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ANALYSIS OF THE UPWIND FINITE VOLUME METHOD FOR GENERAL INITIAL AND
BOUNDARY VALUE TRANSPORT PROBLEMS

FRANCK BOYER∗

Abstract. This paper is devoted to the convergence analysis of the upwind finite volume scheme for the initial and boundary

value problem associated to the linear transport equation in any dimension, on general unstructured meshes. We are particularly

interested in the case where the initial and boundary data are in L∞ and the advection vector field v has low regularity properties,

namely v ∈ L1(]0, T [, (W 1,1(Ω))d), with suitable assumptions on its divergence. In this general framework, we prove uniform in time

strong convergence in Lp(Ω) with p < +∞, of the approximate solution towards the unique weak solution of the problem as well

as the strong convergence of its trace. The proof relies, in particular, on the Friedrichs’ commutator argument, which is classical in

the renormalized solutions theory.
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1. Introduction. This paper is devoted to the analysis of the upwind finite volume scheme for solving a general
linear transport-reaction problem in any dimension. We are interested here in a low regularity framework for the data,
still leading to existence and uniqueness of weak solutions, namely the one of renormalized solutions first introduced and
studied in [DL89]. More precisely, we consider here the case where the transport vector-field may not be characteristic at
the boundary of the domain. It is thus needed to use the trace theorems and the well-posedness results for the associated
initial and boundary value problems given in [Boy05].

Our main result in the present paper is the proof of the uniform in time strong convergence in Lp(Ω), p < +∞, of the
approximate solution given by the finite volume scheme towards the unique weak solution of the continuous problem with
minimal assumptions on the data, and the meshes.

General notation. We shall adopt the following notation.
• L(f) will denote the Lipschitz constant of any Lipschitz continuous function f .
• For any real number x we define its positive and negative parts by x+ = (x + |x|)/2, x− = (|x| − x)/2, and we

will often use that x = x+ − x− and |x| = x+ + x−. Moreover, we denote by sgn(x) its sign, with the convention
that sgn(0) = 0.

• For any a, b ∈ R, we define Ja, bK = [a, b] ∩ N.
• The characteristic function of a set A will be denoted by 1A.

The continuous problem. Let d ≥ 1, Ω ⊂ Rd a bounded polygonal (or polyhedral) domain, and T > 0 given. We are
interested here in the following initial and boundary value problem





∂tρ + div (ρv) + cρ = 0, in ]0, T [×Ω,

ρ(0, ·) = ρ0, in Ω,

ρ = ρin, on ]0, T [×Γ, where (v · ν) < 0.

(1.1)

The general existence and uniqueness theory given in [Boy05, BF11] relies on the following assumptions

c ∈ L1(]0, T [×Ω), (1.2)

{
v ∈ L1(]0, T [, (W 1,1(Ω))d),
(v · ν) ∈ Lα(]0, T [×Γ), for some α > 1,

(1.3a)
(1.3b)

{
(c + div v)− ∈ L1(]0, T [, L∞(Ω)),

(div v)+ ∈ L1(]0, T [, L∞(Ω)).

(1.4a)

(1.4b)

The case where c = div v = 0 and where Ω is a smooth domain is treated in [Boy05] and the extension to general
data c, v and piecewise smooth domains is given in [BF11]. Associated to the vector field v, we introduce the measure
dµv = (v · ν) dx dt on ]0, T [×Γ and we denote by dµ+

v (resp. dµ−v ) its positive (resp. negative) part in such a way that
|dµv| = dµ+

v + dµ−v . The support of dµ+
v (resp. dµ−v ) is the outflow (resp. inflow) part of the boundary.
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This problem is the conservative form of the linear transport-reaction equation. As an example, for c = −div v, we
recover the usual non-conservative transport equation ∂tρ + v · ∇ρ = 0.

Theorem 1.1 (Existence and uniqueness, [Boy05, BF11]). We assume that assumptions (1.2), (1.3), (1.4) hold.
For any ρ0 ∈ L∞(Ω) and ρin ∈ L∞(]0, T [×Γ, dµ−v ), there exists a unique weak solution (ρ, γ(ρ)) ∈ L∞(]0, T [×Ω) ×

L∞(]0, T [×Γ, |dµv|) of (1.1) in the sense that

∫ T

0

∫

Ω

ρ(∂tφ + v · ∇φ− cφ) dx dt−
∫ T

0

∫

Γ

γ(ρ)φ(v · ν) dx dt +
∫

Ω

ρ0φ(0, .) dx = 0, ∀φ ∈ C1
c ([0, T [×Ω), (1.5)

the boundary condition being satisfied in the following sense

γ(ρ) = ρin, dµ−v -almost everywhere.

Moreover, the following properties are also proven in the same references:
• L∞ bound:

‖ρ‖L∞(]0,T [×Ω) ≤ max(‖ρ0‖L∞ , ‖ρin‖L∞)e
R T
0 ‖(c+div v)−‖L∞(Ω) dt. (1.6)

• Time regularity: ρ lies in C0([0, T ], Lp(Ω)) for any p < +∞ and ρ(0) = ρ0.
• Renormalization property: For any smooth function β : R 7→ R, the function β(ρ) satisfies in the weak sense

the problem





∂tβ(ρ) + div (β(ρ)v) + cβ′(ρ)ρ + (div v)(β′(ρ)ρ− β(ρ)) = 0, in ]0, T [×Ω,

β(ρ)(0, .) = β(ρ0),
γ(β(ρ)) = β(γ(ρ)), on ]0, T [×Γ.

(1.7a)

(1.7b)
(1.7c)

Note that this property still holds for any continuous piecewise smooth function β (see Lemma 6.2).
Assumption (1.4a) clearly plays a fundamental role to obtain the L∞ bound above. However, assumption (1.4b) is only

useful in order to deduce the uniqueness property from the renormalization property through a Gronwall-like argument.
Note that this last assumption can be slightly relaxed (see [Des96]) allowing to use Osgood’s Lemma instead of Gronwall’s
Lemma. For instance, all the above results still hold if we assume the weaker condition that eC(div v)+ ∈ L1(]0, T [×Ω), for
some C > 0.

Previously known results. The upwind finite volume method is the most classical stable method for the numerical
approximation of linear transport problems (see for instance [EGH00, LeV02]). The method is first order for smooth
solutions but it is well-known that, for non smooth initial data (say in BV(Ω) or in some Sobolev space), the optimal
convergence rate falls down to 1/2, see for instance [DL11, MV07, Mer08, Kuz76, VV03, Des04a, Des04b]. As shown
in [BGP05], contrary to what can be thought at first sight, the irregularity of the mesh is not the main reason for this
behavior. In fact, this loss of convergence rate is mainly due to the numerical dissipation of the scheme which implies that
discontinuities in the solution are smoothed along time even on regular grids thus leading to suboptimal convergence rate.

In all the results cited above, the transport vector field v is assumed to be at least Lipschitz-continuous (some of them
assume further that v is constant) in order for the associated characteristic flow to be well defined and smooth enough,
which is often one of the main tools in these analysis. Moreover, to our knowledge, the analysis of finite volume schemes
for boundary value problems for linear hyperbolic equations is only addressed in [BGP05, CVV00] in the case of a constant
vector field v (see for instance [OV06] for the case of nonlinear conservation laws).

The present study extends those results by accounting for less regular general vector fields and for L∞ initial/boundary
data. The prize to pay is that, to the best of our knowledge, no convergence rate is known in this general framework.
Nevertheless, since the renormalized solution theory allows to define a suitable weak notion of characteristic flows for
vector fields satisfying (1.3) (the so-called regular Lagrangian flow, see [DL07]), it should be possible to extend some of the
results cited above concerning the convergence rate of the scheme to the current framework. We finally mention [Fet11]
where, in the case of the mass conservation equation (that is for c = 0) and without boundary conditions (that is when
v ·ν = 0 on the boundary), the weak-? convergence of the solution of the upwind scheme is proven in the above framework
for meshes made of simplexes of Rd.

2. The implicit upwind finite volume scheme.

2.1. Notation. We introduce here the main notation we need to define and analyse the finite volume method. A
finite volume mesh of the domain Ω is a set T = (K)K∈T of closed connected polygonal subsets of Rd, with disjoint interiors
and such that Ω =

⋃
K∈T K.

The boundary of each control volume K ∈ T can be written as the union of a finite number of edges/faces (we will
often use the word “edge” even if d > 2) which are closed connected sets of dimension d− 1 contained into hyperplanes.
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We denote by EK the set of the faces/edges of K. We assume that for any K, L such that K 6= L and K∩L is of co-dimension
1, then K ∩ L ∈ EK ∩ EL, in that case the corresponding face is denoted by K|L.

The set of all the faces in the mesh is denoted by E and Ebd denote the subset of the faces which are included in the
boundary ∂Ω, Eint = E \ Ebd the set of the interior faces.

• For each K ∈ T , and σ ∈ EK, we denote by νKσ the unit outward normal vector to K on σ. If σ = K|L ∈ Eint, we
shall sometimes use the notation νKL = νKσ = −νLσ. If σ ∈ Ebd, there is a unique K ∈ T such that σ ∈ EK and
then νKσ is nothing but the unit outward normal to ∂Ω and we may also write νσ or ν if no confusion is possible.

• We will denote by |K| (resp. |σ|) the d-dimensional Lebesgue measure of the control volume K (resp. the d − 1
dimensional measure of the face σ).

• The diameter of a control volume K (resp. of an edge σ) shall be denoted by dK (resp. dσ) and the size of the
mesh is defined by hT = maxK∈T dK.

We will need to measure the regularity of the mesh. To this end, we denote by reg(T ), the smallest positive number
such that

‖f‖L1(∂K) ≤
reg(T )

dK
‖f‖W 1,1(K), ∀K ∈ T ,∀f ∈ W 1,1(K). (2.1)

In the convergence results given below we shall assume that reg(T ) remains bounded as hT → 0, which amounts to assume
that the control volumes are not allowed to degenerate. For instance, in the case of control volumes which are simplexes,
then the above assumption is nothing but the usual regularity assumption used in the finite element framework. Note
finally, that (2.1) implies in particular (take f = 1) that

∑

σ∈EK
dK|σ| ≤ reg(T )|K|, ∀K ∈ T .

It will be useful to associate a point xK ∈ K to each control volume K ∈ T . We may for instance choose xK to be the
mass center of K, if K is convex. These points actually do not enter the definition of the scheme, they are only used as a
tool in the analysis.

2.2. Definition of the scheme. Let us first define the discretization of the data needed to define our finite volume
method (see Section 6.2 for further comments on the data).

• For any K ∈ T , n ∈ J0, N − 1K, we define

cn
K =

1
δt|K|

∫ tn+1

tn

∫

K
c dx dt, and vn

Kσ =
1

δt|σ|
∫ tn+1

tn

∫

σ

(v · νKσ) dx dt, ∀σ ∈ EK.

Furthermore, if σ ∈ Eint, with σ = K|L we shall use the notation vn
KL = vn

Kσ = −vn
Lσ, and if σ ∈ EK ∩ Ebd we will

note vn
σ = vn

Kσ. We will often use the fact that, by Stokes’ formula, we have

∑

σ∈EK
|σ|vn

Kσ = |K|(div v)n
K =

1
δt

∫ tn+1

tn

∫

K
(div v) dx dt. (2.2)

• For any boundary edge σ ∈ Ebd and any n ∈ J0, N − 1K, we define

ρin,n+1
σ =

1
δt|σ|

∫ tn+1

tn

∫

σ

ρin dx dt. (2.3)

Notice that ρin is a priori only given dµ−v -almost everywhere so that in this formula we need, in fact, to consider
an extension of ρin in L∞(]0, T [×Γ).

To simplify a little the notation, let us introduce vn+
Kσ = (vn

Kσ)+ and vn−
Kσ = (vn

Kσ)−. The implicit finite volume scheme we
consider is the following: Find (ρn

K)n∈J0,NK
K∈T

such that





|K|ρ
n+1
K − ρn

K

δt
+

∑

σ∈EK∩Eint

|σ|(vn+
Kσ ρn+1

K − vn−
Kσ ρn+1

L
)

+
∑

σ∈EK∩Ebd

|σ|vn
Kσρn+1

σ

+ |K|cn
Kρn+1

K = 0, ∀n ∈ J0, N − 1K, ∀K ∈ T ,

ρ0
K =

1
|K|

∫

K
ρ0 dx, ∀K ∈ T ,

ρn+1
σ = ρin,n+1

σ , ∀n ∈ J0, N − 1K, ∀σ ∈ Ebd, s.t. vn
Kσ ≤ 0,

ρn+1
σ = ρn+1

K , ∀n ∈ J0, N − 1K, ∀σ ∈ Ebd, s.t. vn
Kσ > 0.

(2.4)

Remark 2.1.
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• For the pure advection equation, that is when c = −div v, with (2.2), the scheme reads

|K|ρ
n+1
K − ρn

K

δt
+

∑

σ∈EK∩Eint

|σ|vn−
Kσ

(
ρn+1
K − ρn+1

L
)

+
∑

σ∈EK∩Ebd

|σ|vn−
Kσ (ρn+1

K − ρin,n+1
σ ) = 0,

which is a more usual formulation of the scheme for the pure advection equation.
• We only consider here the implicit version of the scheme in order to avoid the introduction of a stability CFL

condition but all the results given below are valid for the explicit scheme.

2.3. Outline of the paper. In Section 3, we prove existence and uniqueness of the approximate solution, for small
enough time steps (this condition on δt being independent of the mesh T ), then we establish a priori estimates on those
solutions and their traces: a uniform L∞-bound and a weak L2(H1) estimate, which will be useful in the convergence
analysis. In Section 4, we prove the weak-? convergence in L∞ of the approximate solution towards the unique weak
solution of the problem, as well as for the traces. In Section 5, we prove that this convergence is in fact strong in
L∞(]0, T [, Lp(Ω)), for any p < +∞, together with a suitable strong convergence result for the traces. The proof of this
result is based on the same tools than those used to prove existence and uniqueness of weak solutions for the problem in
the framework of renormalized solutions, namely the Friedrichs commutator lemma. Note that the strong convergence of
the approximate solutions in Lp(]0, T [×Ω) is easier to obtain; the difficult point here is to prove a convergence which is
uniform in time. We conclude the paper by some extensions and remarks concerning the scheme under study.

2.4. A technical result. We conclude this introduction by a technical result that will be useful in the sequel.
Lemma 2.1.

1. For any 1 ≤ p < +∞, f ∈ Lp(]0, T [×Γ) we have

N−1∑
n=0

∑

σ∈Ebd

∫ tn+1

tn

∫

σ

∣∣f(t, x)− fn+1
σ

∣∣p dx dt −−−−−−−→
(δt,hT )→0

0,

where fn+1
σ is the mean-value of f on ]tn, tn+1[×σ.

2. For any v ∈ L1(]0, T [, (W 1,1(Ω))d), we have

N−1∑
n=0

∑

σ∈Ebd
vn
Kσ≤0

∫ tn+1

tn

∫

σ

(v · νσ)+ dx dt +
N−1∑
n=0

∑

σ∈Ebd
vn
Kσ≥0

∫ tn+1

tn

∫

σ

(v · νσ)− dx dt −−−−−−−→
(δt,hT )→0

0.

Proof.
1. This is a classical result of the approximation theory: the claim is clear when f is smooth and the general case is

obtained by density, since the left-hand side term can be bounded by 2p‖f‖p
Lp(]0,T [×Γ), uniformly with respect to

δt and hT .
2. We observe that, if vn

Kσ ≤ 0 then we have

∫ tn+1

tn

∫

σ

(v · νσ)+ dt dx =
1
2
δt|σ|vn

Kσ +
1
2

∫ tn+1

tn

∫

σ

|v · νσ| dt dx

≤ 1
2
δt|σ|vn

Kσ +
1
2
δt|σ||vn

Kσ|
︸ ︷︷ ︸

=0

+
1
2

∫ tn+1

tn

∫

σ

|v · νσ − vn
Kσ| dt dx ≤ 1

2

∫ tn+1

tn

∫

σ

|v · νσ − vn
Kσ| dt dx,

so that, by the first part of the Lemma applied to f = (v · ν), we get

N−1∑
n=0

∑

σ∈Ebd
vn
Kσ<0

∫ tn+1

tn

∫

σ

(v · νσ)+ dx dt ≤ 1
2

N−1∑
n=0

∑

σ∈Ebd

∫ tn+1

tn

∫

σ

|v · νσ − vn
Kσ| dt dx −−−−−−−→

(δt,hT )→0
0.

The other term being treated similarly, the claim is proven.

3. Existence and uniqueness. A priori estimates.
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3.1. Existence and uniqueness. First properties. Since the scheme we are studying is implicit in time, it is
needed to prove that the approximate solution actually exists and is unique. This is the goal of the first result of this
paper.

Theorem 3.1. Assume that (1.2),(1.3a) and (1.4a) hold. There exists δtmax > 0 (depending only on (c + div v)−)
such that for any initial and boundary data ρ0 ∈ L∞(Ω), ρin ∈ L∞(]0, T [×Γ), any mesh T and any time step such that

δt ≤ δtmax,

there exists an unique solution of the scheme (2.4).
Moreover in that case, the scheme is monotone, that is

(
ρ0 ≥ 0 and ρin ≥ 0

)
=⇒ (

ρn
K ≥ 0, ∀K ∈ T , ∀n ∈ J0, NK).

Finally, the following L∞ bound holds:

|ρn
K| ≤ max(‖ρ0‖L∞ , ‖ρin‖L∞) exp

(
2

∫ tn

0

‖(c + div v)−‖L∞ dt

)
, ∀K ∈ T ,∀n ∈ J0, NK.

It will be clear in the proof that, in the case where c + div v ≥ 0 (in particular for the pure advection equation where
c = −div v), we have δtmax = +∞.

Proof. The initial data (ρ0
K)K∈T is directly defined from ρ0. Assume now that (ρn

K)K∈T is known at time tn, n ≤ N −1
and let us show that (ρn+1

K )K∈T is uniquely defined.
The set of equations being linear with the same number of unknowns as that of equations, it is enough to show that,

if ρin = 0, and ρn
K = 0 for any K ∈ T , then any solution of the system satisfies ρn+1

K = 0 for any K ∈ T . To this end, we
will in fact prove the monotony of the scheme which will imply its well-posedness.

By assumption t 7→ ‖(c + div v)−(t)‖L∞ is integrable on ]0, T [, hence there exists δtmax > 0 such that
∫

I

‖(c + div v)−(t)‖L∞ dt ≤ 1
2
, ∀I ⊂]0, T [, s.t. |I| ≤ δtmax. (3.1)

• Step 1. Change of variables. For any n ∈ J0, N − 1K, let us define

γn =
1
δt

∫ tn+1

tn

‖(c + div v)−‖L∞ dt, (3.2)

and (αn)n by

α0 = 1, αn+1 = (1− δtγn)αn, ∀n ∈ J0, N − 1K. (3.3)

Using the following basic inequality

1
1− x

≤ 1 + 2x ≤ e2x, ∀x ∈ [0, 1/2],

and the property (3.1) defining δtmax, it is easily seen that we have

∀n ∈ J0, N − 1K, 0 ≤ exp

(
−2

∫ tn

0

‖(c + div v)−‖L∞ dt

)
≤ αn ≤ 1. (3.4)

We can now perform the following change of variables

ρ̃n
K = αnρn

K, ∀K ∈ T , ∀n ∈ J0, NK,

ρ̃n
σ = αnρn

σ, and ρ̃in,n
σ = αnρin,n

σ , ∀σ ∈ Ebd, ∀n ∈ J0, NK.
and we get





|K| ρ̃
n+1
K − ρ̃n

K

δt
+

αn

αn+1

∑

σ∈EK∩Eint

|σ|(vn+
Kσ ρ̃n+1

K − vn−
Kσ ρ̃n+1

L
)

+
αn

αn+1

∑

σ∈EK∩Ebd

|σ|vn
Kσρ̃n+1

σ

+ |K| αn

αn+1
(cn
K + γn)ρ̃n+1

K = 0, ∀n ∈ J0, N − 1K, ∀K ∈ T ,

ρ̃0
K = ρ0

K, ∀K ∈ T ,

ρ̃n+1
σ = ρ̃in,n+1

σ , ∀n ∈ J0, N − 1K, ∀σ ∈ Ebd, s.t. vn
Kσ ≤ 0,

ρ̃n+1
σ = ρ̃n+1

K , ∀n ∈ J0, N − 1K, ∀σ ∈ Ebd, s.t. vn
Kσ > 0.

(3.5)
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By using the formula vn+
Kσ = vn

Kσ + vn−
Kσ , and the boundary conditions we consider in the scheme, we write

∑

σ∈EK∩Eint

|σ|vn+
Kσ ρ̃n+1

K +
∑

σ∈EK∩Ebd

|σ|vn
Kσρ̃n+1

σ =
∑

σ∈EK∩Eint

|σ|vn
Kσρ̃n+1

K +
∑

σ∈EK∩Eint

|σ|vn−
Kσ ρ̃n+1

K +
∑

σ∈EK∩Ebd

|σ|vn
Kσρ̃n+1

σ

=
∑

σ∈EK
|σ|vn

Kσρ̃n+1
K

︸ ︷︷ ︸
=|K|(div v)n

Kρ̃n+1
K

+
∑

σ∈EK∩Eint

|σ|vn−
Kσ ρ̃n+1

K +
∑

σ∈EK∩Ebd

|σ| (vn
Kσρ̃n+1

σ − vn
Kσρ̃n+1

K )︸ ︷︷ ︸
=−vn−

Kσ (ρ̃n+1
σ −ρ̃n+1

K )

.

Hence we may write the first equation in (3.5) in the following equivalent form

|K| ρ̃
n+1
K − ρ̃n

K

δt
+

αn

αn+1

∑

σ∈EK∩Eint

|σ|vn−
Kσ (ρ̃n+1

K − ρ̃n+1
L ) +

αn

αn+1

∑

σ∈EK∩Ebd

|σ|vn−
Kσ (ρ̃n+1

K − ρ̃in,n+1
σ )

+ |K| αn

αn+1
(cn
K + (div v)n

K + γn)ρ̃n+1
K = 0. (3.6)

• Step 2. Monotonicity. Existence and uniqueness. We assume that ρ0 ≥ 0 and ρin ≥ 0. By induction we
assume that n is such that ρn

K ≥ 0, ∀K ∈ T and we want to show that ρn+1
K ≥ 0,∀K ∈ T . By contradiction, let us

assume that there is K ∈ T such that

ρn+1
K = min

L∈T
ρn+1
L < 0.

In formula (3.6) for this particular control volume K, we see that the two sums over edges are non-positive since
ρ̃n+1
K ≤ ρ̃n+1

L for any L ∈ T , and since ρ̃in,n+1
σ ≥ 0 and ρ̃n+1

K < 0. Furthermore, by the definition of γn in formula
(3.2), we see that

cn
K + (div v)n

K + γn ≥ 0. (3.7)

Since we assumed that ρ̃n+1
K < 0, it finally remains the inequality ρ̃n+1

K ≥ ρ̃n
K. This implies ρ̃n

K < 0, which is
impossible since we assumed that the approximate solution is non-negative at time tn. The scheme (2.4) being
a linear set of equations with the same number of equations as that of unknowns, it is well known that the
monotonicity property implies existence and uniqueness of the approximate solution for any data.

• Step 3. L∞-bound. We will first show that

‖ρ̃n+1
T ‖L∞ ≤ max(‖ρ0‖L∞ , ‖ρin‖L∞), ∀n ∈ J0, N − 1K. (3.8)

Let us consider K ∈ T such that |ρ̃n+1
K | = maxL∈T |ρ̃n+1

L |. Let ε ∈ {−1, 1} be the sign of ρ̃n+1
K . We multiply (3.6)

by ε and we obtain

|K| |ρ̃
n+1
K | − ερ̃n

K

δt
+

αn

αn+1

∑

σ∈EK∩Eint

|σ|vn−
Kσ (|ρ̃n+1

K | − ερ̃n+1
L ) +

αn

αn+1

∑

σ∈EK∩Ebd

|σ|vn−
Kσ (|ρ̃n+1

K | − ερ̃in,n+1
σ )

+ |K| αn

αn+1
(cn
K + (div v)n

K + γn)|ρ̃n+1
K | = 0. (3.9)

Two cases have to be considered:
– First case : there is some σ ∈ EK ∩ Ebd such that |ρ̃n+1

K | < ερ̃in,n+1
σ . In that case, using (3.4), we have

‖ρ̃n+1
T ‖L∞ = |ρ̃n+1

K | ≤ |ρ̃in,n+1
σ | ≤ ‖ρin‖L∞αn+1 ≤ ‖ρin‖L∞ . (3.10)

– Second case : for any σ ∈ EK ∩ Ebd we have |ρ̃n+1
K | ≥ ερ̃in,n+1

σ . Hence the two sums in (3.9) are non-negative
and we recall that the choice of γn leads to (3.7). We thus deduce

|K| |ρ̃
n+1
K | − ερ̃n

K

δt
≤ 0,

which leads to

‖ρ̃n+1
T ‖L∞ ≤ ‖ρ̃n

T ‖L∞ . (3.11)

Gathering (3.10) and (3.11), we easily obtain (3.8) by induction. By definition of ρ̃n
T , (3.8) implies

‖ρn
T ‖L∞ ≤ 1

αn
max(‖ρ0‖L∞ , ‖ρin‖L∞),

and the claim follows with (3.4).
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Remark 3.1. In the particular case of the so-called mass conservation equation, that is for c = 0, we can prove (by a
duality argument) existence, uniqueness and monotonicity without any additional assumption on (c + div v)− = (div v)−

and without any condition on the time-step. These conditions are however mandatory, even in that case, to obtain the
L∞ bound on the approximate solution.

We shall now define the approximate solution to be the piecewise constant function ρT ,δt ∈ L∞(]0, T [×Ω) defined as
follows

ρT ,δt =
N−1∑
n=0

∑

K∈T
ρn+1
K 1]tn,tn+1[×K.

We define the trace γρT ,δt ∈ L∞(]0, T [×Γ) of this approximate solution as follows

γρT ,δt =
N−1∑
n=0

∑

σ∈Ebd

ρn+1
K 1]tn,tn+1[×σ,

where in this sum K is the unique control volume such that σ ∈ EK. Note that this definition is nothing but the trace, in
the BV sense, of the function ρT ,δt.

We also need to introduce the discretization of the initial data

ρ0
T =

∑

K∈T
ρ0
K1K.

Remark 3.2. By standard approximation arguments, we know that ρ0
T converges towards ρ0 in L∞(Ω) weak-? and

in Lp(Ω)-strong for any p < +∞.
With these notations, the L∞ bound given in Theorem 3.1 leads to the inequalities

‖ρT ,δt‖L∞(]0,T [×Ω) ≤ ρmax, ‖γρT ,δt‖L∞(]0,T [×Γ) ≤ ρmax, (3.12)

where ρmax does not depend on δt and T and is defined by

ρmax = max(‖ρ0‖L∞(Ω), ‖ρin‖L∞(]0,T [×Γ))e2
R T
0 ‖(c+div v)−‖L∞(Ω) dt.

Notice that, by (1.6), we know that the exact solution ρ satisfies similar estimates

‖ρ‖L∞(]0,T [×Ω) ≤ ρmax, ‖γρ‖L∞(]0,T [×Γ,|dµv|) ≤ ρmax.

3.2. Weak L2(H1) estimate. In the following proposition, we derive a kind of energy estimate for the solution of
the finite volume scheme.

Proposition 3.2. Assume that (1.2), (1.3a) and (1.4a) hold. There exists M > 0 depending only on c, v, ρ0 and
ρin, such that for any δt ≤ δtmax and any mesh T we have the following bound

N−1∑
n=0

δt
∑

σ∈Ebd

|σ||vn
Kσ|(ρn+1

K − ρn+1
σ )2 +

N−1∑
n=0

δt
∑

σ∈Eint
σ=K|L

|σ||vn
KL|(ρn+1

L − ρn+1
K )2 ≤ M. (3.13)

This estimate can be understood as a weak L2(]0, T [,H1(Ω)) estimate since, if the mesh is quasi-uniform, we can write
(for the interior edges for instance)

N−1∑
n=0

δt
∑

σ∈Eint
σ=K|L

|σ|dKL|vn
KL|

∣∣∣∣
ρn+1
L − ρn+1

K

dKL

∣∣∣∣
2

≤ M

hT
,

where dKL is the distance between xK and xL. Hence, for a smooth exact solution ρ, if we think ρn+1
K as an approximation

of ρ(tn+1, xK) (which it is not !), then the left-hand side of this inequality looks like the square of a weighted discrete
L2(H1) norm, the weight being proportional to the mean-value of the flow across each edge. In particular, this estimate
provide useful information only on the parts of ]0, T [×Ω where the vector-field v does not vanish. Such kind of property
is also known as a weak BV estimate, in the framework of nonlinear scalar conservation laws, see [CGH93, EGH00].

As shown in [Boy05, BF11], if one consider the following parabolic approximation of the problem

∂tρε + div (ρεv) + cρε − ε∆ρε = 0, (3.14)
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with the initial data ρε(0) = ρ0 and the Fourier boundary condition ε∂ρε

∂ν + (ρε − ρin)(v · ν)− = 0, the corresponding
estimate reads

‖ρε‖L2(]0,T [,H1(Ω)) ≤
C√
ε
.

Here, the size of mesh hT plays the role of the approximation parameter ε and, moreover, the numerical diffusion tensor
is isotropic and heterogeneous.

It was shown in [Boy05, BF11] that the solution to (3.14) strongly converges towards the solution ρ of the transport
equation in L∞(]0, T [, Lp(Ω)) for any p < +∞. We will use the same kind of idea in the present paper in order to show
the uniform in time strong convergence of our finite volume approximate solution in Section 5.

Proof. First of all, for any interior edge σ = K|L ∈ Eint we define ρn+1
σ = (ρn+1

K + ρn+1
L )/2. Recall that for boundary

edges the value of ρn+1
σ is already given in the definition of the scheme.

By simple algebraic manipulations, the finite volume scheme (2.4) then reads

|K|ρ
n+1
K − ρn

K

δt
+

∑

σ∈EK
|σ|vn

Kσρn+1
σ + |K|cn

Kρn+1
K −

∑

σ∈EK∩Eint

|σ||vn
Kσ|

ρn+1
L − ρn+1

K

2
= 0, ∀K ∈ T , ∀n ∈ J0, N − 1K. (3.15)

We multiply (3.15) by δtρn+1
K , we sum over n and K and we finally use the algebraic identity ab = 1

2a2+ 1
2b2− 1

2 (a−b)2,
to obtain

N−1∑
n=0

∑

K∈T
|K|(ρn+1

K − ρn
K)ρn+1

K +
N−1∑
n=0

δt
∑

K∈T
|K|cn

K|ρn+1
K |2 −

N−1∑
n=0

δt
∑

K∈T

∑

σ∈EK∩Eint

|σ||vn
Kσ|

ρn+1
L − ρn+1

K

2
ρn+1
K

+
N−1∑
n=0

δt
∑

K∈T

∑

σ∈EK
|σ|vn

Kσ

(
1
2
(ρn+1

σ )2 +
1
2
(ρn+1
K )2 − 1

2
(ρn+1

σ − ρn+1
K )2

)
= 0.

Note that we have

vn
Kσ = −vn

Lσ = vn
KL, and (ρn+1

σ − ρn+1
K )2 = (ρn+1

σ − ρn+1
L )2, ∀σ = K|L ∈ Eint,

so that, reorganizing the sums on the edges and using (2.2), we get

N−1∑
n=0

∑

K∈T
|K|(ρn+1

K − ρn
K)ρn+1

K +
N−1∑
n=0

δt
∑

K∈T
|K|

(
cn
K +

1
2
(div v)n

K

)
|ρn+1
K |2 +

1
2

N−1∑
n=0

δt
∑

σ∈Eint

|σ||vn
Kσ|(ρn+1

L − ρn+1
K )2

+
N−1∑
n=0

δt
∑

σ∈Ebd

|σ|vn
σ

(
1
2
(ρn+1

σ )2 − 1
2
(ρn+1

σ − ρn+1
K )2

)
= 0.

By definition of the scheme, for any time iteration n and any boundary edge σ such that vn
Kσ > 0 we have ρn+1

σ = ρn+1
K

and for the other boundary edges (when vn
Kσ ≤ 0) the value of ρn+1

σ = ρin,n+1
σ is prescribed by the boundary data. Thus,

we obtain

1
2
‖ρN
T ‖2L2 +

1
2

N−1∑
n=0

δt‖ρn+1
T − ρn

T ‖2L2 +
N−1∑
n=0

δt
∑

K∈T
|K|

(
cn
K +

1
2
(div v)n

K

)
|ρn+1
K |2

︸ ︷︷ ︸
=T1

+
1
2

N−1∑
n=0

δt
∑

σ∈Ebd
vn

σ <0

|σ||vn
σ |(ρin,n+1

σ − ρn+1
K )2 +

1
2

N−1∑
n=0

δt
∑

σ=K|L∈Eint

|σ||vn
KL|(ρn+1

L − ρn+1
K )2

︸ ︷︷ ︸
=T2

+
1
2

N−1∑
n=0

δt
∑

σ∈Ebd
vn

σ≥0

|σ|vn
σ (ρn+1

σ )2 =
1
2
‖ρ0
T ‖2L2 +

1
2

N−1∑
n=0

δt
∑

σ∈Ebd
vn

σ <0

|σ||vn
σ |(ρin,n+1

σ )2. (3.16)

All the terms in this identity are non-negative, except possibly the term T1. Nevertheless, using the L∞ bound on ρT ,δt,
we can bound this term as follows

|T1| ≤ (ρmax)2
∥∥∥∥∥
(

c +
1
2
div v

)−∥∥∥∥∥
L1(]0,T [×Ω)

.
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We thus obtain a bound on the term T2, which is exactly (3.13) with

M =
1
2
‖ρ0‖2L2 +

ρ2
max

2

∫ T

0

∫

Γ

|v · ν| dt dx + ρ2
max

∥∥∥∥∥
(

c +
1
2
div v

)−∥∥∥∥∥
L1(]0,T [×Ω)

.

4. Weak convergence result. In this section, we are going to prove the weak convergence of the solution of the
finite volume scheme towards the unique weak solution of the initial and boundary value problem (1.1).

Theorem 4.1. Assume that (1.2), (1.3) and (1.4) hold. Let regmax > 0 be given and consider a family of meshes
and time steps, such that (δt, hT ) → 0 and satisfying the bound

max
(

reg(T ), max
K∈T

δt

dK

)
≤ regmax. (4.1)

Then, we have

ρT ,δt −−−−−−−⇀
(δt,hT )→0

ρ, in L∞(]0, T [×Ω) weak-?,

γρT ,δt −−−−−−−⇀
(δt,hT )→0

γρ, in L∞(]0, T [×Γ, |dµv|) weak-?,

where ρ and γρ solves (1.5).
Proof. Notice first that assumption (1.4b) is only used to ensure uniqueness of the weak solution and of its trace (see

Theorem 1.1) and is not directly used in the following computations.
Thanks to the L∞ bounds (3.12), we can find subsequences of (ρT ,δt) and (γρT ,δt) which weak-? converge in the

spaces given above. In fact, up to another extraction of a subsequence, we may also assume that γρT ,δt weak-? converges
in L∞(]0, T [×Γ). We denote by ρ and g the respective limits of these two subsequences. We will show that ρ and g satisfy
the weak formulation of the problem. Since this weak solution is unique, we will then deduce the claim.

Trace identification. Let us first show that g = ρin, dµ−v -almost everywhere by writing

∫ T

0

∫

Γ

|γρT ,δt − ρin|(v · ν)− dt dx

≤ 2ρmax

N−1∑
n=0

∑

σ∈Ebd
vn
Kσ>0

∫ tn+1

tn

∫

σ

(v · νσ)− dx dt +
N−1∑
n=0

∑

σ∈Ebd
vn
Kσ≤0

∫ tn+1

tn

∫

σ

∣∣ρin,n+1
σ − ρin

∣∣ (v · νσ)− dx dt,

≤ 2ρmax

N−1∑
n=0

∑

σ∈Ebd
vn
Kσ>0

∫ tn+1

tn

∫

σ

(v · νσ)− dx dt + ‖v · ν‖Lα(]0,T [×Γ)

(
N−1∑
n=0

∑

σ∈Ebd

∫ tn+1

tn

∫

σ

∣∣ρin,n+1
σ − ρin

∣∣α′ dx dt

) 1
α′

.

The two terms in the right-hand side tend to zero when δt and hT tend to zero by Lemma 2.1, so that we proved that
γρT ,δt strongly converges towards ρin in L1(]0, T [×Γ, dµ−v ) which implies, in particular, that the weak-? limit g of γρT ,δt

coincides with ρin dµ−v -almost everywhere.
Weak formulation. Let φ ∈ C∞c ([0, T [×Ω) be a smooth test function. We want to show that the weak limits ρ and g

obtained above solve the weak formulation of the problem.
We define φn

K = φ(tn, xK), where we recall that xK ∈ K is a point arbitrarily chosen in each control volume. We
multiply the first equation of (2.4) by δtφn

K and we sum over n ∈ J0, N − 1K and K ∈ T . It follows

N−1∑
n=0

∑

K∈T
|K|(ρn+1

K − ρn
K)φn

K

︸ ︷︷ ︸
=T1

+
N−1∑
n=0

δt
∑

K∈T
|K|cn

Kρn+1
K φn

K

︸ ︷︷ ︸
=T2

+
N−1∑
n=0

δt
∑

K∈T

∑

σ∈EK∩Eint

|σ|(vn+
Kσ ρn+1

K − vn−
Kσ ρn+1

L )φn
K +

N−1∑
n=0

δt
∑

σ∈Ebd

|σ|vn
Kσρn+1

σ φn
K

︸ ︷︷ ︸
=T3

= 0. (4.2)
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Since φ has a compact support in time in [0, T [, we have φn
K = 0 for any K ∈ T , for n = N . Thus, the term T1 can be

expressed as follows

T1 =
N−1∑
n=0

∑

K∈T
|K|ρn+1

K (φn
K − φn+1

K )−
∑

K∈T
|K|ρ0

Kφ0
K

= −
N−1∑
n=0

∑

K∈T
ρn+1
K

∫ tn+1

tn

|K|∂tφ(t, xK) dt−
∑

K∈T
|K|ρ0

Kφ0
K.

Since φ is smooth, and ‖ρT ,δt‖L∞ ≤ ρmax, we get that
∣∣∣∣∣T1 +

∫ T

0

∫

Ω

ρT ,δt∂tφdx dt +
∫

Ω

ρ0
T (x)φ(0, x) dx

∣∣∣∣∣ ≤ Cφ,ρmax(δt + hT ).

By weak convergence of ρT ,δt and ρ0
T , we deduce that

T1 −−−−−−−→
(δt,hT )→0

−
∫ T

0

∫

Ω

ρ∂tφdx dt−
∫

Ω

ρ0φ(0, .) dx. (4.3)

For the term T2, we easily see that
∣∣∣∣∣T2 −

∫ T

0

∫

Ω

ρT ,δtcφ dx dt

∣∣∣∣∣ ≤ Cφ,ρmax‖c‖L1(δt + hT ),

so that

T2 −−−−−−−→
(δt,hT )→0

∫ T

0

∫

Ω

ρcφ dx dt. (4.4)

Let us now concentrate on the term T3 in (4.2). We first write vn+
Kσ = vn

Kσ + vn−
Kσ so that we get

T3 =
N−1∑
n=0

δt
∑

K∈T
|K|(div v)n

Kρn+1
K φn

K

︸ ︷︷ ︸
=T31

+
N−1∑
n=0

δt
∑

K∈T

∑

σ∈EK∩Eint

|σ|vn−
Kσ (ρn+1

K − ρn+1
L )φn

K +
N−1∑
n=0

δt
∑

σ∈Ebd

|σ|vn
Kσ(ρn+1

σ − ρn+1
K )φn

K

︸ ︷︷ ︸
=T32

The term T31 can be treated in the very same way as the term T2, let us concentrate on the term T32. Reordering the
summation on the interior edges by using the conservativity property vn

KL = vn
Kσ = −vn

Lσ, we get

T32 =
N−1∑
n=0

δt
∑

σ=K|L∈Eint

|σ| (vn−
KL (ρn+1

K − ρn+1
L )φn

K + vn+
KL (ρn+1

L − ρn+1
K )φn

L
)

+
N−1∑
n=0

δt
∑

σ∈Ebd

|σ|vn
Kσ(ρn+1

σ − ρn+1
K )φn

K.

We will now stress on the fact that, the test function φ and the solution ρT ,δt of the finite volume scheme being fixed, the
term T32 actually depends on the velocity field v, so that we shall in fact denote this term by T32(v).

The behavior of T32(v) when δt and hT go to 0 is then given by the following lemma and its corollary.
Lemma 4.2. Let v ∈ L1(]0, T [, (W 1,1(Ω))d).
1. For any w ∈ L1(]0, T [, (W 1,1(Ω))d) we have

|T32(v)− T32(w)| ≤ Cφ,ρmax‖v − w‖L1(W 1,1).

2. For any w ∈ (C∞([0, T ]× Ω))d, there exists R32(v, w) (depending on v, w, T , δt, ρT , φ) such that we have

T32(w) + R32(v, w) −−−−−−−→
(δt,hT )→0

−
∫ T

0

∫

Ω

ρdiv (φw) dx dt +
∫ T

0

∫

Γ

gφ(w · ν) dx dt, (4.5)

and

|R32(v, w)| ≤ Cφ,ρmax,regmax
‖v − w‖L1(W 1,1). (4.6)
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Corollary 4.3. For any v ∈ L1(]0, T [, (W 1,1(Ω))d), we have the following convergence

T32(v) −−−−−−−→
(δt,hT )→0

−
∫ T

0

∫

Ω

ρdiv (φv) dx dt +
∫ T

0

∫

Γ

gφ(v · ν) dx dt.

Proof of Corollary 4.3. Let ε > 0 be given. By density, we may find vε ∈ (C∞([0, T ]×Ω))d such that ‖v−vε‖L1(W 1,1) ≤
ε. Using Lemma 4.2, we then write

∣∣∣∣∣T32(v) +
∫ T

0

∫

Ω

ρdiv (φv) dx dt−
∫ T

0

∫

Γ

gφ(v · ν) dx dt

∣∣∣∣∣

≤ |T32(v)− T32(vε)|+
∣∣∣∣∣R32(v, vε) + T32(vε) +

∫ T

0

∫

Ω

ρdiv (φvε) dx dt−
∫ T

0

∫

Γ

gφ(vε · ν) dx dt

∣∣∣∣∣

+ |R32(v, vε)|+
∣∣∣∣∣
∫ T

0

∫

Ω

ρdiv (φ(v − vε)) dx dt−
∫ T

0

∫

Γ

gφ((v − vε) · ν) dx dt

∣∣∣∣∣

≤ C‖v − vε‖L1(W 1,1) +

∣∣∣∣∣R32(v, vε) + T32(vε) +
∫ T

0

∫

Ω

ρdiv (φvε) dx dt−
∫ T

0

∫

Γ

gφ(vε · ν) dx dt

∣∣∣∣∣ .

Since ε is fixed and vε is smooth, by the second point of Lemma 4.2 the second term above is less than ε for δt and hT
small enough. For such values of δt and hT , we finally obtain a bound of the left-hand side by (1 + C)ε which concludes
the proof.

It remains now to prove the lemma.
Proof of Lemma 4.2.
1. For any σ ∈ E and any n ∈ J0, N − 1K we define an interface value φn

σ for φ, as follows

φn
σ = φ(tn, xσ),

where xσ is an arbitrary point in σ. We can then get

T32(w) =
N−1∑
n=0

δt
∑

σ∈Eint
σ=K|L

|σ|wn
KL(ρ

n+1
L − ρn+1

K )φn
σ +

N−1∑
n=0

δt
∑

σ∈Ebd

|σ|wn
Kσ(ρn+1

σ − ρn+1
K )φn

K

︸ ︷︷ ︸
=T ′32(w)

+
N−1∑
n=0

δt
∑

σ∈Eint
σ=K|L

|σ| (wn−
KL (ρn+1

K − ρn+1
L )(φn

K − φn
σ) + wn+

KL (ρn+1
L − ρn+1

K )(φn
L − φn

σ)
)

︸ ︷︷ ︸
=R1(w)

.

The term T ′32(w) can be written as follows (paying attention to the fact that only interior edges are taken into
account in the first sum)

T ′32(w) = −
N−1∑
n=0

δt
∑

K∈T
ρn+1
K

( ∑

σ∈EK
|σ|wn

Kσφn
σ

)

︸ ︷︷ ︸
=T321(w)

+
N−1∑
n=0

δt
∑

σ∈Ebd

|σ|wn
Kσρn+1

K φn
σ +

N−1∑
n=0

δt
∑

σ∈Ebd

|σ|wn
Kσ(ρn+1

σ − ρn+1
K )φn

K

︸ ︷︷ ︸
=T ′321(w)

.

For the boundary terms T ′321(w), we see that we can write

T ′321(w) =
N−1∑
n=0

δt
∑

σ∈Ebd

|σ|wn
Kσρn+1

σ φn
σ

︸ ︷︷ ︸
=T322(w)

+
N−1∑
n=0

δt
∑

σ∈Ebd

|σ|wn
Kσ(ρn+1

σ − ρn+1
K )(φn

K − φn
σ)

︸ ︷︷ ︸
=R2(w)

.
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Finally the term T32(w) we are studying is written

T32(w) = T321(w) + T322(w) + R1(w) + R2(w),

and we shall analyse each term separately as follows. Notice that each term is linear with respect to the vector
field w except R1(w).
• For each n and K, by definition of φn

K and φn
σ, and using (2.1) and (2.2), we have

∣∣∣∣∣
∑

σ∈EK
|σ|wn

Kσφn
σ

∣∣∣∣∣ ≤

∣∣∣∣∣∣∣

∑

σ∈EK
|σ|wn

Kσ (φn
σ − φn

K)︸ ︷︷ ︸
|.|≤CφdK

∣∣∣∣∣∣∣
+

∣∣∣∣∣
∑

σ∈EK
|σ|wn

Kσφn
K

∣∣∣∣∣

≤ CφdK
1
δt

∫ tn+1

tn

∫

∂K
|w · νK|dx dt + |φn

K||K||(div w)n
K|

≤ Cφ,reg(T )dK
1
δt

∫ tn+1

tn

1
dK
‖w(t)‖W 1,1(K) dt + Cφ

1
δt

∫ tn+1

tn

‖div w(t)‖L1(K) dt,

so that, multiplying by δt and summing over n and K lead to the estimate

|T321(w)| ≤ Cφ,ρmax,regmax
‖w‖L1(W 1,1).

• We easily find that

|T322(w)| ≤ ρmax‖φ‖L∞

∫ T

0

∫

Γ

|w · ν|dx dt ≤ Cφ,ρmax‖w‖L1(W 1,1).

• Since |φn
K − φn

σ| ≤ CφdK and thanks to the L∞ bound (3.12) on the approximate solution ρT ,δt we have (by
using the fact that the maps s ∈ R 7→ s± are Lipschitz-continuous),

|R1(w)−R1(v)| ≤ ‖ρT ,δt‖L∞Cφ

N−1∑
n=0

δt
∑

σ=K|L∈Eint

|σ||vn
KL − wn

KL|(dK + dL)

≤ Cφ,ρmax

N−1∑
n=0

δt
∑

K∈T

( ∑

σ∈EK
|σ|dK|vn

Kσ − wn
Kσ|

)

≤ Cφ,ρmax

N−1∑
n=0

δt
∑

K∈T

1
δt

dK

∫ tn+1

tn

‖v(t)− w(t)‖L1(∂K) dt

≤ Cφ,ρmax,regmax
‖v − w‖L1(W 1,1).

• The bound on R2(w) is obtained in a similar way as the one for T322(w).
Collecting all the above estimates, and using the linearity of T321, T322 and R2, the first claim of the lemma is
proven.

2. In the second part of this lemma, we consider a smooth vector field w and, as we did before, we split the term
T32(w) into the same formal four parts T321(w) + T322(w) + R1(w) + R2(w), except that we change the definition
of the interface values φn

σ of φ. For a given n ∈ J0, N − 1K and σ ∈ E , two cases have to be considered:
• If (w · νKL) has a constant sign on [tn, tn+1] × σ then, by the mean-value theorem (recall that φ and w are

smooth) we find that there exists some point (ξn
σ , xn

σ) ∈ [tn, tn+1]× σ such that
∫ tn+1

tn

∫

σ

φ(w · νKL) dx dt = φ(ξn
σ , xn

σ)

(∫ tn+1

tn

∫

σ

(w · νKL) dx dt

)
, (4.7)

and we then define

φn
σ = φ(ξn

σ , xn
σ).

• If (w · νσ) has not a constant sign on [tn, tn+1]× σ, then we choose

φn
σ = φ(tn, xσ),

for some arbitrary point xσ ∈ σ. Notice, in that case, that (w · νKL) necessarily vanishes at some point in
[tn, tn+1]× σ and then we have

|w(t, x) · νKL| ≤ L(w)(δt + dσ), ∀(t, x) ∈ [tn, tn+1]× σ.

12



It follows that
∣∣∣∣∣
∫ tn+1

tn

∫

σ

φ(w · νKL) dx dt− φn
σ

(∫ tn+1

tn

∫

σ

(w · νKL) dx dt

)∣∣∣∣∣ ≤ Cφ,wδt|σ|(δt2 + d2
σ). (4.8)

With this particular choice of the interface values for φ we can now study all the terms T321, T322, R1 and R2 as
follows.
• By (4.7) and (4.8), for any σ ∈ E , n ∈ J0, N − 1K, we have

wn
Kσφn

σ =
1

δt|σ|
∫ tn+1

tn

∫

σ

φ(w · νKσ) dx dt + Oφ,w(δt2 + d2
σ),

the last term being exactly 0 if the sign of w · νKσ is constant. It follows, by (4.1), that

T321(w) = −
N−1∑
n=0

∑

K∈T
ρn+1
K

∫ tn+1

tn

( ∑

σ∈EK

∫

σ

φ(w · νKσ) dx

)

︸ ︷︷ ︸
=
R
K div (φw) dx

dt

+ (1 + regmax)




N−1∑
n=0

δt
∑

K∈T
ρn+1
K

∑

σ∈EK
|σ|dK

︸ ︷︷ ︸
≤reg(T )|K|




O(δt + hT )

= −
∫ T

0

∫

Ω

ρT ,δtdiv (φw) dx dt + Oregmax,w,φ(δt + hT ).

Since w and φ are fixed, we finally deduce, using the weak-? convergence of ρT ,δt, that

T321(w) −−−−−−−→
(δt,hT )→0

−
∫ T

0

∫

Ω

ρdiv (φw) dx dt.

• The term T322(w) can be treated in the very same way (in fact this term is even easier) since we can write

T322(w) =
∫ T

0

∫

Γ

(γρT ,δt)φ(w · ν) dx dt + O(hT (δt + hT )),

and then by weak-? convergence of the trace γρT ,δt we get

T322(w) −−−−−−−→
(δt,hT )→0

∫ T

0

∫

Γ

gφ(w · ν) dx dt.

• The term R1(w): Let us write

R1(w) = R1(v) +
(
R1(w)−R1(v)

)
.

– We use the weak L2(H1) estimate (3.13) and the regularity assumption (4.1) in order to bound R1(v)

|R1(v)| =
N−1∑
n=0

δt
∑

σ∈Eint
σ=K|L

|σ||vn
KL||ρn+1

K − ρn+1
L | (|φn

K − φn
σ|+ |φn

L − φn
σ|)

≤ Cρmax




N−1∑
n=0

δt
∑

σ∈Eint
σ=K|L

|σ||vn
KL||ρn+1

K − ρn+1
L |2




1
2

︸ ︷︷ ︸
≤C by (3.13)




N−1∑
n=0

δt
∑

K∈T

∑

σ∈EK
|σ||vn

Kσ| |φn
K − φn

σ|2︸ ︷︷ ︸
≤Cφ(δt+dK)2




1
2

≤ Cφ,ρmax,regmax

(
N−1∑
n=0

δt
∑

K∈T

1
dK
‖v‖W 1,1(K)(δt + dK)2

) 1
2

≤ Cφ,ρmax,regmax
‖v‖

1
2
L1(W 1,1)

√
hT .

Hence, this term tends to zero when (δt, hT ) → 0.
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– The term R1(w)−R1(v) is bounded as in the first part of the Lemma (even though the choice of φn
σ is

different here), by using the L∞ bound on ρT ,δt

|R1(w)−R1(v)| ≤ 2ρmax

N−1∑
n=0

δt
∑

K∈T

∑

σ∈EK
|σ||wn

Kσ − vn
Kσ| |φn

K − φn
σ|︸ ︷︷ ︸

≤Cφ(δt+dK)

≤ Cφ,ρmax,regmax

N−1∑
n=0

∑

K∈T

∫ tn+1

tn

‖v(t)− w(t)‖W 1,1(K) dt.

This term is uniformly controlled by C‖v − w‖L1(W 1,1).
• The term R2(w):

We easily find that

|R2(w)| ≤ 2‖ρT ,δt‖L∞Cφ‖w‖L1(]0,T [×Γ)(δt + hT ).

As a consequence of the previous estimates, we see that properties (4.5) and (4.6) hold with R32(v, w) = R1(v)−
R1(w).

Conclusion. We may now conclude the proof of Theorem 4.1. Indeed, gathering (4.3), (4.4) and the result of Corollary
4.3 we see that the weak limits (ρ, g) solve the weak formulation of the problem and satisfy g = ρin, dµ−v -almost everywhere.
According to the uniqueness of such a couple in L∞(]0, T [×Ω)× L∞(]0, T [×Γ, |dµv|), the proof is complete.

5. Strong convergence result. We want now to show that the approximate solution actually strongly converges
towards the weak solution of the problem. We emphasize the fact that the convergence we obtain in Theorem 5.2 is
uniform with respect to time.

5.1. An improved Friedrichs-type result. We first need to adapt a little the classical convolution argument
(Friedrichs’ lemma) used in the renormalized solution theory [DL89, Boy05], then we will state and prove our main result.

Lemma 5.1. Assume that (1.2), (1.3) and (1.4a) hold.
For any ε > 0, there exists a function ρε ∈ W 1,∞(]0, T [×Ω) satisfying the following properties:
• We have ‖ρε‖L∞(]0,T [×Ω) ≤ ‖ρ‖L∞(]0,T [×Ω).
• For any p < +∞, (ρε)ε converges towards ρ in C0([0, T ], Lp(Ω)) and there exists C > 0, which does not depend

on ε such that

‖ρε‖C0([0,T ],Lp(Ω)) ≤ C‖ρ‖L∞(]0,T [×Ω).

• For any p < +∞, the traces (γρε)ε (in the usual sense since ρε is continuous up to the boundary) converge towards
γρ in Lp(]0, T [×Γ, |dµv|).

• The following equation is satisfied in the distribution sense

∂tρ
ε + div (ρεv) + cρε = Rε, in ]0, T [×Ω, (5.1)

for some Rε ∈ L1(]0, T [×Ω) satisfying

‖Rε‖L1(]0,T [×Ω) −−−→
ε→0

0.

Notice that ‖ρε‖W 1,∞ blows up when ε → 0.
Proof. The usual Friedrichs commutator Lemma, adapted to the case of a non tangential vector field on the boundary

in [Boy05, BF11] leads to a family of functions, say ρ̃ε, satisfying:
• For any ε > 0, ρ̃ε ∈ L∞(]0, T [×W 1,∞(Ω)).
• (ρ̃ε)ε converges to ρ in C0([0, T ], Lp(Ω)) for any p < +∞.
• The traces γρ̃ε converges to γρ in Lp(]0, T [×Γ, |dµv|) for any p < +∞.
• There exists R̃ε ∈ L1(]0, T [×Ω), such that ρ̃ε solves

∂tρ̃
ε + div (ρ̃εv) + cρ̃ε = R̃ε,

with ‖R̃ε‖L1(]0,T [×Ω) −−−→
ε→0

0.
This family of approximations is not exactly the one we need here since it is not smooth enough in the time variable.

Thus, ε > 0 being fixed, we need to mollify ρ̃ε in time in order to get the result. Let θ ∈ C∞c ([0, T [) such that θ = 1 on
[0, 2δ0[ and θ = 0 on ]T − 2δ0, T ], for δ0 > 0 small enough. For any 0 < δ < δ0 we define

ρ̃ε ?
θ

ηδ(s, x) =
∫ T

0

ρ̃ε(t, x)
(

θ(s)ηδ(s− t + δ) + (1− θ(s))ηδ(s− t− δ)
)

dt,
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where η ∈ C∞c (]− 1, 1[) is a non-negative mollifying kernel and ηδ = 1
δ η(·/δ). Note that, for any s ∈ [0, T ] and 0 < δ < δ0

small enough we have
∫ T

0

(
θ(s)ηδ(s− t + δ) + (1− θ(s))ηδ(s− t− δ)

)
dt = 1,

so that we immediately deduce that ρ̃ε ?
θ
ηδ converges to ρ̃ε in C0([0, T ], Lp(Ω)) for any p < +∞ when δ → 0. Furthermore,

since η is smooth, we see that ρ̃ε ?
θ

ηδ is Lipschitz continuous in all the variables (t, x).

Furthermore, since by assumption (1.3) we have (v · ν) ∈ Lα(]0, T [×Γ), we deduce

‖γρ̃ε ?
θ

ηδ − γρ̃ε‖L1(]0,T [×Γ,|dµv|) ≤ ‖v · ν‖Lα(]0,T [×Γ)‖γρ̃ε ?
θ

ηδ − γρ̃ε‖Lα′ (]0,T [×Γ),

so that, by standard convolution arguments, we see that (γρ̃ε ?
θ
ηδ)δ converges towards γρ̃ε in L1(]0, T [×Γ, |dµv|) as δ goes

to 0.
We can now observe that ρ̃ε ?

θ
ηδ solves the following problem

∂s

(
ρ̃ε ?

θ
ηδ

)
+ div (ρ̃ε ?

θ
ηδv) + cρ̃ε ?

θ
ηδ = Rε,δ, (5.2)

with

Rε,δ(s, x) = R̃ε ?
θ

ηδ(s, x) + Rε,δ
1 (s, x) + Rε,δ

2 (s, x) + Rε,δ
3 (s, x),

and

Rε,δ
1 (s, .) = θ′(s)

∫ T

0

ρ̃ε(t, .)ηδ(s− t + δ) dt− θ′(s)
∫ T

0

ρ̃ε(t, .)ηδ(s− t− δ) dt,

Rε,δ
2 (s, .) =

∫ T

0

div
(
ρ̃ε(t, .)(v(s, .)− v(t, .))

)(
θ(s)ηδ(s− t + δ) + (1− θ(s))ηδ(s− t− δ)

)
dt,

Rε,δ
3 (s, .) =

∫ T

0

ρ̃ε(t, .)(c(s, .)− c(t, .))
(
θ(s)ηδ(s− t + δ) + (1− θ(s))ηδ(s− t− δ)

)
dt.

It is clear that R̃ε ?
θ

ηδ converges to R̃ε in L1(]0, T [×Ω) when δ → 0, let us show that the other terms go to zero.

• Observe that

∀s ∈ [0, T ], θ′(s)
∫ T

0

ηδ(s− t + δ) dt = θ′(s)
∫ T

0

ηδ(s− t− δ) dt = θ′(s),

so that, when ρ̃ε is smooth we have

Rε,δ
1 (s, .) = θ′(s)

∫ T

0

(ρ̃ε(t, .)− ρ̃ε(s, .))ηδ(s− t + δ) dt− θ′(s)
∫ T

0

(ρ̃ε(t, .)− ρ̃ε(s, .))ηδ(s− t− δ) dt,

so that

|Rε,δ
1 (s, .)| ≤ CL(ρ̃ε)δ.

Finally, we have the uniform bound ‖Rε,δ
1 ‖L1 ≤ C‖ρ̃ε‖L1 which gives the result by a classical density argument.

• We first observe that ‖Rε,δ
2 ‖L1 ≤ C‖ρ̃ε‖L∞(W 1,∞)‖v‖L1(W 1,1), uniformly with respect to δ. We then conclude, by

density, observing that the convergence is clear for smooth vector fields v.
• Here we observe that ‖Rε,δ

3 ‖L1 ≤ C‖ρ̃ε‖L∞‖c‖L1 and that the convergence to zero is clear when c is smooth
enough.

Finally we get that ρ̃ε ?
θ

ηδ solves (5.2) with a right-hand side Rε,δ such that Rε,δ → R̃ε when δ → 0. In particular, for

any ε > 0 there exists δ(ε) → 0 such that

‖R̃ε −Rε,δ(ε)‖L1 ≤ ε, and ‖γρ̃ε ?
θ

ηδ(ε) − γρ̃ε‖L1(]0,T [×Γ,|dµv|) ≤ ε.

Therefore, since ‖R̃ε‖L1 → 0 and ‖γρ− γρ̃ε‖L1(]0,T [×Γ,|dµv|) → 0 as ε → 0, we get that all the required properties hold if
we define

ρε = ρ̃ε ?
θ

ηδ(ε), and Rε = Rε,δ(ε).
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5.2. The strong convergence result. Our main result of this section is the following uniform in time strong
convergence result.

Theorem 5.2. Assume that (1.2), (1.3) and (1.4) hold.
Let regmax > 0 be given, and consider a family of meshes and time steps, such that (δt, hT ) → 0 and satisfying (4.1).
We have the following convergences

‖ρT ,δt − ρ‖L∞(]0,T [,Lp(Ω)) −−−−−−−→
(δt,hT )→0

0, ∀p < +∞,

‖γρT ,δt − γρ‖Lp(]0,T [×Γ,|dµv|) −−−−−−−→
(δt,hT )→0

0, ∀p < +∞.

Remark 5.1.
• The previous theorem implies, in particular, that

ρN
T −−−−−−−→

(δt,hT )→0
ρ(T ), in Lp(Ω), ∀p < +∞. (5.3)

• In fact, we can construct an approximate solution which is continuous in time by the formula

ρ̃T ,δt(t, x) =
N−1∑
n=0

∑

K∈T

(tn+1 − t)ρn
K + (t− tn)ρn+1

K

δt
1]tn,tn+1[×K.

Since ρ ∈ C0([0, T ], Lp(Ω)) for any p < +∞, the previous theorem implies that

‖ρ̃T ,δt − ρ‖C0([0,T ],Lp(Ω)) −−−−−−−→
(δt,hT )→0

0, ∀p < +∞,

In order to simplify the presentation, we will assume in the following proof that

c +
1
2
div v ≥ 0, almost everywhere in ]0, T [×Ω. (5.4)

The general case can be proved by a change of variables similar to the one we used in section 3.1 by using both assumptions
(1.4).

Proof. Notice first that, thanks to the L∞ bounds (1.6) and (3.12), it is enough to prove the result for p = 2.
We now consider the discretization of the family of approximations given by Lemma 5.1 and defined by

ρε,n
K = ρε(tn, xK),∀K ∈ T , ∀n ∈ J0, NK, and ρε

T ,δt =
N−1∑
n=0

∑

K∈T
ρε,n+1
K 1]tn,tn+1[×K ∈ L∞(]0, T [×Ω).

By the triangle inequality, we get

‖ρT ,δt − ρ‖L∞(]0,T [,L2(Ω)) ≤ ‖ρT ,δt − ρε
T ,δt‖L∞(]0,T [,L2(Ω)) + ‖ρε

T ,δt − ρε‖L∞(]0,T [,L2(Ω)) + ‖ρε − ρ‖L∞(]0,T [,L2(Ω)). (5.5)

By Lemma 5.1, the third term is known to converge to 0 when ε → 0 and, since ρε is smooth, the second term can be
bounded as follows: for every t ∈]0, T [, such that t ∈]tn, tn+1[ for some n,

‖ρε
T ,δt(t)− ρε(t)‖2L2(Ω)) ≤

1
δt

∑

K∈T

∫ tn+1

tn

∫

K
|ρε(tn+1, xK)− ρε(t, x)|2 dx ≤ C(δt2 + h2

T )L(ρε)2. (5.6)

Most of the sequel of the proof will consist in estimating the first term in (5.5). To this end, we define interface
approximate values of ρε by

ρε,n
σ =





(ρε,n
K + ρε,n

L )/2, ∀σ = K|L ∈ Eint,

ρin,n
σ , ∀σ ∈ Ebd, s.t. vn

Kσ ≤ 0,

ρε,n
K , ∀σ ∈ Ebd, s.t. vn

Kσ > 0.

For any σ ∈ E , let us choose an arbitrary point xσ ∈ σ. By integrating (5.1) over [tn, tn+1]× K and putting the result
under same form as in (3.15), we obtain

|K|ρ
ε,n+1
K − ρε,n

K

δt
+

∑

σ∈EK
|σ|vn

Kσρε,n+1
σ + |K|cn

Kρε,n+1
K −

∑

σ∈EK∩Eint

|σ||vn
Kσ|

ρε,n+1
L − ρε,n+1

K

2

= |K|(δε,n+1
K − δε,n

K ) + |K|Rε,n
K +

∑

σ∈EK
|σ|δε,n

Kσ +
∑

σ∈EK
|σ|γε,n

Kσ , ∀K ∈ T , ∀n ∈ J0, N − 1K, (5.7)
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where the remainder terms are defined by

δε,n
K =

1
|K|

∫

K
(ρε(tn, xK)− ρε(tn, x)) dx,

δε,n
Kσ =

1
δt|σ|

∫ tn+1

tn

∫

σ

(v · νKσ)(ρε(tn+1, xσ)− ρε(t, x)) dx dt,

γε,n
Kσ =




−|vn

Kσ|
ρε,n+1
L − ρε,n+1

K

2
+ vn

Kσ

(
ρε,n+1

σ − ρε(tn+1, xσ)
)
, for σ = K|L ∈ Eint

vn
Kσ

(
ρε,n+1

σ − ρε(tn+1, xσ)
)
, for σ ∈ Ebd

Rε,n
K =

1
δt|K|

∫ tn+1

tn

∫

K
Rε dx dt +

1
δt|K|

∫ tn+1

tn

∫

K
c(t, x)(ρε(tn, xK)− ρε(t, x)) dx dt.

Note that for any interior edge σ = K|L we have the local conservativity properties γε,n
Kσ + γε,n

Lσ = 0 and δε,n
Kσ + δε,n

Lσ = 0,
which are useful to perform the computations which follow. For any n ∈ J0, NK, we introduce now the error term

Eε,n
K = ρε,n

K − ρn
K, ∀K ∈ T , and Eε,n

T =
∑

K∈T
Eε,n
K 1K,

so that the quantity we want to bound reads

‖ρε
T ,δt − ρT ,δt‖L∞(]0,T [,L2(Ω)) = sup

0≤n≤N
‖Eε,n

T ‖L2(Ω) = ‖Eε,Ñ
T ‖L2(Ω), (5.8)

for some Ñ ∈ J0, NK. Note that, we have the following elementary bounds

sup
0≤n≤N

‖Eε,n
T ‖L∞(Ω) ≤ 2ρmax, (5.9)

‖Eε,0
T ‖L2(Ω) ≤ ChT L(ρε) + C‖ρε(0, .)− ρ0‖L2(Ω). (5.10)

We subtract (5.7) and (3.15) then we multiply the result by Eε,n+1
K and we sum over n = 0, ..., Ñ − 1 and K ∈ T .

Then we do exactly the same computations than the ones we used to obtain (3.16) and we get

1
2
‖Eε,Ñ

T ‖2L2 +
1
2

Ñ−1∑
n=0

δt‖Eε,n+1
T − Eε,n

T ‖2L2 +
Ñ−1∑
n=0

δt
∑

K∈T
|K|

(
cn
K +

1
2
(div v)n

K

)
|Eε,n+1

K |2

+
1
2

Ñ−1∑
n=0

δt
∑

σ∈Ebd

|σ||vn
σ |(Eε,n+1

K )2 +
1
2

Ñ−1∑
n=0

δt
∑

σ∈Eint
σ=K|L

|σ||vn
KL|(Eε,n+1

L − Eε,n+1
K )2

=
1
2
‖Eε,0

T ‖2L2 +
∑

K∈T
|K|δε,Ñ

K Eε,Ñ
K +

Ñ−1∑
n=0

δt
∑

K∈T
|K|δε,n

K (Eε,n
K − Eε,n+1

K )−
∑

K∈T
|K|δε,0

K Eε,0
K

+
Ñ−1∑
n=0

δt
∑

K∈T
|K|Rε,n

K Eε,n+1
K +

Ñ−1∑
n=0

δt
∑

σ∈Eint
σ=K|L

|σ|γε,n
Kσ (Eε,n+1

K − Eε,n+1
L ) +

Ñ−1∑
n=0

δt
∑

σ∈Ebd

|σ|γε,n
Kσ Eε,n+1

K

+
Ñ−1∑
n=0

δt
∑

σ∈Eint
σ=K|L

|σ|δε,n
Kσ (Eε,n+1

K − Eε,n+1
L ) +

Ñ−1∑
n=0

δt
∑

σ∈Ebd

|σ|δε,n
Kσ Eε,n+1

K . (5.11)

We denote by Iε
T ,δt the left-hand side of this inequality (whose all terms are non-negative thanks to assumption (5.4))

and we have to estimate all the terms Ti, i = 1, . . . , 9 in the right-hand side. We want to point out the fact that numerical
diffusion terms (fourth and fifth) in the definition of Iε

T ,δt will be of major importance in the following estimates.
17



• Term T1: By (5.9) and (5.10) we get

|T1| ≤ Cρmax‖Eε,0
T ‖L2(Ω) ≤ Cρmax

(L(ρε)hT + ‖ρε(0, .)− ρ0‖L2(Ω)

)

≤ Cρmax

(L(ρε)hT + ‖ρε − ρ‖L∞(]0,T [,L2(Ω))

)
.

• Term T2: We use the Cauchy-Schwarz inequality and the definition of δε,n
K

|T2| ≤ ‖Eε,Ñ
T ‖L2

(∑

K∈T
|K||δε,Ñ

K |2
) 1

2

≤ L(ρε)hT |Ω|‖Eε,Ñ
T ‖L2 ≤ CL(ρε)hT

√
Iε
T ,δt.

• Term T3: By using similar arguments as for T2 we get

|T3| ≤



Ñ−1∑
n=0

δt‖Eε,n+1
T − Eε,n

T ‖2L2(Ω)




1
2




Ñ−1∑
n=0

δt
∑

K∈T
|K||δε,n

K |2



1
2

≤ CL(ρε)hT
√

Iε
T ,δt.

• Term T4: By (5.9) and the definition of δε,0
K we get

|T4| ≤ L(ρε)hT ‖Eε,0
T ‖L2 ≤ 2ρmaxL(ρε)hT .

• Term T5: By definition of Rε,n
K and (5.9) we have

|T5| ≤ 2ρmax

Ñ−1∑
n=0

δt
∑

K∈T
|K||Rε,n

K | ≤ Cρmax‖Rε‖L1(]0,T [×Ω) + Cρmax‖c‖L1L(ρε)(δt + hT ).

• Term T6: Observing that |γε,n
Kσ | ≤ (dK + dL)L(ρε)|vn

Kσ|, since we are only concerned with interior edges, we first
evaluate this term as follows

|T6| ≤ L(ρε)
N−1∑
n=0

δt
∑

σ∈Eint

|σ||vn
Kσ|(dK + dL)|Eε,n+1

K − Eε,n+1
L |.

We then use the Cauchy-Schwarz inequality, (2.1) and the bound (5.9), to obtain

|T6| ≤ CρmaxL(ρε)




Ñ−1∑
n=0

δt
∑

σ∈Eint

|σ||vn
Kσ||Eε,n+1

K − Eε,n+1
L |2




1
2

×



Ñ−1∑
n=0

δt
∑

σ∈Eint

|σ||vn
Kσ|(dK + dL)2




1
2

≤ Cρmax

√
hT L(ρε)

√
Iε
T ,δt




Ñ−1∑
n=0

∑

K∈T
|σ|

∫ tn+1

tn

dK‖v‖L1(∂K) dx dt




1
2

≤ Cρmax,regmax

√
hT L(ρε)

√
Iε
T ,δt‖v‖

1
2
L1(]0,T [,W 1,1(Ω)).

• Term T7: For the boundary edges such that vn
Kσ ≥ 0, we have ρε,n

σ = ρε,n
K = ρε(tn+1, xK) so that the contribution

of this term can be treated in the same way as for the term T6.
For the boundary edges such that vn

Kσ < 0, the value of ρε,n
σ is given by the boundary data and thus we have to

adapt the argument. To this end, we write

γε,n
Kσ = vn

Kσ

1
δt|σ|

∫ tn+1

tn

∫

σ

(ρin(t, x)− ρε(t, x)) dx dt + vn
Kσ

1
δt|σ|

∫ tn+1

tn

∫

σ

(ρε(t, x)− ρε(tn+1, xσ)) dx dt.

The contribution of the second part of this term can be treated just like in the term T6, using the fact that ρε is
Lipschitz continuous. It remains to evaluate the following contribution

T ′7 =
Ñ−1∑
n=0

∑

σ∈Ebd
vn
Kσ<0

vn
Kσ

∫ tn+1

tn

∫

σ

(ρin(t, x)− ρε(t, x)) dx dt.
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Let us introduce, for any v, w ∈ L1(]0, T [, (W 1,1(Ω))d) the notation

T ′7(v, w) =
Ñ−1∑
n=0

∑

σ∈Ebd
vn
Kσ<0

wn
Kσ

∫ tn+1

tn

∫

σ

(ρin(t, x)− ρε(t, x)) dx dt,

so that, the term we are interested in is T ′7(v, v). Note that T ′7(v, w) is linear with respect to w but nonlinear with
respect to w.
We consider a smooth vector field w, to be determined later, and we write T ′7(v, v) = T ′7(v, w) + T ′7(v, v − w).

– Since w is smooth, for any f ∈ L1(]0, T [×Γ) we have
∣∣∣∣∣∣

Ñ−1∑
n=0

∑

σ∈Ebd

wn
Kσ

∫ tn+1

tn

∫

σ

f dx dt−
∫ tÑ

0

∫

Γ

(w · ν)f dx dt

∣∣∣∣∣∣
≤ L(w)(δt + hT )‖f‖L1(]0,T [×Γ).

Applying this result to f =




N−1∑
n=0

∑

σ∈Ebd
vn
Kσ<0

1]tn,tn+1[×σ


 (ρin− ρε) and using the L∞ bounds on ρin and ρε, we

then have

|T ′7(v, w)| ≤ L(w)(δt + hT )
Ñ−1∑
n=0

∑

σ∈Ebd
vn
Kσ<0

∫ tn+1

tn

∫

σ

|ρin(t, x)− ρε(t, x)|︸ ︷︷ ︸
≤2ρmax

dx dt

+
N−1∑
n=0

∑

σ∈Ebd
vn
Kσ<0

∫ tn+1

tn

∫

σ

|w · νσ||ρin(t, x)− ρε(t, x)| dx dt

≤ 2ρmaxT |Γ|L(w)(δt + hT ) + 2ρmax ‖(v − w) · ν‖L1(]0,T [×Γ)︸ ︷︷ ︸
≤C‖v−w‖L1(W1,1)

+
N−1∑
n=0

∑

σ∈Ebd
vn
Kσ<0

∫ tn+1

tn

∫

σ

|v · νσ||ρin(t, x)− ρε(t, x)| dx dt

︸ ︷︷ ︸
=T ′′7

.

By writing |v · νσ| = (v · νσ)+ + (v · νσ)−, we finally bound the last term as follows

T ′′7 ≤
∫ T

0

∫

Γ

(v · ν)−|ρin(t, x)− ρε(t, x)| dx dt + 2ρmax

N−1∑
n=0

∑

σ∈Ebd
vn
Kσ<0

∫ tn+1

tn

∫

σ

(v · νσ)+ dx dt.

– The second part of T ′7(v, v) is classically bounded as follows

|T ′7(v, v − w)| ≤ Cρmax‖v − w‖L1(W 1,1).

• Term T8: this term also needs a particular care. We will also denote it by T8(v), in order to point out the linear
dependence of this term with respect to v. We first estimate δε,n

Kσ as follows

|δε,n
Kσ | ≤ (δt + dσ)L(ρε)

1
δt|σ|

∫ tn+1

tn

∫

σ

|v · νKσ| dx dt.

As we have already seen, the difficulty comes from the fact that the sign of v ·νKσ may change inside [tn, tn+1]×σ
and then we can not estimate δε,n

Kσ by using |vn
Kσ|.

Consider a smooth vector field w ∈ C1([0, T ] × Ω)d, and let us write T8(v) = T8(w) + T8(v − w). In the above
estimate of δε,n

Kσ (with w in place of v), since w is smooth we can write

|δε,n
Kσ (w)| ≤ (δt + dσ)L(ρε)

(
|wn

Kσ|+ L(w)(δt + dσ)
)

.
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We recall that dσ ≤ dK for any σ ∈ EK and that, by (4.1), we have δt ≤ regmaxdK for any K ∈ T . Therefore, using
that |wn

Kσ| ≤ |vn
Kσ|+ |wn

Kσ − vn
Kσ|, we can then write

|T8(w)| ≤ Cregmax
L(ρε)

[ 


Ñ−1∑
n=0

δt
∑

σ∈Eint

|σ||vn
Kσ|(dK + dL)|Eε,n+1

K − Eε,n+1
L |




+




Ñ−1∑
n=0

δt
∑

σ∈Eint

|σ||vn
Kσ − wn

Kσ|(dK + dL)|Eε,n+1
K − Eε,n+1

L |



+ L(w)(δt + hT )




Ñ−1∑
n=0

δt
∑

σ∈Eint

|σ|(dK + dL)|Eε,n+1
K − Eε,n+1

L |



]
.

We use the Cauchy-Schwarz inequality for the first term above and we simply use the bound (5.9) in the other
terms. It follows

|T8(w)| ≤ Cregmax
L(ρε)

[√
hT

√
Iε
T ,δt

(
N−1∑
n=0

∫ tn+1

tn

∑

K∈T
dK‖v(t)‖L1(∂K) dt

) 1
2

+

(
N−1∑
n=0

∫ tn+1

tn

∑

K∈T
dK‖v(t)− w(t)‖L1(∂K) dt

)
+ L(w)(δt + hT )T |Ω|

]
,

and thus

|T8(w)| ≤ Cregmax,ρmaxL(ρε)
(√

hT
√

Iε
T ,δt‖v‖

1
2
L1(W 1,1) + ‖v − w‖L1(W 1,1) + L(w)hT

)
.

Finally, the term T8(v − w) can be estimated just like above by writing

|T8(v − w)| ≤ Cregmax
L(ρε)‖v − w‖L1(W 1,1).

• Term T9: This boundary term does not present any new difficulty since, by using (5.9), we can write

|T9| ≤ Cregmax
(δt + hT )L(ρε)‖v · ν‖L1(]0,T [×Γ).

Collecting all the above estimates in the inequality (5.11) and using Young’s inequality, we get

Iε
T ,δt ≤ Cregmax,ρmax

(
(L(ρε) + L(w)) (1 + L(ρε)) hT + (1 + L(ρε))‖v − w‖L1(W 1,1)

+ ‖ρε − ρ‖L∞(]0,T [,L2(Ω)) + ‖Rε‖L1 +
∫ T

0

∫

Γ

(v · ν)−|ρε − ρin| dx dt +
N−1∑
n=0

∑

σ∈Ebd
vn
Kσ<0

∫ tn+1

tn

∫

σ

(v · νσ)+ dx dt

)
. (5.12)

By definition of Iε
T ,δt, we have ‖Eε,Ñ

T ‖2L2 ≤ 2Iε
T ,δt, and then, by the choice (5.8) of Ñ , we see that (5.12) gives an estimate

on ‖ρT ,δt − ρε
T ,δt‖L∞(]0,T [,L2(Ω)). Finally, with (5.6) and (5.5), we obtain

‖ρT ,δt − ρ‖2L∞(]0,T [,L2(Ω)) ≤ Cregmax,ρmax

(
(L(ρε) + L(w)) (1 + L(ρε)) hT + (1 + L(ρε))‖v − w‖L1(W 1,1)

+ ‖ρε − ρ‖L∞(]0,T [,L2(Ω)) + ‖Rε‖L1 +
∫ T

0

∫

Γ

(v · ν)−|ρε − ρin| dx dt +
N−1∑
n=0

∑

σ∈Ebd
vn
Kσ<0

∫ tn+1

tn

∫

σ

(v · νσ)+ dx dt

)
. (5.13)

Let now ∆ > 0 be any small positive number. By Lemma 5.1, we first choose ε > 0 small enough so that

‖ρε − ρ‖2L∞(]0,T [,L2(Ω)) ≤ ∆, ‖Rε‖L1 ≤ ∆, and ‖γρε − ρin‖L1(]0,T [×Γ,dµ−v ) ≤ ∆.

Then, ε > 0 being fixed, we can find a smooth vector field w such that (1 +L(ρε))‖v−w‖L1(0,T,W 1,1(Ω)) ≤ ∆. This vector
field w being now fixed, all the other terms in (5.13) can be made smaller than ∆ for hT and δt small enough satisfying
(4.1) (we use Lemma 2.1 for the last term). This proves the first strong convergence property.
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It remains to prove the strong convergence of the traces, for p = 2 for instance. Using the triangle inequality, we first
write

‖γρT ,δt−γρ‖L2(]0,T [×Γ,|dµv|) ≤ ‖γρT ,δt−γρε
T ,δt‖L2(]0,T [×Γ,|dµv|)+‖γρε

T ,δt−γρε‖L2(]0,T [×Γ,|dµv|)+‖γρε−γρ‖L2(]0,T [×Γ,|dµv|).

The third term goes to zero when ε → 0 by 5.1 and the second term is bounded by CvL(ρε)(δt + hT ). It thus remain to
study the first term. To this end, we write

∫ T

0

∫

Γ

|γρT ,δt − γρε
T ,δt|2|v · ν| dx dt =

N−1∑
n=0

∑

σ∈Ebd

∫ tn+1

tn

∫

σ

|v · ν||Eε,n+1
K |2 dx dt

≤ 4ρ2
max

N−1∑
n=0

∑

σ∈Ebd

∫ tn+1

tn

∫

σ

|v · ν − vn
σ | dx dt +

N−1∑
n=0

δt
∑

σ∈Ebd

|σ||vn
σ ||Eε,n+1

K |2.

The first term in the right-hand side tends to 0 when δt and hT tend to 0 by Lemma 2.1. The second term in the
right-hand side is one of the terms in Iε

T ,δt (the left-hand side of (5.11)) when Ñ is replaced by N . The above proof shows
that this term can be bounded like in (5.12).

Therefore, we can conclude by the same argument than above: choosing first ε > 0 small enough, then choosing a
smooth w close enough to v and finally δt and hT small enough.

6. Additional properties of the approximate solutions.

6.1. Lower bound estimate. We prove in this section a lower bound for the approximate solution, provided that
the initial and boundary data are bounded from below by a positive number. The result improves the monotony of the
scheme that we have already proven. This kind of result is important in the applications, for instance in fluid mechanics,
where the fact that the fluid density remains far from zero uniformly in the discretization parameters may be crucial.
Note that the assumption on c + div v we need is stronger than (1.4a).

Theorem 6.1 (Lower bound estimate). Assume that (1.2) and (1.3a) hold and that (c + div v) ∈ L1(]0, T [, L∞(Ω)).
If there exists some ρmin > 0 such that

{
ρ0(x) ≥ ρmin, for a.e. x ∈ Ω,

ρin(t, x) ≥ ρmin, for dµ−v -a.e. (t, x) ∈]0, T [×Γ,

then for any mesh T and any time step δt ≤ δtmax, the unique solution to the finite volume scheme (2.4) satisfies

ρn
K ≥ exp

(
−

∫ tn

0

‖(c + div v)+‖L∞ dt

)
ρmin, ∀K ∈ T , ∀n ∈ J0, NK.

Proof. Since the assumption on c +div v implies (1.4a), existence and uniqueness of the approximate solution is given
by Theorem 3.1. We now perform the same kind of change of variable as in the proof of Theorem 3.1, by letting ρ̃n

K = αnρn
K

and ρ̃n
σ = αnρn

σ, with αn defined by (3.3), where γn is now defined by

γn = − 1
δt

∫ tn+1

tn

‖(c + div v)+‖L∞ dt.

We thus obtain the same equation (3.6) with this new choice of γn. We will now show by induction that ρ̃n
K is greater

than ρmin for every K ∈ T and n ∈ J0, NK. This is true for n = 0, by definition of ρmin, so that we assume now that n is
such that infK∈T ρ̃n

K ≥ ρmin, and we are going to show that infK∈T ρ̃n+1
K ≥ ρmin.

Let us consider K ∈ T , such that ρ̃n+1
K = infL∈T ρ̃n+1

L . Two cases have to be considered:
• First case : there is some σ ∈ EK ∪ Ebd such that ρ̃n+1

K ≥ ρ̃in,n+1
σ . In that case, by (2.3) and the definition of ρmin

we immediately deduce that ρ̃n+1
K ≥ ρmin.

• Second case : for any σ ∈ EK ∪ Ebd, we have ρ̃n+1
K < ρ̃in,n+1

σ . In that case, (3.6) leads to

ρ̃n+1
K

(
1 +

δtαn

αn+1
(cn
K + (div v)n

K + γn)
)

︸ ︷︷ ︸
=βn

K

≥ ρ̃n
K.

By definition of αn, we have

βn
K =

1 + δt(cn
K + (div v)n

K)
1− δtγn

.

First, since δt ≤ δtmax and by (3.1), we have δt(cn
K+(div v)n

K) ≥ −1/2 so that βn
K ≥ 0 (recall that γn ≤ 0). Second,

by definition of γn, we see that βn
K ≤ 1. Finally, we get ˜ρn+1

K ≥ 1
βn
K

ρ̃n
K ≥ ρ̃n

K ≥ ρmin, and the proof is complete.
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6.2. The case of approximate data. We deal here with the case where the data c and v are not exactly known.
This situation occurs, for instance, if the transport equation is coupled with other equations involving c and v: we can
imagine for instance that v is given through a Darcy-like problem or some momentum conservation equation in the case
of the Navier-Stokes system.

We assume that, for each mesh T and each time step δt, we are given approximate values
{
cn
K, K ∈ T , n ∈ J0, N − 1K}, and

{
vn
Kσ, K ∈ T , σ ∈ EK, n ∈ J0, N − 1K}.

We define the discrete divergence to be

(div v)n
K =

1
|K|

∑

σ∈EK
|σ|vn

Kσ, ∀K ∈ T ,∀n ∈ J0, N − 1K.

By adapting the proofs given above, we can show that all the results in this paper remain valid provided that we have the
following properties:

• Local conservativity :

vn
Kσ = −vn

Lσ, ∀σ = K|L ∈ Eint, ∀n ∈ J0, NK. (6.1)

• Bounds on (c + div v)−: We assume that there exists δtmax > 0, 0 < γ < 1 and M > 0 such that for any mesh
and any δt ≤ δtmax, we have





δt

(
sup
K∈T

(cn
K + (div v)n

K)−
)
≤ γ, ∀n ∈ J0, N − 1K,

N−1∑
n=0

δt

(
sup
K∈T

(cn
K + (div v)n

K)−
)
≤ M.

The L∞ bound we shall obtain will then depend on γ and M .
• L1 convergence of the reaction coefficient:

N∑
n=0

∑

K∈T
cn
K1]tn,tn+1[×K −−−−−−−→

(δt,hT )→0
c, in L1(]0, T [×Ω).

• L1 convergence of the divergence:

N∑
n=0

∑

K∈T
(div v)n

K1]tn,tn+1[×K −−−−−−−→
(δt,hT )→0

div v, in L1(]0, T [×Ω). (6.2)

• L1 convergence of the vector field:

N∑
n=0

∑

K∈T

∑

σ∈EK
dK

∣∣∣∣∣δt|σ|v
n
Kσ −

∫ tn+1

tn

∫

σ

(v · νKσ) dx dt

∣∣∣∣∣ −−−−−−−→(δt,hT )→0
0. (6.3)

• L1 convergence of the normal trace of the vector field on the boundary:

N∑
n=0

∑

σ∈Ebd

vn
σ1]tn,tn+1[×σ −−−−−−−→

(δt,hT )→0
(v · ν), in L1(]0, T [×Γ).

Assumption (6.3) is not so straightforward to interpret. It really has to be understood as a kind of convergence in
(L1(]0, T [×Ω))d and not in L1(]0, T [, (W 1,1(Ω))d), even though it is needed for v to belong to this last space in order for
the traces of v on edges to be well defined. We will give an alternative formulation of this assumption in a particular case
(yet not too far from generality).

Let us assume that each control volume K is convex and that we can choose a point xK ∈ K such that ρK = sup{r >
0, B(xK, r) ⊂ K} satisfies

sup
K∈T

dK
ρK

≤ regmax.

22



This assumption is a usual regularity assumption on the meshes we consider. We then define the so-called half-diamond
cell DKσ, to be the pyramid (triangle if d = 2) based on σ and with xK as a principal vertex. The above assumptions lead
to the following properties for any K ∈ T

K =
⋃

σ∈E
DKσ, and |σ|dK ≤ Cregmax

|DKσ|, ∀σ ∈ EK.

We also introduce the diamond cells Dσ = DKσ, for σ ∈ Ebd ∩ EK and Dσ = DKσ ∪DLσ, for σ = K|L ∈ Eint.
With these additional notation and assumption on the meshes, we can treat the following two examples
• First of all, by using for instance Lemma 6.2 in [DE06], we get

N∑
n=0

∑

K∈T

∑

σ∈EK
dK|σ|

∣∣∣∣∣
1

|Dσ|
∫ tn+1

tn

∫

Dσ

(v · νKσ) dx dt− 1
|σ|

∫ tn+1

tn

∫

σ

(v · νKσ) dx dt

∣∣∣∣∣

≤ ChT
N∑

n=0

∑

K∈T

∑

σ∈EK

|σ|dK
|Dσ|

∫ tn+1

tn

∫

Dσ

|∇v| dx dt ≤ Cregmax
hT

∫ T

0

∫

Ω

|∇v| dx dt. (6.4)

This proves that the choice vn
Kσ =

1
δt|Dσ|

∫ tn+1

tn

∫

Dσ

(v · νKσ) dx dt, satisfies the property (6.3). Furthermore, we

also have

N∑
n=0

∑

K∈T

∑

σ∈EK
|σ|

∣∣∣∣∣
1

|Dσ|
∫ tn+1

tn

∫

Dσ

(v · νKσ) dx dt− 1
|σ|

∫ tn+1

tn

∫

σ

(v · νKσ) dx dt

∣∣∣∣∣

≤ ChT
N∑

n=0

∑

K∈T

∑

σ∈EK

|σ|dK
|Dσ|

∫ tn+1

tn

∫

Dσ

|∇v| dx dt ≤ Cregmax

∫ T

0

∫

Ω

|∇v| dx dt,

and thus, by a density argument, we see that (6.2) also holds in that case.
• Suppose now that vn

Kσ has the following form vn
Kσ = V n

σ · νKσ, for some vector V n
σ ∈ Rd (notice that (6.1) is then

satisfied). Then, (6.4) shows that (6.3) is satisfied as soon as the following convergence holds

N∑
n=0

∑

σ∈E
V n

σ 1]tn,tn+1[×Dσ
−−−−−−−→
(δt,hT )→0

v, in (L1(]0, T [×Ω))d.

The fact that (6.2) is satisfied is an additional condition which depend on the particular choice of V n
σ .

The two examples above, show that for a given v ∈ L1(]0, T [, (W 1,1(Ω))d), the property (6.3) can be interpreted as a
strong L1 convergence property towards v for some sequence of piecewise constant functions.

Remark 6.1. The fact that we only need L1 convergence of the vector field to obtain strong convergence of the
associated weak solution of the transport problem is a well-known feature in the study of the stability of such solutions with
respect to variations of the data (see for instance [DL07, BF11]).

6.3. Remark on the renormalization property. The renormalization property (1.7) was proven for smooth
functions β. We want here to show that it still holds for piecewise smooth functions.

Lemma 6.2. Assume that (1.2), (1.3) and (1.4) hold and let ρ be the unique bounded weak solution to (1.1) for given
data ρ0 and ρin.

1. For any α 6= 0, we have the following property

c + div v = 0, for almost every (t, x) in the level set {ρ = α}.
2. For any function β : R 7→ R which is continuous and piecewise C1, we have the renormalization property (1.7).

Proof. Notice that the first property of the Lemma can not hold for α = 0 (for instance the solution ρ ≡ 0 is an
obvious counter-example).

1. For any 0 < ε ≤ 1, we define

βε(s) =
√

ε(s− α)√
(s− α)2 + ε

,

which is a smooth function satisfying ‖βε‖L∞ ≤ 1 and ‖β′ε‖L∞ ≤ 1. We observe that

βε(s) −−−→
ε→0

0, ∀s ∈ R,
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sβ′ε(s) −−−→
ε→0

{
α, for s = α,

0, for s 6= α.

We then apply (1.7) and find that, for any φ ∈ C∞c (]0, T [×Ω) we have
∫ T

0

∫

Ω

(
βε(ρ)∂tφ + βε(ρ)v · ∇φ + βε(ρ)(div v)φ− ρβ′ε(ρ)(c + div v)φ

)
dx dt = 0.

We now pass to the limit when ε → 0 by the Lebesgue convergence theorem to obtain

α

∫ T

0

∫

Ω

(c + div v)φ1{ρ=α} dx dt = 0.

Since α 6= 0, and c + div v ∈ L1(]0, T [×Ω) and by weak-? density of C∞c (]0, T [×Ω) into L∞(]0, T [×Ω), we deduce
that

∫ T

0

∫

Ω

(c + div v)φ1{ρ=α} dx dt = 0,

for any φ ∈ L∞(]0, T [×Ω). Which gives the expected result.
2. Let β : R 7→ R be a continuous piecewise C1 function. Notice that (1.7a) has a (weak) sense even though β′ is not

well-defined at some points since for such points α ∈ R (even for α = 0) we have, by the first point of the Lemma,
∫ T

0

∫

Ω

(c + div v)ρ1{ρ=α}φ dx dt = 0, ∀φ ∈ L∞(]0, T [×Ω).

Such a piecewise smooth function β can be written as the sum of a smooth function and of a finite linear
combination of functions of the form s 7→ |s − αi|. It is then enough to prove the claim for β(s) = |s − α| for
some α ∈ R. To this end, we define βε(s) = (s−α)2√

(s−α)2+ε
which is smooth, we apply (1.7) with βε and then we pass

to the limit when ε → 0, using the fact that βε simply converges to |s− α| and that β′ε simply converges towards
sgn(s− α).

6.4. Discrete renormalization property. As a consequence of the previous remarks, we may now study what
happens when one takes a non-linear function of the approximate solution ρT ,δt. It is well known that such mathematical
operations are very important to obtain useful estimates in the theoretical study of many systems (incompressible and
compressible Navier-Stokes equations, Saint-Venant equations, and so on). The aim of the main theorem of this section
is to show that these algebraic operation can also be performed at the discrete level, the price to pay being a remainder
term which strongly converges in L1 towards 0 when δt and hT tend to 0.

Let us begin by a straightforward consequence of our strong convergence theorem 5.2 and the Lebesgue dominated
convergence theorem.

Lemma 6.3. Under the same assumptions as for Theorem 5.2, for any continuous map β : R 7→ R, we have

β(ρT ,δt) −−−−−−−→
(δt,hT )→0

β(ρ), in Lp(]0, T [×Ω) for any p < +∞ and in L∞(]0, T [×Ω) weak-?,

β(γρT ,δt) −−−−−−−→
(δt,hT )→0

β(γρ), in Lp(]0, T [×Γ, |dµv|) for any p < +∞.

The main result of this section is the following.
Theorem 6.4. For any β : R 7→ R which is continuous and piecewise C1, the approximate solution (ρn

K)n∈J0,NK
K∈T

satisfy

the following set of equations

|K|β(ρn+1
K )− β(ρn

K)
δt

+
∑

σ∈EK∩Eint

|σ|(vn+
Kσ β(ρn+1

K )− vn−
Kσ β(ρn+1

L )
)

+
∑

σ∈EK∩Ebd

|σ|vn
Kσβ(ρn+1

σ )

+ |K|cn
Kβ′(ρn+1

K )ρn+1
K + |K|(div v)n

K
(
β′(ρn+1

K )ρn+1
K − β(ρn+1

K )
)

= |K|Rn+1
K , ∀n ∈ J0, N − 1K,∀K ∈ T , (6.5)

where the remainder term RT ,δt = (Rn+1
K )n∈J0,N−1K

K∈T
satisfy

‖RT ,δt‖L1(]0,T [×Ω) −−−−−−−→
(δt,hT )→0

0.
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Furthermore, when β is convex we have

Rn+1
K ≤ 0, ∀K ∈ T , ∀n ∈ J0, N − 1K.

Remark 6.2. Since β is only assumed to be piecewise C1, we need to make precise the value of β′ at the singular
points of β. At the present point, we will assume that at each singular point s ∈ R, the prescribed value β′(s) strictly lies
between the left and right limits β′(s±).

We will see at the end, that we may choose in fact any value for β′ at singular points, see Corollary 6.6.
Proof. First of all, we observe that only the restriction of β on the interval [−ρmax, ρmax] plays a role in formula (6.5).

Hence, we may assume that β has a finite number of singular points. In that case, such a function β can be written as
follows

β(s) = β0(s) +
m∑

i=1

αi|s− ki|,

where ki ∈ R, αi ∈ R∗ and β0 ∈ C1.
We write β0 = β+

0 − β−0 where β±0 are convex C1 functions on [−ρmax, ρmax]. Hence, we can write β = β+− β− where

β+(s) = β+
0 (s) +

∑

1≤i≤m
αi>0

αi|s− ki|, and β−(s) = β−0 (s) +
∑

1≤i≤m
αi<0

|αi||s− ki|.

The approximate solution ρT ,δt being fixed, the definition of RT ,δt is linear with respect to β, and we will then denote
when necessary RT ,δt(β). It is then enough to prove the result for β = β±0 and for β(.) = |. − k| for any k ∈ R (in that
case, we conventionally set γ = β′(k) ∈]− 1, 1[, see Remark 6.2).

• We assume first that β is C1 and convex. We find that

|K|Rn+1
K (β) =

1
δt
|K| (β(ρn+1

K )− β(ρn
K)− (ρn+1

K − ρn
K)β′(ρn+1

K )
)

−
∑

σ∈EK∩Eint

|σ|vn−
Kσ

[
(β(ρn+1

L )− β(ρn+1
K ))− β′(ρn+1

K )(ρn+1
L − ρn+1

K )
]

−
∑

σ∈EK∩Ebd

|σ|vn−
Kσ

[
(β(ρn+1

σ )− β(ρn+1
K ))− β′(ρn+1

K )(ρn+1
σ − ρn+1

K )
]
.

By convexity of β, we observe that Rn+1
K (β) ≤ 0 for any n ∈ J0, NK,K ∈ T .

• We now consider the case when β(s) = |s − k| for some k ∈ R, with β′(k) = γ ∈] − 1, 1[. This function can be
approximated by the smooth convex function βε,γ(s) = ε log cosh

(
s−k

ε + atanhγ
)

in such a way that

βε,γ(s) −−−→
ε→0

|s− k| = β(s),

β′ε,γ(s) −−−→
ε→0

sgn(s− k) + γδs,k.

Hence, for this particular function β, we still have RT ,δt(β) = limε→0 RT ,δt(βε,γ) ≤ 0.
• The previous arguments show that, if β is continuous, piecewise C1 and convex, then RT ,δt(β) ≤ 0. Therefore,

the L1-norm of RT ,δt(β) can be computed by summing all the equations (6.5) for n ∈ J0, N − 1K and K ∈ T . We
get

− ‖RT ,δt(β)‖L1 =
N−1∑
n=0

δt
∑

K∈T
|K|Rn+1

K =
∑

K∈T
|K|β(ρN

K )−
∑

K∈T
|K|β(ρ0

K)

+
N−1∑
n=0

δt
∑

σ∈Ebd

|σ|vn
σβ(ρn+1

σ ) +
N−1∑
n=0

δt
∑

K∈T
|K| ((cn

K + (div v)n
K)β′(ρn+1

K )ρn+1
K − (div v)n

Kβ(ρn+1
K )

)
. (6.6)

Let us prove that all those terms converge towards their continuous counterparts.
– The convergence of the first two terms is straightforward from (5.3) and Remark 3.2.
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– Let us denote the boundary term by

S(v) =
N−1∑
n=0

δt
∑

σ∈Ebd

|σ|vn
σβ(ρn+1

σ ).

Choosing a smooth vector field w close enough to v, we have

S(v) = S(v − w) + S(w).

Furthermore, since β is bounded on [−ρmax, ρmax] we have

|S(v − w)| ≤ Cρmax,β‖v − w‖L1(]0,T [×Γ) ≤ Cρmax,β‖v − w‖L1(]0,T [,W 1,1(Ω)),

and
∣∣∣∣∣S(w)−

∫ T

0

∫

Γ

(w · ν)β(γρ) dx dt

∣∣∣∣∣

=

∣∣∣∣∣S(w)−
∫ T

0

∫

Γ

(w · ν)β(γρT ,δt) dx dt

∣∣∣∣∣ + Cρmax,β

∫ T

0

∫

Γ

|w · ν||γρT ,δt − γρ| dx dt

≤
∣∣∣∣∣S(w)−

∫ T

0

∫

Γ

(w · ν)β(γρT ,δt) dx dt

∣∣∣∣∣+Cρmax,β

∫ T

0

∫

Γ

|v ·ν||γρT ,δt−γρ| dx dt+Cρmax,β‖v−w‖L1(]0,T [×Γ)

≤ CρmaxL(w)(δt + hT ) + Cρmax,β

∫ T

0

∫

Γ

|v · ν||γρT ,δt − γρ| dx dt + Cρmax,β‖v − w‖L1(]0,T [×Γ).

Therefore, we have
∣∣∣∣∣S(v)−

∫ T

0

∫

Γ

(v · ν)β(γρ) dx dt

∣∣∣∣∣
≤ Cρmax,β‖v − w‖L1(]0,T [,W 1,1(Ω)) + Cρmax,βL(w)(δt + hT ) + ‖γρ− γρT ,δt‖L1(]0,T [×Γ,|dµv|),

and thus S(v) converges towards
∫ T

0

∫

Γ

(v · ν)|γρ|2 dx dt when (δt, hT ) → 0.

– The interior term containing β(ρn+1
K ) can be written

∫ T

0

∫

Ω

(div v)β(ρT ,δt) dx dt,

and then we can perform the limit by Lemma 6.3.
– The terms containing β′ need special care since β′ is not continuous. Let us denote by A the finite set of

discontinuity points of s 7→ sβ′(s) in [−ρmax, ρmax]. Note that 0 6∈ A.
We first remark that the product ρT ,δtβ

′(ρT ,δt) is bounded in L∞(]0, T [×Ω) and that ρT ,δt strongly converges
towards ρ in L1. Therefore, there is a subsequence for which ρT ,δt converges almost everywhere and such
that ρT ,δtβ

′(ρT ,δt) has a weak-? limit denoted by G.
By definition of A, we have

ρT ,δtβ
′(ρT ,δt)1{ρ6∈A} −−−−−−−→

(δt,hT )→0
ρβ′(ρ)1{ρ6∈A}, almost everywhere,

and thus, by the Lebesgue convergence theorem, we can identify one part of the L∞ weak-? limit, namely
we have G1{ρ 6∈A} = ρβ′(ρ)1{ρ6∈A}. We then deduce that

N−1∑
n=0

δt
∑

K∈T
|K|(cn

K + (div v)n
K)β′(ρn+1

K )ρn+1
K =

∫ T

0

∫

Ω

(c + div v)ρT ,δtβ
′(ρT ,δt) dx dt

−−−−−−−→
(δt,hT )→0

∫ T

0

∫

Ω

(c + div v)Gdxdt =
∫ T

0

∫

Ω

(c + div v)ρβ′(ρ)1{ρ6∈A} dx dt +
∫ T

0

∫

Ω

(c + div v)G1{ρ∈A} dx dt

︸ ︷︷ ︸
=0, by Lemma 6.2

since A is finite and 0 6∈ A

=
∫ T

0

∫

Ω

(c + div v)ρβ′(ρ) dx dt.
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This computation being true for any convenient subsequence, we deduce that the convergence holds for the
whole sequence.

We can now pass to the limit in (6.6) and find that

− ‖RT ,δt‖L1 −−−−−−−→
(δt,hT )→0

∫

Ω

β(ρ(T, .)) dx−
∫

Ω

β(ρ0) dx +
∫ T

0

∫

Σ

β(γρ)(v · ν) dx dt

+
∫ T

0

∫

Ω

cρβ′(ρ) + (div v)(ρβ′(ρ)− β(ρ)) dx dt.

By the renormalization property (1.7) (see also Lemma 6.2) we know that this limit is exactly 0 and then we
deduce the strong convergence to 0 in L1 of the remainder term RT ,δt.

Applying the previous result with β(s) = s2 shows, in particular, that the numerical diffusion terms in the estimate
(3.16) which leads to the weak L2(H1) estimate (3.13) are not only bounded but in fact tend to zero when hT and δt tend
to 0.

Corollary 6.5. Under the same assumptions as for Theorem 5.2, we have the following properties

N−1∑
n=0

δt‖ρn+1
T − ρn

T ‖2L2 −−−−−−−→
(δt,hT )→0

0,

N−1∑
n=0

δt
∑

σ∈Ebd
vn

σ <0

|σ||vn
σ |(ρin,n+1

σ − ρn+1
K )2 +

N−1∑
n=0

δt
∑

σ∈Eint
σ=K|L

|σ||vn
KL|(ρn+1

L − ρn+1
K )2 −−−−−−−→

(δt,hT )→0
0.

We conclude this section by a corollary of the previous result which is the discrete counterpart of Lemma 6.2.
Corollary 6.6.
1. For any α ∈ R \ {0}, we have

N−1∑
n=0

δt
∑

K∈T
|K||cn

K + (div v)n
K|1{ρn+1

K =α} −−−−−−−→
(δt,hT )→0

0.

2. The result of Theorem 6.4 still holds for any choice of the value of β′ at singular points.
Proof.
1. We define β1(s) = |s−α| with the choice β′1(α) = 1/2 and β2(s) = |s−α| with the choice β′2(α) = −1/2. We apply

the result of Theorem 6.4 to β1 and β2, denoting by RT ,δt(β1) and RT ,δt(β2) the associated remainder terms.
The functions β1 and β2 coincide everywhere, and β′1 and β′2 coincide everywhere except in α. We then subtract
the two set of equations to obtain for any n ∈ J0, N − 1K and K ∈ T

Rn+1
K (β1)−Rn+1

K (β2) =

{
α(cn

K + (div v)n
K) if ρn+1

K = α

0 if ρn+1
K 6= α

The result follows from the fact that both RT ,δt(β1) and RT ,δt(β2) converge to 0 in L1 when (δt, hT ) → 0.
2. This is a straightforward consequence of the first point of the Corollary.

7. Conclusion. In this paper, we proposed an analysis of the (implicit) upwind finite volume scheme on general
unstructured grids in any dimension for initial and boundary value problems of transport type. The framework considered is
one of the weaker possible since in particular the regularity of the velocity field is only assumed to be L1(]0, T [, (W 1,1(Ω))d).
In that case, Cauchy-Lipschitz theory does not apply and our analysis is then directly based on the renormalized solutions
theory for the partial differential equation under study. The main result is the strong convergence in L∞(]0, T [, Lp(Ω)) of
the approximate solutions towards the unique weak solution of the problem.

We conclude by raising two open questions of interest related to this problem:
• Is it possible to prove an error estimate for the upwind finite volume method for such regularities of the data?

Introducing regular Lagrangian flows (see [DL07]) instead of usual characteristic flows of the Cauchy-Lipschitz
theory should be of some help.

• It is known (since [Amb04]), that most of the theoretical results on renormalized solutions of the transport equation
remain valid in the case where the vector field lies in L1(]0, T [, (BV(Ω))d) (and usual additional boundedness
assumptions on its divergence). Does the present analysis, including boundary conditions, remains valid in this
more general framework ?
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[Kuz76] N.N. Kuznecov. The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear
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