 X dekl+17"' 7Pdk1+k2 - delv'“ ’Pdk1+dk2
((Pr, F1), (P2, F»)) —r (P~ Py, (F1, F2)).

So:

(1]

(@1~ Q2) = > P Py =E(Q1) ~ E(Qa).

(P1,F1), (P2,F»)

Let us now consider Z(Q1 x Q2). We put:

El = {(PylaR’F)/PEWNPD’Ildea‘IOfP’P_I:Ql’I:QQ’ (R’F)Eff.dl’.“’Pdk}’
Q1 Q2
Ey, = (Pl’Fl’PQ’FQ’R’ I) / (Pl’Fl) < delp"'dekl ’ (P27F2) < de2161+1"“’Pdk1+k27 .
ReWNP, Iidealof R, R—1 =P, =D
Then:
E@+Q)= Y, R E(Q)*E(Q) = > R.
(P,I,R,F)EE; (P1,F1,P2,F2,RI)EE>

There is a bijection from Fj to Es, sending (P,I, R, F) to (P, Fy, P2, F5, R, J) defined in the
following way: denoting F' = (Pj,---,F,), J is the subposet of R formed by the elements of
the PZ-’ 's such that ¢ is an element of I C P; P, = Ry and F} is formed by the PZ-’ ’s such that
i€ P—1I; P,=J and F) is formed by the P!’s such that ¢ € I. The only problematic point is
to show that J is an ideal of R: let z € J, y € R, such that z <j, y. So x € P/ for a certain i € I
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and y € P]( for a certain j € P. By definition, ¢ <p jin P. As I isanideal of P, j € I, soy € J.

As a consequence, Z(Q1 * Q2) = E(Q1) * Z(Q2). So Z is a morphism of 2-As algebras. As
7—[12/)\, Ap is freely generated by the .,’s, Z is the unique 2-As algebra morphism which sends ., to
py for all d € D. O

Definition 42

1. For all n € N*, we denote by WNPI"(n) the set of WN double posets of cardinal n, whose
vertices are indexed, that is to say the set of couples (P, d), where P is a WN poset and
d: P—{1,--- ,n} is a bijection.

2. Let P € WNPY and let & € N. Then P[k] is the element of WANPYN whose subjacent
double poset is P, and decorations obtained from the decorations of P by adding k.

Theorem 43 For all n € N*, we put P(n) = Vect (W./\/Plnd(n)). We define a structure of
operad on P = (P(n))nen- in the following way: for all Q € WN'PI(k), for all Py,--- , Py €

WN P of respective cardinals ny,--- ,ng, Qo (Py,---,Py) is 2(Q), where Z : H%Npk} —
7_[11\/]\//\/73 is the unique morphism of 2-As algebra which sends .1 to Py, .o to Py[nq], ---, and i

to Pg[ni + -+ ng_1]. The action of the symmetric group S,, on P(n) is given by permutation
of the indices. This operad is isomorphic to the operad of 2-As algebras.

In other terms:

Qo(Pi,-,P)= > ng(Ph,--,Pj;P)P,
PEWNPIRd.,
where dy, - - , dj, are the indices of the vertices of @, and P/ = P;[ng + - -+ 4+ n;_1] for all 4.
Proof. Comes from the description of an operad from its free algebras. O

Corollary 44 For alln € N*, we put P'(n) = vect ( WNPL™(n)). Then P’ = (P'(n))nen-
is a suboperad of P, isomorphic to the operad of Bso-algebras.

For example:
3 3 2 3 3
120(0,13) =Ny +13, 2oz, =20 + 13,

The operation (—;—) : V™ @ V®" — V acting on any Bs-algebra V correspond to the
element by, p = (+1.--em)d (emt1---emtn) Of WNP;IL"d(m + n), where [; is the ladder of degree
i for all 4. For example, by 1 = 17, b1 = 2\/13, ba1 = Ny and bao = ‘M5 . The Hasse graph of
bi,n is a complete (m,n) bipartite graph.
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