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Abstract

In this paper, we study the div-curl-grad operators and some elliptic problems
in the whole space R"™ and in the half-space R}, with n > 2. We consider data
in weighted Sobolev spaces and in L'.
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1. Introduction

The purpose of this paper is to present new results concerning the div-curl-
grad operators and some elliptic problems in the whole space and in the half-
space with data and solutions which live in L! or in weighted Sobolev spaces,
expressing at the same time their regularity and their behavior at infinity. Re-
cently, new estimates for L'-vector field have been discovered by Bourgain,
Brézis and Van Schaftingen (see [23], [10], [11], [12], [13], [15]) which yield in
particular improved estimates for the solutions of elliptic systems in R™ or in a
bounded domain 2 C R”. Our work presented in this paper is naturally based
on these very interesting results and our approach rests on the use of weighted
Sobolev spaces.

This paper is organised as follows. In this section, we introduce some notations
and the functional framework. Some results concerning the weighted Sobolev
spaces and the spaces of traces are recalled. In Section 2 and Section 3, our
work is focused on the div-grad-curl operators and elliptic problems in the whole
space. After the case of the whole space, we then pass to the one of the half-
space. Results in the half-space are presented in Section 4 (The div-grad opera-
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tors), Section 5 (Vector potentials) and in the last section of this paper (Elliptic
problems).

In this paper, we use bold type characters to denote vector distributions or
spaces of vector distributions with n components and C' > 0 usually denotes a
generic positive constant that may depends on the dimension n, the exponent p
and possibly other parameters, but never on the functions under consideration.
For any real number 1 < p < oo, we take p’ to be the Holder conjugate of p. Let
Q) be an open subset in the n-dimensional real euclidean space. A typical point
x € R" is denoted by ¢ = (z’,z,), where ' = (x1,72,...,2,_1) € R*"! and
z, € R. Its distance to the origine is denoted by r = |z| = (22 + ... + 22)'/2.
Let M denote the closure of the upper half-space R} = {x € R"; x,, > 0}. In
the half-space, its boundary is defined by I' = {z € R"; x, =0} = R"L
In order to control the behavior at infinity of our functions and distributions,
we use for basic weight the quantity p = p(r) = 1 4 r, which is equivalent to
r at infinity. We define D(€2) to be the linear space of infinite differentiable
functions with compact support on Q. Now, let D’(Q) denote the dual space of
D(), the space of distributions on Q. For any ¢ € N, &, stands for the space of
polynomials of degree < ¢. If ¢ is strictly negative integer, we set by convention
P, ={0}. Given a Banach space B, with dual space B’ and a closed subspace
X of B, we denote by B’ 1L X (or more simply X, if there is no ambiguity as
to the duality product) the subspace of B’ orthogonal to X, i.e.

B 1lX=X'={feB|VveX, <fuv>=0}=(B/X).

The space X is called the polar space of X in B’ and is also denoted by X°.
We also introduce the space

V(Q) = {peD(Q), dive=0}.

In this paper, we want to consider some particular weighted Sobolev spaces
(see [4], [5]). The open set Q will be denote the whole space or the half-space.
We begin by defining the space

Wo (@) = {u € D'(Q), - € L7(), Vu € LY ()},
1
where
wy=1+r ifp#n and wi=(1+7r)In2+7r) if p=n.
This space is a reflexive Banach space when endowed with the norm:
ullyrrgy = U2y + 1V 120 )7
Wy P (Q) wy N EPQ) Lr(Q)/ -

We also introduce the space

W2P(Q) = {u € D'(Q), wi € LP(Q), — € LP(Q), D*u € LP(Q)},



where
=(1+7r)? ifp¢g {g,n} and wy = (1+7)> In(2+7), otherwise,
which is a Banach space endowed with its natural norm given by
vz @ = U= By + oy + 1Pl )

We need to give also the definition of the following space

WP(Q) = {u e D'(Q), -~ e 17(Q), 4

LP(Q
! - S e L),

where
wy = (14+7)% if p#n/2 and ws= (14+7)?In(2+7), otherwise.

This space is also a reflexive Banach space and we can show that VV0 P(Q) —
Wl’p(Q). Note that the logarithmic weight only appears if p = n or p = 7.
From now on, when we write WP (Q), it means that m,p and « are taken as
in these above definitions of the weighted Sobolev spaces. It is also true for the
generalized case of the weighted Sobolev spaces. The weights in these above
definitions are chosen so that the corresponding space satisfies two properties.
On the one hand, the space D(12) is dense in W/*?(£2). On the other hand, the
following Poincar-type inequality holds in W2*?(Q) (see [4], [5] and [6]). The

semi-norm
| woeey = (Y 11+ )2 ul[F o))"
[A|l=m

defines on W2"P()/ %4+ a norm which is equivalent to the quotient norm,
Vu € WIP(Q), |[ullwme @)z, < Clulwmeq, (1)

with ¢* = inf(g,m — 1), where ¢ is the highest degree of the polynomials con-
tained in W2"P(Q2). We define the space

wrr@) = e,

and its dual space, W:(T’p/ (Q), is a space of distributions. In addition, the
semi-norm | . [y » ) is a norm on I/f/g’”’(ﬂ) that is equivalent to the full norm
Il HW;””’(Q):

Vu € W"P(Q), |[ullwrr @) < Clulwmeq).- (2)
When Q = R”, we have WP(R") =W mP(R™). We will now recall some

properties of the weighted Sobolev spaces W2»P(€2). All the local properties
of WI»P(Q) coincide with those of the classical Sobolev space W™P(Q). A

n
quick computation shows that for m > 0 and if — + « does not belong to
p



{i € Z; i < m}, then P, /p_q) is the space of all polynomials included in
WmP(R™) (for s € R, [s] stands for the integer part of s). For all A € N where
0 < |Al < 2m with m = 1 or m = 2, the mapping

u € WP (Q) — 9*u € Wr=Alr(Q)

is continuous. Recall the following Sobolev embeddings (see [1]):

WyP(Q) — LP () where p* = and 1<p<n.

Also recall
Wy " (R") < BMO(R™).

The space BMO is defined as follows: A locally integrable function f belongs
to BMO if

1
1 £ llsao = sgpm/Qv(m) ~ Jolde < oo,

where the supremum is taken on all the cubes and fgo = I%él fQ f(z) dx is the
average of f on (). In the literature, we also find studies using the following
spaces:

wir(Q) = D) IIV-llr and W2r(Q) = DQ)!IV-ller

In fact, when Q@ = R" we can prove that WLP(R”) = WyP(RM)if 1<p<
n and W2P(R") = WZP(R™) if 1 < p < n/2. When n/p —m < 0 with
m=1orm=2, Wm’P(R”) is not a space of distributions. For instance, in J.
Deny, J. L. Lions [16], they show that w2 (R?) is not a space of distributions.
Without going into details, let (,) be a sequence of functions of D(R?) such
that ||V, ||L2re) is a Cauchy sequence. Applying Proposition 9.3 [4], there
exists a constant ¢, such that

inf[[oy +cllwo, @) = llov+evllwe, @)

is also a Cauchy sequence and therefore converges. But this does not mean that
@, alone converges and from [4], ||V, ||r2r2) tends to zero while < ¢, >
tends to infinity for many 1 of D(R?) instead of converging to a constant times
the mean value of ¢). These considerations suggest that the space W12(R?2)
lacks the constant functions and is not a space of distributions.

In order to define the traces of functions of W7*P(R ), we introduce for any
o € (0,1) the space

WJP(RY) = {ueD'(R"); w °uec LP(R") and

— p
Rrxgn [T — y["ToP

where " .
w = if 5750 and w:p(ln(l—i—p))l/” if E:U.



It is a reflexive Banach space equipped with its natural norm

_ p 1/p
Y - e
R™ xR"™

Le (R") | — y[rtor

u
lullwgreny = (||
Similarly, for any real number o € R, we define the space

wWoP(R™) = {ueD'R"); w* ue LP(R") and
/ [P (z)u(z) — p*(y)u(y)|
R™ xR™

P
o — gl or dedy < oo},

where

w=p if %—i—a#a and w = p(In (1 + p))Y/ =) if %—&-a:a.

For any s € R*, we set

WeP(R") = {ueD(R"); 0< A <k, p*sTR(In(1 + p))~ 10 u € LP(R™);
E4+1<|A < [s] =1, p**tXory € LP(R™); |A| = [s], 0 u € WIP(R™) },

where

n n
s———a if —t+a€e{o,...,o+][s]},

k=k(s,n,p,a)= D p

-1, otherwise,

with o = s — [s]. It is a reflexive Banach space equipped with the norm

lellwzr@ey = (D e 1+ p) " 0 ull], gy
0<|AI<k
+ > e, )Y D 10 ul e e
E+1<|A|<[s]—1 [X|=[s]

We notice that this definition coincides with the previous definition of the
weighted Sobolev spaces when s = m is a nonnegative integer. If u is a function
on R’ , we denote its trace of order j on the hyperplane I' by

ai
VjeN, yju: & — I.L(:c'70).
Ox),

Finally, we recall the following traces lemma due to Hanouzet [19] and extended
by Amrouche-Necasovd [6] to this class of weighted Sobolev spaces.

Lemma 1.1. The mapping

7= (90,11, 9m1) + DRE) = [T DR,



can be extended to a linear continuous mapping, still denoted by -,

m—1
vi Wre®Y) — [] wpitvee@et),
j=0

Moreover, v is surjective and Kery =W 2»P(R7).

In order to finish this section, we recall the definition of curl operator. When
n = 2, we define the curl operator for distributions ¢ € D’(Q2) and v € D'(Q)
by

6’02 8’[11

dp Oy
_— lv=—=— —.
81'2 ’ 6901 ) and - curlv 81'1 851,‘2

When n = 3, we define the curl operator of a distribution v € D’'(Q) as follows

81)3 3’02 81)1 81)3 8'02 81)1
Oxry Oxs Oxs Oz O0x1 Oz’

curlp = (

The following properties are easily obtained.
curl(curl p) = —Ap with n = 2,

1 1 h =
_Av + V(dive) = {cur (curlw) when n = 3,

curl(curl v) when n =2.

2. The div-grad operators in the whole space

The following proposition was given by J. Bourgain and H. Brézis [10]. We
give here a detailed proof.

Proposition 2.1. Let f € L™(R"™). Then there exists u € L (R™) such that
divu=f with |[w||Lec@n) < Cull fllLn®n)- (3)
Proof. We consider the following unbounded operator
A=V LV D(RY - LY(RY),

with
D(A) = Wy ' (R") = {v € L= D(R"), Vo € LY(R™)}.
It is easy to see that A is closed: if v,, — v in L (=Y and Vv,, — zin L' (R"),

then we have z = Vv. On the other hand, D(A) is dense in L™ (»~1(R™). We
know that for all v € D(A),

[[ullgn/e-1@ny < C| Vu|pi@n)- (4)
Thanks to Theorem I1.20 [14], the adjoint operator

A* = —div : L*°(R") — L™(R")



is surjective, i.e., for all f € L™(R"), there exists u € L*(R") such that
divu = f. Then from Theorem I1.5 [14], there exists ¢ > 0 such that

div BL=(0,1) D B~ (0, ¢), (5)

where Bg(0, «) is the open ball in E of radius a > 0 centered at origin. Let
now f € L™(R"™) satisfying f # 0 and set

f

h=c—"—.
1 fl|zn@n)

Therefore, we can deduce from (5) the existence of v, in L°(R™) satisfying
||Vl Ry < 1 such that

divwv, — h in L™(R").
We can then extract a subsequence (v,,, ) such that v,, — v in L>*°(R") with
|| v ||Lee@®ry <1 and h = divv. Hence, we obtain the property (3) with v =
1
E||f\|Ln(Rn)v- O

Remark 1. Proposition 2.1 can be improved by showing that u actually belongs
to Wi (R") NL>(R") (see Theorem 2.3). Note that W, " (R") < BMO(R"),
but the corresponding embedding in L (R™) does not take place.

Recall now De Rham’s Theorem: let {2 be any open subset of R and let f
be a distribution of D’() that satisfies:

Vo e V(Q), <f,v>paxp@) = 0. (6)

Then there exists 7 in D’(2) such that f = V. In particular, if f € W, '*(R")
with 1 < p < co and satisfies

Vo e V(R"), <f,v>y =0, (7)

o P (R X W (R)

then there exists a unique # € LP(R™) such that f = V7 and the following
estimate holds

I llzr@ey < ClS lwz1r @y

Similarly, if f € LP(R™), with 1 < p < oo, and satisfies
oevE), [ foo =0, 0
Q

then f = Vr with 7 € Wy?(R"). Note that V(R") is dense in H,(R") for all
1 < p < oo (see Alliot-Amrouche [2] for p > 1 and Miyakawa [20] for p = 1),
but is not dense in Ho (R™), where for any 1 < p < oo,

H,(R") = {v € LP(R"); divv = 0}.



As V(R™) is dense in
Vir (R") = {v e Wi R"); div v =0},
then (7) is equivalent to

Yo € ViU (RY), < f,0 >y-10 = 0. (9)
0

(Rm)x W™ (R")

The same property holds for the relation (8) with V(R™) replaced by H, (R™).

The following corollary gives an answer when f € L(R").

Corollary 2.2. Assume that f € L'(R") satisfying

Vv € Hoo (R™), f-vdze=0.
RTL

Then there exists a unique m € L™ "=V (R™) such that f= YV with the estimate
7l pn/e-v @ey < CJLF L @e)- (10)
Proof. This corollary can be proved because from (4), we have Im V is closed
subspace of L' (R"), so that [H (R")]° = (Ker div)° = Im V, where
[Ho (R™)]° = {f c LY(R"), f-vdz =0, Vv € Ho(R") } .
R™

Recall that if E is a Banach space and M a subspace of the dual E’, then the
polar (or the orthogonal) of M is defined as follows

M° = {feE; <f,uv>=0,YveM}.

O

Remark 2. Observe first that the hypothesis of Corollary 2.2 implies that f €

L{(R"), i.e., f € LY(R") and / f = 0. Next, note that the conclusion
Rn,

of the above corollary shows that f € W, Lin/ (nfl)(R”) and then divf €
W0_2’n/("_1)(R”). Moreover, we have

YAe Py, <divf, A >W—2,n/(n—1) 0. (11)
0

(R XWE™(R?) —
Now recall a result in J. Bourgain - H. Brézis (cf. [11] or [12]).

Theorem 2.3. For all f € L™(R"), there exists w € W™ (R*)NL>®(R™) such
that div w = f and

lwllwin ey +llwllLe@ny < Cl L@



Remark 3. Note that J. Bourgain and H. Brézis use the space WL”(R”) (re-
spectively, WQ’”(R”)), which is defined by the adherence of D(R™) for the norm
|| V.|| ®n) (vespectively, the adherence of D(R™) for the norm || V2. ||pngn))
as their functional framework. Our choice is the weighted Sobolev space and it
seems to us more adaptive (see the introduction in Section 1 for the explana-
tion).

The second point of the following theorem is an extension of Corollary 2.2
and (7) with p=n/(n —1).

Corollary 2.4. i) There exists C > 0 such that for all u € L™ ™~D(R"), we
have the following inequality

||u||Ln/<n71)(]Rn) < C . n

nf (gl + 1B ot gge)  (12)

with g € LYR") and h € W™/ ("D (Rn).
ii) Let f € LY(R") + Wal’n/(nfl)(R") satisfying the following compatibility
condition

Yoe Vi"(R") NL®(R"), < fiv>= 0. (13)
Then there exists a unique = € L™ (=YD (R"™) such that f= V.

Proof. i) We consider two following operators
A=—-V: Ln/(n—l)(Rn) N Ll(Rn) + Wofl,n/(nfl)(Rn),
A* = div: W™ (R") N L®(R™) — L™(R™).

The rest of this proof is similar to the one of Proposition 2.1.
ii) The second point is a consequence of the first one. O

Remark 4. Remark that for all u € Wy (R™),
ullpr/m-n@ny < Cl Vu||Lgn), (14)
and for all u € L™/ ("=D(R"),
|| (3 HLn/(nfl)(Rn) S C || Vu ngl,n/(nfl)(mn). (15)

The inequality (14) is well-known. We now consider (15). It is shown in [4] that
A is an isomorphism from W™ (R™)/ 2, into L™(R™). By duality, we have

A - Ln/(n—l)(Rn) N WO*Z”/("*U(Rn) 1.2,
is also an isomorphism. Then for all u € L™/ (~1D(R"), we can deduce

HUHL%/(nfl)(Rn) < CHAUHWO—QJL/(n—l)(Rn). (16)



Moreover, we can also see immediately that
|| Au ||W072,n/(n71)(R") = ||divVu ||W072,71/(7L71)(R")
and the following operator
div - Walvn/(”*l)(Rn) N WO*Qa"/(”*l)(Rn)
is continuous. Then
|| Au HWOfZ‘n/(nfl)(Rn) < C||Vu ||Wo—l,n/(n71)(Rn)

and we deduce easily (15). The inequality (12), stronger than (14) or (15) is
especially interesting if « € L™/ (=D (R™) and Vu ¢ L'(R").

Recall now the definition of Riesz transforms

XT; .
R]f = Cpp.v. <f*|m|7'z+l>7 ']:17...777/,

where ¢, = T (2 /ﬂnTH. Also recall that their Fourier transforms satisfy
_ &~
Rif = i>=f.

! €l

The following corollary is proved in [11]. We give here a little different proof.

Corollary 2.5. Assume that F € W™ (R™). Then there exists Y € W™ (R™)N
L (R™) such that

F =Y R;Y;.
j=1
Proof. Let F € W, "™ (R") and define f by f(g) = [¢|F(€). Then we have
— OF OF
R;f(&) = =—(&). Therefore, R;f = — € L"(R") for all j = 1,...,n. Hence,
8xj 8xj
R;R;f € L™(R") and we deduce f = —ZRjij € L"*(R™). Thanks to
j=1
Theorem 2.3, there exists ¥ € W™ (R™) N L®(R™) such that f = div Y, i.e.,
f=Y_i€Y;. Then, F = Zz%?] that means that F =Y R;Yj. O
j=1 j=1 j=1

An another result was established by J. Bourgain and H. Brézis [11] (see
also H. Brézis and J. Van Schaftingen [15]).

Theorem 2.6. Let ) be a Lipschitz bounded open domain in R™.
i) For all @ € W™ (Q), there exist 1 € W™ (Q) N L®(Q) and n € W™ ()
such that

o=+ Vi, (17)

10



with the following estimate

IV [|Lne) + 1% L@ + | D*n L) < ClIVe|lLn @), (18)

where C' only depends on 2.
ii) For all ¢ € WL (Q), there exist ¥ € WHm(Q) N L>(Q) and n € W2™(Q)
such that (17) holds with ¢ - n=0 on I' and satisfying the following estimate

[ [[wrn@) + ¥ |lLe@) + [ 1]lwzn@) < Clle|lwinia)- (19)

In the above theorem, W(l) "(Q) is the classical Sobolev space of functions in
W1 (Q) vanishing on the boundary of © and W™ (Q) is the one of functions in
W2m(Q) whose traces and the normal derlvatlve are vanished on the boundary
of Q.

We now prove a similar result corresponding to weighted Sobolev spaces.

Corollary 2.7. For all € W™ (R™), there exist 9 € W™ (R™) N L(R™)
and n € W™ (R™) such that
P =1+ Vn,

with the following estimate
1% [lwin @y + 1|9 Lo @n) + [ D*n Lo ey < C'l| Ve |Lnn). (20)

Proof. Thanks to the density of D(R™) in W, "(R") there exists a sequence
(pr)ken+ in D(R™) that converges toward ¢ in W™ (R™). Let B,, be a ball
such that supp ¢, C B,, and we set ¢} () = cpk(rk:c) Then we deduce ¢}, €
W(l) ”(Bl) Applying Theorem 2.6, there exist ¥}, € Wy (B;) N L>(B;) and
., € Wg™(By) such that

@, = ), + Vg,

with the following estimate

IV LBy + % L) + | D0 ln sy < C IV L (sy)-

We now set @ .
Yy (x) = %(a) and 7y (z) = Tknk(a)'
Then we have
P =P+ Vi (21)

Moreover, since

IV llLr@y = IV lLrB),
gl = [ |lL=(B.)
Ve llur@y = IV HLn(Bl)

we then have that

|V lLr @y + [ ¥k Lo @y < CllI Ve llurn@ny < ClIVe|lun@ny.  (22)

11



Then there exists a sequence (aj) in R™ such that 1, + a is bounded in
W, (R") and
b+ @ Dl oy < Cll Vep lln . (23)

As || 9}, ||L (&n) is also bounded, then the sequence (ay) is bounded in R”™. Then
we can extract a subsequence, again denoted by (ay), such that klim ap = a.
— 00

We know that there exists 1, in W (R") such that ), +ax — %, in Wy (R™)
and

|| 'l/JO ||Wé'"(]Rn) S C || V(P ||L"(R")~

Then, we have 9, — 1, — a in W™ (R"). Moreover, ¥, = 1t in L>(R"),
then it implies that ¢ = ¢, — a. In addition, we have the following estimate

| VY |lLn @y + [P L@y < ClI Ve |lun@n)-
From (21), we can deduce that
| D*ng |Lnzey < C IV l|Ln®n),
i.e., there exists ay € &7 such that
Nk + g is bounded in W™ (R™), (24)

and there exists o in W™ (R™) such that ng 4o — 79 in Wo" (R™). As ¢, and
1), are bounded in W™ (R™), it is also true for Vi, then from (24), we deduce
that Vay is bounded in Wé’"(R"). Therefore, there exists a real sequence by,
such that ay + by is bounded in VVO2 "(R™). Consequently, the sequence 1y, — by,
is bounded in VVO2 "(R™) and we can extract a subsequence, denoted in the same
way, such that n — by, — 1 in W™ (R"). Then we have

®r, =y, + V(e — bi)
with the estimate
|| D (i — bi) e gny < C I V@ ||Ln@n).-
We pass to limite in the above decomposition, we shall obtain ¢ = 1 4+ V7 with
|V [[Ln@ny + 1% Lo @) + || D*n L@y < Cll Ve |lLn@n),
and then we deduce (20). O
We have another version of Corollary 2.7.

Theorem 2.8. For all ¢ € W™ (R™), there exist ¢ € W™ (R™) N L>®(R")
and n € W™ (R™) such that
p=1+Vn,

with the following estimate

H '@b ||Wév"(Rn) + H ¢ ||L°°(]R") + || n ||W02v"(Rn) <C || ¥ Hw})v"(Rn)-

12



Proof. Let ¢ € Wé’n(R”). We resume the obtained functions ay, ¥, a, ¥,
1 and 7 in the proof of Corollary 2.7. We have

1 1 1/n ( 1/
ap|l = — ap| < — ai|™ By|\n=Hm,
oul = i, el = gy ([, ") 1

Then we deduce from (22) and (23) that

ay + Py, ||Ln(Bl) +C |1y, ||L"(Bl)

lar| < Cllak|lLn,y < Cl
< Ol Vellun®n.

and
llallLe@®ny < Cl|Ve]

As i = P, — a, then

L (Rn) .

1% iy < ClIVOlLaEn < Cll@ -
As ¢ = 1 + Vn, then we have
10l ey < C 1@ Il .
Therefore, there exists b € R such that
In+ b||W02="(Rn) <C|[Vn ||WC1)'"(]R") <Clle HWé'"(R”)v
and the proof is complete. O

Remark 5. This theorem suggests this open question: if ¢ € W%"/ 2(]R”), are

there a function ¢ € Wg’n/z(R”) N L>*(R™) and a function n € Wg’”/Q(R”)
such that
P =1+ Vn,

with the corresponding estimate 7
We define now the space
X(R") = {f € L'R"), divf e Wy >/ "D (RM)},
which is Banach space endowed with the following norm

1f lx@ey = 1 @) + 11V F [ly—2no-n ga)- (25)

Theorem 2.9. Let f € X(R™). Then f € Wo_l’"/("_l)(R") and we have the
following inequality

Ve € W' ®)NLX®Y), | [ ol < ClIS e w9
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Proof. We consider the following linear operator ¢ x, f - ¢ defined on
Rn

D(R™). Thanks to Theorem 2.8, we have

| <F,o>| = | [z f (®+Vn)]

= |f]Rnf Pp— <divf, n>w T2/ D (R 2 (R |
1 F L@yl 9 [|Les ey + ||011Vf||vr2 w0 [ [[yy2.0
ClIf llx@mll e llwim g

INIA

As D(R™) is dense in W(l) "(R™) and by applying Hahn-Banach Theorem, we

—1,n/(n— U(R”)

can uniquely extend F' by an element F e W, satisfying

||F||W0—1v”/("—1>(Rn) < C||f ||X(]R")-

Besides, the linear operator f — F from X(R") into Wy "/~ D(R") is
continuous and injective. Therefore, X(R™) can be identified to a subspace of
W, /("= D(R") with continuous and dense embedding. a

Remark 6. i) Let f € X(R™). Then/ f = 0if and only if

n

Vae Py, <divf, A > = 0.

—2 n/(n— 1)(]R")><W2 " (Rn)

Note that fi=<fi,1 >w ~n/(n-1) (g

- MW @)

i1) Let f € X(R"™) satisfying / f = 0. Then we have the following inequality:
for every ¢ € W (R"), .
| <Fo >t oy ewin ey | < ClLF lx@nl Vel @n)-
Actually, we observe that for any a € R",
(<Fo>l=I<Fipta>]< | lxenlle+allying:
Consequently, taking the infinum, we have for every ¢ € Wy (R™) (see [4]):

| <f.e>| < Clf llx@emlIVellL@- (27)

It is then easy to deduce the following corollary.

Corollary 2.10. Let f€ LY(R") and divf= 0. Then f=0 and for every
R’n
e € W) (R") NL®(R™), we have

\/R’ F-el < CllflluemylVellLn @

14



Corollary 2.11. Let f € LY(R?) and curlf € WaQ’S/Z(R3). Then we have
fe \7\70_1’3/2 (R3) and the following estimate: for every @ € Wy (R?)NL®(R?),

| / Fool < CUIF e + [l eurl g2 o I @ o -

If mm’eover/ f = 0, then for every ¢ € Wé’?’(]R?’) N L>®(R3), we have the
3

R
following estimate

[l < S e+l eurl £ [y sorm o) NIV sy

Proof. Using Proposition 2.13, the proof is similar as the one of Theorem 2.9
and Remark 6. O

When f € X(R™), we can improve Corollary 2.2 as follows (recall that V(R™)
is not dense in Hy, (R™)).

Proposition 2.12. Assume that f € X(R"™) satisfying

Yove V(R"), f-vdx=0. (28)
Rﬂ,

Then there exists a unique m € L™ "~V (R™) such that f= V' and the following
estimate holds

7 llzrr-v@ny < ClFllymrm/o-n gy

Proof. This proposition is an immediate consequence of the embedding X (R™)
— Wal’n/(nfl)(R") and De Rham’s Theorem (see Alliot - Amrouche [2]). O

Remark 7. i) First remark that the hypothesis divf € WJ2’n/(n71)(R") of
Proposition 2.12 is necessary because if f = Vr with 7 € L™/ (*»=1(R"), then
e Wy DRy and divf = Ar e W, 27D (Rn),

it) Also note that (28) is equivalent to

Yo e VR"), < f,v >W071,n/('n,71}(Rn)xwé,n(Rn) = 0. (29)

As V(R™) is dense in V™ (R™), (29) is also equivalent to

Yo € V(l)’n(Rn‘), < f,v >W0’1’"/("71)(R”)xWé"’L(Rn) = 0. (30)

Since vectors of the canonical basis of R belong to V™ (R"), we deduce that
if (28) holds, then/ f=o.
R‘n,

15



Proposition 2.13. Let ¢ € W ?(R3). Then there exist ¢ € Wy*(R3) N
L>°(R3) and n € Wi *(R3) such that

@ =1 +curly

and we have the following estimate

IV9||Lsrs) + |9l |lL=@s) + 1D nllLe@s) < ClIVellLsws).-

Moreover, ¢ and n can be chosen such that
||'¢Hwév3(R3) + ||| (re) + ||77||wgv3(]1§3) < C ||‘PHW(}3(R3)'

Proof. Let o € W *(R3), then divep € L3(R?). Thanks to Theorem 2.3,
there exists ¥ € L>®°(R3) N W*(R3) such that div = div ¢ and

% oo @s) + 11 llwis@sy < ClIdive|lus@s).-

Setting z = ¢ — . We know that there exists 7, € Wa?(R3) such that
—An, = curl z satisfying the following estimate

||"70HW(2J’3(]R3) < CHV(,OHLs(Rg).

However, divn, € W;"*(R?) is harmonic, then we deduce divn, = a with a € R.
Therefore, we have
curl (curln,) = curl z.

We set y = z — curln,. Then y € Wé’g(R3), divy = 0 and curly = 0, i.e.,
Ay = 0. Then we can deduce y = b € R3. Let ¢ € &, such that b = curl q.
We now set n =1, + q. Then

@ =1 +curln

and we have the following estimate

1P llwes msy + 1%l | @s) + ID*n||a@sy < ClIVe||lLas).

We now introduce the following proposition.

Proposition 2.14. Assume that u € L}, ,(R"™) satisfying Vu € L'(R™). Then
there exists a unique constant K € R such that u+K € L™/ ("= (R™). Moreover,
we have

|‘U+K||Ln/(n71)(Rn) S CHVUHLI(Rn) (31)
and .
K=- lim — u(o|z|)do, (32)

lz|—o0 Wn Js,

where S,,_1 is the unit sphere of R™ and w, its surface.

16



Proof. From Proposition 2.7 [21], it is easy to prove that there exists a unique
constant K € R verifying u + K € L™ ("~Y(R") and we have (31). Thanks to
Lemma 1.3 [2], we have

lim |z|"~ 1/ lu(olz|) + K|do = 0. (33)
Sn—1

|z|—00
We set

Dpg(r) = / |Vu|dz.
{zeR" ,r<|z|<R}

By proceeding similarly as in [22], we have

R ou ) R .
Dg(r) = ( |a*|P Jdp+ [ p |V*uldodp,
Sn—1 Jr P T Sn—1

where V*u is the projection of gradient of u on the unit sphere S, _1.

ou s

IV uf? = 72 [Vl — |

By Holder’s and Wirtinger’s inequalities

/ / \*Idp/ p~2dp
+c/ / |x|a)—;/Sn_lu(|x|a)dada)pdp.

By consequence, we have

Dg(r) > C’r/s |u(Ro) — u(ro)|do
S (34)

+ C/TR(/S 1|u(|9:|c7) - Lil/snlu(|1:|cr)dcr|da)pdp.

n—

Since the both integrals on the right are non-negative, each is separately bounded
by Dr(r). Then, there exists a function u* € L1(S,_1) such that

i lu(lz]o) = u*(||”)do = 0,
z|—oo Jg

Jim / w(|z|o)do = /S w* (o) do.

\z|~>oo Sn—l n—1

Thanks to (33), we deduce that v* = —K and from (34) we have (32). O

Remark 8. We have a similar result as the above proposition in the case u €
D'(R™) and Vu € LP(R") for all p > 1 (see Payne and Weinberger [22], Am-
rouche and Razafison [9], for example).

17



3. Vector potentials and elliptic problems in the whole space

Proposition 3.1. There exists C > 0 such that for any u € L3/?(R3) satisfy-
ing curlu € LY(R?) and divu = 0, we have the following estimate

Hu||L3/2(R3) < C’||cur1u|\L1(R3). (35)

Proof. Setting f = curlu. Then f belongs to Wal’3/2(R3) and for all
i=1,2,3,

< fi,1 >W0_1’3/2(R3)><W01’3(R3) = 0.
Therefore, there exists a unique solution z € Wy*/?(R%) of ~Az = f in R?
and satisfying
H z |‘Wé’3/2(]R3) < C H curlu ||Wal’3/2(R3) < C || curlu HLI(RS).

The last inequality is consequence of the embedding X(R3) — W, "¥?(R3)
and because div f = 0 and f = curlu € X(R®). Moreover, it is easy to see
that divz = 0 in R3. By setting w = wu — curl z, we can easily deduce that
Aw = 0inR? Then w = 0, u = curl z and we obtain the estimate (35). O

Proceeding similarly as in the proof of Proposition 2.1, we can show the
following corollary.

Corollary 3.2. Let f € L3(R3) such that divf = 0. Then there exists u €
L*°(R3), with divu = 0 and such that

curlu = f, with [[u|[pems) < C||curl u||yss).

In three-dimensional space, thanks to Theorem 2.8, we can deduce the fol-
lowing proposition.

Proposition 3.3. Let f € L?(R?) such that divf = 0. Then there exist ¢ €
W (R3), unique up to a constant vector, and 9 € Wy (R?) N L>(R?) such
that

curl p=curly =f and dive =0,

satisfying the following estimate
Ve lls@s) + 1% [lwis sy + 1% e @s) < Cl|f [lLs@s).-

Proof. From the hypothesis, we deduce curl f € Wam (R?). Then , from [4],
there exists ¢ € Wé’?’(Rg), unique up to a constant vector, such that —A¢p =
curl f in Q and satisfying the following estimate

Jnf, e+ allwismsy < ClIF llLses)-:
As dive € L3(R3) is harmonic, then we deduce dive = 0. Consequently, we

have
—Ag = curlcurl ¢ — Vdivy = curlcurl ¢.

18



Therefore, we obtain curl (curlp—f) = 0in . Setting z = curlp—f. Then
z € L3(R3), divz = 0 and curl z = 0. Hence, we deduce Az = 0 and z = 0,
i.e., curl = f. Applying Theorem 2.8, there exist 9 € W *(R?) N L>(R?)
and i € Wg°(R?) such that ¢ = 9 + V7 in R?, with the following estimate

1% llwrs@sy + ¥ llLe@s) < ClIVellLses) < ClIf [lus@s)-

The function ) is the required function, then the proof is finished. O

Remark 9. From the previous proposition, we have the following Helmholtz
decomposition: for all f € L3(R?), we have

f =curly+Vp (36)
with ¢ € W, (R3) N L®(R?) and p € Wy *(R?) and the following estimate
1% llws sy + 19 llLee ey + [ VPlLs@s) < OIS |lLses)- (37)

Indeed, we have divf € W, "*(R3) LR because of f € L*(R3). Then there
exists p € I/VO1 ’3(R3), unique up to a constant, such that Ap = divf and
satisfying the following estimate

IVpllses) < CIS [lLses)-

The function f — Vp satisfies the hypothesis of Proposition 3.3, then we can
decompose f as in (36) and we have the estimate (37).

Corollary 3.4. There exists C > 0 such that for all u € L3/%(R?) satisfying
div u = 0, we have the following inequality

ny < i
||u”L3/2(R ) = ¢ erg:Hg‘Jrl

IS Nl 119 llyyorazgay)  (39)
with f€ LY(R3) and g € W, "3/*(R3).
Proof. We consider two following operators
A= curl : Hy»(R?) — L'(R?) + W, "*/2(R?),
A* = curl : W *(R?) N L (R?) — H3(R?).
The rest of this proof is similar to the one of Proposition 2.1. O

The following corollary improves Corollary 2.10.

Corollary 3.5. Let f € L'(R?) such that div f = 0. Then for all o € Wy*°(R3),
we have the following estimate

| <f7§0 >W51’3/2(R3)><W(1)’3(]R3) | < C||fHLl(Ri")chrlsOHLS(RB)' (39)
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Proof. First remark that from the hypothesis, we deduce f € Wal’S/Q (R3).
Let ¢ € Wy (R3). Then we have curly € L3(R?). Thanks to Proposition
3.3, there exists 1 € Wy (R3) N L>®°(R3) such that curly = curle with the
following estimate

1Y llwio sy + 1P llLe@s) < Cllcurle||uss). (40)

Besides, there exists n € W02’3(R3) such that ¢ = 1+ V7 in R3. Then we have

<f,p >W0_1’3/2(R3)><Wé’3(]R3) = /3 f-v+ <f,Vn >WO_173/2(R3)><W(1)’3(R3)
- f £
R3
Therefore, the estimate (39) is deduced from the estimate (40). O

Remark 10. We have another proof for the above corollary as follows: We can
write that f = —Awu = curlcurlu, with u € Wé’3/2(R3) satisfying the

following estimate
il < CIE llgsio < CUE Il
Then we deduce

| <f,p >W;1’3/2(R3)><W(1)’3(]R3) | = ‘ < curlu,curle >L3/2(R3) x L3 (R3) |
|lcurl u||ps/2(gs) [ |curl @ |Ls gs)
CHf \|L1(Rs)\|curlcp||L3(R3).

IAINA

We now prove the following proposition.
Proposition 3.6. Let f € LY(R3) such that divf = 0. Then there exists a
unique ¢ € L3/2(R3) such that curl ¢ = f and divp = 0 in R3 satisfying the
following estimate
e llusz@sy < CIF |l we)-

Proof. From the definition of X(R?), we have f € W0_1’3/2(R3). As
A WE2(R3) — Wi 2(R3) L R

is an isomorphism (see [4]), then there exists a unique h € W(l]’?’/ %(R3) such
that —Ah = f and we have the following estimate

|| h ||W(1)’3/2(]R3) < C H.f ||L1(R3)-

Moreover, we can see that divh = 0 and then —Ah = curlcurl h. The
proposition can be easily obtained by setting ¢ = curl h. U

We have the following Helmholtz decomposition.
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Corollary 3.7. Let f € L}(R3) such that divf € WJQ’B/Z(R?’). Then there
exists a unique @ € L3/2(R3) such that dive = 0 and a unique m € L3/?(R3)
satisfying

f=curlp+Vr

and the following estimate holds

vz + 17 lloragy < C (115 lscesy + 1 div £ lly 2z, ) -
Proof. It is clear that
Viae Py, <divf,A>=0.

From the hypothesis and [4], there exists a unique 7 € L3/2(R3) such that
Am = div f and

I llpore@e) < ClAWVF [l 20

(R3)"

Then, we deduce that f — V& € W0_1’3/2(]R3) 1 R3. Therefore, there exists

a unique z € Wé’3/2(R3) such that —Az = f — V7. Moreover, we see that
divz = 0. Then, f — Vr = curlcurlz. The proof is complete by setting
¢ =curl z. O

The following proposition is an extension of Proposition 3.6.

Proposition 3.8. Let f€ L{(R?) + Wal’g/Q(R?’) such that div f= 0 and sat-
isfying the following compatibility condition

Vi=1,2,3, <f, 1>=0.

Then there exists a unique @ € L3/?(R3) such that curl ¢ = f and dive = 0
in R? satisfying the following estimate

H ® ||L3/2(R3) < O||f ||L1(]R3)+WO_1’3/2(R3)'

Proof. Let f = g+h with g € LY(R?), h € W, */*(R3) and div f = 0. Then
divg = —divh € W(;2’3/2(R3). Therefore we deduce g € W51’3/2(R3) and
g LR Asfe W0—1,3/2 (R?) L R3, then there exists a unique z € Wé’3/2(R3)

such that —Az = f and divz = 0. The proof is finished by choosing ¢ = curl z.
O

In two-dimensional space, we have a similar result as Proposition 3.8.

Proposition 3.9. Assume that f € L§(R?) + Wy "*(R?) such that div f = 0.
Then there exists p € L?(R?) such that curl ¢ = f and satisfying the following
estimate

lellzz@e) < CllF o ey w2 @)
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Corollary 3.10. Let fe X(R™) and f = 0. Then the following problem
R’n

—Au=f inR"

has a unique solution u € Wé’n/(n_l)(R")

u satisfies the following estimate

. Moreover, we have uw = &, * f and

im0 gy < CHLF llx@n)-

Proof. This corollary is an immediate consequence of Theorem 2.9, Remark
6 and the fact that

A WD ReYy — Wt DRY LR i n>3
A WiP(R?) — Wy (R LR if n=2

are isomorphisms (cf. [4]). We recall that
Wb/ (=D Ry LR = {f e Wy BT DRy < f 1> = o}.

O

Remark 11. In particular, when n = 2, f € L'(R?) and div f = 0, the solution
given in Corollary 3.10 belongs to L (R™) N € o(R™). The reader can find this
result in H. Brézis, J. Van Schaftingen [15] and J. Bourgain, H. Brézis [11].

Corollary 3.11. Let f € L'(R") such that 8, f € Wy 2™/~ (®n),
i) Then we have f € Wo_l’”/(n_l)(R”) and the following estimate holds

I llyyrnro-n gay < C (\|f||L1(Rn) + ||5nf||W(;2=n/<n—1>(Rn))~

ii) Furthermore if f = 0, then there exists a unique u € Wol’n/(nfl)(R”)

R’n
satisfying the following problem
Au = f in R",
and we have the following estimate
]/ gy < C (||f\|L1(Rn) n \|anf|\W52,n/<n,1>(w)) .

Proof. This corollary can be obtained by applying Theorem 2.9 and Corollary
3.10 with f = (0,...,0, f). (]
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Remark 12. We know that if f € L1(R"), then &, = f € L/ "D (R") if n > 3
and V(E, = f) € L/ " D®"). As 0,f € Wy 2™V (R") with n > 2, we
deduce that 9, (&, * f) € L™/ =D (R™), where

LY (R") = {f measurable on R"; supt(|{z € R™;|f(z)| >t} NP < oo} )
>0

However, in Corollary 3.11, V(€ f) € L™ ®=D(R") and £,* f € L™ ("=2)(R").
Then there is an anisotropic phenomenon.

Recall now a result in [2] concerning the Stokes problem in R™.

Theorem 3.12. Let (f,g) € Wo_l’p(R") x LP(R™) satisfying the compatibility
condition as follows

VA € @[1,n/p/], <f. A >w-tp 0. (41)

() x W' (B7) ~
Then the Stokes system (S)
—Au+Vr=f and divu=g¢g inR",

has a unique solution (u,7) € Wé’p(R")/:@[l_n/p] x LP(R™). Moreover, we
have the estimate

w1t A oy Hm sy < € (1F sty + 119l ).

Corollary 3.13. Let (f g) € X(R™)x L™ (»=D(R") satisfying the compatibility
condition as follows

< fi, 1 >=0 foralli=1,2,3.

Then the Stokes system (S) has a unique solution (u,7) € W™ ""D(Rn) x

L (=1)(R™) and the following estimate holds
s v + 17 sy < € (115 ot + 119 lzme- ).

Proof. This corollary is a consequence of X(R") «— Wo_l’"/(n_l)(R”) and
Theorem 3.12. g

4. The div-grad operators in the half-space

First of all, we introduce the following notations. If v is a function defined
on R, we set

(@ an) = v(x!, x,) ?f Ty >0, (42)
v(e', —x,) if x, <0,
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and

vi(x', 20)

_ {v(m',xn) if x, >0, (43)

71)(;1:'7 7;Un) if x,, <O0.
We also set
WiP(div;RY) = {v € LP(RY); dive € WPP(RY) ),

where WP (R?}) is the subspace of functions u in LP(R’}) which satisfy |z|u in
LP(R? ), and their normal traces are described in the following lemma (see C.
Amrouche, S. Necasovd and Y. Raudin [7]):

Lemma 4.1. The linear mapping

Ye, : DRY) — DR"),

v > VT,
can be extended to a linear continuous mapping
Yot WOP(div;R?) — W, /PP(R™),  for any 1 < p < oc.

Moreover, for all v € W?’p(div;Ri) and for all ¢ € Wol’p,(Rﬁr), we have the
following Green formula

A

Define now the following spaces

v-Vgodm—i—/

A pdivode = — < vy, ¢ >W‘;1/p,P(F)XW$/PvP/(F) .

¥ +
H,(div;R"}) = {v € LP(R}); dive € LP(RY)},

o

H, (R}) = {v € LP(RY}); dive = 0inRY}; v, = 0on T},
VIPRY) = {v e WEP(RM); dive = 0in R? },

where VOV(I)’p (R?%) is the subspace of functions of WP (R%) which are equal to
zero on the boundary of R’ .
Remark that from Lemma 4.1, if v € LP(R?) and dive = 0 in R?, then

v, € Wofl/PJ’(Rn—l).
We can show classically the following lemma.

Lemma 4.2. Forany1 < p < oo, we have that D(R™}) is dense in Hy,(div;R7 ).
Moreover, for any 1 < p < oo, the following linear mapping

H,(div;R?) — W_/PP(I)

v o— U,

s continuous and surjective.

24



Lemma 4.3. For any 1 < p < oo, we have
1) V(RY) is dense in Hy (R7),
2) V(RZ) is dense in VP (R7).

Proof. 1) We give the proof for the case p = 1. With similar arguments, it is
then easy to consider the case p > 1. The idea consists in using Hahn-Banach

Theorem and showing that f = 0 if f € [ﬁl (R%)]" satisfying
Vv e V(RY), < f,v>=0.

We know that there exists # € D'(R"}) such that f = V. Thanks to [4], we
have m € Wl’p(M) for any p > 1. On the other hand, 7 € C°(R"}) and we can

loc

suppose m(0) = 0. So that
Ve € RY, |r(z)] < [2]||VA|lLe@y)-

Let now ¢ € C*(R%) with 0 < ¢ < 1 satisfying ¢(x) = 1 if || < 1 and
Y(x) =0if || > 2. We set

x
Yi(z) = ’(/J(E) and 7 = Y.
Then 7, € L>®(R"}) and supp V7, C B(0,2k). Moreover, if |z| < 2k, then
C
IVre(z)] < lm(@)| + C|Va(z)] < 3CV|lLe@y)-
Therefore, we have that (Vmy); is bounded in L (R”). In fact, we show that
Vr, = Vr in L(R%), d.e.,

. om, om
1 n — ) —
Vo e L' (R}) and Vj = 1,...,n, /]Ri(axj 8xj)ga 0

when k — oo. Let now v € ﬁl (R%). Thanks to Lemma 4.1, we have

/Vﬂ'k"l):—/ 7w, dive = 0.
R R

n n
+ +

By passing to the limit in the above equation, we obtain

Vv =0 =< f,v >.
RZ

This ends the proof of the case p = 1.

2) We content ourselves here with the case n = 3 and p > 1. Proceeding
similarly as in the proof of Lemma 5.6, we can show that if f € A% oP(R3)
such that divf = 0, then f = curle with ¢ EVOV(Q)’p(Ri) and

HQDHWﬁ’p(Ri) < CHfHWé’P(RLj’ry
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As D(R3) is dense in \?V%’p(RiL there exists ¢, € D(R?) such that ¢, — ¢
in WP (R3). The sequence f, = curle; answers this question.

O
Lemma 4.4. Let 1 < p < co. The following properties are satisfied:
i) The mapping

1,p’
Vi IPRY) — (VAR
is an isomorphism.
it) The mapping
div: WP (RL)/ VP (RY) — LV (RY)

18 an 1somorphism.
Proof. It suffices to show that the second operator is surjective. More

generally, let ¢ € L” (R7) and g € W(l)_l/p/’p/ (R"~1) (instead of g = 0). We
know that there exists u, € W(l)’p/ (R%) such that ug = g on I'. This shows

that we can assume g = 0. Then let 7 € WOQ’p' (R%) be one solution of the
following equation

0
Am = ¢ in R} and a—x: =0 onT.

’ 8 . 6
Let ; € Wg* (RY) with i = 1,...,n — 1 such that ; = 0 and ajz = 507
I'. We set ’ Z

0 Oy 81/%
_(awn,..., o Z

The function v = V7 — 2 satisfies u € Wo’p (R%), divu = ¢ in R} and u =0
onI'. g

Remark 13. The property i) of Lemma 4.4 can be rewritten as follows: for any
f € Wy P(R?) such that for any v € Vé’p’ (R%) satisfying
< f,v>=0,

there exists a unique 7 € LP(R"}) such that f = V7 with the following estimate
17 llzrgr) < Ol lhwotmgas)

We can improve this result as follows.

Theorem 4.5. Assumen >3 and1 <p < oo. Let f € Wal’p(Rﬁ) such that
Vv e VRY), < fiv>=0.

Then f= NV, with m € LP(R?).
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Proof. Let ¢ € W(l)’p, (R™). We define the operator

/

Po(z',2,) = p(z',2,) — p(x',—2,), x, > 0.
By duality, we also define the operator

< P'fiop>=<f,Pp>__ o )
F.e I, Py Wi L R )XW (21

It is clear to see that
* -1, n -1, n
P*: W, p(R+) — W, P(R")

is continuous. Remark that, thanks to De Rham’s Theorem, there exists 6 €
D'(R%) such that f = V6. On the other hand, as § € D'(R"}) and V@ €

Wal’p/(Ri), then 0 € L? (M) and P*V# = V6@*. Then we have VO* €

loc

W, "P(R™) and A* € W, >P(R™). Moreover,
< AP 1> = 0.

Thus there exists a unique A € LP(R™) such that A(A—60*) = 0in R™. However,
V(X — 6*) is harmonic and belongs to Wy ""*(R"). Consequently, V6* = VX
and there exists C' € R such that * +C = A. The function 7 = 6+ C € LP(R?})
is the required solution. O

Remark 14. In Lemma 4.3, we have given a constructive proof for the density
of the space V(R?}) in VP (R%). Using Hahn-Banach Theorem and Theorem
4.5, a second proof of this result can be given.

We introduce the following proposition.

Proposition 4.6. Let f e L'(R") such that

Vo € L*(R%}) with div v =0, frv=0.

RY

Then there exists a unique ™ € L"/("_l)(Ri) satisfying f = V@ and the follow-
ing estimate holds

I llznse-n@yy < ClIf [l @n)-

Proof. Letu € L™/ (~1(R%) satisfying Vu € L'(R7). Thenu* € L™/ ("~H(R"),
Vu* € LY(R") and we have the following estimate

||U||Ln/<n—1)(R1) < H’LL*HLn/(n—l)(]Rn) < CHVU*HLl(R") < 2C||vu”L1(Ri)

The remains of this proof is identical to the one of Corollary 2.2. (]

We set Bf = {z € R, |z | < a} with @ € R and a > 0. We introduce the
following lemma.
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Lemma 4.7. Let f € LY(B}). Then there exists w € Wy (B;) N L>®(B;)
such that divu = f and we have the following estimate

lullpegpy +IVUllLn sy < ClHF e (44)
where C' does not depend on a.

Proof. Let f € Ly (B}) and we set g(z) = a f(az) with z € Bf". Then
we can deduce g € L§(Bf"). Thanks to Theorem 3 [10], there exists v €
W, ™(Bf) N L°(B}) such that dive = g and we have the following estimate

vl sy TIVOllLairy < Cllgllpn e (45)

We now set u(x) = 'v(f) with € B. Then divu = f and we have
a

1
/ Vu(e)|"de = / L Vo) rardt = / Vo(t)"dt.  (46)
BT g+ a" BF
a 1 1
Besides, we can similarly prove that

el sy = ||’U\|Loo(31+) and || fllppr) = ||gHL"(Bfr)' (47)

The estimate (44) is deduced from (45), (46) and (47) and the proof is finished.
(]

We now give a similar result of Corollary 4.7 but the one is considered in
the half-space.

Theorem 4.8. Let f € L"(R"}). Then there exists u EVOVé’"(Ri) NL>(RY)
such that divu = f. However, we have the following estimate

lullioe@n) +llwllwingn) < ClFllen@r)- (48)

Proof. It is easy to see that there exists a sequence (fix)ren C D(RY)
converging towards f € L"(R"}) because D(R?}) is dense in L"(R7). Let
B C R% such that supp fi C B;:. Applying Lemma 4.7, there exists uy €
W(l)’"(B,f;)ﬂLoo (B ) such that div u, = f; and we have the following estimate

||Uk||Loc(Bik)+Hvuk‘|Ln(Bjrk) < C||fk|‘Ln(Bik) < CkaHLN(Rg;)

where C' only depends on n. By extending uj in R} by zero outside Bjk and
denoting u}, its extended function, we have

e lluoe@n) = [l llpe sy and [[ukllwir@n) = [lwrllwins: )

Then (u) is bounded in Vov(l)"(R’_f_) N L>(R%}) and we can deduce that there

exists a subsequence, again denoted by (wy)x such that ur — w in VOV(l)"(Ri)
and ug — u in L®(R7). Hence, we have divu = f and the estimate (48). O

Similarly to Corollary 2.4, we have the following result.
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Corollary 4.9. i) There exists C > 0 such that for all u € L™ "D (R™), we
have the following estimate

Hullpn/o-n@e) < Cf+gigfw(|\f\|u(m) + ||g||w(;1vn/<nfl>(Ri)) (49)

with f € LY(R?) and ge Wy "™/ " D(Rn),

i) Let f € LY(RY) + Wo_l’n/("_l)(R’j_) satisfying the following compatibility

condition
Voe Vi (RE) NL®(RY), < f v>= 0. (50)

Then there exists a unique © € L™/ ("=YD(R?) such that f= V.
We define now the space

X(R?) = {f e L'(R?), divf e W, >/ "D (@R,

Theorem 4.10. Let f € X(R%). Then f € Wal’n/(nfl)(Ri) and the fol-
lowing estimate holds

|| -fHWO*lv”/("*l)(]Ri) S C|| f||X(Ri)

Proof. The proof is similar to the one of Theorem 2.9. O
Proposition 4.11. Assume that f € X(R"}) satisfying

Vve V(RY), f-vdz=0.

RY

Then there exists a unique ™ € L”/("*l)(Ri) such that f = V7 and the following
estimate holds

7 llprnn@n) < CHF llyernon g

Proof. This proposition is an immediate consequence of the embedding X (R’ )
— Wo_l’n/(n_l)(Rﬁ) and Theorem 4.5. O

We now introduce the following theorem.

Theorem 4.12. Let ¢ € W o (R™). Then there ewist ¢ € \% o MR N
L>*(R%) and n € I/?/%”(Ri) such that

=1+ V.

Moreover, we have the following estimate

||¢||Wé'"(]R1) + ||¢||L°°(R¢) + ||77||Wg‘"(Ri) < OH‘Pvaév"(]Ri)- (51)
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Proof. = We know that D(R’}) is dense in W é’"(Rﬁ), then there exists a

sequence (¢r)ren € D(R’) which converges towards ¢ € VOV(l)"(R?r) Let now
By such that supp ¢ C B} and we set ¢} () = @, (rx ). Then we deduce
¢, € Wy"(B;f). Thanks to Theorem 2.6, there exist v, € Wy "(B;) N
L>(B) and n, € Wy (B]) such that ¢} = ), + Vn,, with the following
estimate

| Ve, lLn ) + 1] Vi ey + 1 D, ey < ClIVGL L (st)-
We now set " "
V() = Yi(—) and (@) = reni().
Tk Tk
Then we have ¢, = 1, + V1. Proceeding similarly as in the proof of Corollary
2.7 and by passing to limit, we can show ¢ = 10+ V7 with the following estimate

1 V9 llun@n) + 1% || @n) + [| D? 0l lLn@n) < Cll Ve llun@n)-

The estimate (51) follows from the fact that the semi-norm || V. [|pn(ry) (respec-

tively, || D?. |lL~(rr)) defines on W o™ (R™) (respectively, W S (R™)) a norm
which is equivalent to the norm ||. Hwé,n ®n) (respectively, || ||W02 ®)) U
+ +

Proposition 4.13. Let ¢ € W™ (R%). Then there exists ¥ € W™ (R7) N
L>*(R%) and n € Wg”(Ri) such that ¢, =0 on T' satisfying
p=v%+Vny

and the following estimate holds
4 ||lee ey ) + || 2 ||wé»"(m) +1In Hw(fv"(m) < Clle ||w(1)v"(]R1)- (52)
Proof.  As in Theorem 4.12, we can prove that ¢ = 1, + Vo such that
Py € Wy (R?) NL®(R?) and 1y € Wy ™ (R”) with the following estimate
%o ||L°°(R:;) + %o ||W(1,»"(R1) + o ||W§»"(R1) < Clle ||W(1""'(]R1)'
Setting 1 = b, on T, then p € L=(T) N W, ~/™™(T"). We can prove similarly
as in Lemma 3.10 [15] that there exists v € VV&”(R’_}_) N Whe(R?%) such that

v uoon I with the following estimates

oz,

v =0 and

||U||w§»"(R1) < CHM”WOI’U”’"(F) < C||¢0||w};"(m)

and
IVVllLe@y) < Cllplleem)y < Clltbg|lLeery)-
The proof is complete by setting ¥ = 1, — Vv and n = 19 + v. O
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Remark 15. We can give another proof of the existence of . We know that
fe Wal’S/Q (R3) LR3. Then, there exists a unique z EWé’S/z(]Ri) satisfying
—Az = f, with div 2 = 0 in Ri. The function ¢ = curl z is the required

function.

Proposition 4.14. Let ¢ € Wé’S(Ri). Then there exist ¢ € Wé’3(Ri) N
L>(R3%) and n € Wi (R2) such that

p=1v+curlyn with '=0onT
and we have the following estimate
1K ||wé’3(R§r) + ¢ ||L°°(R§’r) +1In ngﬁ(Ri) < Clle ||Wé’3(Ri)'
Proof. Let ¢ € Wi (R2). Then * € W(?(R?) (see at the beginning of
this section for the notations), we can use Proposition 2.13: there exist v, €

W (R?) N L®(R3) and 1, € Wg?(R?) such that ¢* = 9o + curlne in R3,
with the following estimate

l%ollwis sy +[l%ollLee@s) + ln0llwzs@s) < Cllepllwrsgs -
As in the proof of Lemma 3.10 of [15], we can prove that there exist a €

W(Q)’S(Ri) with Va € L% (R3) satisfying o = 0 and g—;’; = 1o on I'. Moreover,
we have the estimate

IN

el s ) + [IVellieyy < C (lbollwa sy + lldollasy).

One has thus the conclusion with ¢ = 1y — curl o and n =1, + o O

Remark 16. We have another result with the data ¢ € VOVé’S(Ri) (see Propo-
sition 5.7).

Proposition 4.15. i) If f € L'(R3) with divf = 0, then / fz=0.
R}

i) If moreover f3 =0 on T, then f=0.

3
R+

Proof. i) Setting f = (f., 7). Then f € L(R?), divf = 0in R? and
therefore :f =0, t.e. / fs=0.
3

R3 RS
ii) We have known f3 = 0. Setting f = (f*, f3.). Then f € L1(R3),
Ry
divf =0 in R? and therefore f = 0 that implies f'=o. O
R3 R3
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Remark 17. 1) Let f € L'(R3) that satisfies the property: ”For any n €

W *(R3) such that Vi € L>(R%) and n = 0 on T, we have / f-Vn=20"
RY

By taking n = x3, then we obtain f3 =0.
R3

ii) Let f € L'(R3) that satisfies the property:
"For any n € Wg’?’(Ri) such that Vi € L (R3), we have / f-Vn=0". By
R

taking 7 = x; with ¢ = 1,2 and after taking n = x3, we find f=0.

3
Ry

5. Vector potentials in the half-space

Proposition 5.1. Let f € L3(R3) such that divf = 0 in R3. Then there
exists ¢ € Wéd(Ri) such that f = curly withdive =0 inR3, p3=00onT
and we have the following estimate

||<P||wé)3(R3) < Ol fllss)-

Proof. i) Setting f = (f., f1). It is easy to show f € L3(R3) and divf =0
in R®. Let § € W,?(R?) such that —AQ = curlf. Then div® = 0 and
curl (curl 0 ,:f) = 0in R3. We now set z = curl § — :f in R3 and can deduce
z € L3(R?), divz =0 and curlz = 0 in R3. As Az =0, then z =0 in R3. It
means that f = curl@ in R? and f = curthRi with div@ =0 in R3..

i) Let h € Wg ’3(R3_) be a solution of the following equation

oh

Ah =0 ian’r and 371‘3

=03 onT.
Setting ¢ = 6 — V h. Then we have ¢ € Wé’S(Ri), divep = 0 in R% and
p3=0onT. (]

Theorem 5.2. Let f € L3(RY) such that divf = 0 inR3 and f3 = 0 on T.

Then there exists a unique @ € Wéj (Ri) such that f = curly with dive =0
m Ri and @' =0 on T'. Moreover, we have the following estimate

||<P||wg*3(R§r) < Ol flluses)-

Proof. i) We start this proof by showing the uniqueness of . Indeed, if
p € Wé’?’(Ri) such that curlg = 0,divey = 0in R and ¢’ = 0 on T, then
there exists ¢ € Wg’?’(Ri) such that ¢ = V¢ in R3 with Ag = 0in R3 and
q is a constant on I'. Consequently, ¢ is a constant in Ri and we then deduce
¢ =0inR3.

i) We now consider the existence of . Setting f = (f'*, f3.). Then we have
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f € L3(R?) and divf = 0 in R3. Therefore, by Proposition 3.3, there exists
z € Wy °(R?) such that curlz = f and divz = 0. Let now w be the vector
field defined on R? by

w(z' z3) = (—21(2, —23), —22(x’, —x3), z3(x', —x3)), 23 <O0. (53)
By some easy calculations, we can show curl w = curl z in R? . Then we have
w =z + Vu in R® (54)

where € D'(R?). As Vu belongs to Wy (R3 ), we can show u € W5*(R?).
Let po € Wi (R3) (cf. [6]) such that

Apg =0 inRi and po = p onl.

We set ¢ = z + %Vﬂo. Then we have curlyp = f and dive = 0 in R}.
Applying now the trace operator to the relation (54), we deduce that

22/ =—V'u=—-V'yg onT,

i.e., o =0onT. O

Corollary 5.3. Let f e L3(R3) such that divf = 0 in R} and f3 = 0 onT.

i) There exists a unique @ EVOVé’g(Ri) such that div A = 0 satisfying f =
curly in Ri. Moreover, we have the following estimate

lellwisms) < Cll Fllus@s)-

it) There exists @ € VOV(l)’?’(]Ri’_) NL>®(R3) such that f = curly in RY and we
have the following estimate

|\1/’||w5$3(m) T Loy < Cl FllLoes)- (55)

Proof. i) First of all, we start this proof by showing the uniqueness of ¢.

Let ¢ E\?V(l)’g(Ri) such that curl = 0 and divA¢ = 0 in R3. Then there
exists ¢ € WOQ’?’(]Ri) such that ¢ = V¢ with A%2¢ = 0in R3, ¢ is a constant
dq

on I' and T 0 on I'. We can deduce that ¢ is a constant in Rﬁ_ and then
3

@ =0in Ri.
We now consider the existence . Let x € VVO2 ’3(Ri) be a solution of the
following system

A2X:OinRi, x=0onT, ;—X:z;gonF,
T3

where z is the vector potential given by Theorem 5.2. We set ¢ = z — V.
Then f = curly with ¢ € W(l)’?’(]Rﬁ_).
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it) The proof is easily obtained by applying Theorem 4.12. O

From Theorem 5.2 and Corollary 5.3, we have the following Helmholtz de-
compositions.

Corollary 5.4. Let f€ L3(R3).
i) There exist m € Wol’?’(Ri) unique up to an additive constant and a unique
p € Wé"g(Ri) such that dive = 0 in R3 and ¢’ = 0 on T satisfying

f=curlp+ V. (56)
Moreover, we have the following estimate

||‘P||wévS(R§r) + ||V7T||L3(]Ri) < | f||L3(R§r)~ (57)

it) There exist a unique @ eW é’g(Ri) with divAp = 0 in R} and © €
Wol’g(Ri) unique up to an additive constant satisfying (56) with the correspond-
g estimate.

iii) There exist ¢ eW o (RE) N L>(R}) and m € Wol’g(Ri) unique up to
an additive constant and satisfying (56) with the corresponding estimate.

Proof. i) Let f € L3(R3). We consider the following problem (P): Find
T E W01’3(Ri) such that

Vi e Wyt AR, V-V = / f V.
RS 253

Thanks to C. Amrouche [3], we know that the problem (P) has a solution ,
unique up to a constant, satisfying the following estimate

HV7T||L3(R1) < CIf ||L3(R3)~

The function 7 is also solution of the problem as follows

om

— —f3 =0 .
s f3 on
We set h = f — V. It is easy to see h € L3(RY), divh = 0 in R} and
hs = 0 on I'. Applying Theorem 5.2, we can decompose f as in (56) and we
obtain the estimate (57).

Ar = divf in R} and

i1) Proceeding similarly as in the case i) of this corollary, but at the end of
this proof, instead of apply Theorem 5.2, we use Corollary 5.3 part i) to obtain
(56).

i11) This proof is complete by proceeding similarly as the precendent cases and
by applying Corollary 5.3 part ). O
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Remark 18. Using the above proof of part i), it is easy to see that any f €
D(R3) can be uniquely decomposed as the form (56) with ¢ € Wé’q(Ri) and

e W, “(R3) for all ¢ > 1 with the corresponding estimate similar to (57)
where C' = C(q).

Corollary 5.5. Let f e Ll(Ri) such that div f = 0. Then, for every ¢ EVOV
é’g(Ri), we have the following estimate

|<fa<P>w | < CllfllLige)lleurl ||y gs ).

_ o
o PR x Wy (RY)

Proof. This proof is similar to the one of Corollary 3.5. ]

Lemma 5.6. Assume fGVOV(l)’S(Ri) such that divf = 0. Then there exists a
unique @ € VOV(Q)"3 (R3)) such that f = curlp with div A% = 0 inR3.. Moreover,

we have the following estimate

lellweemsy < Cll Fllwiemgs -
0 (+) 0 (+)

Proof. i) First step: Let f EVOVé’?’(Ri) and divf = 0. We extend f to R?
as in the proof of Theorem 5.2 and denote f the extended function that belongs
to W5 (R?) and is divergence free. Then, from [4], there exists y € W5 *(R?)
such that _

—Ay = curlf inR3.
As divy € WO1 >3 (R3) and is harmonic, then divy = a where a is a constant.
Thus, we have curl (curly — J~") = 0. Therfore, we deduce

—A(curly) = curlcurl f = —Af,

it means that f — curly € Wé’S(R?’) and again, f — curly = b where b is
a constant vector in R3. Thanks to Lemma 3.1 [17], there exists a polynomial
s € £, such that curl s = b and divs = —a. The function z := y + s
belongs to W5 ?(R?) and f = curlz in R? with divz = 0 in R3. Let w be
the vector field defined on R? by

'UJ(CC/, .133) = (_Zl(wl7 —.133), —22($/, —333), Z3(:13,, —Jfg)), z3 < 0.

It is easy to show curlw = curlz in R?. Then we have w = z + V6, with
6 € D'(R%). Proceeding as in the end of the proof of Theorem 5.2, we can

deduce that there exists ¢ € Wg?(R3) such that
f = curl¢ and div{ =0 in Rf’r, ¢'=0 onT.

i1) Second step: Let x € WS”B (R2)) be a solution of the following system

0
A%{:OinRi_, x = 0 and ox = (s onl.
3x3
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We set h = ¢ — Vx. Then h € Wy*(R%) and
f =curlh and divAh =0 inRi, h =0 onT.
We know that there exists p € W¢ ’3(Ri) satisfying

o

- 82/.1, - 8h3
N 81'3

=0 and —5 —onI

A3y = 0in R3 = .
a R or3  Oxs

i11) Third step: We set ¢p = h — V. Then ¢ € W(Q)S(Ri), curlp = f in
Ri and ¢ = 0 onI'. We have

dp Oh 0 _ Oh o
Eril ol L Ul el v

3
n Ry,

Then,

Ops _ Ohs 0w _ o oy
Ors  Oxz Ox3 '

/

Oh
As f = curlhinRi and f = h = Oonl",thena— = 0on I But
Z3

/ ° 2.1
- ou o¢' _ OonT and ¢ € W*(R3).

—— =0onl,th
D25 on I', then s
iv) Last step: The uniqueness of ¢ follows from the fact that if ¢ € Vo\fg’s(Ri)

satisfying curlg = 0 and divA%@ = 0 in R3, then ¢ = Vg in R} with

0 02

g€ Wy (RY), A% =0 in RY; and ¢ = c, 1 —Z = 0 on I' where cis a
O0x3 Oxs

constant, i.e., ¢ = c in Ri and ¢ = 0 in Ri. This proof is finished. O

Proposition 5.7. Let ¢ EW é’g(Ri). Then there exist 1 EW (1)’3(R3_) N
L>(R%) and n GV()V?)’S(R% such that

. . 2 . 3
@ =1 +curlny with divA*n = 0in R7.
However, we have the following estimate
H'L’Hwéﬁ(ngi) + 19l ge) + ||"7||W3'3(Ri) <C H90||W(1)’3(Ri)'

Proof. From the hypothesis, we have divp € L3(R3). Thanks to Theorem

4.8, there exists 9 € W 3(R3) N L®(R3) such that divey = dive and we
have the following estimate

Hlf’HLw(R-}r) + ||¢||Wé’3(Ri) < CHdiV‘PHm(Riy

Weset f = ¢ —1. Then f GVC{/'(%’BGR{?F) and divf = 0. Applying Lemma
5.6, there exists n GVOV?)’?’(Ri) such that f = curln. O
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Corollary 5.8. Assume that f € L'(R3) and curl f € Wa2’3/2(R‘1). Then
fe Wal’S/Q(Ri) and we have the following estimate

15 b2y, < CCIF llsca) + lewrl  llyy2ormgs )

Proof. The proof is similar to the one of Theorem 2.9. O

Proposition 5.9. Let f€ L*(R3) such that div f=0 in R3.. Then there ezists
a unique @ € L3/2(R%) such that curl ¢ = f, divep =0 in R3 and o3 = 0 on
I satisfying the following estimate

lelliezme) < ClIS llues)-

Proof. 1) First step: We first consider the uniqueness of . Let ¢ € L3/2(Ri)
such that curley = 0, divep = 0 in Ri and ¢3 = 0 on I'. Then ¢ = Vq
with q € W0173/2(]R3_), Ag = 0in R3 and ;Tq = 0 on I'. Therefore, from C.
Amrouche [3], we deduce ¢ =0 and ¢ =0 in fRi

i) Second step: We set f = (f%., f}), then we can deduce div} = 0. Thanks to
Proposition 3.6, there exists a unique Z € L3/2 (R?) such that curl Z = f and
div Z = 0 in R? satisfying the following estimate

1 Z |lLerz@sy < ClS lliesy < ClF lluiee)-

We set z = Z|R3+. Thanks to Lemma 4.1, we can deduce that z3 € VVO_Q/?”S/2 )
on I'. We know that the following problem

. oh
—Ah =0 mRi and 92, = z3 on [,

has a unique solution h € VVO1 3/2 (R3) (see [3]). The proof is complete by setting
¢ =2z — Vh. O

Remark 19. We can give a second proof of the existence of the vector potential
[e]

p. As f € W51’3/2(Ri), there exists a unique z € W (1)’3/2(Ri) satisfying

—Az = f, with div z = 0 in Ri. The function ¢ = curl z is the required

function.
We introduce the following proposition.

Proposition 5.10. Let f € ng’s/z(Ri) such that divf = 0 in R3. Then
there exists a unique @ € L3/2(Ri) such that curl ¢ = f, divep = 0 in R3 and
w3 = 0 on I satisfying the following estimate

e llLez@s) < C||f||w071,3/2(R1)~
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Proof. For the uniqueness of ¢, the proof is similar to the one of Proposition
5.9. Thanks to Corollary 5.3, the following operator

B = curl : VOV(l)’g(Ri) — Hs (R%)

o
is linear, continuous and surjective. Moreover, as V(R3) is dense in Hj/» (R?),

then for all u € Vov(l)’g(Ri) and v € I:I3/2 (R3.), we have

/ v-curly =< u, curlv >
R

3 W (RS ) x W /2R3

As 1313 (R3) = 1013/2 (R3), then the adjoint operator of B

. ° ~1,3/2

B* = curl : Hjp (RY) — Wy "2 (RY)
is also linear and continuous. It is easy to see that the kernel of the operator
B, namely the space {v €W é’g(Ri); curlv = 0} is same as the space
G = {Vg q¢ Vc[)/g’3 (R3) }. Then the following operators
curl : Wé’B(Ri’r) /G — Hs (RY), curl: Hyp (RY) — W0—1,3/2(R3+) 1G
are isomorphisms. As D(R?) is dense in wg ’?’(]Ri)7 then we can easily verify

W, PR LG = {f € Wy 2(R3) and divy = 0}

The proof is finished. O

Remark 20. As in the previous remark, we can give a more direct proof.

The following corollary is the generalized case of Proposition 5.9 and Propo-
sition 5.10.

Corollary 5.11. Let f € L'(R3) + WSI’B/Q(Ri) such that divf = 0 in RY.
Then there exists a unique @ € LS/Q(Ri) such that curl ¢ = f, divee = 0 in
Ri and p3 =0 on I' satisfying the following estimate

|| 14 HL3/2(R3_) < C||f HLl(Ri)"'WO_Ls/Q(Ri).

Proof. Letnow f = g+hwithg € L'(R3), h € W, "*?*(R3) and div f = 0

in R3. Thendivg € WO_Q’B/2 (R3) and we can deduce g € Wal’gﬂ(Ri). This
corollary is a consequence of Proposition 5.9 and Proposition 5.10. O
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Lemma 5.12. Let f € L'(R3) such that divf = 0 in R3 and f3 = 0 on
I'. Then the unique solution ¢ € L3/2(Ri) given by Proposition 5.9 satisfies

¢ € WSZ/B’B/Q(RQ) and
|| 90/ HW(;2/3’3/2(R2) S C Hf ||L1(Ri).

Moreover for i =1 or 2, we have < @;, 1 >y -2/3.8/2 0.
0

R2)x Wy >*(R2) T

Proof. As V(R3) is dense in H, (R3), there exists f;, € V(RY) such that f,
converges to f in LY(R%). Let now ¢, € L32(R%) such that f;, = curl ¢,
dive, = 0in R3 and ¢, - n = 0 on I, with the estimate

||90k”L3/2(1R3_) < Clifk s

Let also ' € WOQ/B’S(R2) such that ys = 0 on I Then, there exists u €
Wé’?’(Ri) such that u = p on T satisfying the estimate

Hu||Wé3(R§_) < CHN’ ||W02/3’3(]R2)'

However, we known that there also exist v € Wé’g(R‘i) NL>(R3) and 7 €
VVO2 ’3(Ri) such that w = v + Vn with the corresponding estimate. Thus, we

obtain
fRi’r u-curl p, = fRi v - curl ¢,
= Jps r-curl u+ < @, x 0, u >p.
3

Hence, we have
| <orxn, por | < feurl gyl ol ) + l9gls e llourl ulgs
< C(||curl <Pk|\L1(1R§r) + ”QOkHL?’/?(Ri))Hu”Wé*:‘(Ri)
< C(||curl ‘PkHLl(Ri) + ”QOkHL?’/?(RE’;_)”‘NHW3/3«3(R2)'
Then
[P X -2/ ey < Cllf st

and by passage to the limite, we have
HQD X nHW[;z/S’S(RQ) < CHfHL%Ri)

and

v - cur1<p+/ @ -curl u.
R

<PpXn, u >W52/3’3/2(R2)><W(2)/3’3(R2) = / .
T

R}
Finally, the orthogonality relations are simple consequence of this last relation,
because if u = e;, then v = u and the integral on Ri of curl ¢ is zero.

O
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Theorem 5.13. Let f € Ll(Ri) such that divf = 0 in Ri and fs = 0 onT.
Then there exists a unique ¢ € L3/2(R%) such that f = curle with divep = 0
in R3 and ¢’ =0 on T'. Moreover, we have the following estimate

e lliazms) < Cll L)

Proof. Let 1 € LB/Q(Ri) such that f = curley with divep = 0 in R? and
13 = 0 on I') with the estimate

e llLez@sy < ClF s

Using Theorem 3.5 of Amrouche-Raudin [8], there exists a unique pair (w, ) €
Wé’g/g(Ri) x L3/2(R%) solution to

—Aw+ Vr=curly and divw =0 in Ri,
w3 = 07 83101 = ’ng and 8311)2 = —’(/)1 onlT.

It is easy to see that Ar = 0 in Ri. Moreover,

o _ Y2 OPr ¢ ps
67{53 = Aw,?,"‘ 811 81‘2 m R+,
and on I', we have
om0 (Ows), OY2 O
81'3 - 8%3 8x3 8$1 81'2
L0 (0w 0 (ows), 0y ou _
B 8l‘1 8%‘3 8.%‘2 6373 81‘1 61’2 N

Consequently, 7 = 0 in R3. The proof is finished by setting ¢ = 9 — curl w.
O

In two-dimensional space, we have a similar results as Corollary 5.11.

Proposition 5.14. Assume that f € L'(R2) + Wy "*(R%) such that div f=0
in R2. Then there exists ¢ € L*(R%) such that curl ¢ = f, divp = 0 in R%
and w3 = 0 on I satisfying the following estimate

lellre@e) < C||f||L1(R3)+ng=2(Ri)'

6. Elliptic problems in the half-space
The following theorem was given by C. Amrouche and S. Necasové [6].

Theorem 6.1. Let 1 < p < oo and (f,g) € Wy "P(R?) x WY/P'(T). Then
the following problem

—Au = f in R%,
(‘C-‘r) o _+n—1
u =g onl =R"
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has a unique solution u € Wol’p(Rﬁ) and we have the following estimate

lullwir@ny < CUL Nlwgromn) T 1191w p@n-1))-

The following result is a consequence of Theorem 4.10 and Theorem 6.1.

Corollary 6.2. Let f c X(R'}). Then the following problem

~Au=f mR} and u=0 onI = R"! (58)
has a unique solution u € Wé’n/(nfl)(Rﬁ) and we have the following estimate

||U\|w[1),n/<n71)(m) < Cll Fllxey)-

Corollary 6.3. Let f € L'(R™) such that 8, f € Wy >/ " D(R™). Then
we have [ € Wofl’n/(nfl)(R’_f_) and Problem (L) with g =0 onT has a unique
solution u € Wol’"/(nfl)(Rfﬁ) satisfying the following estimate

el ) < € (”f”LlGRi) + Hanf||w;2'"“"*1><m>)'

Proof. This corollary can be obtained by applying Theorem 4.10 and Corollary

6.2 with f = (0,...,0, f). 0
_ 1 _n
Lemma 6.4. Let ¢ € LY(T) such that div'g € W, 2+"“""I(F). Then ¢ €
—141

W, "’m(I‘) and we have the estimate

).

/ 141 _n_ < C / + diV/ / o4l _n_
11t e, S OOy + I ey

Proof. Let p € D(T) and ¢ € Wé’”(Ri) such that ¢ = p on I' with the
estimate

e Hw;v"(m) < Cllpl \Wl_%,n(r)-

Thanks to Proposition 4.13, there exist 1 € Wy (R%) N L=(R%) and 7 €
Wgn(R’j_) such that ¥, = 0 on T satisfying ¢ = 1 + V7 and the estimate

H"/’HLOO(RQ) + ||"/’||wé’"(u§1) + ||77‘|ng"(]gi) < CH‘PHwé‘"(Ri)- (59)

Then

< g, 0 >pTxDT) = / g - <div'g’,n >W—2+%,ﬁ(r) Wi Em
T 0 xW, "

+ < 9ny, Pn > 71+l,% 1-1 .
W, TR M)xW, (T
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and

| < g,p>pryxpr) | < llg’ llL2 () |y’ HLOC(R" + ||div’g']| —2+},n 1(F)><

||77||W2 1, + [lgnl| —1+1., n H‘Pn”

1—
n"(T) Wy

< Cllellwingn) < Cllull

1.,
n

(D)
Iy

(60)
Thanks to the density of D(I') in Wé_%’n(l“) and (60), we can deduce g’ €
VVO_H_Z ﬁ( ) and
/ / ! !/
1) et ) S O Ny + AV 6 g )
O

n

). If

Es
n

Theorem 6.5. Let ¢ € LY(T) and g, € W, -

+1 _n_

Ag’ = O’ < gn’l >= 0 and div'g' S WO monet I(F)? (61)

then the system
~Au=0 mR} and u=gonT (62)

has a unique very weak solution u € L"/("_l)(R’_f_) with the following estimate

lwllgnso-n@ny < C (gl +HIdiv' gl ovaa; +|Ign|| ot )-
W @) (I)

Proof. The system (62) is equivalent to the following one: Find w belonging
L™/ (=D (R7) such that for all v € W2™(R?) N W L7 (R"),

ov

u-Av=—-<g,— > 1 n
/n 781'” w, 4+ 5nz I(F)XW(I)

We know that, for all F € L™(R%), there exists v € W™ (R?)N W DHRR),
unique up to an element of x,R", such that —Av = F in R}, v =0 on I" and
the following estimate holds

||”HW§"(R )/.Ean < C||FHL7L Rn

Then, from (61), we have for all a € R",

| <g 87’0 > 1 |
Y0z, T wy, TR (o) xew TR
o(v + az,)
Sl w, T () ew) |
SOHgH -1+l -n T () ||'U+(1;l‘n||w2n(]R )
0
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Consequently, taking the infinum, we have

ov
< P > — 1l _n S C _ 1 _n F n(RnY.
l<g On W, 1+71“”‘1(F)><W37%’"(F) | ||9Hw0 H—"’”‘l(r [|F||L (®?)
As fF g’ = 0 and < g,,1 >= 0, the linear operator
ov
T:F—><g,7> 14l n -1 n
0r, ~w, ™" Irxw, ""(r)

is continuous on L"(R"} ) and thanks to the Riesz reprensentation theorem, there
exists a unique u € L"/(”*l)(RS‘r) such that T'(F) = / u - F, e, uis the
R?L
T
solution of (62) with the desired estimate. O

In the following theorem, we consider the case of Neumann boundary con-
ditions.

Theorem 6.6. Let

1+

3=

fe LI(R’JF), g eL}T) and g, € W, () (63)
satisfying the compatibility condition
/ f’+/g’=0 and fo + < gn1>=0. (64)
" r R7
If
| Jar £-VE+ [ g - VE]
[f.9] = sup = 2 < o0 (65)
EEWS™(RY), ££0 1€ ||W02v"(R1)

i.e div f€ [WOQn(]RQL_)]’ and div’ g € W62+1/n’n/(n71)(F), then the system

0
—Au=f inR} and —u:gonf‘ (66)
0xy,
has a unique solution u € Wé’n/(nfl)(Rﬁ) with the corresponding estimate.

The proof is a direct consequence of the following lemma.

Lemma 6.7. Let f, ¢ and g, such that (63) - (65) hold. For every ¢ €
Wé’”(Ri) NL>(R%), we have

[ ot [ 06 <om ou>] 2 Ol + 19 ll+
Ry r (67)

/
Fllgnll gty + [EI DIV )

™)
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Proof. Write ¢ € Wén(Rﬁ) NL>*(R%) as ¢ = 1P 4+ V1 according to Propo-
sition 4.13. One has

f~<p+/g’-so’+<gn, On >= f~(¢+V77)+/g’~¢'+
R7 r R7 r

0
+/9’-V’n+<gm Yn >+ < gn, s
r o,

We deduce then the estimate
[ ot [ 6@ <o pn>] < CUF gy +Ig o+
R% r (68)
!
Fllgnll oo, + 18 DI g
Because of the compatibility conditions (64), this last relation also holds if we

replace ¢ by ¢ + K, with K € R". Finally the estimate (67) is consequence of
the following Hardy inequality:

Infreer|| @+ K llws ) < Cl| Vo

L (Ri) .

Proof of Theorem 6.6. According to the estimate (67), we have
f-<p+/9’-<P’+<gn, pn>= [ F:Ve
R? r R7
with F € L/(»=D(R%) and
||-7:HL"/<"*1)(]R1) < C(lf ||L1(R1) + 119" lLm)ll + [l gn ”Wé*%’"(r) +[f.9']).
It means that f = —divF € Wo_l’n/(n_l)(Ri) and F;; = ¢; on I' for any
i=1,...,n. It is easy to see that the problem (66) is equivalent to the following

one:
Find u € W(l)’"/("_l)(R’}r) such that for any ¢ € W™ (R"), we have

Vu:Ve = F :Ve. (69)

R™ R"
The regularity L™/ (”’1)(Ri) of F assures the existence of a unique solution
u € W™ ""D(R™) of the problem (66). O

Theorem 6.8. Let f€ LL(R?) such that div f € [W2"(R™)N W (R and
fn=0. Then f € Wo_l’n/(n_l)(Ri) and the system

R
Ooun,
oz,

—Au=f inR}; =0 and =0 onT (70)
has a unique solution u € Wé’"/(n_l)(ﬂ%ﬁ).
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Proof. The problem (70) is equivalent to the following one: Find u belonging
Wé’n/(n_l)(Rﬁﬁ) such that ' =0 on I" and for all ¢ = (', p,) € \;V(l)”(Ri) x

D(RY),

. o ro
Vu: Ve =< fp > W (71)

—1,n/(n—1) CRRDIN frnon.
R 0 (R ) x W™ (R ) R

Step 1: First of all, we shall show that for all ¢ € Wén(Ri) N L*(R?) such
that ¢’ = 0 on I', we have

[ el < Ul +Idvs 0l elwrey — (72)
R}

where K = [W" (R7)N V?/'i’f(]R’_f_)]’ here. Indeed, for every ¢ € W™ (R%) N
L (R ) such that ¢’ = 0 on I, let A € WOZTL(RTJF) such that A = 0 and

—— = ¢, on I' with the following estimate
ox,

H>‘||W02v“(R1) < CHS"nHWOl*l/"»”(F) < CH(pHWé‘"(Ri)'

By setting @ = ¢ — VA, we can deduce @ GVO\7(1)’"(R’+‘). Thanks to Theorem
4.12, we have @ = v + Vi with ¢ € WE"(R?) NL2(R?) and n € W2"(R™).
o

It implies ¢ =¥ + Vu with p=n+ X € WOZ’"(RQL_), @ =0 and 3
.y,

= ¢, on

I'. Then, we have

[ f-el = |fR1f~¢—<din,u>|

n
RZ

< S @19 e @y + 1AV F [l a1z @)
< CU My + 11div £ IOl e llwim @n)»

with the estimate (72).

Step 2: Replacing now ¢ by (¢, ¢, + K) with K € R, then for all ¢ €
Wén(Rﬁﬁ) N L>*(R%) such that ¢’ = 0 on I' and for all K € R, because
fo fn =0, we have by (72)

'+ faen)l < (1S ey +[1divE [lc) x

RY

<" [wim@n) + 11on + Kllwingn))-

Taking the infinum, we obtain by Hardy inequality:

[ G+ fupnll < OUIF ey + 1l div £ e )
+

([ V@' [lLr@n) + || Voo [ln&n))-
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Then,
fe = F: Vo
Rz

Ry
with F € L/(»=D(R%) and
H"F”Ln/(”*l)(R;‘_) < C(HfHLl(]R:;) + [ div £ [ )-

It means that f = —divF € Wo_l’”/(n_l)(Ri) and F,,, =0on I'. It is easy to
see that the problem (71) is equivalent to the following one:

Find u € Wé’n/(nfl)(Rﬁ) such that v’ = 0 on I' and for any ¢ = (¢’,¢,) €
W™ (R?) x W™ (R?), we have
/ Vu:Ve = F Ve (73)
R R

Taking ¢, = 0 and after that taking ¢’ = 0 on the problem (73), we directs our
attention to the resolution of two classic problems, one with Dirichlet bound-
ary condition and another with Neumann boundary condition. The regularity

Ln/(n=1(R%) of F assures the existence of a unique u € W(l)’n/("_l)(Ri) of
the problem (73).
O
Theorem 6.9. Let f€ L'(R") such that/ f'=0.1If
R%
| f]Rn .f Vf'
[f] = sup —F <
EED(RY), 52-=0 on T 1€ ||W02’"(R1)
holds, then the system
u/
—Au=f inR}, u,=0 and =0 onl

Ox,,
has a unique solution u € Wé’n/(nfl)(Ri) and
ellygsrro-ngs, < C 1Ak +151):

Proof. Let ¢ € Wén(R’}r) N L>(R?) such that ¢, = 0 on I. Then there
exist 1 € W™ (R?) N L®(R?) and n € W™ (R?) such that ¢ = 4 + V7 with
Uy, = 8—77 = 0 on I'. Moreover, we have

T,

%o ||L°°(R1) + %o ||wé»”(m) + o ||W02»"(]R1) < Clle ||w(1)v"(m)-
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Then,

and

[ £l < CUF oy + D@y ey
+

Let K = (K',0) € R*! x {0}. Then we have

" ! K nPn| — .
IR )+/Rifs0| I/Rif o

< CUM ey + [FDUNE" + K llwingny T llenllwingn))
< CUIS Nean) + [F DUV [n@n) + 11 Ve L))

The remains of this proof is similar to Theorem 6.8. U

Recall now a result of C. Amrouche, S. Necasovd and Y. Raudin in [7]
concerning the Stokes problem in R .

Theorem 6.10. Foranyf € W, "P(R?), h € LP(R?) and g € wWierr),
then the Stokes system

—Au+Vr=f inR},
(8T) {divu=nh in R%,
u=g onI'=R"1,

has a unique solution (u,7) € Wé’p(R’_ﬁ) x LP(R%). Moreover, we have the
estimate

|| u”wéﬂmg)"‘” ™ ||LP(R1) < C( H.fHWO—LP(Ri)"‘H h ||LP(R1)+|| g”w(l;l/PvP(p))'
As consequence, we obtain the following Helmholtz decomposition.

Corollary 6.11. Let f € X(R3). Then there ezists a unique ¢ € L¥?(R3%)
such that div e = 0 with p3 =0 on I' and a unique 7 € L3/2(R‘3_) satisfying

f=curlyp+Vr
and the following estimate holds

lelluerms) +lmllrsz@) < ClF llx@s)-

Proof. Let f € X(R%). Then we have f € W L.3/2 (R3). Thanks to Theorem
6.10, there exists a unique solution (u,7) € Wé’3/2 (R%) x L3/2(R%) such that

—Au+Vr = fin Ri, dive = 0in Ri, u =0 onl.

This proof is finished by choosing ¢ = curlu. O
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Corollary 6.12. Let (f.h,g) € X(R") x L™/(m=D(Rn) x W/™"/ =),
Then the Stokes system (S1) has a unique solution (u,m) € Wé’”/(n_l)(Rﬁ) X
L/ =1(R7) and the following estimate holds

|| uHW1,n/(n—1) gy T ||7T ||L'n,/(n—1)(]Rn)
0 ( +) +

< C <||f Hwo—l,n/(n—l)(Ri) +1|h ||Ln/(n—1)(R1) + g||W(1)/n,n/(n_1)(F)> .

Proof. This corollary is a consequence of X(R") — Wofl’n/(nfl)(Ri) and
Theorem 6.10. U
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