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Abstract

In this paper, we study the div-curl-grad operators and some elliptic problems
in the whole space Rn and in the half-space Rn

+, with n ≥ 2. We consider data
in weighted Sobolev spaces and in L1.
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1. Introduction

The purpose of this paper is to present new results concerning the div-curl-
grad operators and some elliptic problems in the whole space and in the half-
space with data and solutions which live in L1 or in weighted Sobolev spaces,
expressing at the same time their regularity and their behavior at infinity. Re-
cently, new estimates for L1-vector field have been discovered by Bourgain,
Brézis and Van Schaftingen (see [23], [10], [11], [12], [13], [15]) which yield in
particular improved estimates for the solutions of elliptic systems in Rn or in a
bounded domain Ω ⊂ Rn. Our work presented in this paper is naturally based
on these very interesting results and our approach rests on the use of weighted
Sobolev spaces.
This paper is organised as follows. In this section, we introduce some notations
and the functional framework. Some results concerning the weighted Sobolev
spaces and the spaces of traces are recalled. In Section 2 and Section 3, our
work is focused on the div-grad-curl operators and elliptic problems in the whole
space. After the case of the whole space, we then pass to the one of the half-
space. Results in the half-space are presented in Section 4 (The div-grad opera-
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tors), Section 5 (Vector potentials) and in the last section of this paper (Elliptic
problems).

In this paper, we use bold type characters to denote vector distributions or
spaces of vector distributions with n components and C > 0 usually denotes a
generic positive constant that may depends on the dimension n, the exponent p
and possibly other parameters, but never on the functions under consideration.
For any real number 1 < p <∞, we take p′ to be the Hölder conjugate of p. Let
Ω be an open subset in the n-dimensional real euclidean space. A typical point
x ∈ Rn is denoted by x = (x ′, xn), where x ′ = (x1, x2, ..., xn−1) ∈ Rn−1 and
xn ∈ R. Its distance to the origine is denoted by r = |x | = (x2

1 + ... + x2
n)1/2.

Let Rn
+ denote the closure of the upper half-space Rn

+ = {x ∈ Rn; xn > 0}. In
the half-space, its boundary is defined by Γ = {x ∈ Rn; xn = 0 } ≡ Rn−1.
In order to control the behavior at infinity of our functions and distributions,
we use for basic weight the quantity ρ = ρ(r) = 1 + r, which is equivalent to
r at infinity. We define D(Ω) to be the linear space of infinite differentiable
functions with compact support on Ω. Now, let D′(Ω) denote the dual space of
D(Ω), the space of distributions on Ω. For any q ∈ N, Pq stands for the space of
polynomials of degree ≤ q. If q is strictly negative integer, we set by convention
Pq = {0}. Given a Banach space B, with dual space B′ and a closed subspace
X of B, we denote by B′ ⊥ X (or more simply X⊥, if there is no ambiguity as
to the duality product) the subspace of B′ orthogonal to X, i.e.

B′ ⊥ X = X⊥ = {f ∈ B′| ∀ v ∈ X, < f, v > = 0} = (B/X)′.

The space X⊥ is called the polar space of X in B′ and is also denoted by X◦.
We also introduce the space

V(Ω) = {ϕ ∈ D(Ω), divϕ = 0 }.

In this paper, we want to consider some particular weighted Sobolev spaces
(see [4], [5]). The open set Ω will be denote the whole space or the half-space.
We begin by defining the space

W 1,p
0 (Ω) = {u ∈ D′(Ω),

u

w1
∈ Lp(Ω),∇u ∈ Lp(Ω)},

where

w1 = 1 + r if p 6= n and w1 = (1 + r) ln(2 + r) if p = n.

This space is a reflexive Banach space when endowed with the norm:

||u||W 1,p
0 (Ω) = (|| u

w1
||pLp(Ω) + ||∇u ||pLp(Ω))

1/p.

We also introduce the space

W 2,p
0 (Ω) = {u ∈ D′(Ω),

u

w2
∈ Lp(Ω),

∇u
w1

∈ Lp(Ω), D2u ∈ Lp(Ω)},
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where

w2 = (1 + r)2 if p /∈ {n
2
, n} and w2 = (1 + r)2 ln(2 + r), otherwise,

which is a Banach space endowed with its natural norm given by

||u||W 2,p
0 (Ω) = (|| u

w2
||pLp(Ω) + ||∇u

w1
||pLp(Ω) + ||D2u||pLp(Ω))

1/p.

We need to give also the definition of the following space

W 1,p
−1 (Ω) = {u ∈ D′(Ω),

u

w3
∈ Lp(Ω),

∇u
1 + r

∈ Lp(Ω)},

where

w3 = (1 + r)2 if p 6= n/2 and w3 = (1 + r)2 ln(2 + r), otherwise.

This space is also a reflexive Banach space and we can show that W 2,p
0 (Ω) ↪→

W 1,p
−1 (Ω). Note that the logarithmic weight only appears if p = n or p = n

2 .
From now on, when we write Wm,p

α (Ω), it means that m, p and α are taken as
in these above definitions of the weighted Sobolev spaces. It is also true for the
generalized case of the weighted Sobolev spaces. The weights in these above
definitions are chosen so that the corresponding space satisfies two properties.
On the one hand, the space D(Ω) is dense in Wm,p

α (Ω). On the other hand, the
following Poincar-type inequality holds in Wm,p

α (Ω) (see [4], [5] and [6]). The
semi-norm

| . |W m,p
α (Ω) = (

∑
|λ|=m

||(1 + r)α∂λu||pLp(Ω))
1/p

defines on Wm,p
α (Ω)/Pq∗ a norm which is equivalent to the quotient norm,

∀u ∈Wm,p
α (Ω), ||u||W m,p

α (Ω)/Pq∗
≤ C |u|W m,p

α (Ω), (1)

with q∗ = inf(q,m − 1), where q is the highest degree of the polynomials con-
tained in Wm,p

α (Ω). We define the space

◦
W

m,p
α (Ω) = D(Ω)

|| . ||W m,p
α (Ω) ,

and its dual space, W−m,p′

−α (Ω), is a space of distributions. In addition, the

semi-norm | . |W m,p
α (Ω) is a norm on

◦
W m,p

α (Ω) that is equivalent to the full norm
|| . ||W m,p

α (Ω):

∀u ∈
◦
W

m,p
α (Ω), ||u||W m,p

α (Ω) ≤ C |u|W m,p
α (Ω). (2)

When Ω = Rn, we have Wm,p
α (Rn) =

◦
W m,p

α (Rn). We will now recall some
properties of the weighted Sobolev spaces Wm,p

α (Ω). All the local properties
of Wm,p

α (Ω) coincide with those of the classical Sobolev space Wm,p(Ω). A
quick computation shows that for m ≥ 0 and if

n

p
+ α does not belong to
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{i ∈ Z; i ≤ m}, then P[m−n/p−α] is the space of all polynomials included in
Wm,p

α (Rn) (for s ∈ R, [s] stands for the integer part of s). For all λ ∈ Nn where
0 ≤ |λ| ≤ 2m with m = 1 or m = 2, the mapping

u ∈Wm,p
α (Ω) → ∂λu ∈Wm−|λ|,p

α (Ω)

is continuous. Recall the following Sobolev embeddings (see [1]):

W 1,p
0 (Ω) ↪→ Lp∗(Ω) where p∗ =

np

n− p
and 1 < p < n.

Also recall
W 1,n

0 (Rn) ↪→ BMO(Rn).

The space BMO is defined as follows: A locally integrable function f belongs
to BMO if

|| f ||BMO =: sup
Q

1
|Q|

∫
Q

|f(x )− fQ|dx <∞,

where the supremum is taken on all the cubes and fQ = 1
|Q|

∫
Q
f(x ) dx is the

average of f on Q. In the literature, we also find studies using the following
spaces:

Ŵ 1,p(Ω) = D(Ω) || ∇. ||Lp and Ŵ 2,p(Ω) = D(Ω) || ∇
2. ||Lp .

In fact, when Ω = Rn we can prove that Ŵ 1,p(Rn) = W 1,p
0 (Rn) if 1 < p <

n and Ŵ 2,p(Rn) = W 2,p
0 (Rn) if 1 < p < n/2. When n/p − m ≤ 0 with

m = 1 or m = 2, Ŵm,p(Rn) is not a space of distributions. For instance, in J.
Deny, J. L. Lions [16], they show that Ŵ 1,2(R2) is not a space of distributions.
Without going into details, let (ϕν) be a sequence of functions of D(R2) such
that ||∇ϕν ||L2(R2) is a Cauchy sequence. Applying Proposition 9.3 [4], there
exists a constant cν such that

inf
c∈R

||ϕν + c ||W 0
−1,−1(R2) = ||ϕν + cν ||W 0

−1,−1(R2)

is also a Cauchy sequence and therefore converges. But this does not mean that
ϕν alone converges and from [4], ||∇ϕν ||L2(R2) tends to zero while < ϕν , ψ >
tends to infinity for many ψ of D(R2) instead of converging to a constant times
the mean value of ψ. These considerations suggest that the space Ŵ 1,2(R2)
lacks the constant functions and is not a space of distributions.

In order to define the traces of functions of Wm,p
α (Rn

+), we introduce for any
σ ∈ (0, 1) the space

W σ,p
0 (Rn) = {u ∈ D′(Rn); w−σu ∈ Lp(Rn) and∫

Rn×Rn

|u(x)− u(y)|p

|x− y|n+σp
dx dy <∞},

where
w = ρ if

n

p
6= σ and w = ρ(ln (1 + ρ))1/σ if

n

p
= σ.
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It is a reflexive Banach space equipped with its natural norm

||u||W σ,p
0 (Rn) =

(∣∣∣∣∣∣ u
wσ

∣∣∣∣∣∣p
Lp(Rn)

+
∫

Rn×Rn

|u(x)− u(y)|p

|x− y|n+σp
dx dy

)1/p

.

Similarly, for any real number α ∈ R, we define the space

W σ,p
α (Rn) = {u ∈ D′(Rn); wα−σu ∈ Lp(Rn) and∫

Rn×Rn

|ρα(x)u(x)− ρα(y)u(y)|p

|x− y|n+σp
dx dy <∞},

where

w = ρ if
n

p
+ α 6= σ and w = ρ(ln (1 + ρ))1/(σ−α) if

n

p
+ α = σ.

For any s ∈ R+, we set

W s,p
α (Rn) = {u ∈ D′(Rn); 0 ≤ |λ| ≤ k, ρα−s+|λ|(ln(1 + ρ))−1∂λu ∈ Lp(Rn);
k + 1 ≤ |λ| ≤ [s]− 1, ρα−s+|λ|∂λu ∈ Lp(Rn); |λ| = [s], ∂λu ∈W σ,p

α (Rn) },

where

k = k(s, n, p, α) =

s−
n

p
− α if

n

p
+ α ∈ {σ, ..., σ + [s] },

−1, otherwise,

with σ = s− [s]. It is a reflexive Banach space equipped with the norm

||u||W s,p
α (Rn) = (

∑
0≤|λ|≤k

||ρα−s+|λ|(ln(1 + ρ))−1∂λu||pLp(Rn)

+
∑

k+1≤|λ|≤[s]−1

||ρα−s+|λ|∂λu||pLp(Rn))
1/p +

∑
|λ|=[s]

||∂λu||W σ,p
α (Rn).

We notice that this definition coincides with the previous definition of the
weighted Sobolev spaces when s = m is a nonnegative integer. If u is a function
on Rn

+, we denote its trace of order j on the hyperplane Γ by

∀j ∈ N, γju : x′ 7−→ ∂iu

∂xj
n

(x′, 0).

Finally, we recall the following traces lemma due to Hanouzet [19] and extended
by Amrouche-Nečasová [6] to this class of weighted Sobolev spaces.

Lemma 1.1. The mapping

γ = (γ0, γ1, ..., γm−1) : D(Rn
+) →

m−1∏
j=0

D(Rn−1),

5



can be extended to a linear continuous mapping, still denoted by γ,

γ : Wm,p
α (Rn

+) →
m−1∏
j=0

Wm−j−1/p,p
α (Rn−1).

Moreover, γ is surjective and Ker γ =
◦
W m,p

α (Rn
+).

In order to finish this section, we recall the definition of curl operator. When
n = 2, we define the curl operator for distributions ϕ ∈ D′(Ω) and v ∈ D′(Ω)
by

curlϕ = (
∂ϕ

∂x2
,− ∂ϕ

∂x1
) and curl v =

∂v2
∂x1

− ∂v1
∂x2

.

When n = 3, we define the curl operator of a distribution v ∈ D′(Ω) as follows

curl v = (
∂v3
∂x2

− ∂v2
∂x3

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

).

The following properties are easily obtained.

curl(curl ϕ) = −∆ϕ with n = 2,

−∆v +∇(div v) =

{
curl (curl v) when n = 3,
curl(curl v) when n = 2.

2. The div-grad operators in the whole space

The following proposition was given by J. Bourgain and H. Brézis [10]. We
give here a detailed proof.

Proposition 2.1. Let f ∈ Ln(Rn). Then there exists u ∈ L∞(Rn) such that

divu = f with ||u ||L∞(Rn) ≤ Cn|| f ||Ln(Rn). (3)

Proof. We consider the following unbounded operator

A = ∇ : Ln/(n−1)(Rn) → L1(Rn),

with
D(A) = W 1,1

0 (Rn) = {v ∈ Ln/(n−1)(Rn),∇v ∈ L1(Rn)}.

It is easy to see that A is closed: if vn → v in Ln/(n−1) and ∇vn → z in L1(Rn),
then we have z = ∇v. On the other hand, D(A) is dense in Ln/(n−1)(Rn). We
know that for all u ∈ D(A),

||u ||Ln/(n−1)(Rn) ≤ C ||∇u ||L1(Rn). (4)

Thanks to Theorem II.20 [14], the adjoint operator

A∗ = −div : L∞(Rn) → Ln(Rn)

6



is surjective, i.e., for all f ∈ Ln(Rn), there exists u ∈ L∞(Rn) such that
divu = f . Then from Theorem II.5 [14], there exists c > 0 such that

divBL∞(0, 1) ⊃ BLn(0, c), (5)

where BE(0, α) is the open ball in E of radius α > 0 centered at origin. Let
now f ∈ Ln(Rn) satisfying f 6= 0 and set

h = c
f

|| f ||Ln(Rn)
.

Therefore, we can deduce from (5) the existence of vn in L∞(Rn) satisfying
||vn||L∞(Rn) ≤ 1 such that

div vn → h in Ln(Rn).

We can then extract a subsequence (vnk
) such that vnk

∗
⇀ v in L∞(Rn) with

|| v ||L∞(Rn) ≤ 1 and h = div v . Hence, we obtain the property (3) with u =
1
c
|| f ||Ln(Rn)v . �

Remark 1. Proposition 2.1 can be improved by showing that u actually belongs
to W1,n

0 (Rn)∩L∞(Rn) (see Theorem 2.3). Note that W 1,n
0 (Rn) ↪→ BMO(Rn),

but the corresponding embedding in L∞(Rn) does not take place.

Recall now De Rham’s Theorem: let Ω be any open subset of Rn and let f
be a distribution of D′(Ω) that satisfies:

∀v ∈ V(Ω), < f , v >D′(Ω)×D(Ω) = 0. (6)

Then there exists π in D′(Ω) such that f = ∇π. In particular, if f ∈ W−1,p
0 (Rn)

with 1 < p <∞ and satisfies

∀v ∈ V(Rn), < f , v >
W−1,p

0 (Rn)×W1,p′
0 (Rn)

= 0, (7)

then there exists a unique π ∈ Lp(Rn) such that f = ∇π and the following
estimate holds

||π ||Lp(Rn) ≤ C || f ||W−1,p
0 (Rn).

Similarly, if f ∈ Lp(Rn), with 1 < p <∞, and satisfies

∀v ∈ V(Rn),
∫

Ω

f · v = 0, (8)

then f = ∇π with π ∈ W 1,p
0 (Rn). Note that V(Rn) is dense in Hp(Rn) for all

1 ≤ p < ∞ (see Alliot-Amrouche [2] for p > 1 and Miyakawa [20] for p = 1),
but is not dense in H∞(Rn), where for any 1 ≤ p ≤ ∞,

Hp(Rn) = {v ∈ Lp(Rn); div v = 0} .
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As V(Rn) is dense in

V1,p′

0 (Rn) =
{
v ∈ W1,p′

0 (Rn); div v = 0
}
,

then (7) is equivalent to

∀v ∈ V1,p′

0 (Rn), < f , v >
W−1,p

0 (Rn)×W1,p′
0 (Rn)

= 0. (9)

The same property holds for the relation (8) with V(Rn) replaced by Hp′(Rn).
The following corollary gives an answer when f ∈ L1(Rn).

Corollary 2.2. Assume that f ∈ L1(Rn) satisfying

∀v ∈ H∞(Rn),
∫

Rn

f · v dx = 0.

Then there exists a unique π ∈ Ln/(n−1)(Rn) such that f = ∇π with the estimate

||π ||Ln/(n−1)(Rn) ≤ C|| f ||L1(Rn). (10)

Proof. This corollary can be proved because from (4), we have Im∇ is closed
subspace of L1(Rn), so that [H∞(Rn)]o = (Ker div)o = Im∇, where

[H∞(Rn)]o =
{

f ∈ L1(Rn),
∫

Rn

f · v dx = 0, ∀v ∈ H∞(Rn)
}
.

Recall that if E is a Banach space and M a subspace of the dual E′, then the
polar (or the orthogonal) of M is defined as follows

Mo = { f ∈ E; < f, v > = 0, ∀v ∈M } .

�

Remark 2. Observe first that the hypothesis of Corollary 2.2 implies that f ∈
L1

0(Rn), i.e., f ∈ L1(Rn) and
∫

Rn

f = 0. Next, note that the conclusion

of the above corollary shows that f ∈ W−1,n/(n−1)
0 (Rn) and then div f ∈

W
−2,n/(n−1)
0 (Rn). Moreover, we have

∀λ ∈ P1, < div f , λ >
W
−2,n/(n−1)
0 (Rn)×W 2,n

0 (Rn)
= 0. (11)

Now recall a result in J. Bourgain - H. Brézis (cf. [11] or [12]).

Theorem 2.3. For all f ∈ Ln(Rn), there exists w ∈ W1,n
0 (Rn)∩L∞(Rn) such

that div w = f and

||w ||W1,n
0 (Rn) + ||w ||L∞(Rn) ≤ C || f ||Ln(Rn).
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Remark 3. Note that J. Bourgain and H. Brézis use the space Ŵ 1,n(Rn) (re-
spectively, Ŵ 2,n(Rn)), which is defined by the adherence of D(Rn) for the norm
||∇. ||Ln(Rn) (respectively, the adherence of D(Rn) for the norm ||∇2. ||Ln(Rn))
as their functional framework. Our choice is the weighted Sobolev space and it
seems to us more adaptive (see the introduction in Section 1 for the explana-
tion).

The second point of the following theorem is an extension of Corollary 2.2
and (7) with p = n/(n− 1).

Corollary 2.4. i) There exists C > 0 such that for all u ∈ Ln/(n−1)(Rn), we
have the following inequality

||u ||Ln/(n−1)(Rn) ≤ C inf
g+h=∇u

(|| g ||L1(Rn) + ||h ||
W

−1,n/(n−1)
0 (Rn)

) (12)

with g ∈ L1(Rn) and h ∈ W−1,n/(n−1)
0 (Rn).

ii) Let f ∈ L1(Rn) + W−1,n/(n−1)
0 (Rn) satisfying the following compatibility

condition
∀v ∈ V1,n

0 (Rn) ∩ L∞(Rn), < f, v > = 0. (13)

Then there exists a unique π ∈ Ln/(n−1)(Rn) such that f = ∇π.

Proof. i) We consider two following operators

A = −∇ : Ln/(n−1)(Rn) → L1(Rn) + W−1,n/(n−1)
0 (Rn),

A∗ = div : W1,n
0 (Rn) ∩ L∞(Rn) → Ln(Rn).

The rest of this proof is similar to the one of Proposition 2.1.
ii) The second point is a consequence of the first one. �

Remark 4. Remark that for all u ∈W 1,1
0 (Rn),

||u ||Ln/(n−1)(Rn) ≤ C ||∇u ||L1(Rn), (14)

and for all u ∈ Ln/(n−1)(Rn),

||u ||Ln/(n−1)(Rn) ≤ C ||∇u ||
W

−1,n/(n−1)
0 (Rn)

. (15)

The inequality (14) is well-known. We now consider (15). It is shown in [4] that
∆ is an isomorphism from W 2,n

0 (Rn)/P1 into Ln(Rn). By duality, we have

∆ : Ln/(n−1)(Rn) →W
−2,n/(n−1)
0 (Rn) ⊥P1

is also an isomorphism. Then for all u ∈ Ln/(n−1)(Rn), we can deduce

||u ||Ln/(n−1)(Rn) ≤ C ||∆u ||
W
−2,n/(n−1)
0 (Rn)

. (16)
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Moreover, we can also see immediately that

||∆u ||
W
−2,n/(n−1)
0 (Rn)

= ||div∇u ||
W
−2,n/(n−1)
0 (Rn)

and the following operator

div : W−1,n/(n−1)
0 (Rn) →W

−2,n/(n−1)
0 (Rn)

is continuous. Then

||∆u ||
W
−2,n/(n−1)
0 (Rn)

≤ C ||∇u ||
W

−1,n/(n−1)
0 (Rn)

and we deduce easily (15). The inequality (12), stronger than (14) or (15) is
especially interesting if u ∈ Ln/(n−1)(Rn) and ∇u /∈ L1(Rn).

Recall now the definition of Riesz transforms

Rjf = cn p.v.

(
f ∗ xj

|x |n+1

)
, j = 1, ..., n,

where cn = Γ
(

n+1
2

)
/π

n+1
2 . Also recall that their Fourier transforms satisfy

R̂jf = i
ξj
|ξ|
f̂ .

The following corollary is proved in [11]. We give here a little different proof.

Corollary 2.5. Assume that F ∈W 1,n
0 (Rn). Then there exists Y ∈ W1,n

0 (Rn)∩
L∞(Rn) such that

F =
n∑

j=1

RjYj .

Proof. Let F ∈ W 1,n
0 (Rn) and define f by f̂(ξ) = |ξ|F̂ (ξ). Then we have

R̂jf(ξ) =
∂̂F

∂xj
(ξ). Therefore, Rjf =

∂F

∂xj
∈ Ln(Rn) for all j = 1, ..., n. Hence,

RjRjf ∈ Ln(Rn) and we deduce f = −
n∑

j=1

RjRjf ∈ Ln(Rn). Thanks to

Theorem 2.3, there exists Y ∈ W1,n
0 (Rn) ∩ L∞(Rn) such that f = div Y, i.e.,

f̂ =
n∑

j=1

iξjYj . Then, F̂ =
n∑

j=1

i
ξj
|ξ|
Ŷj , that means that F =

n∑
j=1

RjYj . �

An another result was established by J. Bourgain and H. Brézis [11] (see
also H. Brézis and J. Van Schaftingen [15]).

Theorem 2.6. Let Ω be a Lipschitz bounded open domain in Rn.
i) For all ϕ ∈ W1,n

0 (Ω), there exist ψ ∈ W1,n
0 (Ω) ∩ L∞(Ω) and η ∈ W 2,n

0 (Ω)
such that

ϕ = ψ +∇η, (17)
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with the following estimate

||∇ψ ||Ln(Ω) + ||ψ ||L∞(Ω) + ||D2η ||Ln(Ω) ≤ C ||∇ϕ ||Ln(Ω), (18)

where C only depends on Ω.
ii) For all ϕ ∈ W1,n(Ω), there exist ψ ∈ W1,n(Ω) ∩ L∞(Ω) and η ∈ W 2,n(Ω)
such that (17) holds with ψ · n = 0 on Γ and satisfying the following estimate

||ψ ||W1,n(Ω) + ||ψ ||L∞(Ω) + || η ||W2,n(Ω) ≤ C ||ϕ ||W1,n(Ω). (19)

In the above theorem, W1,n
0 (Ω) is the classical Sobolev space of functions in

W1,n(Ω) vanishing on the boundary of Ω and W2,n
0 (Ω) is the one of functions in

W2,n(Ω) whose traces and the normal derivative are vanished on the boundary
of Ω.

We now prove a similar result corresponding to weighted Sobolev spaces.

Corollary 2.7. For all ϕ ∈ W1,n
0 (Rn), there exist ψ ∈ W1,n

0 (Rn) ∩ L∞(Rn)
and η ∈W 2,n

0 (Rn) such that
ϕ = ψ +∇η,

with the following estimate

||ψ ||W1,n
0 (Rn) + ||ψ ||L∞(Rn) + ||D2η ||Ln(Rn) ≤ C ||∇ϕ ||Ln(Rn). (20)

Proof. Thanks to the density of D(Rn) in W1,n
0 (Rn), there exists a sequence

(ϕk)k∈N∗ in D(Rn) that converges toward ϕ in W1,n
0 (Rn). Let Brk

be a ball
such that suppϕk ⊂ Brk

and we set ϕ′k(x ) = ϕk(rkx ). Then we deduce ϕ′k ∈
W1,n

0 (B1). Applying Theorem 2.6, there exist ψ′k ∈ W1,n
0 (B1) ∩ L∞(B1) and

η′k ∈W
2,n
0 (B1) such that

ϕ′k = ψ′k +∇η′k,

with the following estimate

||∇ψ′k ||Ln(B1) + ||ψ′k ||L∞(B1) + ||D2η′k ||Ln(B1) ≤ C ||∇ϕ′k ||Ln(B1).

We now set
ψk(x ) = ψ′k(

x

rk
) and ηk(x ) = rk η

′
k(

x

rk
).

Then we have
ϕk = ψk +∇ηk. (21)

Moreover, since

||∇ψk ||Ln(Rn) = ||∇ψ′k ||Ln(B1),
||ψk ||L∞(Rn) = ||ψ′k ||L∞(B1),
||∇ϕk ||Ln(Rn) = ||∇ϕ′k ||Ln(B1),

we then have that

||∇ψk ||Ln(Rn) + ||ψk ||L∞(Rn) ≤ C ||∇ϕk ||Ln(Rn) ≤ C ||∇ϕ ||Ln(Rn). (22)
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Then there exists a sequence (ak) in Rn such that ψk + ak is bounded in
W1,n

0 (Rn) and
||ψk + ak ||W1,n

0 (Rn) ≤ C ||∇ϕ ||Ln(Rn). (23)

As ||ψk ||L∞(Rn) is also bounded, then the sequence (ak) is bounded in Rn. Then
we can extract a subsequence, again denoted by (ak), such that lim

k→∞
ak = a .

We know that there exists ψ0 in W1,n
0 (Rn) such that ψk+ak ⇀ ψ0 in W1,n

0 (Rn)
and

||ψ0 ||W1,n
0 (Rn) ≤ C ||∇ϕ ||Ln(Rn).

Then, we have ψk ⇀ ψ0 − a in W1,n
0 (Rn). Moreover, ψk

∗
⇀ ψ in L∞(Rn),

then it implies that ψ = ψ0 − a . In addition, we have the following estimate

||∇ψ ||Ln(Rn) + ||ψ ||L∞(Rn) ≤ C ||∇ϕ ||Ln(Rn).

From (21), we can deduce that

||D2ηk ||Ln(Rn) ≤ C ||∇ϕ ||Ln(Rn),

i.e., there exists αk ∈ P1 such that

ηk + αk is bounded in W 2,n
0 (Rn), (24)

and there exists η0 in W 2,n
0 (Rn) such that ηk+αk ⇀ η0 in W 2,n

0 (Rn). As ϕk and
ψk are bounded in W1,n

0 (Rn), it is also true for ∇ηk, then from (24), we deduce
that ∇αk is bounded in W1,n

0 (Rn). Therefore, there exists a real sequence bk
such that αk + bk is bounded in W 2,n

0 (Rn). Consequently, the sequence ηk − bk
is bounded in W 2,n

0 (Rn) and we can extract a subsequence, denoted in the same
way, such that ηk − bk ⇀ η in W 2,n

0 (Rn). Then we have

ϕk = ψk +∇(ηk − bk)

with the estimate

||D2(ηk − bk) ||Ln(Rn) ≤ C ||∇ϕ ||Ln(Rn).

We pass to limite in the above decomposition, we shall obtain ϕ = ψ+∇η with

||∇ψ ||Ln(Rn) + ||ψ ||L∞(Rn) + ||D2η ||Ln(Rn) ≤ C ||∇ϕ ||Ln(Rn),

and then we deduce (20). �

We have another version of Corollary 2.7.

Theorem 2.8. For all ϕ ∈ W1,n
0 (Rn), there exist ψ ∈ W1,n

0 (Rn) ∩ L∞(Rn)
and η ∈W 2,n

0 (Rn) such that
ϕ = ψ +∇η,

with the following estimate

||ψ ||W1,n
0 (Rn) + ||ψ ||L∞(Rn) + || η ||W 2,n

0 (Rn) ≤ C ||ϕ ||W1,n
0 (Rn).
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Proof. Let ϕ ∈ W1,n
0 (Rn). We resume the obtained functions ak, ψk, a , ψ0,

ψ and η in the proof of Corollary 2.7. We have

|ak| =
1
|B1|

∫
B1

|ak| ≤
1
|B1|

(∫
B1

|ak|n
)1/n

|B1|(n−1)/n.

Then we deduce from (22) and (23) that

|ak| ≤ C ||ak ||Ln(B1) ≤ C ||ak +ψk ||Ln(B1) + C ||ψk ||Ln(B1)

≤ C ||∇ϕ ||Ln(Rn).

and
||a ||L∞(Rn) ≤ C ||∇ϕ ||Ln(Rn).

As ψ = ψ0 − a , then

||ψ ||W1,n
0 (Rn) ≤ C ||∇ϕ ||Ln(Rn) ≤ C ||ϕ ||W1,n

0 (Rn).

As ϕ = ψ +∇η, then we have

||∇η ||W1,n
0 (Rn) ≤ C ||ϕ ||W1,n

0 (Rn).

Therefore, there exists b ∈ R such that

|| η + b ||W 2,n
0 (Rn) ≤ C ||∇η ||W1,n

0 (Rn) ≤ C ||ϕ ||W1,n
0 (Rn),

and the proof is complete. �

Remark 5. This theorem suggests this open question: if ϕ ∈ W2,n/2
0 (Rn), are

there a function ψ ∈ W2,n/2
0 (Rn) ∩ L∞(Rn) and a function η ∈ W

3,n/2
0 (Rn)

such that
ϕ = ψ +∇η,

with the corresponding estimate ?

We define now the space

X(Rn) = { f ∈ L1(Rn), div f ∈W−2,n/(n−1)
0 (Rn)},

which is Banach space endowed with the following norm

|| f ||X(Rn) = || f ||L1(Rn) + ||div f ||
W
−2,n/(n−1)
0 (Rn)

. (25)

Theorem 2.9. Let f ∈ X(Rn). Then f ∈ W−1,n/(n−1)
0 (Rn) and we have the

following inequality

∀ϕ ∈ W1,n
0 (Rn) ∩ L∞(Rn), |

∫
Rn

f ·ϕ | ≤ C || f ||X(Rn)||ϕ ||W1,n
0 (Rn). (26)
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Proof. We consider the following linear operator ϕ F−→
∫

Rn

f · ϕ defined on

D(Rn). Thanks to Theorem 2.8, we have

| < F ,ϕ > | = |
∫

Rn f · (ψ +∇η) |
= |

∫
Rn f ·ψ− < div f , η >

W
−2,n/(n−1)
0 (Rn)×W 2,n

0 (Rn)
|

≤ || f ||L1(Rn)||ψ ||L∞(Rn) + ||div f ||
W
−2,n/(n−1)
0

|| η ||W 2,n
0

≤ C || f ||X(Rn)||ϕ ||W1,n
0 (Rn).

As D(Rn) is dense in W1,n
0 (Rn) and by applying Hahn-Banach Theorem, we

can uniquely extend F by an element F̃ ∈ W−1,n/(n−1)
0 (Rn) satisfying

|| F̃ ||
W

−1,n/(n−1)
0 (Rn)

≤ C || f ||X(Rn).

Besides, the linear operator f −→ F̃ from X(Rn) into W−1,n/(n−1)
0 (Rn) is

continuous and injective. Therefore, X(Rn) can be identified to a subspace of
W−1,n/(n−1)

0 (Rn) with continuous and dense embedding. �

Remark 6. i) Let f ∈ X(Rn). Then
∫

Rn

f = 0 if and only if

∀λ ∈ P1, < div f , λ >
W
−2,n/(n−1)
0 (Rn)×W 2,n

0 (Rn)
= 0.

Note that
∫

Rn

fi =< fi, 1 >
W
−1,n/(n−1)
0 (Rn)×W 1,n

0 (Rn)
.

ii) Let f ∈ X(Rn) satisfying
∫

Rn

f = 0. Then we have the following inequality:

for every ϕ ∈ W1,n
0 (Rn),

| < f ,ϕ >
W

−1,n/(n−1)
0 (Rn)×W1,n

0 (Rn)
| ≤ C || f ||X(Rn)||∇ϕ||Ln(Rn).

Actually, we observe that for any a ∈ Rn,

| < f ,ϕ > | = | < f ,ϕ+ a > | ≤ || f ||X(Rn)||ϕ+ a ||W1,n
0 (Rn).

Consequently, taking the infinum, we have for every ϕ ∈ W1,n
0 (Rn) (see [4]):

| < f ,ϕ > | ≤ C || f ||X(Rn)||∇ϕ||Ln(Rn). (27)

It is then easy to deduce the following corollary.

Corollary 2.10. Let f ∈ L1(Rn) and div f = 0. Then
∫

Rn

f = 0 and for every

ϕ ∈ W1,n
0 (Rn) ∩ L∞(Rn), we have

|
∫

Rn

f ·ϕ | ≤ C || f ||L1(Rn)||∇ϕ||Ln(Rn).
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Corollary 2.11. Let f ∈ L1(R3) and curl f ∈ W−2,3/2
0 (R3). Then we have

f ∈ W−1,3/2
0 (R3) and the following estimate: for every ϕ ∈ W1,3

0 (R3)∩L∞(R3),

|
∫

R3
f ·ϕ | ≤ C ( || f ||L1(R3) + || curl f ||

W
−2,3/2
0 (R3)

)||ϕ ||W1,3
0 (R3).

If moreover
∫

R3
f = 0, then for every ϕ ∈ W1,3

0 (R3) ∩ L∞(R3), we have the

following estimate

|
∫

R3
f ·ϕ | ≤ C ( || f ||L1(R3) + || curl f ||

W
−2,3/2
0 (R3)

)||∇ϕ ||L3(R3).

Proof. Using Proposition 2.13, the proof is similar as the one of Theorem 2.9
and Remark 6. �

When f ∈ X(Rn), we can improve Corollary 2.2 as follows (recall that V(Rn)
is not dense in H∞(Rn)).

Proposition 2.12. Assume that f ∈ X(Rn) satisfying

∀ v ∈ V(Rn),
∫

Rn

f · v dx = 0. (28)

Then there exists a unique π ∈ Ln/(n−1)(Rn) such that f = ∇π and the following
estimate holds

||π ||Ln/(n−1)(Rn) ≤ C || f ||
W
−1,n/(n−1)
0 (Rn)

.

Proof. This proposition is an immediate consequence of the embedding X(Rn)
↪→ W−1,n/(n−1)

0 (Rn) and De Rham’s Theorem (see Alliot - Amrouche [2]). �

Remark 7. i) First remark that the hypothesis div f ∈ W
−2,n/(n−1)
0 (Rn) of

Proposition 2.12 is necessary because if f = ∇π with π ∈ Ln/(n−1)(Rn), then
f ∈ W−1,n/(n−1)

0 (Rn) and div f = ∆π ∈W−2,n/(n−1)
0 (Rn).

ii) Also note that (28) is equivalent to

∀v ∈ V(Rn), < f , v >
W

−1,n/(n−1)
0 (Rn)×W1,n

0 (Rn)
= 0. (29)

As V(Rn) is dense in V1,n
0 (Rn), (29) is also equivalent to

∀v ∈ V1,n
0 (Rn), < f , v >

W
−1,n/(n−1)
0 (Rn)×W1,n

0 (Rn)
= 0. (30)

Since vectors of the canonical basis of Rn belong to V1,n
0 (Rn), we deduce that

if (28) holds, then
∫

Rn

f = 0.
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Proposition 2.13. Let ϕ ∈ W1,3
0 (R3). Then there exist ψ ∈ W1,3

0 (R3) ∩
L∞(R3) and η ∈ W2,3

0 (R3) such that

ϕ = ψ + curlη

and we have the following estimate

||∇ψ||L3(R3) + ||ψ||L∞(R3) + ||D2η||L3(R3) ≤ C ||∇ϕ||L3(R3).

Moreover, ψ and η can be chosen such that

||ψ||W1,3
0 (R3) + ||ψ||L∞(R3) + ||η||W2,3

0 (R3) ≤ C ||ϕ||W1,3
0 (R3).

Proof. Let ϕ ∈ W1,3
0 (R3), then divϕ ∈ L3(R3). Thanks to Theorem 2.3,

there exists ψ ∈ L∞(R3) ∩W1,3
0 (R3) such that divψ = divϕ and

||ψ ||L∞(R3) + ||ψ ||W1,3
0 (R3) ≤ C ||divϕ ||L3(R3).

Setting z = ϕ − ψ. We know that there exists η0 ∈ W2,3
0 (R3) such that

−∆η0 = curl z satisfying the following estimate

||η0||W2,3
0 (R3) ≤ C ||∇ϕ||L3(R3).

However, div η0 ∈W
1,3
0 (R3) is harmonic, then we deduce divη0 = a with a ∈ R.

Therefore, we have
curl (curlη0) = curl z .

We set y = z − curlη0. Then y ∈ W1,3
0 (R3), div y = 0 and curly = 0, i.e.,

∆y = 0. Then we can deduce y = b ∈ R3. Let q ∈ P1 such that b = curl q .
We now set η = η0 + q . Then

ϕ = ψ + curlη

and we have the following estimate

||ψ||W1,3
0 (R3) + ||ψ||L∞(R3) + ||D2η||L3(R3) ≤ C ||∇ϕ||L3(R3).

�

We now introduce the following proposition.

Proposition 2.14. Assume that u ∈ L1
loc(Rn) satisfying ∇u ∈ L1(Rn). Then

there exists a unique constant K ∈ R such that u+K ∈ Ln/(n−1)(Rn). Moreover,
we have

||u+K||Ln/(n−1)(Rn) ≤ C||∇u||L1(Rn) (31)

and
K = − lim

|x|→∞

1
ωn

∫
Sn−1

u(σ|x|)dσ, (32)

where Sn−1 is the unit sphere of Rn and ωn its surface.

16



Proof. From Proposition 2.7 [21], it is easy to prove that there exists a unique
constant K ∈ R verifying u +K ∈ Ln/(n−1)(Rn) and we have (31). Thanks to
Lemma 1.3 [2], we have

lim
|x|→∞

|x|n−1

∫
Sn−1

|u(σ|x|) +K|dσ = 0. (33)

We set
DR(r) =

∫
{x∈Rn,r<|x|<R}

|∇u|dx.

By proceeding similarly as in [22], we have

DR(r) ≥
∫

Sn−1

(
∫ R

r

|∂u
∂ρ
|ρ2)dρ+

∫ R

r

ρ

∫
Sn−1

|∇∗u|dσdρ,

where ∇∗u is the projection of gradient of u on the unit sphere Sn−1.

|∇∗u|2 = r2[ |∇u|2 − |∂u
∂ρ
|2].

By Hölder’s and Wirtinger’s inequalities

DR(r) ≥
∫

Sn−1

∫ R

r

|∂u
∂ρ
|dρ

∫ R

r

ρ−2dρ

+C
∫ R

r

(
∫

Sn−1

|u(|x|σ)− 1
ωn

∫
Sn−1

u(|x|σ)dσ|dσ)ρdρ.

By consequence, we have

DR(r) ≥ Cr

∫
Sn−1

|u(Rσ)− u(rσ)|dσ

+ C

∫ R

r

(
∫

Sn−1

|u(|x|σ)− 1
ωn

∫
Sn−1

u(|x|σ)dσ|dσ)ρdρ.
(34)

Since the both integrals on the right are non-negative, each is separately bounded
by DR(r). Then, there exists a function u∗ ∈ L1(Sn−1) such that

lim
|x|→∞

∫
Sn−1

|u(|x|σ)− u∗(|x|σ)|dσ = 0,

lim
|x|→∞

∫
Sn−1

u(|x|σ)dσ =
∫

Sn−1

u∗(σ)dσ.

Thanks to (33), we deduce that u∗ = −K and from (34) we have (32). �

Remark 8. We have a similar result as the above proposition in the case u ∈
D′(Rn) and ∇u ∈ Lp(Rn) for all p > 1 (see Payne and Weinberger [22], Am-
rouche and Razafison [9], for example).
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3. Vector potentials and elliptic problems in the whole space

Proposition 3.1. There exists C > 0 such that for any u ∈ L3/2(R3) satisfy-
ing curlu ∈ L1(R3) and divu = 0, we have the following estimate

||u ||L3/2(R3) ≤ C || curlu ||L1(R3). (35)

Proof. Setting f = curlu . Then f belongs to W−1,3/2
0 (R3) and for all

i = 1, 2, 3,
< fi, 1 >

W
−1,3/2
0 (R3)×W 1,3

0 (R3)
= 0.

Therefore, there exists a unique solution z ∈ W1,3/2
0 (R3) of −∆ z = f in R3

and satisfying

|| z ||
W

1,3/2
0 (R3)

≤ C || curlu ||
W

−1,3/2
0 (R3)

≤ C || curlu ||L1(R3).

The last inequality is consequence of the embedding X(R3) ↪→ W−1,3/2
0 (R3)

and because div f = 0 and f = curlu ∈ X(R3). Moreover, it is easy to see
that div z = 0 in R3. By setting w = u − curl z , we can easily deduce that
∆w = 0 in R3. Then w = 0, u = curl z and we obtain the estimate (35). �

Proceeding similarly as in the proof of Proposition 2.1, we can show the
following corollary.

Corollary 3.2. Let f ∈ L3(R3) such that div f = 0. Then there exists u ∈
L∞(R3), with divu = 0 and such that

curlu = f, with ||u ||L∞(R3) ≤ C || curlu ||L3(R3).

In three-dimensional space, thanks to Theorem 2.8, we can deduce the fol-
lowing proposition.

Proposition 3.3. Let f ∈ L3(R3) such that div f = 0. Then there exist ϕ ∈
W1,3

0 (R3), unique up to a constant vector, and ψ ∈ W1,3
0 (R3) ∩ L∞(R3) such

that
curl ϕ = curl ψ = f and divϕ = 0,

satisfying the following estimate

||∇ϕ ||L3(R3) + ||ψ ||W1,3
0 (R3) + ||ψ ||L∞(R3) ≤ C|| f ||L3(R3).

Proof. From the hypothesis, we deduce curl f ∈ W−1,3
0 (R3). Then , from [4],

there exists ϕ ∈ W1,3
0 (R3), unique up to a constant vector, such that −∆ϕ =

curl f in Ω and satisfying the following estimate

inf
a∈R3

||ϕ+ a ||W1,3
0 (R3) ≤ C || f ||L3(R3).

As divϕ ∈ L3(R3) is harmonic, then we deduce divϕ = 0. Consequently, we
have

−∆ϕ = curl curl ϕ−∇divϕ = curl curl ϕ.
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Therefore, we obtain curl ( curlϕ−f ) = 0 in Ω. Setting z = curlϕ−f . Then
z ∈ L3(R3), div z = 0 and curl z = 0. Hence, we deduce ∆z = 0 and z = 0,
i.e., curlϕ = f . Applying Theorem 2.8, there exist ψ ∈ W1,3

0 (R3) ∩ L∞(R3)
and η ∈W 2,3

0 (R3) such that ϕ = ψ +∇η in R3, with the following estimate

||ψ ||W1,3
0 (R3) + ||ψ ||L∞(R3) ≤ C ||∇ϕ ||L3(R3) ≤ C || f ||L3(R3).

The function ψ is the required function, then the proof is finished. �

Remark 9. From the previous proposition, we have the following Helmholtz
decomposition: for all f ∈ L3(R3), we have

f = curlψ +∇p (36)

with ψ ∈ W1,3
0 (R3) ∩ L∞(R3) and p ∈W 1,3

0 (R3) and the following estimate

||ψ ||W1,3
0 (R3) + ||ψ ||L∞(R3) + ||∇p||L3(R3) ≤ C || f ||L3(R3). (37)

Indeed, we have div f ∈ W−1,3
0 (R3)⊥R because of f ∈ L3(R3). Then there

exists p ∈ W 1,3
0 (R3), unique up to a constant, such that ∆p = div f and

satisfying the following estimate

||∇p||L3(R3) ≤ C || f ||L3(R3).

The function f − ∇p satisfies the hypothesis of Proposition 3.3, then we can
decompose f as in (36) and we have the estimate (37).

Corollary 3.4. There exists C > 0 such that for all u ∈ L3/2(R3) satisfying
div u = 0, we have the following inequality

||u ||L3/2(Rn) ≤ C inf
f+g= curl u

(|| f ||L1(R3) + || g ||
W

−1,3/2
0 (R3)

) (38)

with f ∈ L1(R3) and g ∈ W−1,3/2
0 (R3).

Proof. We consider two following operators

A = curl : H3/2(R3) → L1(R3) + W−1,3/2
0 (R3),

A∗ = curl : W1,3
0 (R3) ∩ L∞(R3) → H3(R3).

The rest of this proof is similar to the one of Proposition 2.1. �

The following corollary improves Corollary 2.10.

Corollary 3.5. Let f ∈ L1(R3) such that div f = 0. Then for all ϕ ∈ W1,3
0 (R3),

we have the following estimate

| < f,ϕ >
W

−1,3/2
0 (R3)×W1,3

0 (R3)
| ≤ C || f ||L1(R3)||curlϕ||L3(R3). (39)
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Proof. First remark that from the hypothesis, we deduce f ∈ W−1,3/2
0 (R3).

Let ϕ ∈ W1,3
0 (R3). Then we have curlϕ ∈ L3(R3). Thanks to Proposition

3.3, there exists ψ ∈ W1,3
0 (R3) ∩ L∞(R3) such that curlψ = curlϕ with the

following estimate

||ψ ||W1,3
0 (R3) + ||ψ ||L∞(R3) ≤ C || curlϕ ||L3(R3). (40)

Besides, there exists η ∈W 2,3
0 (R3) such that ϕ = ψ+∇η in R3. Then we have

< f ,ϕ >
W

−1,3/2
0 (R3)×W1,3

0 (R3)
=

∫
R3

f ·ψ+ < f ,∇η >
W

−1,3/2
0 (R3)×W1,3

0 (R3)

=
∫

R3
f ·ψ.

Therefore, the estimate (39) is deduced from the estimate (40). �

Remark 10. We have another proof for the above corollary as follows: We can
write that f = −∆u = curl curlu , with u ∈ W1,3/2

0 (R3) satisfying the
following estimate

||u ||
W

1,3/2
0 (R3)

≤ C || f ||
W

−1,3/2
0 (R3)

≤ C|| f ||L1(R3).

Then we deduce

| < f ,ϕ >
W

−1,3/2
0 (R3)×W1,3

0 (R3)
| = | < curlu , curlϕ >L3/2(R3)×L3(R3) |

≤ ||curlu ||L3/2(R3)||curlϕ||L3(R3)

≤ C || f ||L1(R3)||curlϕ||L3(R3).

We now prove the following proposition.

Proposition 3.6. Let f ∈ L1(R3) such that div f = 0. Then there exists a
unique ϕ ∈ L3/2(R3) such that curl ϕ = f and divϕ = 0 in R3 satisfying the
following estimate

||ϕ ||L3/2(R3) ≤ C || f ||L1(R3).

Proof. From the definition of X(R3), we have f ∈ W−1,3/2
0 (R3). As

∆ : W1,3/2
0 (R3) −→ W−1,3/2

0 (R3) ⊥ R

is an isomorphism (see [4]), then there exists a unique h ∈ W1,3/2
0 (R3) such

that −∆h = f and we have the following estimate

||h ||
W

1,3/2
0 (R3)

≤ C || f ||L1(R3).

Moreover, we can see that div h = 0 and then −∆h = curl curl h . The
proposition can be easily obtained by setting ϕ = curl h . �

We have the following Helmholtz decomposition.
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Corollary 3.7. Let f ∈ L1
0(R3) such that div f ∈ W

−2,3/2
0 (R3). Then there

exists a unique ϕ ∈ L3/2(R3) such that divϕ = 0 and a unique π ∈ L3/2(R3)
satisfying

f = curlϕ+∇π

and the following estimate holds

||ϕ ||L3/2(R3) + ||π ||L3/2(R3) ≤ C
(
|| f ||L1(R3) + ||div f ||

W
−2,3/2
0 (R3)

)
.

Proof. It is clear that

∀λ ∈ P1, < div f , λ >= 0.

From the hypothesis and [4], there exists a unique π ∈ L3/2(R3) such that
∆π = div f and

||π ||L3/2(R3) ≤ C ||div f ||
W
−2,3/2
0 (R3)

.

Then, we deduce that f − ∇π ∈ W−1,3/2
0 (R3) ⊥ R3. Therefore, there exists

a unique z ∈ W1,3/2
0 (R3) such that −∆z = f − ∇π. Moreover, we see that

div z = 0. Then, f − ∇π = curl curlz . The proof is complete by setting
ϕ = curl z . �

The following proposition is an extension of Proposition 3.6.

Proposition 3.8. Let f ∈ L1
0(R3) + W−1,3/2

0 (R3) such that div f = 0 and sat-
isfying the following compatibility condition

∀i = 1, 2, 3, < fi, 1 > = 0.

Then there exists a unique ϕ ∈ L3/2(R3) such that curl ϕ = f and divϕ = 0
in R3 satisfying the following estimate

||ϕ ||L3/2(R3) ≤ C|| f ||
L1(R3)+W

−1,3/2
0 (R3)

.

Proof. Let f = g+h with g ∈ L1
0(R3), h ∈ W−1,3/2

0 (R3) and div f = 0. Then
div g = −div h ∈ W

−2,3/2
0 (R3). Therefore we deduce g ∈ W−1,3/2

0 (R3) and
g ⊥ R3. As f ∈ W−1,3/2

0 (R3) ⊥ R3, then there exists a unique z ∈ W1,3/2
0 (R3)

such that −∆z = f and divz = 0. The proof is finished by choosing ϕ = curl z .
�

In two-dimensional space, we have a similar result as Proposition 3.8.

Proposition 3.9. Assume that f ∈ L1
0(R2) + W−1,2

0 (R2) such that div f = 0.
Then there exists ϕ ∈ L2(R2) such that curl ϕ = f and satisfying the following
estimate

||ϕ ||L2(R2) ≤ C|| f ||L1(R2)+W−1,2
0 (R2).
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Corollary 3.10. Let f ∈ X(Rn) and
∫

Rn

f = 0. Then the following problem

−∆u = f in Rn

has a unique solution u ∈ W1,n/(n−1)
0 (Rn). Moreover, we have u = En ∗ f and

u satisfies the following estimate

||u ||
W

1,n/(n−1)
0 (Rn)

≤ C || f ||X(Rn).

Proof. This corollary is an immediate consequence of Theorem 2.9, Remark
6 and the fact that

∆ : W 1,n/(n−1)
0 (Rn) −→W

−1,n/(n−1)
0 (Rn)⊥R if n ≥ 3

∆ : W 1,2
0 (R2) −→W−1,2

0 (R2)⊥R if n = 2

are isomorphisms (cf. [4]). We recall that

W
−1,n/(n−1)
0 (Rn)⊥R =

{
f ∈W−1,n/(n−1)

0 (Rn); < f, 1 > = 0
}
.

�

Remark 11. In particular, when n = 2, f ∈ L1(R2) and div f = 0, the solution
given in Corollary 3.10 belongs to L∞(Rn) ∩ C 0(Rn). The reader can find this
result in H. Brézis, J. Van Schaftingen [15] and J. Bourgain, H. Brézis [11].

Corollary 3.11. Let f ∈ L1(Rn) such that ∂nf ∈W−2,n/(n−1)
0 (Rn).

i) Then we have f ∈W−1,n/(n−1)
0 (Rn) and the following estimate holds

|| f ||
W
−1,n/(n−1)
0 (Rn)

≤ C
(
|| f ||L1(Rn) + || ∂nf ||W−2,n/(n−1)

0 (Rn)

)
.

ii) Furthermore if
∫

Rn

f = 0, then there exists a unique u ∈ W
1,n/(n−1)
0 (Rn)

satisfying the following problem

∆u = f in Rn,

and we have the following estimate

||u ||
W

1,n/(n−1)
0 (Rn)

≤ C
(
|| f ||L1(Rn) + || ∂nf ||W−2,n/(n−1)

0 (Rn)

)
.

Proof. This corollary can be obtained by applying Theorem 2.9 and Corollary
3.10 with f = (0, ..., 0, f). �
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Remark 12. We know that if f ∈ L1(Rn), then En ∗ f ∈ Ln/(n−2)
w (Rn) if n ≥ 3

and ∇(En ∗ f) ∈ Ln/(n−1)
w (Rn). As ∂nf ∈ W

−2,n/(n−1)
0 (Rn) with n ≥ 2, we

deduce that ∂n(En ∗ f) ∈ Ln/(n−1)(Rn), where

Lp
w(Rn) =

{
f measurable on Rn; sup

t>0
t(|{x ∈ Rn; |f(x)| > t} |)1/p <∞

}
.

However, in Corollary 3.11, ∇(En∗f) ∈ Ln/(n−1)(Rn) and En∗f ∈ Ln/(n−2)(Rn).
Then there is an anisotropic phenomenon.

Recall now a result in [2] concerning the Stokes problem in Rn.

Theorem 3.12. Let (f, g) ∈ W−1,p
0 (Rn)× Lp(Rn) satisfying the compatibility

condition as follows

∀λ ∈ P [1−n/p′], < f , λ >
W−1,p

0 (Rn)×W1,p′
0 (Rn)

= 0. (41)

Then the Stokes system (S)

−∆u +∇π = f and divu = g in Rn,

has a unique solution (u, π) ∈ W1,p
0 (Rn)/P [1−n/p] × Lp(Rn). Moreover, we

have the estimate

inf
λ∈P[1−n/p]

||u+λ ||W1,p
0 (Rn)+||π ||Lp(Rn) ≤ C

(
|| f ||W−1,p

0 (Rn) + || g ||Lp(Rn)

)
.

Corollary 3.13. Let (f, g) ∈ X(Rn)×Ln/(n−1)(Rn) satisfying the compatibility
condition as follows

< fi , 1 > = 0 for all i = 1, 2, 3.

Then the Stokes system (S) has a unique solution (u, π) ∈ W1,n/(n−1)
0 (Rn) ×

Ln/(n−1)(Rn) and the following estimate holds

||u ||
W

1,n/(n−1)
0

+ ||π ||Ln/(n−1) ≤ C
(
|| f ||

W
−1,n/(n−1)
0

+ || g ||Ln/(n−1)

)
.

Proof. This corollary is a consequence of X(Rn) ↪→ W−1,n/(n−1)
0 (Rn) and

Theorem 3.12. �

4. The div-grad operators in the half-space

First of all, we introduce the following notations. If v is a function defined
on Rn

+, we set

v∗(x ′, xn) =

{
v(x ′, xn) if xn > 0,
v(x ′,−xn) if xn < 0,

(42)
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and

v∗(x ′, xn) =

{
v(x ′, xn) if xn > 0,
−v(x ′,−xn) if xn < 0.

(43)

We also set

W0,p
1 (div; Rn

+) = { v ∈ Lp(Rn
+); div v ∈ W 0,p

1 (Rn
+) },

where W 0,p
1 (Rn

+) is the subspace of functions u in Lp(Rn
+) which satisfy |x |u in

Lp(Rn
+), and their normal traces are described in the following lemma (see C.

Amrouche, S. Nečasová and Y. Raudin [7]):

Lemma 4.1. The linear mapping

γen
: D(Rn

+) −→ D(Rn−1),
v 7−→ vn|Γ,

can be extended to a linear continuous mapping

γen
: W0,p

1 (div; Rn
+) −→ W

−1/p,p
0 (Rn−1), for any 1 < p <∞.

Moreover, for all v ∈ W0,p
1 (div; Rn

+) and for all ϕ ∈ W 1,p′

0 (Rn
+), we have the

following Green formula∫
Rn

+

v · ∇ϕdx +
∫

Rn
+

ϕ div v dx = − < vn, ϕ >
W
−1/p,p
0 (Γ)×W

1/p,p′
0 (Γ)

.

Define now the following spaces

Hp(div; Rn
+) = { v ∈ Lp(Rn

+); div v ∈ Lp(Rn
+)},

◦
Hp (Rn

+) = { v ∈ Lp(Rn
+); div v = 0 in Rn

+; vn = 0 on Γ },

V1,p
0 (Rn

+) = { v ∈
◦

W 1,p
0 (Rn

+); div v = 0 in Rn
+ },

where
◦

W 1,p
0 (Rn

+) is the subspace of functions of W1,p
0 (Rn

+) which are equal to
zero on the boundary of Rn

+.
Remark that from Lemma 4.1, if v ∈ Lp(Rn

+) and div v = 0 in Rn
+, then

vn ∈ W
−1/p,p
0 (Rn−1).

We can show classically the following lemma.

Lemma 4.2. For any 1 ≤ p <∞, we have that D(Rn
+) is dense in Hp(div; Rn

+).
Moreover, for any 1 < p <∞, the following linear mapping

Hp(div; Rn
+) −→ W

−1/p,p
−1 (Γ)

v 7−→ vn

is continuous and surjective.
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Lemma 4.3. For any 1 ≤ p <∞, we have
1) V(Rn

+) is dense in
◦
Hp (Rn

+),
2) V(Rn

+) is dense in V1,p
0 (Rn

+).

Proof. 1) We give the proof for the case p = 1. With similar arguments, it is
then easy to consider the case p > 1. The idea consists in using Hahn-Banach
Theorem and showing that f = 0 if f ∈ [

◦
H1 (Rn

+)]′ satisfying

∀ v ∈ V(Rn
+), < f , v > = 0.

We know that there exists π ∈ D′(Rn
+) such that f = ∇π. Thanks to [4], we

have π ∈ W 1,p
loc (Rn

+) for any p ≥ 1. On the other hand, π ∈ C0(Rn
+) and we can

suppose π(0) = 0. So that

∀x ∈ Rn
+, |π(x )| ≤ |x |.||∇π||L∞(Rn

+).

Let now ψ ∈ C∞(Rn
+) with 0 ≤ ψ ≤ 1 satisfying ψ(x ) = 1 if |x | ≤ 1 and

ψ(x ) = 0 if |x | ≥ 2. We set

ψk(x ) = ψ(
x

k
) and πk = ψkπ.

Then πk ∈ L∞(Rn
+) and supp∇πk ⊂ B(0, 2k). Moreover, if |x | ≤ 2k, then

|∇πk(x )| ≤ C

k
|π(x )|+ C |∇π(x )| ≤ 3C||∇π||L∞(Rn

+).

Therefore, we have that (∇πk)k is bounded in L∞(Rn
+). In fact, we show that

∇πk
∗
⇀ ∇π in L∞(Rn

+), i.e.,

∀ϕ ∈ L1(Rn
+) and ∀j = 1, ..., n,

∫
Rn

+

(
∂πk

∂xj
− ∂π

∂xj
)ϕ −→ 0

when k →∞. Let now v ∈
◦
H1 (Rn

+). Thanks to Lemma 4.1, we have∫
Rn

+

∇πk · v = −
∫

Rn
+

πk div v = 0.

By passing to the limit in the above equation, we obtain∫
Rn

+

∇π · v = 0 = < f , v > .

This ends the proof of the case p = 1.

2) We content ourselves here with the case n = 3 and p > 1. Proceeding

similarly as in the proof of Lemma 5.6, we can show that if f ∈
◦

W 1,p
0 (R3

+)

such that div f = 0, then f = curlϕ with ϕ ∈
◦

W 2,p
0 (R3

+) and

||ϕ ||W2,p
0 (R3

+) ≤ C || f ||W1,p
0 (R3

+).
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As D(R3
+) is dense in

◦
W 2,p

0 (R3
+), there exists ϕk ∈ D(R3

+) such that ϕk → ϕ

in W2,p
0 (R3

+). The sequence f k = curlϕk answers this question.
�

Lemma 4.4. Let 1 < p <∞. The following properties are satisfied:
i) The mapping

∇ : Lp(Rn
+) −→ [V1,p′

0 (Rn
+) ]0

is an isomorphism.
ii) The mapping

div :
◦

W 1,p′

0 (Rn
+)/V1,p′

0 (Rn
+) −→ Lp′(Rn

+)

is an isomorphism.

Proof. It suffices to show that the second operator is surjective. More
generally, let ϕ ∈ Lp′(Rn

+) and g ∈ W1−1/p′,p′

0 (Rn−1) (instead of g = 0). We
know that there exists ug ∈ W1,p′

0 (Rn
+) such that ug = g on Γ. This shows

that we can assume g = 0. Then let π ∈ W 2,p′

0 (Rn
+) be one solution of the

following equation

∆π = ϕ in Rn
+ and

∂π

∂xn
= 0 on Γ.

Let ψi ∈ W 2,p′

0 (Rn
+) with i = 1, ..., n − 1 such that ψi = 0 and

∂ψi

∂xn
=

∂π

∂xi
on

Γ. We set

z = (
∂ψ1

∂xn
, ...,

∂ψn−1

∂xn
,−

n−1∑
k=1

∂ψk

∂xk
).

The function u = ∇π − z satisfies u ∈ W1,p′

0 (Rn
+), divu = ϕ in Rn

+ and u = 0
on Γ. �

Remark 13. The property i) of Lemma 4.4 can be rewritten as follows: for any
f ∈ W−1,p

0 (Rn
+) such that for any v ∈ V1,p′

0 (Rn
+) satisfying

< f , v > = 0,

there exists a unique π ∈ Lp(Rn
+) such that f = ∇π with the following estimate

||π ||Lp(Rn
+) ≤ C || f ||W−1,p

0 (Rn
+).

We can improve this result as follows.

Theorem 4.5. Assume n ≥ 3 and 1 < p <∞. Let f ∈ W−1,p
0 (Rn

+) such that

∀ v ∈ V(Rn
+), < f, v > = 0.

Then f = ∇π, with π ∈ Lp(Rn
+).
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Proof. Let ϕ ∈ W1,p′

0 (Rn). We define the operator

Pϕ(x ′, xn) = ϕ(x ′, xn)−ϕ(x ′,−xn), xn > 0.

By duality, we also define the operator

< P ∗f ,ϕ > := < f , Pϕ >
W−1,p

0 (Rn
+)×

◦
W

1,p′
0 (Rn

+)
.

It is clear to see that

P ∗ : W−1,p
0 (Rn

+) −→ W−1,p
0 (Rn)

is continuous. Remark that, thanks to De Rham’s Theorem, there exists θ ∈
D′(Rn

+) such that f = ∇θ. On the other hand, as θ ∈ D′(Rn
+) and ∇θ ∈

W−1,p′

0 (Rn
+), then θ ∈ Lp′

loc(Rn
+) and P ∗∇θ = ∇θ∗. Then we have ∇θ∗ ∈

W−1,p
0 (Rn) and ∆θ∗ ∈W−2,p

0 (Rn). Moreover,

< ∆θ∗, 1 > = 0.

Thus there exists a unique λ ∈ Lp(Rn) such that ∆(λ−θ∗) = 0 in Rn. However,
∇(λ − θ∗) is harmonic and belongs to W−1,p

0 (Rn). Consequently, ∇θ∗ = ∇λ
and there exists C ∈ R such that θ∗+C = λ. The function π = θ+C ∈ Lp(Rn

+)
is the required solution. �

Remark 14. In Lemma 4.3, we have given a constructive proof for the density
of the space V(Rn

+) in V1,p
0 (Rn

+). Using Hahn-Banach Theorem and Theorem
4.5, a second proof of this result can be given.

We introduce the following proposition.

Proposition 4.6. Let f ∈ L1(Rn
+) such that

∀v ∈ L∞(Rn
+) with div v = 0,

∫
Rn

+

f · v = 0.

Then there exists a unique π ∈ Ln/(n−1)(Rn
+) satisfying f = ∇π and the follow-

ing estimate holds

||π ||Ln/(n−1)(Rn
+) ≤ C || f ||L1(Rn

+).

Proof. Let u ∈ Ln/(n−1)(Rn
+) satisfying∇u ∈ L1(Rn

+). Then u∗ ∈ Ln/(n−1)(Rn),
∇u∗ ∈ L1(Rn) and we have the following estimate

||u ||Ln/(n−1)(Rn
+) ≤ ||u∗ ||Ln/(n−1)(Rn) ≤ C ||∇u∗ ||L1(Rn) ≤ 2C ||∇u ||L1(Rn

+).

The remains of this proof is identical to the one of Corollary 2.2. �

We set B+
a = {x ∈ Rn

+, |x | < a} with a ∈ R and a > 0. We introduce the
following lemma.
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Lemma 4.7. Let f ∈ Ln
0 (B+

a ). Then there exists u ∈ W1,n
0 (B+

a ) ∩ L∞(B+
a )

such that divu = f and we have the following estimate

||u ||L∞(B+
a ) + ||∇u ||Ln(B+

a ) ≤ C || f ||Ln(B+
a ) (44)

where C does not depend on a.

Proof. Let f ∈ Ln
0 (B+

a ) and we set g(x ) = a f(ax ) with x ∈ B+
1 . Then

we can deduce g ∈ Ln
0 (B+

1 ). Thanks to Theorem 3 [10], there exists v ∈
W1,n

0 (B+
1 ) ∩ L∞(B+

1 ) such that div v = g and we have the following estimate

|| v ||L∞(B+
1 ) + ||∇v ||Ln(B+

1 ) ≤ C || g ||Ln(B+
1 ). (45)

We now set u(x ) = v(
x

a
) with x ∈ B+

a . Then divu = f and we have∫
B+

a

|∇u(x )|ndx =
∫

B+
1

1
an
|∇v(t)|nandt =

∫
B+

1

|∇v(t)|ndt . (46)

Besides, we can similarly prove that

||u ||L∞(B+
a ) = ||v ||L∞(B+

1 ) and || f ||Ln(B+
a ) = || g ||Ln(B+

1 ). (47)

The estimate (44) is deduced from (45), (46) and (47) and the proof is finished.
�

We now give a similar result of Corollary 4.7 but the one is considered in
the half-space.

Theorem 4.8. Let f ∈ Ln(Rn
+). Then there exists u ∈

◦
W 1,n

0 (Rn
+) ∩ L∞(Rn

+)
such that divu = f . However, we have the following estimate

||u ||L∞(Rn
+) + ||u ||W1,n

0 (Rn
+) ≤ C || f ||Ln(Rn

+). (48)

Proof. It is easy to see that there exists a sequence (fk)k∈N ⊂ D(Rn
+)

converging towards f ∈ Ln(Rn
+) because D(Rn

+) is dense in Ln(Rn
+). Let

B+
rk
⊂ Rn

+ such that supp fk ⊂ B+
rk

. Applying Lemma 4.7, there exists uk ∈
W1,n

0 (B+
rk

)∩L∞(B+
rk

) such that divuk = fk and we have the following estimate

||uk ||L∞(B+
rk

) + ||∇uk ||Ln(B+
rk

) ≤ C || fk ||Ln(B+
rk

) ≤ C || fk ||Ln(Rn
+)

where C only depends on n. By extending uk in Rn
+ by zero outside B+

rk
and

denoting ũk its extended function, we have

|| ũk ||L∞(Rn
+) = ||uk ||L∞(B+

rk
) and || ũk ||W1,n

0 (Rn
+) = ||uk ||W1,n

0 (B+
rk

).

Then (ũk)k is bounded in
◦

W 1,n
0 (Rn

+) ∩ L∞(Rn
+) and we can deduce that there

exists a subsequence, again denoted by (ũk)k such that ũk ⇀ u in
◦

W 1,n
0 (Rn

+)
and ũk

∗
⇀ u in L∞(Rn

+). Hence, we have divu = f and the estimate (48). �

Similarly to Corollary 2.4, we have the following result.
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Corollary 4.9. i) There exists C > 0 such that for all u ∈ Ln/(n−1)(Rn
+), we

have the following estimate

||u ||Ln/(n−1)(Rn
+) ≤ C inf

f+g=∇u
( || f ||L1(Rn

+) + || g ||
W

−1,n/(n−1)
0 (Rn

+)
) (49)

with f ∈ L1(Rn
+) and g ∈ W−1,n/(n−1)

0 (Rn
+).

ii) Let f ∈ L1(Rn
+) + W−1,n/(n−1)

0 (Rn
+) satisfying the following compatibility

condition
∀v ∈ V1,n

0 (Rn
+) ∩ L∞(Rn

+), < f, v > = 0. (50)

Then there exists a unique π ∈ Ln/(n−1)(Rn
+) such that f = ∇π.

We define now the space

X(Rn
+) = { f ∈ L1(Rn

+), div f ∈W−2,n/(n−1)
0 (Rn

+)}.

Theorem 4.10. Let f ∈ X(Rn
+). Then f ∈ W−1,n/(n−1)

0 (Rn
+) and the fol-

lowing estimate holds

|| f ||
W

−1,n/(n−1)
0 (Rn

+)
≤ C || f ||X(Rn

+).

Proof. The proof is similar to the one of Theorem 2.9. �

Proposition 4.11. Assume that f ∈ X(Rn
+) satisfying

∀ v ∈ V(Rn
+),

∫
Rn

+

f · v dx = 0.

Then there exists a unique π ∈ Ln/(n−1)(Rn
+) such that f = ∇π and the following

estimate holds

||π ||Ln/(n−1)(Rn
+) ≤ C || f ||

W
−1,n/(n−1)
0 (Rn

+)
.

Proof. This proposition is an immediate consequence of the embedding X(Rn
+)

↪→ W−1,n/(n−1)
0 (Rn

+) and Theorem 4.5. �

We now introduce the following theorem.

Theorem 4.12. Let ϕ ∈
◦

W 1,n
0 (Rn

+). Then there exist ψ ∈
◦

W 1, n
0 (Rn

+) ∩
L∞(Rn

+) and η ∈
◦
W

2,n
0 (Rn

+) such that

ϕ = ψ +∇η.

Moreover, we have the following estimate

||ψ||W1,n
0 (Rn

+) + ||ψ||L∞(Rn
+) + ||η||W2,n

0 (Rn
+) ≤ C||ϕ||W1,n

0 (Rn
+). (51)
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Proof. We know that D(Rn
+) is dense in

◦
W 1,n

0 (Rn
+), then there exists a

sequence (ϕk)k∈N ∈ D(Rn
+) which converges towards ϕ ∈

◦
W 1,n

0 (Rn
+). Let now

B+
rk

such that suppϕk ⊂ B+
rk

and we set ϕ′k(x ) = ϕk(rk x ). Then we deduce
ϕ′k ∈ W1,n

0 (B+
1 ). Thanks to Theorem 2.6, there exist ψ′k ∈ W1,n

0 (B+
1 ) ∩

L∞(B+
1 ) and η′k ∈ W 2,n

0 (B+
1 ) such that ϕ′k = ψ′k + ∇η′k, with the following

estimate

||∇ψ′k ||Ln(B+
1 ) + ||ψ′k ||L∞(B+

1 ) + ||D2η′k ||Ln(B+
1 ) ≤ C ||∇ϕ′k ||Ln(B+

1 ).

We now set
ψk(x ) = ψ′k(

x

rk
) and ηk(x ) = rk η

′
k(

x

rk
).

Then we have ϕk = ψk +∇ηk. Proceeding similarly as in the proof of Corollary
2.7 and by passing to limit, we can show ϕ = ψ+∇η with the following estimate

||∇ψ ||Ln(Rn
+) + ||ψ ||L∞(Rn

+) + ||D2 η ||Ln(Rn
+) ≤ C||∇ϕ ||Ln(Rn

+).

The estimate (51) follows from the fact that the semi-norm ||∇. ||Ln(Rn
+) (respec-

tively, ||D2 . ||Ln(Rn
+)) defines on

◦
W 1,n

0 (Rn
+) (respectively,

◦
W

2,n
0 (Rn

+)) a norm
which is equivalent to the norm || . ||W1,n

0 (Rn
+) (respectively, || . ||W 2,n

0 (Rn
+)). �

Proposition 4.13. Let ϕ ∈ W1,n
0 (Rn

+). Then there exists ψ ∈ W1,n
0 (Rn

+) ∩
L∞(Rn

+) and η ∈W 2,n
0 (Rn

+) such that ψn = 0 on Γ satisfying

ϕ = ψ +∇η

and the following estimate holds

||ψ ||L∞(Rn
+) + ||ψ ||W1,n

0 (Rn
+) + || η ||W 2,n

0 (Rn
+) ≤ C ||ϕ ||W1,n

0 (Rn
+). (52)

Proof. As in Theorem 4.12, we can prove that ϕ = ψ0 + ∇η0 such that
ψ0 ∈ W1,n

0 (Rn
+) ∩ L∞(Rn

+) and η0 ∈W 2,n
0 (Rn

+) with the following estimate

||ψ0 ||L∞(Rn
+) + ||ψ0 ||W1,n

0 (Rn
+) + || η0 ||W 2,n

0 (Rn
+) ≤ C ||ϕ ||W1,n

0 (Rn
+).

Setting µ = ψ0n on Γ, then µ ∈ L∞(Γ) ∩W 1−1/n,n
0 (Γ). We can prove similarly

as in Lemma 3.10 [15] that there exists v ∈ W 2,n
0 (Rn

+) ∩W 1,∞(Rn
+) such that

v = 0 and
∂v

∂xn
= µ on Γ with the following estimates

|| v ||W 2,n
0 (Rn

+) ≤ C ||µ ||
W

1−1/n,n
0 (Γ)

≤ C ||ψ0 ||W1,n
0 (Rn

+)

and
||∇v ||L∞(Rn

+) ≤ C ||µ ||L∞(Γ) ≤ C ||ψ0 ||L∞(Rn
+).

The proof is complete by setting ψ = ψ0 −∇v and η = η0 + v. �
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Remark 15. We can give another proof of the existence of ϕ. We know that
f ∈ W−1,3/2

0 (R3
+)⊥R3. Then, there exists a unique z ∈

◦
W

1,3/2
0 (R3

+) satisfying
−∆z = f , with div z = 0 in R3

+. The function ϕ = curl z is the required
function.

Proposition 4.14. Let ϕ ∈ W1,3
0 (R3

+). Then there exist ψ ∈ W1,3
0 (R3

+) ∩
L∞(R3

+) and η ∈ W2,3
0 (R3

+) such that

ϕ = ψ + curlη with ψ′ = 0 on Γ

and we have the following estimate

||ψ ||W1,3
0 (R3

+) + ||ψ ||L∞(R3
+) + ||η ||W2,3

0 (R3
+) ≤ C ||ϕ ||W1,3

0 (R3
+).

Proof. Let ϕ ∈ W1,3
0 (R3

+). Then ϕ∗ ∈ W1,3
0 (R3) (see at the beginning of

this section for the notations), we can use Proposition 2.13: there exist ψ0 ∈
W1,3

0 (R3) ∩ L∞(R3) and η0 ∈ W2,3
0 (R3) such that ϕ∗ = ψ0 + curlη0 in R3,

with the following estimate

||ψ0||W1,3
0 (R3) + ||ψ0||L∞(R3) + ||η0||W2,3

0 (R3) ≤ C ||ϕ||W1,3
0 (R3

+).

As in the proof of Lemma 3.10 of [15], we can prove that there exist α ∈
W2,3

0 (R3
+) with ∇α ∈ L∞(R3

+) satisfying α = 0 and ∂α
∂x3

= ψ0 on Γ. Moreover,
we have the estimate

||α||W2,3
0 (R3

+) + ||∇α||L∞(R3
+) ≤ C (||ψ0||W1,3

0 (R3) + ||ψ0||L∞(R3)).

One has thus the conclusion with ψ = ψ0 − curl α and η = η0 +α. �

Remark 16. We have another result with the data ϕ ∈
◦

W 1,3
0 (R3

+) (see Propo-
sition 5.7).

Proposition 4.15. i) If f ∈ L1(R3
+) with div f = 0, then

∫
R3

+

f3 = 0.

ii) If moreover f3 = 0 on Γ, then
∫

R3
+

f = 0.

Proof. i) Setting f̃ = (f ′∗, f
∗
3 ). Then f̃ ∈ L1(R3), div f̃ = 0 in R3 and

therefore
∫

R3
f̃ = 0, i.e.

∫
R3

+

f3 = 0.

ii) We have known
∫

R3
+

f3 = 0. Setting f̃ = (f ′∗, f3∗). Then f̃ ∈ L1(R3),

div f̃ = 0 in R3 and therefore
∫

R3
f̃ = 0 that implies

∫
R3

f ′ = 0. �
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Remark 17. i) Let f ∈ L1(R3
+) that satisfies the property: ”For any η ∈

W 2,3
0 (R3

+) such that ∇η ∈ L∞(R3
+) and η = 0 on Γ, we have

∫
R3

+

f · ∇η = 0.”

By taking η = x3, then we obtain
∫

R3
+

f3 = 0.

ii) Let f ∈ L1(R3
+) that satisfies the property:

”For any η ∈ W 2,3
0 (R3

+) such that ∇η ∈ L∞(R3), we have
∫

R3
+

f · ∇η = 0”. By

taking η = xi with i = 1, 2 and after taking η = x3, we find
∫

R3
+

f = 0.

5. Vector potentials in the half-space

Proposition 5.1. Let f ∈ L3(R3
+) such that div f = 0 in R3

+. Then there
exists ϕ ∈ W1,3

0 (R3
+) such that f = curlϕ with divϕ = 0 in R3

+, ϕ3 = 0 on Γ
and we have the following estimate

||ϕ ||W1,3
0 (R3

+) ≤ C || f ||L3(R3
+).

Proof. i) Setting f̃ = (f ′∗, f
∗
3 ). It is easy to show f̃ ∈ L3(R3) and div f̃ = 0

in R3. Let θ ∈ W1,3
0 (R3) such that −∆θ = curl f̃ . Then div θ = 0 and

curl (curlθ− f̃ ) = 0 in R3. We now set z = curl θ − f̃ in R3 and can deduce
z ∈ L3(R3), div z = 0 and curl z = 0 in R3. As ∆z = 0, then z = 0 in R3. It
means that f̃ = curlθ in R3 and f = curlθ|R3

+
with div θ = 0 in R3

+.

ii) Let h ∈W 2,3
0 (R3

+) be a solution of the following equation

∆h = 0 in R3
+ and

∂h

∂x3
= θ3 on Γ.

Setting ϕ = θ − ∇h. Then we have ϕ ∈ W1,3
0 (R3

+), divϕ = 0 in R3
+ and

ϕ3 = 0 on Γ. �

Theorem 5.2. Let f ∈ L3(R3
+) such that div f = 0 in R3

+ and f3 = 0 on Γ.
Then there exists a unique ϕ ∈ W1,3

0 (R3
+) such that f = curlϕ with divϕ = 0

in R3
+ and ϕ′ = 0 on Γ. Moreover, we have the following estimate

||ϕ ||W1,3
0 (R3

+) ≤ C || f ||L3(R3
+).

Proof. i) We start this proof by showing the uniqueness of ϕ. Indeed, if
ϕ ∈ W1,3

0 (R3
+) such that curlϕ = 0, divϕ = 0 in R3

+ and ϕ′ = 0 on Γ, then
there exists q ∈ W 2,3

0 (R3
+) such that ϕ = ∇ q in R3

+ with ∆ q = 0 in R3
+ and

q is a constant on Γ. Consequently, q is a constant in R3
+ and we then deduce

ϕ = 0 in R3
+.

ii) We now consider the existence of ϕ. Setting f̃ = (f ′∗, f3∗). Then we have
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f̃ ∈ L3(R3) and div f̃ = 0 in R3. Therefore, by Proposition 3.3, there exists
z ∈ W1,3

0 (R3) such that curl z = f̃ and div z = 0. Let now w be the vector
field defined on R3

− by

w(x ′, x3) = (−z1(x ′,−x3),−z2(x ′,−x3), z3(x ′,−x3)), x3 < 0. (53)

By some easy calculations, we can show curlw = curl z in R3
−. Then we have

w = z + ∇µ in R3
− (54)

where µ ∈ D′(R3
−). As ∇µ belongs to W1,3

0 (R3
−), we can show µ ∈ W 2,3

0 (R3
−).

Let µ0 ∈W 2,3
0 (R3

+) (cf. [6]) such that

∆µ0 = 0 in R3
+ and µ0 = µ on Γ.

We set ϕ = z + 1
2∇µ0. Then we have curlϕ = f and divϕ = 0 in R3

+.
Applying now the trace operator to the relation (54), we deduce that

2z ′ = −∇′µ = −∇′µ0 on Γ,

i.e., ϕ′ = 0 on Γ. �

Corollary 5.3. Let f ∈ L3(R3
+) such that div f = 0 in R3

+ and f3 = 0 on Γ.

i) There exists a unique ϕ ∈
◦

W 1,3
0 (R3

+) such that div ∆ϕ = 0 satisfying f =
curlϕ in R3

+. Moreover, we have the following estimate

||ϕ ||W1,3
0 (R3

+) ≤ C || f ||L3(R3
+).

ii) There exists ψ ∈
◦

W 1,3
0 (R3

+) ∩ L∞(R3
+) such that f = curlψ in R3

+ and we
have the following estimate

||ψ ||W1,3
0 (R3

+) + ||ψ ||L∞(R3
+) ≤ C || f ||L3(R3

+). (55)

Proof. i) First of all, we start this proof by showing the uniqueness of ϕ.

Let ϕ ∈
◦

W 1,3
0 (R3

+) such that curlϕ = 0 and div ∆ϕ = 0 in R3
+. Then there

exists q ∈ W 2,3
0 (R3

+) such that ϕ = ∇ q with ∆2 q = 0 in R3
+, q is a constant

on Γ and
∂q

∂x3
= 0 on Γ. We can deduce that q is a constant in R3

+ and then

ϕ = 0 in R3
+.

We now consider the existence ϕ. Let χ ∈ W 2,3
0 (R3

+) be a solution of the
following system

∆2χ = 0 in R3
+, χ = 0 on Γ,

∂χ

∂ x3
= z3 on Γ,

where z is the vector potential given by Theorem 5.2. We set ϕ = z − ∇χ.
Then f = curlϕ with ϕ ∈

◦
W 1,3

0 (R3
+).
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ii) The proof is easily obtained by applying Theorem 4.12. �

From Theorem 5.2 and Corollary 5.3, we have the following Helmholtz de-
compositions.

Corollary 5.4. Let f ∈ L3(R3
+).

i) There exist π ∈ W 1,3
0 (R3

+) unique up to an additive constant and a unique
ϕ ∈ W1,3

0 (R3
+) such that divϕ = 0 in R3

+ and ϕ′ = 0 on Γ satisfying

f = curlϕ+∇π. (56)

Moreover, we have the following estimate

||ϕ ||W1,3
0 (R3

+) + ||∇π||L3(R3
+) ≤ C || f ||L3(R3

+). (57)

ii) There exist a unique ϕ ∈
◦

W 1,3
0 (R3

+) with div ∆ϕ = 0 in R3
+ and π ∈

W 1,3
0 (R3

+) unique up to an additive constant satisfying (56) with the correspond-
ing estimate.

iii) There exist ϕ ∈
◦

W 1,3
0 (R3

+) ∩ L∞(R3
+) and π ∈ W 1,3

0 (R3
+) unique up to

an additive constant and satisfying (56) with the corresponding estimate.

Proof. i) Let f ∈ L3(R3
+). We consider the following problem (P): Find

π ∈ W 1,3
0 (R3

+) such that

∀µ ∈ W
1,3/2
0 (R3

+),
∫

R3
+

∇π · ∇µ =
∫

R3
+

f · ∇µ.

Thanks to C. Amrouche [3], we know that the problem (P) has a solution π,
unique up to a constant, satisfying the following estimate

||∇π ||L3(R3
+) ≤ C || f ||L3(R3

+).

The function π is also solution of the problem as follows

∆π = div f in R3
+ and

∂π

∂x3
− f3 = 0 on Γ.

We set h = f − ∇π. It is easy to see h ∈ L3(R3
+), div h = 0 in R3

+ and
h3 = 0 on Γ. Applying Theorem 5.2, we can decompose f as in (56) and we
obtain the estimate (57).

ii) Proceeding similarly as in the case i) of this corollary, but at the end of
this proof, instead of apply Theorem 5.2, we use Corollary 5.3 part i) to obtain
(56).

iii) This proof is complete by proceeding similarly as the precendent cases and
by applying Corollary 5.3 part ii). �
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Remark 18. Using the above proof of part i), it is easy to see that any f ∈
D(R3

+) can be uniquely decomposed as the form (56) with ϕ ∈ W1,q
0 (R3

+) and
π ∈ W 1,q

0 (R3
+) for all q > 1 with the corresponding estimate similar to (57)

where C = C(q).

Corollary 5.5. Let f ∈ L1(R3
+) such that div f = 0. Then, for every ϕ ∈

◦
W

1,3
0 (R3

+), we have the following estimate

| < f,ϕ >
W

−1,3/2
0 (R3

+)×
◦
W

1,3
0 (R3

+)
| ≤ C || f ||L1(R3

+)||curlϕ||L3(R3
+).

Proof. This proof is similar to the one of Corollary 3.5. �

Lemma 5.6. Assume f ∈
◦

W 1,3
0 (R3

+) such that div f = 0. Then there exists a

unique ϕ ∈
◦

W 2,3
0 (R3

+) such that f = curlϕ with div ∆2ϕ = 0 in R3
+. Moreover,

we have the following estimate

||ϕ ||W2,3
0 (R3

+) ≤ C || f ||W1,3
0 (R3

+).

Proof. i) First step: Let f ∈
◦

W 1,3
0 (R3

+) and div f = 0. We extend f to R3

as in the proof of Theorem 5.2 and denote f̃ the extended function that belongs
to W1,3

0 (R3) and is divergence free. Then, from [4], there exists y ∈ W2,3
0 (R3)

such that
−∆y = curl f̃ in R3.

As div y ∈ W 1,3
0 (R3) and is harmonic, then div y = a where a is a constant.

Thus, we have curl (curly − f̃ ) = 0. Therfore, we deduce

−∆(curly) = curl curl f̃ = −∆ f̃ ,

it means that f̃ − curly ∈ W1,3
0 (R3) and again, f̃ − curly = b where b is

a constant vector in R3. Thanks to Lemma 3.1 [17], there exists a polynomial
s ∈ P1 such that curl s = b and div s = −a. The function z := y + s
belongs to W2,3

0 (R3) and f̃ = curl z in R3 with div z = 0 in R3. Let w be
the vector field defined on R3

− by

w(x ′, x3) = (−z1(x ′,−x3),−z2(x ′,−x3), z3(x ′,−x3)), x3 < 0.

It is easy to show curlw = curl z in R3
−. Then we have w = z + ∇θ, with

θ ∈ D′(R3
−). Proceeding as in the end of the proof of Theorem 5.2, we can

deduce that there exists ζ ∈ W2,3
0 (R3

+) such that

f = curl ζ and div ζ = 0 in R3
+, ζ′ = 0 on Γ.

ii) Second step: Let χ ∈ W 3,3
0 (R3

+) be a solution of the following system

∆2χ = 0 in R3
+, χ = 0 and

∂χ

∂x3
= ζ3 on Γ.
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We set h = ζ −∇χ. Then h ∈ W2,3
0 (R3

+) and

f = curlh and div ∆h = 0 in R3
+, h = 0 on Γ.

We know that there exists µ ∈W 3,3
0 (R3

+) satisfying

∆3µ = 0 in R3
+, µ =

∂µ

∂x3
= 0 and

∂2µ

∂x2
3

=
∂h3

∂x3
on Γ.

iii) Third step: We set ϕ = h − ∇µ. Then ϕ ∈ W2,3
0 (R3

+), curlϕ = f in
R3

+ and ϕ = 0 on Γ. We have

∂ϕ

∂x3
=

∂h

∂x3
− ∂

∂x3
∇µ =

∂h

∂x3
−∇ ∂µ

∂x3
in R3

+.

Then,
∂ϕ3

∂x3
=

∂h3

∂x3
− ∂2µ

∂x2
3

= 0 on Γ.

As f = curlh in R3
+ and f = h = 0 on Γ, then

∂h ′

∂x3
= 0 on Γ. But

∇′ ∂µ
∂x3

= 0 on Γ, then
∂ϕ′

∂x3
= 0 on Γ and ϕ ∈

◦
W 2,3

0 (R3
+).

iv) Last step: The uniqueness of ϕ follows from the fact that if ϕ ∈
◦

W 2,3
0 (R3

+)
satisfying curlϕ = 0 and div ∆2ϕ = 0 in R3

+, then ϕ = ∇q in R3
+ with

q ∈ W 3,3
0 (R3

+), ∆3q = 0 in R3
+; and q = c,

∂q

∂x3
=

∂2q

∂x2
3

= 0 on Γ where c is a

constant, i.e., q = c in R3
+ and ϕ = 0 in R3

+. This proof is finished. �

Proposition 5.7. Let ϕ ∈
◦

W 1,3
0 (R3

+). Then there exist ψ ∈
◦

W 1,3
0 (R3

+) ∩
L∞(R3

+) and η ∈
◦

W 2,3
0 (R3

+) such that

ϕ = ψ + curlη with div ∆2η = 0 in R3
+.

However, we have the following estimate

||ψ||W1,3
0 (R3

+) + ||ψ||L∞(R3
+) + ||η||W2,3

0 (R3
+) ≤ C ||ϕ||W1,3

0 (R3
+).

Proof. From the hypothesis, we have divϕ ∈ L3(R3
+). Thanks to Theorem

4.8, there exists ψ ∈
◦

W 1,3
0 (R3

+) ∩ L∞(R3
+) such that divψ = divϕ and we

have the following estimate

||ψ ||L∞(R3
+) + ||ψ ||W1,3

0 (R3
+) ≤ C ||divϕ ||L3(R3

+).

We set f = ϕ − ψ. Then f ∈
◦

W 1,3
0 (R3

+) and div f = 0. Applying Lemma

5.6, there exists η ∈
◦

W 2,3
0 (R3

+) such that f = curlη. �
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Corollary 5.8. Assume that f ∈ L1(R3
+) and curl f ∈ W−2,3/2

0 (R3
+). Then

f ∈ W−1,3/2
0 (R3

+) and we have the following estimate

|| f ||
W

−1,3/2
0 (R3

+)
≤ C ( || f ||L1(R3

+) + || curl f ||
W

−2,3/2
0 (R3

+)
).

Proof. The proof is similar to the one of Theorem 2.9. �

Proposition 5.9. Let f ∈ L1(R3
+) such that div f = 0 in R3

+. Then there exists
a unique ϕ ∈ L3/2(R3

+) such that curl ϕ = f, divϕ = 0 in R3
+ and ϕ3 = 0 on

Γ satisfying the following estimate

||ϕ ||L3/2(R3
+) ≤ C || f ||L1(R3

+).

Proof. i) First step: We first consider the uniqueness of ϕ. Let ϕ ∈ L3/2(R3
+)

such that curlϕ = 0, divϕ = 0 in R3
+ and ϕ3 = 0 on Γ. Then ϕ = ∇q

with q ∈ W
1,3/2
0 (R3

+), ∆q = 0 in R3
+ and

∂q

∂x3
= 0 on Γ. Therefore, from C.

Amrouche [3], we deduce q = 0 and ϕ = 0 in R3
+.

ii) Second step: We set f̃ = (f ′∗, f
∗
3 ), then we can deduce div f̃ = 0. Thanks to

Proposition 3.6, there exists a unique Z ∈ L3/2(R3) such that curl Z = f̃ and
divZ = 0 in R3 satisfying the following estimate

||Z ||L3/2(R3) ≤ C || f̃ ||L1(R3) ≤ C || f ||L1(R3
+).

We set z = Z |R3
+
. Thanks to Lemma 4.1, we can deduce that z3 ∈W−2/3,3/2

0 (Γ)
on Γ. We know that the following problem

−∆h = 0 in R3
+ and

∂h

∂x3
= z3 on Γ,

has a unique solution h ∈W 1,3/2
0 (R3

+) (see [3]). The proof is complete by setting
ϕ = z − ∇h. �

Remark 19. We can give a second proof of the existence of the vector potential
ϕ. As f ∈ W−1,3/2

0 (R3
+), there exists a unique z ∈

◦
W

1,3/2
0 (R3

+) satisfying
−∆z = f , with div z = 0 in R3

+. The function ϕ = curl z is the required
function.

We introduce the following proposition.

Proposition 5.10. Let f ∈ W−1,3/2
0 (R3

+) such that div f = 0 in R3
+. Then

there exists a unique ϕ ∈ L3/2(R3
+) such that curl ϕ = f, divϕ = 0 in R3

+ and
ϕ3 = 0 on Γ satisfying the following estimate

||ϕ ||L3/2(R3
+) ≤ C || f ||

W
−1,3/2
0 (R3

+)
.
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Proof. For the uniqueness of ϕ, the proof is similar to the one of Proposition
5.9. Thanks to Corollary 5.3, the following operator

B = curl :
◦

W 1,3
0 (R3

+) −→
◦
H3 (R3

+)

is linear, continuous and surjective. Moreover, as V(R3
+) is dense in

◦
H3/2 (R3

+),

then for all u ∈
◦

W 1,3
0 (R3

+) and v ∈
◦
H3/2 (R3

+), we have∫
R3

+

v · curlu =< u , curl v > ◦
W

1,3
0 (R3

+)×W
−1,3/2
0 (R3

+)
.

As
◦
H3 (R3

+)′ =
◦
H3/2 (R3

+), then the adjoint operator of B

B∗ = curl :
◦
H3/2 (R3

+) −→ W−1,3/2
0 (R3

+)

is also linear and continuous. It is easy to see that the kernel of the operator
B, namely the space { v ∈

◦
W 1,3

0 (R3
+); curl v = 0 } is same as the space

G = {∇q; q ∈
◦
W

2,3
0 (R3

+) }. Then the following operators

curl :
◦

W 1,3
0 (R3

+) /G −→
◦
H3 (R3

+), curl :
◦
H3/2 (R3

+) −→ W−1,3/2
0 (R3

+)⊥G

are isomorphisms. As D(R3
+) is dense in W 2,3

0 (R3
+), then we can easily verify

W−1,3/2
0 (R3

+)⊥G = { f ∈ W−1,3/2
0 (R3

+) and div f = 0 }.

The proof is finished. �

Remark 20. As in the previous remark, we can give a more direct proof.

The following corollary is the generalized case of Proposition 5.9 and Propo-
sition 5.10.

Corollary 5.11. Let f ∈ L1(R3
+) + W−1,3/2

0 (R3
+) such that div f = 0 in R3

+.
Then there exists a unique ϕ ∈ L3/2(R3

+) such that curl ϕ = f, divϕ = 0 in
R3

+ and ϕ3 = 0 on Γ satisfying the following estimate

||ϕ ||L3/2(R3
+) ≤ C|| f ||

L1(R3
+)+W

−1,3/2
0 (R3

+)
.

Proof. Let now f = g+h with g ∈ L1(R3
+), h ∈ W−1,3/2

0 (R3
+) and div f = 0

in R3
+. Then div g ∈ W

−2,3/2
0 (R3

+) and we can deduce g ∈ W−1,3/2
0 (R3

+). This
corollary is a consequence of Proposition 5.9 and Proposition 5.10. �
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Lemma 5.12. Let f ∈ L1(R3
+) such that div f = 0 in R3

+ and f3 = 0 on
Γ. Then the unique solution ϕ ∈ L3/2(R3

+) given by Proposition 5.9 satisfies
ϕ′ ∈ W−2/3,3/2

0 (R2) and

||ϕ′ ||
W

−2/3,3/2
0 (R2)

≤ C || f ||L1(R3
+).

Moreover for i = 1 or 2, we have < ϕi, 1 >
W
−2/3,3/2
0 (R2)×W

2/3,3
0 (R2)

= 0.

Proof. As V(R3
+) is dense in

◦
H1 (R3

+), there exists f k ∈ V(R3
+) such that f k

converges to f in L1(R3
+). Let now ϕk ∈ L3/2(R3

+) such that fk = curl ϕk,
divϕk = 0 in R3

+ and ϕk · n = 0 on Γ, with the estimate

||ϕk ||L3/2(R3
+) ≤ C || f k ||L1(R3

+).

Let also µ′ ∈ W
2/3,3
0 (R2) such that µ3 = 0 on Γ. Then, there exists u ∈

W1,3
0 (R3

+) such that u = µ on Γ satisfying the estimate

||u ||W1,3
0 (R3

+) ≤ C ||µ ||
W

2/3,3
0 (R2)

.

However, we known that there also exist v ∈ W1,3
0 (R3

+) ∩ L∞(R3
+) and η ∈

W 2,3
0 (R3

+) such that u = v + ∇η with the corresponding estimate. Thus, we
obtain ∫

R3
+
u · curl ϕk =

∫
R3

+
v · curl ϕk

=
∫

R3
+
ϕk · curl u+ < ϕk × n , u >Γ .

Hence, we have

| < ϕk × n , µ >Γ | ≤ ‖curl ϕk‖L1(R3
+)‖v ||L∞(R3

+) + ‖ϕk‖L3/2(R3
+)‖curl u‖L3

≤ C(‖curl ϕk‖L1(R3
+) + ‖ϕk‖L3/2(R3

+))‖u‖W1,3
0 (R3

+)

≤ C(‖curl ϕk‖L1(R3
+) + ‖ϕk‖L3/2(R3

+))||µ||W 2/3,3
0 (R2)

.

Then
‖ϕk × n‖

W
−2/3,3
0 (R2)

≤ C‖f k‖L1(R3
+)

and by passage to the limite, we have

‖ϕ× n‖
W
−2/3,3
0 (R2)

≤ C‖f ‖L1(R3
+)

and

< ϕ× n , u >
W

−2/3,3/2
0 (R2)×W

2/3,3
0 (R2)

=
∫

R3
+

v · curl ϕ+
∫

R3
+

ϕ · curl u .

Finally, the orthogonality relations are simple consequence of this last relation,
because if u = e i, then v = u and the integral on R3

+ of curl ϕ is zero.
�
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Theorem 5.13. Let f ∈ L1(R3
+) such that div f = 0 in R3

+ and f3 = 0 on Γ.
Then there exists a unique ϕ ∈ L3/2(R3

+) such that f = curlϕ with divϕ = 0
in R3

+ and ϕ′ = 0 on Γ. Moreover, we have the following estimate

||ϕ ||L3/2(R3
+) ≤ C || f ||L1(R3

+).

Proof. Let ψ ∈ L3/2(R3
+) such that f = curlψ with divψ = 0 in R3

+ and
ψ3 = 0 on Γ, with the estimate

||ψ ||L3/2(R3
+) ≤ C || f ||L1(R3

+).

Using Theorem 3.5 of Amrouche-Raudin [8], there exists a unique pair (w , π) ∈
W1,3/2

0 (R3
+)× L3/2(R3

+) solution to{
−∆w +∇π = curlψ and div w = 0 in R3

+,
w3 = 0, ∂3w1 = ψ2 and ∂3w2 = −ψ1 on Γ.

It is easy to see that ∆π = 0 in R3
+. Moreover,

∂π

∂x3
= ∆w3 +

∂ψ2

∂x1
− ∂ψ1

∂x2
in R3

+,

and on Γ, we have

∂π

∂x3
=

∂

∂x3

(
∂w3

∂x3

)
+
∂ψ2

∂x1
− ∂ψ1

∂x2

= − ∂

∂x1

(
∂w1

∂x3

)
− ∂

∂x2

(
∂w2

∂x3

)
+
∂ψ2

∂x1
− ∂ψ1

∂x2
= 0.

Consequently, π = 0 in R3
+. The proof is finished by setting ϕ = ψ − curlw .

�

In two-dimensional space, we have a similar results as Corollary 5.11.

Proposition 5.14. Assume that f ∈ L1(R2
+) + W−1,2

0 (R2
+) such that div f = 0

in R2
+. Then there exists ϕ ∈ L2(R2

+) such that curl ϕ = f, divϕ = 0 in R2
+

and ϕ2 = 0 on Γ satisfying the following estimate

||ϕ ||L2(R2
+) ≤ C|| f ||L1(R2

+)+W−1,2
0 (R2

+).

6. Elliptic problems in the half-space

The following theorem was given by C. Amrouche and S. Nečasová [6].

Theorem 6.1. Let 1 < p < ∞ and (f, g) ∈ W−1,p
0 (Rn

+) ×W 1/p′,p(Γ). Then
the following problem

(L+)

{
−∆u = f in Rn

+,

u = g on Γ = Rn−1,
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has a unique solution u ∈W 1,p
0 (Rn

+) and we have the following estimate

||u ||W 1,p
0 (Rn

+) ≤ C ( || f ||W−1,p
0 (Rn

+) + || g ||W 1/p′,p(Rn−1)).

The following result is a consequence of Theorem 4.10 and Theorem 6.1.

Corollary 6.2. Let f ∈ X(Rn
+). Then the following problem

−∆u = f in Rn
+ and u = 0 on Γ = Rn−1, (58)

has a unique solution u ∈ W1,n/(n−1)
0 (Rn

+) and we have the following estimate

||u ||
W

1,n/(n−1)
0 (Rn

+)
≤ C || f ||X(Rn

+).

Corollary 6.3. Let f ∈ L1(Rn
+) such that ∂n f ∈ W

−2,n/(n−1)
0 (Rn

+). Then
we have f ∈ W

−1,n/(n−1)
0 (Rn

+) and Problem (L+) with g = 0 on Γ has a unique
solution u ∈ W

1,n/(n−1)
0 (Rn

+) satisfying the following estimate

||u ||
W

1,n/(n−1)
0 (Rn

+)
≤ C

(
|| f ||L1(Rn

+) + || ∂n f ||W−2,n/(n−1)
0 (Rn

+)

)
.

Proof. This corollary can be obtained by applying Theorem 4.10 and Corollary
6.2 with f = (0, ..., 0, f). �

Lemma 6.4. Let g′ ∈ L1(Γ) such that div′g′ ∈ W
−2+ 1

n , n
n−1

0 (Γ). Then g′ ∈
W

−1+ 1
n , n

n−1
0 (Γ) and we have the estimate

||g′||
W

−1+ 1
n

, n
n−1

0 (Γ)
≤ C ( ||g′||L1(Γ) + ||div′ g′||

W
−2+ 1

n
, n

n−1
0 (Γ)

).

Proof. Let µ ∈ D(Γ) and ϕ ∈ W1,n
0 (Rn

+) such that ϕ = µ on Γ with the
estimate

||ϕ ||W1,n
0 (Rn

+) ≤ C||µ||
W1− 1

n
,n(Γ)

.

Thanks to Proposition 4.13, there exist ψ ∈ W1,n
0 (Rn

+) ∩ L∞(Rn
+) and η ∈

W 2,n
0 (Rn

+) such that ψn = 0 on Γ satisfying ϕ = ψ +∇η and the estimate

||ψ||L∞(Rn
+) + ||ψ||W1,n

0 (Rn
+) + ||η||W 2,n

0 (Rn
+) ≤ C||ϕ||W1,n

0 (Rn
+). (59)

Then

< g ,µ >D′(Γ)×D(Γ) =
∫

Γ

g ′ ·ψ′− < div′g ′, η >
W
−2+ 1

n
, n

n−1
0 (Γ)×W

2− 1
n

,n

0 (Γ)

+ < gn, ϕn >
W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)
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and

| < g ,µ >D′(Γ)×D(Γ) | ≤ ||g ′||L1(Γ)||ψ′||L∞(Rn
+) + ||div′g ′||

W
−2+ 1

n
, n

n−1
0 (Γ)

×

× ||η||
W

2− 1
n

,n

0 (Γ)
+ ||gn||

W
−1+ 1

n
, n

n−1
0 (Γ)

||ϕn||
W

1− 1
n

,n

0 (Γ)

≤ C||ϕ ||W1,n
0 (Rn

+) ≤ C||µ||
W1− 1

n
,n(Γ)

.

(60)

Thanks to the density of D(Γ) in W1− 1
n ,n

0 (Γ) and (60), we can deduce g ′ ∈
W

−1+ 1
n , n

n−1
0 (Γ) and

||g ′||
W

−1+ 1
n

, n
n−1

0 (Γ)
≤ C ( ||g ′||L1(Γ) + ||div′ g ′||

W
−2+ 1

n
, n

n−1
0 (Γ)

).

�

Theorem 6.5. Let g′ ∈ L1(Γ) and gn ∈ W
−1+ 1

n , n
n−1

0 (Γ). If∫
Γ

g′ = 0, < gn, 1 >= 0 and div′g′ ∈ W
−2+ 1

n , n
n−1

0 (Γ), (61)

then the system
−∆u = 0 in Rn

+ and u = g on Γ (62)

has a unique very weak solution u ∈ Ln/(n−1)(Rn
+) with the following estimate

||u||Ln/(n−1)(Rn
+) ≤ C ( ||g′||L1(Γ)+||div′ g′||

W
−2+ 1

n
, n

n−1
0 (Γ)

+||gn||
W
−1+ 1

n
, n

n−1
0 (Γ)

).

Proof. The system (62) is equivalent to the following one: Find u belonging

Ln/(n−1)(Rn
+) such that for all v ∈ W2,n

0 (Rn
+) ∩

◦
W 1,n

−1 (Rn
+),∫

Rn
+

u ·∆v = − < g ,
∂v

∂xn
>

W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)
.

We know that, for all F ∈ Ln(Rn
+), there exists v ∈ W2,n

0 (Rn
+)∩

◦
W 1,n

−1 (Rn
+),

unique up to an element of xnRn, such that −∆v = F in Rn
+, v = 0 on Γ and

the following estimate holds

||v ||W2,n
0 (Rn

+)/xnRn ≤ C||F ||Ln(Rn
+).

Then, from (61), we have for all a ∈ Rn,

| < g ,
∂v

∂xn
>

W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)
|

= | < g ,
∂(v + axn)

∂xn
>

W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)
|

≤ C||g ||
W

−1+ 1
n

, n
n−1

0 (Γ)
||v + axn||W2,n

0 (Rn
+).
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Consequently, taking the infinum, we have

| < g ,
∂v

∂xn
>

W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)
| ≤ C||g ||

W
−1+ 1

n
, n

n−1
0 (Γ)

||F ||Ln(Rn
+).

As
∫
Γ
g ′ = 0 and < gn, 1 >= 0, the linear operator

T : F −→ < g ,
∂v

∂xn
>

W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)

is continuous on Ln(Rn
+) and thanks to the Riesz reprensentation theorem, there

exists a unique u ∈ Ln/(n−1)(Rn
+) such that T (F ) =

∫
Rn

+

u · F , i.e., u is the

solution of (62) with the desired estimate. �

In the following theorem, we consider the case of Neumann boundary con-
ditions.

Theorem 6.6. Let

f ∈ L1(Rn
+), g′ ∈ L1(Γ) and gn ∈ W

−1+ 1
n , n

n−1
0 (Γ) (63)

satisfying the compatibility condition∫
Rn

+

f ′ +
∫

Γ

g′ = 0 and
∫

Rn
+

fn + < gn, 1 >= 0. (64)

If

[ f, g′ ] = sup
ξ∈W 2,n

0 (Rn
+), ξ 6=0

|
∫

Rn
+
f · ∇ξ +

∫
Γ
g′ · ∇′ξ |

|| ξ ||W 2,n
0 (Rn

+)

< ∞ (65)

i.e div f ∈ [W 2,n
0 (Rn

+)]′ and div’ g′ ∈W−2+1/n,n/(n−1)
0 (Γ), then the system

−∆u = f in Rn
+ and

∂u

∂xn
= g on Γ (66)

has a unique solution u ∈ W1,n/(n−1)
0 (Rn

+) with the corresponding estimate.

The proof is a direct consequence of the following lemma.

Lemma 6.7. Let f, g′ and gn such that (63) - (65) hold. For every ϕ ∈
W1,n

0 (Rn
+) ∩ L∞(Rn

+), we have

|
∫

Rn
+

f ·ϕ+
∫

Γ

g′ ·ϕ′+ < gn, ϕn > | ≤ C (|| f ||L1(Rn
+) + || g′ ||L1(Γ)||+

+ || gn ||
W

1− 1
n

,n

0 (Γ)
+ [ f, g′ ])||∇ϕ ||Ln(Rn

+)

(67)
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Proof. Write ϕ ∈ W1,n
0 (Rn

+) ∩ L∞(Rn
+) as ϕ = ψ +∇η according to Propo-

sition 4.13. One has∫
Rn

+

f ·ϕ+
∫

Γ

g ′ ·ϕ′+ < gn, ϕn >=
∫

Rn
+

f · (ψ +∇η) +
∫

Γ

g ′ ·ψ′ +

+
∫

Γ

g ’ · ∇′η + < gn, ψn > + < gn,
∂η

∂xn
> .

We deduce then the estimate

|
∫

Rn
+

f ·ϕ+
∫

Γ

g ′ ·ϕ′+ < gn, ϕn > | ≤ C (|| f ||L1(Rn
+) + || g ′ ||L1(Γ)||+

+ || gn ||
W

1− 1
n

,n

0 (Γ)
+ [ f , g ′ ])||ϕ ||W1,n

0 (Rn
+).

(68)

Because of the compatibility conditions (64), this last relation also holds if we
replace ϕ by ϕ+K, with K ∈ Rn. Finally the estimate (67) is consequence of
the following Hardy inequality:

InfK∈Rn ||ϕ+K ||W1,n
0 (Rn

+) ≤ C||∇ϕ ||Ln(Rn
+).

�

Proof of Theorem 6.6. According to the estimate (67), we have∫
Rn

+

f ·ϕ+
∫

Γ

g ′ ·ϕ′+ < gn, ϕn > =
∫

Rn
+

F : ∇ϕ

with F ∈ Ln/(n−1)(Rn
+) and

||F ||Ln/(n−1)(Rn
+) ≤ C (|| f ||L1(Rn

+) + || g ′ ||L1(Γ)||+ || gn ||
W

1− 1
n

,n

0 (Γ)
+ [ f , g ′ ]).

It means that f = −div F ∈ W−1,n/(n−1)
0 (Rn

+) and Fi1 = gi on Γ for any
i = 1, . . . , n. It is easy to see that the problem (66) is equivalent to the following
one:
Find u ∈ W1,n/(n−1)

0 (Rn
+) such that for any ϕ ∈ W1,n)

0 (Rn
+), we have∫

Rn
+

∇u : ∇ϕ =
∫

Rn
+

F : ∇ϕ. (69)

The regularity Ln/(n−1)(Rn
+) of F assures the existence of a unique solution

u ∈ W1,n/(n−1)
0 (Rn

+) of the problem (66). �

Theorem 6.8. Let f ∈ L1(Rn
+) such that div f ∈ [W 2,n

0 (Rn
+)∩

◦
W

1,n
−1 (Rn

+)]′ and∫
Rn

+

fn = 0. Then f ∈ W−1,n/(n−1)
0 (Rn

+) and the system

−∆u = f in Rn
+; u′ = 0 and

∂un

∂xn
= 0 on Γ (70)

has a unique solution u ∈ W1,n/(n−1)
0 (Rn

+).
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Proof. The problem (70) is equivalent to the following one: Find u belonging

W1,n/(n−1)
0 (Rn

+) such that u ′ = 0 on Γ and for all ϕ = (ϕ′, ϕn) ∈
◦

W 1,n
0 (Rn

+)×
D(Rn

+),∫
Rn

+

∇u : ∇ϕ = < f ′,ϕ′ >
W

−1,n/(n−1)
0 (Rn

+)×
◦
W

1,n
0 (Rn

+)
+

∫
Rn

+

fnϕn. (71)

Step 1: First of all, we shall show that for all ϕ ∈ W1,n
0 (Rn

+) ∩ L∞(Rn
+) such

that ϕ′ = 0 on Γ, we have

|
∫

Rn
+

f ·ϕ| ≤ C (|| f ||L1(Rn
+) + ||div f ||K)||ϕ ||W1,n

0 (Rn
+) (72)

where K = [W 2,n
0 (Rn

+)∩
◦
W

1,n
−1 (Rn

+)]′ here. Indeed, for every ϕ ∈ W1,n
0 (Rn

+) ∩
L∞(Rn

+) such that ϕ′ = 0 on Γ, let λ ∈ W 2,n
0 (Rn

+) such that λ = 0 and
∂λ

∂xn
= ϕn on Γ with the following estimate

||λ ||W 2,n
0 (Rn

+) ≤ C ||ϕn ||W 1−1/n,n
0 (Γ)

≤ C ||ϕ ||W1,n
0 (Rn

+).

By setting ϕ̃ = ϕ − ∇λ, we can deduce ϕ̃ ∈
◦

W 1,n
0 (Rn

+). Thanks to Theorem

4.12, we have ϕ̃ = ψ+∇η with ψ ∈
◦

W 1,n
0 (Rn

+)∩L∞(Rn
+) and η ∈

◦
W 2,n

0 (Rn
+).

It implies ϕ = ψ +∇µ with µ = η + λ ∈ W 2,n
0 (Rn

+), µ = 0 and
∂µ

∂xn
= ϕn on

Γ. Then, we have

|
∫

Rn
+

f ·ϕ| = |
∫

Rn
+
f ·ψ − < div f , µ > |

≤ || f ||L1(Rn
+)||ψ ||L∞(Rn

+) + ||div f ||K||µ ||W 2,n
0 (Rn

+)

≤ C( || f ||L1(Rn
+) + ||div f ||K )||ϕ ||W1,n

0 (Rn
+),

with the estimate (72).
Step 2: Replacing now ϕ by (ϕ′, ϕn + K) with K ∈ R, then for all ϕ ∈
W1,n

0 (Rn
+) ∩ L∞(Rn

+) such that ϕ′ = 0 on Γ and for all K ∈ R, because∫
Rn

+
fn = 0, we have by (72)

|
∫

Rn
+

(f ′ ·ϕ′ + fnϕn)| ≤ ( || f ||L1(Rn
+) + ||div f ||K )×

×(||ϕ′ ||W1,n
0 (Rn

+) + ||ϕn +K ||W 1,n
0 (Rn

+)).

Taking the infinum, we obtain by Hardy inequality:

|
∫

Rn
+

(f ′ ·ϕ′ + fnϕn)| ≤ C( || f ||L1(Rn
+) + ||div f ||K )×

×( ||∇ϕ′ ||Ln(Rn
+) + ||∇ϕn ||Ln(Rn

+)).
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Then, ∫
Rn

+

f ·ϕ =
∫

Rn
+

F : ∇ϕ

with F ∈ Ln/(n−1)(Rn
+) and

||F ||Ln/(n−1)(Rn
+) ≤ C ( || f ||L1(Rn

+) + ||div f ||K ).

It means that f = −div F ∈ W−1,n/(n−1)
0 (Rn

+) and Fnn = 0 on Γ. It is easy to
see that the problem (71) is equivalent to the following one:
Find u ∈ W1,n/(n−1)

0 (Rn
+) such that u ′ = 0 on Γ and for any ϕ = (ϕ′, ϕn) ∈

◦
W 1,n

0 (Rn
+)×W 1,n

0 (Rn
+), we have∫

Rn
+

∇u : ∇ϕ =
∫

Rn
+

F : ∇ϕ. (73)

Taking ϕn = 0 and after that taking ϕ′ = 0 on the problem (73), we directs our
attention to the resolution of two classic problems, one with Dirichlet bound-
ary condition and another with Neumann boundary condition. The regularity
Ln/(n−1)(Rn

+) of F assures the existence of a unique u ∈ W1,n/(n−1)
0 (Rn

+) of
the problem (73).

�

Theorem 6.9. Let f ∈ L1(Rn
+) such that

∫
Rn

+

f ′ = 0. If

[ f ] = sup
ξ∈D(Rn

+), ∂ξ
∂xn

=0 on Γ

|
∫

Rn
+
f · ∇ξ |

|| ξ ||W 2,n
0 (Rn

+)

< ∞

holds, then the system

−∆u = f in Rn
+, un = 0 and

∂u′

∂xn
= 0 on Γ

has a unique solution u ∈ W1,n/(n−1)
0 (Rn

+) and

||u ||
W

1,n/(n−1)
0 (Rn

+)
≤ C ( || f ||L1(Rn

+) + [ f ] ).

Proof. Let ϕ ∈ W1,n
0 (Rn

+) ∩ L∞(Rn
+) such that ϕn = 0 on Γ. Then there

exist ψ ∈ W1,n
0 (Rn

+)∩L∞(Rn
+) and η ∈W 2,n

0 (Rn
+) such that ϕ = ψ+∇η with

ψn =
∂η

∂xn
= 0 on Γ. Moreover, we have

||ψ0 ||L∞(Rn
+) + ||ψ0 ||W1,n

0 (Rn
+) + || η0 ||W 2,n

0 (Rn
+) ≤ C ||ϕ ||W1,n

0 (Rn
+).
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Then, ∫
Rn

+

f ·ϕ =
∫

Rn
+

f ·ψ +
∫

Rn
+

f · ∇η

and
|
∫

Rn
+

f ·ϕ | ≤ C ( || f ||L1(Rn
+) + [ f ] )||ϕ ||W1,n

0 (Rn
+).

Let K = (K ′, 0) ∈ Rn−1 × {0}. Then we have

|
∫

Rn
+

f ′ · (ϕ′ + K ) +
∫

Rn
+

fnϕn | = |
∫

Rn
+

f ·ϕ |

≤ C ( || f ||L1(Rn
+) + [ f ] )( ||ϕ′ + K ||W1,n

0 (Rn
+) + ||ϕn ||W1,n

0 (Rn
+) )

≤ C ( || f ||L1(Rn
+) + [ f ] )( ||∇ϕ′ ||Ln(Rn

+) + ||∇ϕn ||Ln(Rn
+)).

The remains of this proof is similar to Theorem 6.8. �

Recall now a result of C. Amrouche, S. Nečasová and Y. Raudin in [7]
concerning the Stokes problem in Rn

+.

Theorem 6.10. For any f ∈ W−1,p
0 (Rn

+), h ∈ Lp(Rn
+) and g ∈ W1−1/p,p

0 (Γ),
then the Stokes system

(S+)


−∆u +∇π = f in Rn

+,

divu = h in Rn
+,

u = g on Γ = Rn−1,

has a unique solution (u, π) ∈ W1,p
0 (Rn

+) × Lp(Rn
+). Moreover, we have the

estimate

||u ||W1,p
0 (Rn

+)+||π ||Lp(Rn
+) ≤ C( || f ||W−1,p

0 (Rn
+)+||h ||Lp(Rn

+)+|| g ||W1−1/p,p
0 (Γ)

).

As consequence, we obtain the following Helmholtz decomposition.

Corollary 6.11. Let f ∈ X(R3
+). Then there exists a unique ϕ ∈ L3/2(R3

+)
such that divϕ = 0 with ϕ3 = 0 on Γ and a unique π ∈ L3/2(R3

+) satisfying

f = curlϕ+∇π

and the following estimate holds

||ϕ ||L3/2(R3
+) + ||π ||L3/2(R3

+) ≤ C || f ||X(R3
+).

Proof. Let f ∈ X(R3
+). Then we have f ∈ W−1,3/2

0 (R3
+). Thanks to Theorem

6.10, there exists a unique solution (u , π) ∈ W1,3/2
0 (R3

+)×L3/2(R3
+) such that

−∆u +∇π = f in R3
+, divu = 0 in R3

+, u = 0 on Γ.

This proof is finished by choosing ϕ = curlu . �
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Corollary 6.12. Let (f, h, g) ∈ X(Rn) × Ln/(n−1)(Rn) × W1/n,n/(n−1)
0 (Γ).

Then the Stokes system (S+) has a unique solution (u, π) ∈ W1,n/(n−1)
0 (Rn

+)×
Ln/(n−1)(Rn

+) and the following estimate holds

||u ||
W

1,n/(n−1)
0 (Rn

+)
+ ||π ||Ln/(n−1)(Rn

+)

≤ C
(
|| f ||

W
−1,n/(n−1)
0 (Rn

+)
+ ||h ||Ln/(n−1)(Rn

+) + || g ||
W

1/n,n/(n−1)
0 (Γ)

)
.

Proof. This corollary is a consequence of X(Rn
+) ↪→ W−1,n/(n−1)

0 (Rn
+) and

Theorem 6.10. �
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