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ANALYSIS OF THE UPWIND FINITE VOLUME METHOD FOR GENERAL INITIAL AND
BOUNDARY VALUE TRANSPORT PROBLEMS

FRANCK BOYER*

Abstract. This paper is devoted to the convergence analysis of the upwind finite volume scheme for the initial and boundary
value problem associated to the linear transport equation in any dimension, on general unstructured meshes. We are particularly
interested in the case where the initial and boundary data are in L* and the advection vector field v has low regularity properties,
namely v € L'(]0, T[, (W (Q))?), with suitable assumptions on its divergence. In this general framework, we prove uniform in time
strong convergence in LP(Q2) with p < 400, of the approximate solution towards the unique weak solution of the problem as well
as the strong convergence of its trace. The proof relies, in particular, on the Friedrichs’ commutator argument, which is classical in
the renormalized solutions theory.
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AMS Subject Classification. 35D30 - 35L.04 - 65M08 - 656M12

1. Introduction. This paper is devoted to the analysis of the upwind finite volume scheme for solving a general
linear transport-reaction problem in any dimension. We are interested here in a low regularity framework for the data,
still leading to existence and uniqueness of weak solutions, namely the one of renormalized solutions first introduced and
studied in [DL89]. More precisely, we consider here the case where the transport vector-field may not be characteristic at
the boundary of the domain. It is thus needed to use the trace theorems and the well-posedness results for the associated
initial and boundary value problems given in [Boy05].

Our main result in the present paper is the proof of the uniform in time strong convergence in LP (), p < +o00, of the
approximate solution given by the finite volume scheme towards the unique weak solution of the continuous problem with
minimal assumptions on the data, and the meshes.

General notation. We shall adopt the following notation.

e L(f) will denote the Lipschitz constant of any Lipschitz continuous function f.

e For any real number x we define its positive and negative parts by 2™ = (z + |z|)/2, 2= = (|| — 2)/2, and we
will often use that x = 2+ — 2~ and |z| = 2% + 2. Moreover, we denote by sgn(z) its sign, with the convention
that sgn(0) = 0.

e For any a,b € R, we define [a,b] = [a,b] N N.

e The characteristic function of a set A will be denoted by 1 4.

The continuous problem. Let d > 1, Q C R? a bounded polygonal (or polyhedral) domain, and 7 > 0 given. We are
interested here in the following initial and boundary value problem

Op + div (pv) + cp =0, in |0, T[xQ,
p(0,) = po, inQ, (1.1)
p=p", on]0,T[xT, where (v-v) < 0.

The general existence and uniqueness theory given in [Boy05, BF11] relies on the following assumptions

ce L'(0, T[xQ), (1.2)
ve LYo, T[, (Wh(Q)h), (1.3a)
(v-v) e L*(0,T[xT), for some o > 1, (1.3b)

(c+dive)~ € L*(]0,T[, L= (Q)), (1.4a)
(dive)™ € L'(]0, T, L>=(2)). (1.4b)

The case where ¢ = divo = 0 and where 2 is a smooth domain is treated in [Boy05] and the extension to general
data ¢, v and piecewise smooth domains is given in [BF11]. Associated to the vector field v, we introduce the measure
du, = (v-v)drdt on ]0,T[xT and we denote by du; (resp. du, ) its positive (resp. negative) part in such a way that
|dp| = dpt + duy, . The support of dut (resp. du; ) is the outflow (resp. inflow) part of the boundary.
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This problem is the conservative form of the linear transport-reaction equation. As an example, for ¢ = —divw, we
recover the usual non-conservative transport equation dyp +v - Vp = 0.

THEOREM 1.1 (Existence and uniqueness, [Boy05, BF11]). We assume that assumptions (1.2), (1.3), (1.4) hold.

For any p® € L>(Q) and p™ € L>*(]0,T[xT,du, ), there exists a unique weak solution (p,vy(p)) € L>(]0,T[xQ) x
L>(]0, T[xT, |duy|) of (1.1) in the sense that

/ p(0rp+v -V — cd)dedt — / / o(v-v dxdt+/ p°$(0,.)dx =0, V¢ € CL([0,T[xQ), (1.5)
Q Q

the boundary condition being satisfied in the following sense

n

v(p) = p™, du, -almost everywhere.

Moreover, the following properties are also proven in the same references:
e L bound:

. T . —
Ioll o go,71x ) < max([lpoll s [|p™ [ oe Jedo 1A O e dt, (1.6)
e Time regularity: p lies in C°([0, 77, LP(2)) for any p < 4+o0 and p(0) = po.

e Renormalization property: For any smooth function 5 : R — R, the function 3(p) satisfies in the weak sense
the problem

9B(p) + div (B(p)v) + cB'(p)p + (divv)(8'(p)p — B(p)) = 0, in |0, T[xQ, (1.7a)
B(p)(0,.) = B(p"), (1.7b)
Y(B(p)) = B(v(p)), on]0,T[xT. (L.7¢)

Note that this property still holds for any continuous piecewise smooth function 3 (see Lemma 6.2).

Assumption (1.4a) clearly plays a fundamental role to obtain the L> bound above. However, assumption (1.4b) is only
useful in order to deduce the uniqueness property from the renormalization property through a Gronwall-like argument.
Note that this last assumption can be slightly relaxed (see [Des96]) allowing to use Osgood’s Lemma instead of Gronwall’s
Lemma. For instance, all the above results still hold if we assume the weaker condition that eC(@v)™ ¢ L1(]0, T[x), for
some C' > 0.

Previously known results. The upwind finite volume method is the most classical stable method for the numerical
approximation of linear transport problems (see for instance [EGHO00, LeV02]). The method is first order for smooth
solutions but it is well-known that, for non smooth initial data (say in BV(Q2) or in some Sobolev space), the optimal
convergence rate falls down to 1/2, see for instance [DL11, MV07, Mer08, Kuz76, VV03, Des04a, Des04b]. As shown
in [BGPO05], contrary to what can be thought at first sight, the irregularity of the mesh is not the main reason for this
behavior. In fact, this loss of convergence rate is mainly due to the numerical dissipation of the scheme which implies that
discontinuities in the solution are smoothed along time even on regular grids thus leading to suboptimal convergence rate.

In all the results cited above, the transport vector field v is assumed to be at least Lipschitz-continuous (some of them
assume further that v is constant) in order for the associated characteristic flow to be well defined and smooth enough,
which is often one of the main tools in these analysis. Moreover, to our knowledge, the analysis of finite volume schemes
for boundary value problems for linear hyperbolic equations is only addressed in [BGP05, CVV00] in the case of a constant
vector field v (see for instance [OV06] for the case of nonlinear conservation laws).

The present study extends those results by accounting for less regular general vector fields and for L initial/boundary
data. The prize to pay is that, to the best of our knowledge, no convergence rate is known in this general framework.
Nevertheless, since the renormalized solution theory allows to define a suitable weak notion of characteristic flows for
vector fields satisfying (1.3) (the so-called regular Lagrangian flow, see [DL07]), it should be possible to extend some of the
results cited above concerning the convergence rate of the scheme to the current framework. We finally mention [Fet11]
where, in the case of the mass conservation equation (that is for ¢ = 0) and without boundary conditions (that is when
v-v = 0 on the boundary), the weak-* convergence of the solution of the upwind scheme is proven in the above framework
for meshes made of simplexes of R%.

2. The implicit upwind finite volume scheme.

2.1. Notation. We introduce here the main notation we need to define and analyse the finite volume method. A
finite volume mesh of the domain 2 is a set 7 = (k)7 of closed connected polygonal subsets of R, with disjoint interiors
and such that Q = {J .7 k.

The boundary of each control volume x € 7 can be written as the union of a finite number of edges/faces (we will
often use the word “edge” even if d > 2) which are closed connected sets of dimension d — 1 contained into hyperplanes.
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We denote by & the set of the faces/edges of k. We assume that for any k, £ such that © # £ and kN ¢ is of co-dimension
1, then kN z € E NE,, in that case the corresponding face is denoted by x|c.

The set of all the faces in the mesh is denoted by £ and &,q denote the subset of the faces which are included in the
boundary 99, Eny = €\ Eba the set of the interior faces.

e For each x € 7, and o € &, we denote by vy, the unit outward normal vector to x on o. If 0 = K|z € &, We
shall sometimes use the notation vy, = Vi, = —V,,. If 0 € &g, there is a unique £ € 7 such that ¢ € & and
then vy, is nothing but the unit outward normal to 02 and we may also write v, or v if no confusion is possible.

e We will denote by |«| (resp. |o|) the d-dimensional Lebesgue measure of the control volume ik (resp. the d — 1
dimensional measure of the face o).

e The diameter of a control volume x (resp. of an edge o) shall be denoted by di (resp. d,) and the size of the
mesh is defined by h7 = max,er di.

We will need to measure the regularity of the mesh. To this end, we denote by reg(7 ), the smallest positive number
such that

v

(T

)C

[f 2oy < [fllwrig, VeeT,VfeWhi(x). (2.1)
In the convergence results given below we shall assume that reg(7 ) remains bounded as hy — 0, which amounts to assume
that the control volumes are not allowed to degenerate. For instance, in the case of control volumes which are simplexes,
then the above assumption is nothing but the usual regularity assumption used in the finite element framework. Note
finally, that (2.1) implies in particular (take f = 1) that

> delo| <reg(T)k|, VkeT.

[ SN

It will be useful to associate a point x, € K to each control volume k£ € 7. We may for instance choose z, to be the
mass center of x, if k£ is convex. These points actually do not enter the definition of the scheme, they are only used as a
tool in the analysis.

2.2. Definition of the scheme. Let us first define the discretization of the data needed to define our finite volume
method (see Section 6.2 for further comments on the data).
e For any x € 7, n € [0, N — 1], we define

gt gt
cy cdxdt, and vy V- Vo) dx dt, Vo € Ec.
=g . “siaif. e v
Furthermore, if 0 € &g, with o = k| we shall use the notation v}, = v}, = —v?,, and if 0 € Ec N Epg we will

note vy = vy,. We will often use the fact that, by Stokes’ formula, we have

Z lo|vg, = |c|(div ) &/ / (divv) dx dt. (2.2)

o€k

e For any boundary edge o € Evq and any n € [0, N — 1], we define

tW
n,n+1 __ n 2
J = 5ol / / dzx dt. (2.3)

Notice that p™™ is a priori only given du, -almost everywhere so that in this formula we need, in fact, to consider
an extension of p'™ in L*>°(]0, T[xT).
To simplify a little the notation, let us introduce v} = (v2,)" and v?, = (vZ,)~. The implicit finite volume scheme we
consider is the following: Find (P;c)ne[[O,N}] such that
KeT

PnH — Px 1 1 1

K K —

| =2 b > ol(opd et vt T+ > Jofutplt
c€EKNEint g€EKLNELg

+ |klctpptt =0, Vne[0o,N —1],Vc e T,

1
p%|/p0d177 Ve eT,
<0,

pitl = pinn 5y € [0,N — 1],Vo € Epa, st. v, <
pitt = pttl Yn € [0, N — 1],Yo € Epaq, s.t. v, > 0.

REMARK 2.1.



e [or the pure advection equation, that is when ¢ = —div v, with (2.2), the scheme reads

Pttt — pi 1 1 1 ) 1
P Y lolois (T =)+ Y Joluk (AT = pgt) =0,
0€ECNEint c€€xNEba

which is a more usual formulation of the scheme for the pure advection equation.
o We only consider here the implicit version of the scheme in order to avoid the introduction of a stability CFL
condition but all the results given below are valid for the explicit scheme.

2.3. Outline of the paper. In Section 3, we prove existence and uniqueness of the approximate solution, for small
enough time steps (this condition on ¢ being independent of the mesh 7), then we establish a priori estimates on those
solutions and their traces: a uniform L*°-bound and a weak L?(H'!) estimate, which will be useful in the convergence
analysis. In Section 4, we prove the weak-x convergence in L of the approximate solution towards the unique weak
solution of the problem, as well as for the traces. In Section 5, we prove that this convergence is in fact strong in
L>(]0,T[, LP(Q2)), for any p < +00, together with a suitable strong convergence result for the traces. The proof of this
result is based on the same tools than those used to prove existence and uniqueness of weak solutions for the problem in
the framework of renormalized solutions, namely the Friedrichs commutator lemma. Note that the strong convergence of
the approximate solutions in LP(]0, T[x{) is easier to obtain; the difficult point here is to prove a convergence which is
uniform in time. We conclude the paper by some extensions and remarks concerning the scheme under study.

2.4. A technical result. We conclude this introduction by a technical result that will be useful in the sequel.
LEmMMA 2.1.
1. For any 1 <p < +oo, f € LP(]0,T[xI") we have

tn+1

N—-1
> > £t x) — [ dedt ———— 0

ot,h 0
n=0 0c€&ELq A 7 (@thr)—

where 21 is the mean-value of f on Jt", " [xo.
2. For any v € L'(]0,T[, (W11(2))?), we have

N—-1 gl N—-1 gl
E E /(v~ug)+dxdt—|— E E /(v-ua)_dxdt4>0
n=0 c€&Lq e g n=0 oc€Epq t o (6t,h7)—0
v, <0 Vi, >0

Proof.
1. This is a classical result of the approximation theory: the claim is clear when f is smooth and the general case is
obtained by density, since the left-hand side term can be bounded by 27| f ||’£p(]O 7(xr)» uniformly with respect to

ot and hr.
2. We observe that, if vy, < 0 then we have
tn+l 1 1 tn+1
/ /(v~ug)+dtdx: §5t\0|v,’éo+§/ |v-v,|dtdx
tm o tm o
1 1 1 tn+1 1 tn+l
< §6t|a|vgg+§5t\a||vzg|+§/ [v-ve —vg,|dtde < 5/ v v, —vi,|dtdz,
tm o tm o
=0
so that, by the first part of the Lemma applied to f = (v - v), we get
N-—1 tn+1 1 N—1 tn+1
vo)tdedt < = / Ve — 0| dtde ——— 0
> 2 . L(v vo)tdodt<g . 3 | [ oo - vk ldtds s

n=0 0€&pq n=0 oc€&Ehq

vig <0

The other term being treated similarly, the claim is proven.

3. Existence and uniqueness. A priori estimates.
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3.1. Existence and uniqueness. First properties. Since the scheme we are studying is implicit in time, it is
needed to prove that the approximate solution actually exists and is unique. This is the goal of the first result of this
paper.

THEOREM 3.1. Assume that (1.2),(1.3a) and (1.4a) hold. There exists 0tmax > 0 (depending only on (¢ + divv)~)
such that for any initial and boundary data p° € L°°(2), pi™ € L>(]0, T[xT'), any mesh T and any time step such that

0t < Otmax,

there exists an unique solution of the scheme (2.4).
Moreover in that case, the scheme is monotone, that is

(p° >0 and p™ >0) = (p >0,Vk € T,Vn € [0, N]).
Finally, the following L bound holds:

o~
o] < max([|p° |z, 1P || L) exp (2/0 [[(c+ divo)~||Le dt) , VkeT,Vne[0,N].

It will be clear in the proof that, in the case where ¢ 4+ divv > 0 (in particular for the pure advection equation where
¢ = —divw), we have tax = +00.

Proof. The initial data (p?)ce7 is directly defined from p¥. Assume now that (p?)cer is known at time ", n < N —1
and let us show that (p?*1),cc7 is uniquely defined.

The set of equations being linear with the same number of unknowns as that of equations, it is enough to show that,
if p’" = 0, and p? = 0 for any k£ € 7, then any solution of the system satisfies p2* = 0 for any £ € 7. To this end, we
will in fact prove the monotony of the scheme which will imply its well-posedness.

By assumption t — ||(¢ + divv) ™ (f)|| L= is integrable on ]0,T'[, hence there exists dtmax > 0 such that

1
/||(c+divv)*(t)|\Loo dt < 3 VI CJ0,T[, s.t. [I| < dtmax- (3.1)
T
e Step 1. Change of variables. For any n € [0, N — 1], let us define

1

A== [[(c +divv)™ || L dt, (3.2)
6t tTI,
and (a™), by

=1, "™ =(1-6ty")a", Yne€[0,N —1]. (3.3)

Using the following basic inequality

<142z <e* Vrelo,1/2],
— X

and the property (3.1) defining §tax, it is easily seen that we have
o
Vn e [0,N —1], 0<exp (—2/ [l(c+ dive) || L dt) <a" <1 (3.4)
0

We can now perform the following change of variables

pr=a"p, Wk eT, Vnelo,N],

pr=a"p", and pi" = a"p™" Vo € &4, Vn € [0, N].

and we get
ﬁn-‘rl _ ﬁn a™ _ o a™ B
R T s DI 4 [ Coa ey /ety I s es S W L O
o0€ECNEing c€€xNEba
a” -
+ \zc|—an+1 (X +y™)pett =0, Yne[0,N —1],Vc e T, (3.5)

/52 = P%a VkeT,
pott =gt Wn € [0,N —1],Y0 € Epa, st. v, <0,
prtl = 5t n e [0,N —1],Vo € &g, s.t. o7, > 0.

5




By using the formula v} = v?_+ 0%, and the boundary conditions we consider in the scheme, we write

DD i o e S S o O S O D I [ (/Y S S /e

c€EkcNEing c€EKNEpa c€ENEint c€ENEint c€ExNEba
_ n ~n+1 n— ~n+1 n ~n+1 n ~n+1
- E ‘O—|U}C0plc + E |O’|U,€a Pt E ‘U| (U)ca o — UkoPx ) .
o€l c€ExNEint oc€ExNEpa n—gsn4+1  ~n41
=—Vxo (Pa —Pxc )

=|K|(divo)ppett

Hence we may write the first equation in (3.5) in the following equivalent form

et = pr a” +1 +1 o +1 in,n+1
n—(sn sn n—(~n ~in,n
<] ot + antl Z lofve (AT = P™) + antl Z lo|ves (P — P )
o€€xNEint g€ENEpa
a™ . _
K| (G + (dive)g +9")p T = 0. (3.6)

Step 2. Monotonicity. Existence and uniqueness. We assume that p° > 0 and p"” > 0. By induction we
assume that n is such that p2 > 0,Vk € 7 and we want to show that p*! > 0,Vk € 7. By contradiction, let us
assume that there is £ € 7 such that

n+1 . n+1
P = minp < 0.
K ceT' ©

In formula (3.6) for this particular control volume i, we see that the two sums over edges are non-positive since

pinmtl >0 and pntt < 0. Furthermore, by the definition of 4™ in formula

putt < g+l for any £ € 7, and since
(3.2), we see that

cp + (divo)e +~™ > 0. (3.7)

Since we assumed that gl < 0, it finally remains the inequality p*! > 5. This implies p? < 0, which is
impossible since we assumed that the approximate solution is non-negative at time ¢™. The scheme (2.4) being
a linear set of equations with the same number of equations as that of unknowns, it is well known that the
monotonicity property implies existence and uniqueness of the approximate solution for any data.

Step 3. L*>°-bound. We will first show that

17 e < max(|p%[lz<, |07 ||z), ¥Yn € [0,N —1]. (3-8)

Let us consider k£ € 7 such that |2} = max,e7 [p7T!]. Let e € {—1,1} be the sign of p2T1. We multiply (3.6)
by € and we obtain

|ﬁz+1‘7€/52 a” n—/| ~n+1 ~n-+1 a” n— /| xn+1 ~in,n+1
R S o (A - ) + e S ol (A - )
c€EkNEing c€ELNELa
o . -
+ Ix| (e + (divo) ++™)|pe = 0. (3.9)

an+1

Two cases have to be considered:
— First case : there is some o € Ec N Epq such that [P < gpm 1. In that case, using (3.4), we have

17 e = 1A < 155" < o™ [pee ™™ < o™ |~ (3.10)

— Second case : for any o € Ec N Epg we have |prTl] > gpim+L. Hence the two sums in (3.9) are non-negative

and we recall that the choice of 4™ leads to (3.7). We thus deduce

|IC| ‘:52+1| - 552

<0
5t -7

which leads to
A7 e < 1157 L= (3.11)
Gathering (3.10) and (3.11), we easily obtain (3.8) by induction. By definition of p%, (3.8) implies
n 1 0 in
lPFllzee < — max({lp”|[ e, [lp™ | o),

and the claim follows with (3.4).
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REMARK 3.1. In the particular case of the so-called mass conservation equation, that is for ¢ = 0, we can prove (by a
duality argument) existence, uniqueness and monotonicity without any additional assumption on (¢ + divv)™ = (dive)~
and without any condition on the time-step. These conditions are however mandatory, even in that case, to obtain the
L bound on the approximate solution.

We shall now define the approximate solution to be the piecewise constant function pz s € L°°(]0,T[x) defined as
follows

N-1

PT .5t = Z Z pﬁ—‘rl]l]t",t""'l[x;c'

n=0 k€T

We define the trace vp7 5. € L>°(]0, T[xTI") of this approximate solution as follows

N-1
YPT 6t = Z Z pz+1]l]tn7t7L+l[><a,

n=0 c€Epq

where in this sum x is the unique control volume such that ¢ € £¢. Note that this definition is nothing but the trace, in
the BV sense, of the function p7 s:.
We also need to introduce the discretization of the initial data

Pg’ = Z p%]lic-
KeT

REMARK 3.2. By standard approzimation arguments, we know that p% converges towards p° in L>(Q) weak-x and
in LP(Q)-strong for any p < +00.
With these notations, the L> bound given in Theorem 3.1 leads to the inequalities

o7 stllLo=(10,71x) < Pmaxs 70T 6l Lo o,7(x1) < Pmax, (3.12)
where ppax does not depend on dt and 7 and is defined by

. T . —
Prmax = maX(HPOHLw(Q), Hpm||L°°(]O,T[><F))62 Jo l(eddivv) ™[ Loo o) dt.

Notice that, by (1.6), we know that the exact solution p satisfies similar estimates

ol qo,71xQ) < Pmax> VPl Lo qo,7xT,dps]) < Pmax-

3.2. Weak L?(H') estimate. In the following proposition, we derive a kind of energy estimate for the solution of
the finite volume scheme.

PROPOSITION 3.2. Assume that (1.2), (1.3a) and (1.4a) hold. There exists M > 0 depending only on c, v, p° and
p'", such that for any 6t < Stmay and any mesh T we have the following bound

N-1 N-1
Yoot > Jollog (Tt =t + Dot Y Jollopel(pltt = it < M. (3.13)
n=0 oc€€ha n=0 o€&int

o=K|c

This estimate can be understood as a weak L?(]0,7T[, H!(2)) estimate since, if the mesh is quasi-uniform, we can write
(for the interior edges for instance)

N 2

n+1 n+1
P~ — Pk
d)cc

-1
M

ot old|vy < —,
ot 3 okl <

n= 0€E&int
o=K|c

where dy . is the distance between z, and z,.. Hence, for a smooth exact solution p, if we think p2*! as an approximation
of p(t"Tt xx) (which it is not !), then the left-hand side of this inequality looks like the square of a weighted discrete
L?(H') norm, the weight being proportional to the mean-value of the flow across each edge. In particular, this estimate
provide useful information only on the parts of |0, T[x{) where the vector-field v does not vanish. Such kind of property
is also known as a weak BV estimate, in the framework of nonlinear scalar conservation laws, see [CGH93, EGHO0].

As shown in [Boy05, BF11], if one consider the following parabolic approximation of the problem

Orpe + div (pev) + cpe —eAp: =0, (3.14)
7



with the initial data p.(0) = p° and the Fourier boundary condition g2 o=+ (pe — p"™)(v - v)~ = 0, the corresponding
estimate reads

C
p<ll 2o, 7, HY () < 7

Here, the size of mesh hs plays the role of the approximation parameter ¢ and, moreover, the numerical diffusion tensor
is isotropic and heterogeneous.

It was shown in [Boy05, BF11] that the solution to (3.14) strongly converges towards the solution p of the transport
equation in L°(]0,T'[, LP(§2)) for any p < +oo. We will use the same kind of idea in the present paper in order to show
the uniform in time strong convergence of our finite volume approximate solution in Section 5.

Proof. First of all, for any interior edge o = |z € iy we define piTt = (ptl 4 p+1) /2. Recall that for boundary
edges the value of ,o”Jrl is already given in the definition of the scheme.

By simple algebraic manipulations, the finite volume scheme (2.4) then reads

P pn+1 _ anrl
|1c| 4 oo, ot Ikl = > ol | P =0, VkeT,¥ne[O,N—1]. (3.15)
o€l c€ENEint

We multiply (3.15) by 6tp*!, we sum over n and k and we finally use the algebraic identity ab = 1a®+ 16> — 1 (a—b)?,
to obtain

anrl _ anrl
Z 7 Ikl(ortt = o)t + Z 5ty [xleglptt? Z L D D o | B
n=0 k€T n=0 KeT = KET 0€ENEint
1
+ Z Y b, (T 4 T - ) o
n=0 KeT o€€ic
Note that we have
rUr/CLa = 7”?(7 = ’UZL’ and (pZJrl pZJrl) (pZJrl PZH) Yo = ’C|'C S Sinm

so that, reorganizing the sums on the edges and using (2.2), we get

> 3 I - e+ Z&ZM (2 + plavor) i + Z&tz ol (o — )2

n=0 k€T n=0 KeT n=0 o€Eint
1
* Z ot Y lolet (50572 - 0+ ) =0,
n=0 0€Epq
By definition of the scheme, for any time iteration n and any boundary edge o such that v?, > 0 we have pi*! = pn+!

and for the other boundary edges (when v, < 0) the value of p?*! = pi"+1 ig prescribed by the boundary data. Thus,
we obtain
1Nl N-1 1
SR+ X 0ty = ol + 30 ot 3 el (e + plaiv o) I+ P
n=0 n=0 KeT
=T
| Nl
t3 Do dt Y olfopl(pim Tt = pith)? Z& Yo lollorel (it = ptt)?
n=0 0€Eba o=K|£EEint
vy <0
=T
+ = Z 5t Y folur(pntt)? 7||pT||L2 + = Z 5t Y olloR] (et (3.16)
n=0 0€ELA n=0 Uegbd
v >0 v <0

All the terms in this identity are non-negative, except possibly the term T3. Nevertheless, using the L* bound on p7 s,
we can bound this term as follows
1 _
c+ =divov

8
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We thus obtain a bound on the term 75, which is exactly (3.13) with

1 p2 T
M:7Hp0|\2L2+L&X/ /|v~1/|0ltd373+p12mX
2 2 Jo Jr

(c + %div v)

4. Weak convergence result. In this section, we are going to prove the weak convergence of the solution of the
finite volume scheme towards the unique weak solution of the initial and boundary value problem (1.1).

THEOREM 4.1. Assume that (1.2), (1.3) and (1.4) hold. Let reg,,,. > 0 be given and consider a family of meshes
and time steps, such that (6t,hy) — 0 and satisfying the bound

L1(J0,T[x9)

max (reg(T), max ;?) < regax- (4.1)

KeT dx
Then, we have

v p in L®(]0, T[xQ) weak-,
PT 5t T ) (10, T[x Q) weak-x

———p, in L]0, T[xT, |d, k-,
WT st o in (10, T[T, |dpy|) wea

where p and yp solves (1.5).

Proof. Notice first that assumption (1.4b) is only used to ensure uniqueness of the weak solution and of its trace (see
Theorem 1.1) and is not directly used in the following computations.

Thanks to the L> bounds (3.12), we can find subsequences of (p7s5:) and (ypr s:) which weak-x converge in the
spaces given above. In fact, up to another extraction of a subsequence, we may also assume that yp7 s; weak-x converges
in L*°(]0, T[xI"). We denote by p and g the respective limits of these two subsequences. We will show that p and g satisfy
the weak formulation of the problem. Since this weak solution is unique, we will then deduce the claim.

Trace identification. Let us first show that g = p, du, -almost everywhere by writing

T
| [ors =l ) deds
0 T

N—1 gl N—1 gl
< 2pmax Z Z / /(U Vo) drdt+ Z Z / / ‘p;mn-i-l _ pm| (v-v,)” dzdt,
n=0 oc€&ELq L3 g n=0 oc€Epq L g
Ve, >0 vig . <0
N—1 tn+1 N—1 tn+1 , al
— ; in |
< 2pmax Z Z / /(U : Vo') dx dt + ||’U : V”La(]O,T[XF) (Z Z / / ’pzan,n-‘rl - Pm‘ dz dt)
n=0 gc&pq /1" YO n=0 c€Epq V1" YO
v, >0

The two terms in the right-hand side tend to zero when 6t and hs tend to zero by Lemma 2.1, so that we proved that
YpT st strongly converges towards p™ in L'(]0, T[xT',du, ) which implies, in particular, that the weak-x limit g of ypr st
coincides with p™ du, -almost everywhere.

Weak formulation. Let ¢ € C2°([0,T[xQ) be a smooth test function. We want to show that the weak limits p and g
obtained above solve the weak formulation of the problem.

We define ¢ = ¢(t", z), where we recall that x,. € x is a point arbitrarily chosen in each control volume. We
multiply the first equation of (2.4) by dt¢ and we sum over n € [0, N — 1] and £ € 7. It follows

N-1 N-1
SO Ikl = g+ > oty Ixkletprtern
n=0

n=0 k€T = KeT
=T =T
N-1 N-1
1 — 1 1
SRS Y el e e+ 36t S ol antier =0, (42)
n=0 KET 0€ECNEint n=0 oc€Eha

=T;



Since ¢ has a compact support in time in [0, T[, we have ¢ = 0 for any £ € 7, for n = N. Thus, the term T; can be
expressed as follows

T = Z DIkl (@ — o) = Y Iklotel

n=0 k€T KeT
tn+1
S Z Z p"“/ |0 (t, ) dt — Z lKc|p2pl.
n=0 k€T m keT

Since ¢ is smooth, and ||p7 st||Lee < Pmax, We get that

T
T +/ / pT.5t0rp dx dt —|—/ pOT(x)qS(O,x) dz| < Cp,poae (0t + ).
o Ja Q

By weak convergence of p7 5 and pOT, we deduce that

Othr)—0 / /pat‘bdxdt—/ P'9(0,.) dx (4.3)
Tz—/OT/Q,OT,athdedt

For the term T3, we easily see that

< Coopuaellell L (0t + hr),

so that
c dx dt. 44
(8t,h7)—0 / /;2 P ¢ ( )
Let us now concentrate on the term T3 in (4.2). We first write vF = v + v2 so that we get

T3 = Z ot Z lc|(div )2 prtten

n=0 KeT

=T31

+Zét2 S olvgs (ot = pith ¢"+25t > lolvg, (pptt = ptern

K€ET €&k N&int n=0 o€€hq

=Ts2

The term T3; can be treated in the very same way as the term 75, let us concentrate on the term 733. Reordering the
summation on the interior edges by using the conservativity property vy, = v, = —v7},, we get

N-1
T39 = Z ot Z ‘O'| ( Ve (pZJrl n+1)¢)}c + U)CL (PZH n+1 Z ot Z |O.‘UICO' Z+1 n+1)¢n

o=K|LEEint = 0€ELq

We will now stress on the fact that, the test function ¢ and the solution p7 s; of the finite volume scheme being fixed, the
term 739 actually depends on the velocity field v, so that we shall in fact denote this term by T32(v).
The behavior of T32(v) when §t and h7 go to 0 is then given by the following lemma and its corollary.
LEMMA 4.2. Let v € L*(J0,T[, (WhH1(Q))9).
1. For any w € L*(]0,T[, W'(Q))?) we have

T32(v) — Ta2(w)| < Cp ppa [V — W[ L1 w11

2. For any w € (C*([0,T] x Q))4, there exists Raa(v,w) (depending on v, w,T,5t, pT,¢) such that we have

T T
Ts2(w) + Rsa (v, w) —/ / pdiv (dpw) dx dt + / / go(w - v) dzx dt, (4.5)
(0t,h7)—0 0 Q 0 T
and

|R32(v, w)| < O ppareg,ne [V — wllLrwrny. (4.6)
10



COROLLARY 4.3. For any v € L*(]0, T[, (W(Q))9), we have the following convergence

Ts32(v) ———— / /ple ov) dxdtJr/ /ggb v-v)dedt.
(675 hT

Proof of Corollary 4.3. Let € > 0 be given. By density, we may find v, € (C>°([0, 7] x Q))¢ such that ||v—ve|| 111y <
€. Using Lemma 4.2, we then write

Ts2(v / /pdlv ov) dxdtf/ /ggb v-v)drdt

T T
Rin(v,00) + Ta(v2) + /O /deivm)dxdt— /0 /F g6(v. -v) de dt

/OT/QPdiV(¢(v—vg))dxdt—/OT/FgM(v_vE).,,)dxdt

T T
Roa(00) + Too(vo) + [ [ ptiv(ovayaode= [ [ gotoe-v)doar].
0 0

< ‘T32(1)) - T32(U8)| +

+ ‘R32(U,UE)| +

< CHU — 'UEHLI(WI,I) —+

Since ¢ is fixed and v, is smooth, by the second point of Lemma 4.2 the second term above is less than ¢ for §¢t and hr
small enough. For such values of d¢ and hy, we finally obtain a bound of the left-hand side by (1 4+ C)e which concludes
the proof. ]
It remains now to prove the lemma.
Proof of Lemma 4.2.
1. For any o € € and any n € [0, N — 1] we define an interface value ¢” for ¢, as follows

¢5 = o(t", o),

where z, is an arbitrary point in 0. We can then get

T32 Zét Z ‘U|w)c.c Z—H n+1 ¢ + Z ot Z |U|w1<o pZ-H n+1)¢1<

n=0 o€€int n=0 c€Epa
o=K|c
=T3,(w)
+ Zét S ol (wpz (= o6 — o)+ wlE (o - (0 — 6)).
n=0 Jegl‘nt
oO=K|L

:Rl (w)

The term T4,(w) can be written as follows (paying attention to the fact that only interior edges are taken into
account in the first sum)

N—
Tholu z (Y (z |o|w;z,¢z)

n=0 KeT o€k

=T321(w)

+ Z ot Z |0|w)cop)<+1¢n + Z ot Z lo|wi, ( ZJrl n+1)¢n

0€Eba n=0  o0€&ha

=T35, (w)

For the boundary terms T4, (w), we see that we can write

T91 (w Z‘St Z |U|wmpg+l¢n+ Z‘St Z |ofwis( ZH n+1)(¢;< o) -

n=0 o€ELa n=0 0€Eha

:T322(’LU) :RQ(U})
11



Finally the term T32(w) we are studying is written
Ts2(w) = Tso1(w) + Tso2(w) + Ra(w) + Ra(w),

and we shall analyse each term separately as follows. Notice that each term is linear with respect to the vector
field w except Ry (w).
e For each n and k, by definition of ¢ and ¢, and using (2.1) and (2.2), we have

> lolwp,en| <

o€

> lolwg, o

o€

Z |(T|’LUKU (¢0_¢IC> +

o€ | 1<Cydx

1 o
<Codegy [ [ w-wildede + 162l div o)

tn+1 tn+1

1 1 1 .
§C¢>,reg(T)dl<§ . a”w(t)HWl»l(mdt+C¢§/ﬂ |divw(#)|| L1 (k) dt,

so that, multiplying by d¢t and summing over n and « lead to the estimate

T321(w)] < C5,prne rego Wl L1 w11y
o We easily find that

T
Ta22(0)] < panmell Sl / / w - vldz dt < C 0]l ws)-
0 IN

e Since |¢ — ¢7| < Cydy and thanks to the L> bound (3.12) on the approximate solution pr 5 we have (by
using the fact that the maps s € R — s® are Lipschitz-continuous),

N—-1

|Ri(w) = Ri(0)] < lpraille=Co Y 6t Y lollof, — wi[(de +do)

n=0 o=K|LEEint

N-1
< Cd),pmax Z ot Z ( Z |O—|d)C‘/UITCLU - w}ﬁo’|>

n=0 kxeT \o€&x
71+1
<c¢pmx25t2 / o(t) = w(t)]los orc dt
= )ceT

< C¢>,pmx,regmax v —wllLr iy

e The bound on Ry (w) is obtained in a similar way as the one for Tsoz(w).
Collecting all the above estimates, and using the linearity of T321, 1320 and Rs, the first claim of the lemma is
proven.
. In the second part of this lemma, we consider a smooth vector field w and, as we did before, we split the term
T32(w) into the same formal four parts Ts91 (w) + Ts22(w) + Ry (w) + Ra(w), except that we change the definition
of the interface values ¢ of ¢. For a given n € [0, N — 1] and ¢ € &, two cases have to be considered:

o If (w-v,,) has a constant sign on [t",t"T1] x o then, by the mean-value theorem (recall that ¢ and w are

smooth) we find that there exists some point (£7,27) € [t",t""1] x o such that

tn+1

/tn P(w - vi,)drdt = (/t / (w-ver) dxdt) (4.7)

b5 = 0(&q> 75)-
e If (w-v,) has not a constant sign on [t",t"!] x &, then we choose
bg = (1", o),

for some arbitrary point x, € o. Notice, in that case, that (w - v,.) necessarily vanishes at some point in
[t", "] x o and then we have

and we then define

lw(t,z) - vee| < L(w)(6t +dy,), Y(t,x)e [t "] x 0.
12



It follows that

tn+1

/ O(w - vi,)dadt — Pl (/ /w Vi) dxdt)
tn tn

With this particular choice of the interface values for ¢ we can now study all the terms T321, 7320, R1 and Ry as
follows.
e By (4.7) and (4.8), for any o € £,n € [0, N — 1], we have

tn+1

< Cyo6t|o| (682 + d2). (4.8)

1

Vo) da di (582 + d2
(5t‘0’| in g¢(w V)C) Xz +O¢, ( + a‘)?

)Co’d)n =

the last term being exactly 0 if the sign of w - v, is constant. It follows, by (4.1), that

Tt
T391(w Z an+1/ (Z /gbw Vo) ) dt
o€l

n=0 k€T

= [ div (pw) dz

+ (14 regpax) Z ot Z prtt Z lo|de | O(5t + ht)

n=0 KeT c€EEK
————
<reg(7)|K]

T
= — / / pr,5tdiv (pw) dx dt + Oreg, . w,6(0t + hr).
o Ja

Since w and ¢ are fixed, we finally deduce, using the weak-x convergence of p7 s, that

T
T e di w) dx dt.
321 (W) (Gthe)—0 /0 /QP iv (¢pw)

e The term T522(w) can be treated in the very same way (in fact this term is even easier) since we can write

T2 (w / / Vo1 ,5¢)P(w - v) dx dt + O(hr (0t + ht)),

and then by weak-x convergence of the trace ypr 5: we get

322( (ot, o / / d) w - l/ T
e The term Rl (w) Let us write

R, (w) =R ('U) —+ (Rl (U/) - R (U))

— We use the weak L?(H') estimate (3.13) and the regularity assumption (4.1) in order to bound Rj(v)

N—-1
[Ri(w)| =D 6t > ol llpit™ = o (7 — ¢3l + [¢F — o3])
n=0 g€Eint
o=K|L

[N

N-1
< Cp | D0 D lollopllopt — 22 Z&Z Y lollvi| iy Gl

n=0 €& n=0 K€T o€&,
2= e ot

<C by (3.13)

N-1 2

1
S C¢:ptxlax7regmax (Z 6t Z d7||,UHW1’1(K)(6t + d)C)2>

n=0 KkeT K
1
< C¢,pmax,regmax HU”zl(Wl,l) Vhr.

Hence, this term tends to zero when (6¢, hr) — 0.
13



— The term R;(w) — R1(v) is bounded as in the first part of the Lemma (even though the choice of ¢ is
different here), by using the L> bound on pr s

|R1(w) = R1(v)] < 2pmax Z 5t Y lollwg, — v, |7 — ¢
n=0 KeT oc€€ic <c
¢(5t+d/c)
tn+1
Copmmsetans 32 3 [ 1600~ w0y
n=0 k€T

This term is uniformly controlled by C|lv — wl|z1(w1.1).
e The term Ro(w):
We easily find that

|Ra(w)| < 2[|p1 sl Lo Cpllwl L1 o, 7(xT) (6t + hT).

As a consequence of the previous estimates, we see that properties (4.5) and (4.6) hold with Rss(v, w) = Ry(v) —
Rl (’LU)
a
Conclusion. We may now conclude the proof of Theorem 4.1. Indeed, gathering (4.3), (4.4) and the result of Corollary
4.3 we see that the weak limits (p, g) solve the weak formulation of the problem and satisfy g = p*, dyu; -almost everywhere.
According to the uniqueness of such a couple in L>(]0, T[xQ) x L>(]0, T[xT, |duy]|), the proof is complete. O

5. Strong convergence result. We want now to show that the approximate solution actually strongly converges
towards the weak solution of the problem. We emphasize the fact that the convergence we obtain in Theorem 5.2 is
uniform with respect to time.

5.1. An improved Friedrichs-type result. We first need to adapt a little the classical convolution argument
(Friedrichs’ lemma) used in the renormalized solution theory [DL89, Boy05], then we will state and prove our main result.
LEMMA 5.1. Assume that (1.2), (1.3) and (1.4a) hold.
For any € > 0, there exists a function p€ € W1°(]0, T[xQ) satisfying the following properties:
o We have ||p%|| L= o,rx2) < llpll 2o, r(x9)-
e For any p < 400, (p¥)e converges towards p in C°([0,T], LP(2)) and there exists C > 0, which does not depend
on € such that

10%[lco(o, 17,27 (2)) < CllpllLe=qo,7(x)-

e For any p < 400, the traces (vp): (in the usual sense since p€ is continuous up to the boundary) converge towards
vp in LP(J0, T[xT, [dpy|).
e The following equation is satisfied in the distribution sense

Op® + div (pv) + ¢p® = R, in ]0,T[xQ, (5.1)
for some R € L1(]0, T[xQ) satisfying

IRl go.7ixe) ——5 O-

Notice that ||p®||w1. blows up when & — 0.
Proof. The usual Friedrichs commutator Lemma, adapted to the case of a non tangential vector field on the boundary
in [Boy05, BF11] leads to a family of functions, say p¢, satisfying:
e For any € > 0, p¢ € L>(]0, T[x W1>°(Q)).
(p%)e converges to p in C°([0,T7], LP(Q)) for any p < +oc.
The traces vp® converges to yp in LP(]0, T[xT, |du,|) for any p < +o0.
There exists k¢ € L'(]0, T[x€2), such that ;¢ solves

O p° + div (p°v) + ¢p° = RE,

with [|R®[| 1 o, rix0) ——* 0-
This family of approximations is not exactly the one we need here since it is not smooth enough in the time variable.
Thus, € > 0 being fixed, we need to mollify /¢ in time in order to get the result. Let 8 € C°([0,T[) such that § = 1 on
[0,2dp[ and 8 = 0 on |T — 24y, T, for 9 > 0 small enough. For any 0 < § < dg we define

T
(o) = [ 5% (ta) (05msts — 14 6) 4 (1= 0(e)mats — 1~ 0) ) i
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where 17 € C°(] — 1, 1[) is a non-negative mollifying kernel and 15 = $7(-/6). Note that, for any s € [0,7] and 0 < § < &y
small enough we have

/ <9(s)775(5 —t4+0)+ (1 —0(s))ns(s —t — 5)) dt =1,
0

so that we immediately deduce that [)575775 converges to p in C°([0, 7], LP(£2)) for any p < +o0o when § — 0. Furthermore,
since 7 is smooth, we see that p® 1 is Lipschitz continuous in all the variables (¢, x).

Furthermore, since by assumption (1.3) we have (v-v) € L%(]0,T[xT), we deduce
176% %15 = v6% Lo, apwul) < N[0~ ¥l Laqo,rixry 178° %15 = V65| Lor o, 7(x1):

so that, by standard convolution arguments, we see that (yp© *g?’](s)g converges towards vp€ in L*(]0, T[xT, |du,|) as § goes

to 0.
We can now observe that p¢ 3775 solves the following problem

95 (p° H 15) + div (p° A n50) + ¢p° A ns = R, (5.2)
with
R®9(s,z) = R® 99(’[75(8, x) + Rf’é(s, x) + Rg"s(s, x) + Rg’é(s, x),

and

T T
R, =0) [ 75t st =t )t = 0s) [ 5 (e mats =0 =) .
e,0 _ r . ~e _ _ _ s
R; (s,.)—/o div (p°(¢,.)(v(s,.) — v(t,.))) (0(s)ns(s —t +6) + (1 — 6(s))ns(s — t — §)) dt,

T
Rg’é(s, )= /0 p(t, ) (c(s,.) — c(t, .))(9(5)775(8 —t4+0)+(1—=0(s))ns(s—t— 5)) dt.

It is clear that R® *T]5 COnVerges to R in L'(]0, T[xQ) when 6 — 0, let us show that the other terms go to zero.
e Observe that

T T
Vs € [0, 7], 9’(3)/0 n5(s—t+5)dt:9’(s)/0 ns(s — £ — 8)dt = 0'(s),

so that, when p® is smooth we have

T T
RY’(s,.) = 9’(3)/0 (p°(t,.) = p°(s,))ns(s —t +6) dt — 9’(5)/0 (P°(t,.) = p°(s, . ))ns(s — t = &) dt,
so that
|R$(s,.)] < CL(5)s.

Finally, we have the uniform bound |[RS°||;: < C||3%||11 which gives the result by a classical density argument.
e We first observe that HR;’(SHLI < O|p% |l oe (wrey [Vl L1 w1y, uniformly with respect to . We then conclude, by
density, observing that the convergence is clear for smooth vector fields v.
e Here we observe that [|RS?| 11 < C|5%||p=||c||lz: and that the convergence to zero is clear when ¢ is smooth
enough.
Finally we get that p¢ 15 solves (5.2) with a right-hand side R®® such that R®% — R® when § — 0. In particular, for

any € > 0 there exists d(¢) — 0 such that
|RS = ROl < e, and 176 % sy = 10° [ L1qo,rixr a1y < €

Therefore, since HREHLl — 0 and [|vp — 7% 1o, 7[xT,du,|) — O as € — 0, we get that all the required properties hold if
we define

p° =0 * sy, and RS = RO
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5.2. The strong convergence result. Our main result of this section is the following uniform in time strong
convergence result.

THEOREM 5.2. Assume that (1.2), (1.3) and (1.4) hold.

Let reg,, ... > 0 be given, and consider a family of meshes and time steps, such that (6t,h7) — 0 and satisfying (4.1).

We have the following convergences

— oo P 0, Vp < s
HpT,ét p”L (Jo,T[,LP(£2)) m P +00

— 0, Vp< .
T st = vpllLego.rier ) 5o 0 VP < F09

REMARK 5.1.

e The previous theorem implies, in particular, that

p¥ ~———> p(T), in LP(Q), Vp < +oo. (5.3)
(5t hT)

e In fact, we can construct an approxrimate solution which is continuous in time by the formula

N-1
(= ) + (¢ = )
> 5

ﬁT,&t(ta-r) = ]l]t7L7t1L+1[><’C.

n=0 k€T

Since p € C°([0,T], LP(Y)) for any p < +oo, the previous theorem implies that

p - P 0, Vp < s
A7 .5t — pllco(o,r),L (Q))m> p < 400

In order to simplify the presentation, we will assume in the following proof that
1
c+ §divv >0, almost everywhere in |0, T[x €. (5.4)
The general case can be proved by a change of variables similar to the one we used in section 3.1 by using both assumptions
(1.4).

Proof. Notice first that, thanks to the L> bounds (1.6) and (3.12), it is enough to prove the result for p = 2.
We now consider the discretization of the family of approximations given by Lemma 5.1 and defined by

N-1
P = o (1" ax), Ve € T,Vn € [0,N], and p5 5= Y p" M ljpn pnir e € (0, T[xQ).
n=0 xe7T

By the triangle inequality, we get

o7 6t = pllqorL2) < lloTse — T siellL=qorL2) + 107 50 — P llLe o, L2 @) + 0% = Pl oz L2y (5.5)
By Lemma 5.1, the third term is known to converge to 0 when € — 0 and, since p® is smooth, the second term can be
bounded as follows: for every ¢t €]0, T, such that ¢ €]t",¢" "1 for some n,

tn+1

1057 5:(t) = P ()1 720y < 5 Z / S ) — p°(t,@)|* da < C(68% + h3) L(p)?. (5.6)

Most of the sequel of the proof will consist in estimating the first term in (5.5). To this end, we define interface
approximate values of p* by

(pS" + pS™) /2, Vo = K|z € Eim,

P = pf," " Vo € Epa,s.t. v, <0,
p,c , Vo € Epg,s.t. v, > 0.

For any o € &£, let us choose an arbitrary point x, € o. By integrating (5.1) over [t",t""1] x k£ and putting the result
under same form as in (3.15), we obtain

ps n+l p pe n+1 pe,n-i—l
K ;c c K
e e Dl L SR o S S Gl MO LS
g€l og€ExNEint
= [k (6™ = 02" + [KIRE™ + ) olosr + D lolyEr, Ve e T .Vne[0,N —1], (5.7)
o€l o€
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where the remainder terms are defined by

1
52 = o (R0 - £ ) d
<l )y

tn
6En = 50| / / V- Vro)(pS(t" T 25) — p5(t, ) da dt,

e,n+1 e,n+1

pc - pPx e,n+1

,-Ygan — _|UIC0'| + Uga (pa' pe(thrlvxﬂ')) ) for o = K‘E € gint
Ko

vy (pi Al pE (gt zg)) , for o € Epq

1 ¢t tnt
Ri’” = 75t|l€| ) / Rf dz dt + W [ / t -T (" .Z‘,C) - ps(ta .Z‘)) da dt.
n Jx

Note that for any interior edge o = x|z we have the local conservativity properties vy + 725 = 0 and dg, + 025" = 0,
which are useful to perform the computations which follow. For any n € [0, N], we introduce now the error term

EE"=pf" —pl, Ve €T, and EF" =Y B,
KeT

so that the quantity we want to bound reads

n N
105 5: — pT.5tll Lo o702 () = Jsup 1EZ" 2 = 1EZ 220, (5.8)

for some N € [0, N]. Note that, we have the following elementary bounds

0< Sup ”ET ”LOQ () < 2pmaxa (59)
IEZ || 20) < Chr L(p%) + Cllp(0,.) = 0l 2@ (5.10)

We subtract (5.7) and (3.15) then we multiply the result by ES" ™" and we sum over n = 0,...,N —1 and k£ € 7.
Then we do exactly the same computations than the ones we used to obtain (3.16) and we get

N-1
1 ,n n n
f||E€N||L2+ 5 D OHIEZ" — E2"|T. + Z&Z x| <c + = (divo)? >|E§’ s
n=0 = kel

+3 Zfst S lolloglEenthy? Zat S lollopel(BEntt - Bgr2

= 0€Epa = 0EEint
o=K|L
1
= SNBSS Inloe VBN + Z 5t 3 lelogn (B — B2 — 3 [l 0B
xeT = xeT xeT
N-1
+ Z 5ty |k|REmEEM + Z 5t > lolyEr (B = ESMTY + > "6t Y olyerEEmT!
n=0 k€T n=0 o€&nt n=0 o0€Epa
o=K|LC
N-1 N-1
Y6t Y Jolosn(EE ) £ Y 6t Y [ol6srEET. (5.10)
n= 0E€Eint n=0 0€Epba
o=K|c

We denote by I% 5, the left-hand side of this inequality (whose all terms are non-negative thanks to assumption (5.4))
and we have to estimate all the terms T;,7 = 1,...,9 in the right-hand side. We want to point out the fact that numerical
diffusion terms (fourth and fifth) in the definition of I% 5, will be of major importance in the following estimates.
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e Term T3: By (5.9) and (5.10) we get

T1| < Cpn IEF l22(0) < Copae (L(0%)hr + 1105(0,.) = p°ll 22(2))
< Cppx (LOPSVhr + 1105 = pll Lo~ o,r,L2(02))) -

e Term T: We use the Cauchy-Schwarz inequality and the definition of §¢"

i O\ ® i
I To| < 1B 22 <Z |K|5E’N|2> < Lo )hT|QIESY |2 < CL( )T\ /15 5

xeT
e Term T3: By using similar arguments as for Th we get

1

SIS

N-1 2 [N-1
Ts| < | Y StIEF"™ — EZ" 720 0ty IKIOE"P | < CL(PVhr \[15 4
n=0 n=0 xeT

e Term Ty: By (5.9) and the definition of 65° we get
ITa| < L(o°)hr | BF 12 < 2pmaxL(p®)hr.

e Term Tx: By definition of Rg™ and (5.9) we have

IT5| < 2pmax Z ot Cmac IBE (|1 10,71x) + Copas el L L(p°) (68 + h).

n=0 KeT

e Term Tg: Observing that |vi,'| < (de + dz)L(p)|v2, |, since we are only concerned with interior edges, we first
evaluate this term as follows

N—-1
ITsl < £o%) 3" 6t 37 JoljvR,|(de +de)|EE" — ESmL),

n=0 0E€Eint

We then use the Cauchy-Schwarz inequality, (2.1) and the bound (5.9), to obtain

2

N-1
Te| < Connn £(o°) | D06t Y lollop, [[EE™ — B2

n=0  o€&nt

X Z& Z lo|[vl, |(de +d.)?

(NI

n=0 0EEint
tn+1 %
< Cp N Hr L)/ T5 5, Z 3 |0|/ Ay 0]l 21 o e dt

n=0 KeT
< Cpaniregma VITL(P®), ) f%at||“||31<10,T[,W1’1<m)~

e Term T5: For the boundary edges such that v?, > 0, we have pS™ = pg" = p*(¢"*1, z,) so that the contribution
of this term can be treated in the same way as for the term Tg.
For the boundary edges such that vy, < 0, the value of p™ is given by the boundary data and thus we have to
adapt the argument. To this end, we write

. .
N —y (¢, da dt (t, t" 1 2,)) dx dt.
5 = oz [ / 0= ) dedt+ s | / 2) = (", 2,)) d

The contribution of the second part of this term can be treated just like in the term 7§, using the fact that p® is
Lipschitz continuous. It remains to evaluate the following contribution

': /t/ PPt x) — o (t, @) e dt.

n= 0 O’ngd
v, <0

18



Let us introduce, for any v,w € L*(]0,T[, (W1*(Q))?) the notation

N-1 gntl
Lww =3 3w, [ (") (o) dar,
n=0 oc€&hq tn g
v, <0

so that, the term we are interested in is T%(v,v). Note that T%(v, w) is linear with respect to w but nonlinear with
respect to w.
We consider a smooth vector field w, to be determined later, and we write T4 (v, v) = Ty (v, w) + Th(v,v — w).

— Since w is smooth, for any f € L*(]0, T[xI") we have

N—1 gt N
Z Z wZG/ /fdxdtf/ /(wu)fdxdt S ‘C(w)(5t+hT)”f”Ll(]O,T[XF)
tmn o 0 r

n=0 oc€&pq

N-1
Applying this result to f = Z Z T gnt1[xo (p"™ — p€) and using the L> bounds on p* and p¢, we

then have

tn+1

N-1
Tl < C@t+hr) S S [ [ o) - it dede
s Ay
N-1 gnt1 _
w2 [ [l - el
n=0 o€&Lq tn g
v, <0

< 2pmax T\ T L(w) (6t + h1) + 2pmax || (v — w) - VHLl(]O,T[xF)

SCH'U*wuLl(WLl)
n+1

N-1 '
XX [ vl - ) drar.
tm o

n=0 oc€Epq
v, <0

L
_T7

By writing |[v-v,| = (v-v,)tT + (v-v,)”, we finally bound the last term as follows

tn+1

T N-—1
1< [ [ oo - taldedi s 2om S 3 [ [ @va) duat
0 T t o

n=0 c€&pq "
v, <0

— The second part of Ty (v, v) is classically bounded as follows
T2 (v, 0 = w)| < Cppllv = wlpr ).
e Term Tg: this term also needs a particular care. We will also denote it by Tg(v), in order to point out the linear

dependence of this term with respect to v. We first estimate g, as follows

tn+1

1

0| < (6t + dy )——
9571 < O+ )P g | )

| Vo | dzx dt.

As we have already seen, the difficulty comes from the fact that the sign of v- v, may change inside [t",t"*!] x &
and then we can not estimate d5, by using [v?_|.

Consider a smooth vector field w € C*([0,T] x )4, and let us write Tg(v) = Ty(w) + Ts(v — w). In the above
estimate of dg, (with w in place of v), since w is smooth we can write

622 (w)] < (6t + d)£(6°) <|w:z,,| T L(w)(6t + dd)).
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We recall that d, < d for any o € ¢ and that, by (4.1), we have 6t < reg, .. d« for any £ € 7. Therefore, using
that |w,| < || + |wi, — vi,|, we can then write

N-1

I Ts(w)] < Creg,, . L) | | D8t Y lollvel(de +de)|EZ™H — EE™H|

n=0  o0€&nt

N-1
+ Dot Y lollvt, — wisl(de + do) BT - B2
n=0

= dE€Eint
N-1
+ E(w)(5t + ]’LT) Z ot Z |U|(d)c + d£)|E;,n+1 _ Ei,n+1‘ ‘| )
n=0 0E€Eint

We use the Cauchy-Schwarz inequality for the first term above and we simply use the bound (5.9) in the other
terms. It follows

N—-1 gntl %
[Ta(@)] < Crog £(6°) l\/hm/@,gt (Z [ T ddln dt)

n=0 KeT
N—-1 ntl

+ (Z / S dillo(t) — w®) o) dt) + L(w)(5t + hr)T|9 |,
n=0"7""  keT

and thus
< 3
T ()] < Cregyusmns £60%) (VITAT5 500l sy + 0 = wlpurny + £(w)hr )
Finally, the term T5(v — w) can be estimated just like above by writing
|Tg<’U — w)| S Cregmaxc(ps)Hv — wHLl(Wl,l).
e Term Ty: This boundary term does not present any new difficulty since, by using (5.9), we can write
|Ty| < Chreg,,,,. (0t + h1)L(p%)||v - V|| L1 g0, 7xT)-

Collecting all the above estimates in the inequality (5.11) and using Young’s inequality, we get
17 5t < Chregy pron <(ﬁ(pe) + L(w)) (L+ L(p%)) hr + (1 + L(p%))[lv — w22 wrr

T N-1 ¢t
ot = plliegoarizzon + 18 + [ [@wy s = prlasaes 33 [ f <v~ua>+dxdt). (5.12)
0 T tn o

n=0 0c€Epq
VUi, <0

By definition of I7 5, we have ||E§*N||%2 < 2I% §;, and then, by the choice (5.8) of N, we see that (5.12) gives an estimate
on ||pT,5t — p%,5t||Lm(]O,T[,L2(Q))- Finally, with (5.6) and (55), we obtain

1p7,60 = P T o.71,L2(0) S Cregmuepmes <(£(P€) + L(w)) (L4 L(p%)) hr + (1 4+ L(p°))lv — wllpr w1y

T N-1
16 = pllmgorizzn + 1R+ [ [ @owr o = prdear s 3 3 [
0 t

n=0 o€&pq ” "
v, <0

tn+1

L/U(vvg)*dxdt). (5.13)

Let now A > 0 be any small positive number. By Lemma 5.1, we first choose € > 0 small enough so that
10° = pllEqorr2)) <A RSl <A, and |[yp® — pm”Ll(]O,T[XF,du;) <A

Then, € > 0 being fixed, we can find a smooth vector field w such that (1+L(p%))||lv —wl| 10, 7,w11(0)) < A. This vector
field w being now fixed, all the other terms in (5.13) can be made smaller than A for Az and 6t small enough satisfying
(4.1) (we use Lemma 2.1 for the last term). This proves the first strong convergence property.
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It remains to prove the strong convergence of the traces, for p = 2 for instance. Using the triangle inequality, we first
write
o7 .5t =Pl L2 0, 7[xT,|du ) < V0T .66 —7PT sellL2q0,71x1dpo ) FIIVPT 56 =705 | L2 0,7 [x T 1 dws ) T 1705 =Pl L2 0, 7[x T, dpao ) -

The third term goes to zero when € — 0 by 5.1 and the second term is bounded by C,L(p%)(6t + h7). It thus remain to
study the first term. To this end, we write

T N—-1 g+l
| [ horsc—pssllovidede =5 3 [ [ 1o-viEertipasa
0 T n=0 o€&q tn o
N-1 gt N-1
<t Y [ [lovapldears Yot S lollupliEzn
n=0 o€Epq " YO n=0 o€Epq

The first term in the right-hand side tends to 0 when 6t and hz tend to 0 by Lemma 2.1. The second term in the
right-hand side is one of the terms in I% 5, (the left-hand side of (5.11)) when N is replaced by N. The above proof shows
that this term can be bounded like in (5.12).

Therefore, we can conclude by the same argument than above: choosing first € > 0 small enough, then choosing a
smooth w close enough to v and finally d¢t and hs small enough. O

6. Additional properties of the approximate solutions.

6.1. Lower bound estimate. We prove in this section a lower bound for the approximate solution, provided that
the initial and boundary data are bounded from below by a positive number. The result improves the monotony of the
scheme that we have already proven. This kind of result is important in the applications, for instance in fluid mechanics,
where the fact that the fluid density remains far from zero uniformly in the discretization parameters may be crucial.
Note that the assumption on ¢+ divv we need is stronger than (1.4a).

THEOREM 6.1 (Lower bound estimate). Assume that (1.2) and (1.3a) hold and that (c + divv) € L1(]0, T[, L°°(%2)).
If there exists some pmin > 0 such that

po(x) > Pmin; fOT’ a.e. r € Q7
P (t, ) > puin, for du -a.e. (t,x) €]0,T[xT,

then for any mesh T and any time step 6t < Otmax, the unique solution to the finite volume scheme (2.4) satisfies
i
P > exp (/ (¢4 div o)™ | e dt) Pmin, VK € T,¥n € [0, N].
0

Proof. Since the assumption on ¢+ div v implies (1.4a), existence and uniqueness of the approximate solution is given
by Theorem 3.1. We now perform the same kind of change of variable as in the proof of Theorem 3.1, by letting g = o™ p}
and p = o™ pl, with o™ defined by (3.3), where 4" is now defined by

tn+1
1

=g L e dive) o dr
tn
We thus obtain the same equation (3.6) with this new choice of v™. We will now show by induction that g is greater
than ppin for every x € 7 and n € [0, N]. This is true for n = 0, by definition of pyin, so that we assume now that n is
such that infier P > pmin, and we are going to show that inf,cr ﬁg“ > Pmin-
Let us consider k € 7, such that g™ = inf,.c7 p2T!. Two cases have to be considered:
e First case : there is some o € & U &pq such that prtl > pinntl In that case, by (2.3) and the definition of ppyi,
we immediately deduce that s+t > pyi,.

e Second case : for any o € ¢ U Epq, we have ptl < pinntl In that case, (3.6) leads to
et (14 22 e vt 7)) 2 7

=7

By definition of «,, we have
o L+ ot(ck + (divo)})

b 1 — §tyn
First, since 6t < dtmax and by (3.1), we have 0t(c 4 (div o)) > —1/2 so that G2 > 0 (recall that 4™ < 0). Second,
by definition of v", we see that 8¢ < 1. Finally, we get p',’é“ > 1 P > P > pmin, and the proof is complete.

R
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6.2. The case of approximate data. We deal here with the case where the data ¢ and v are not exactly known.
This situation occurs, for instance, if the transport equation is coupled with other equations involving ¢ and v: we can
imagine for instance that v is given through a Darcy-like problem or some momentum conservation equation in the case
of the Navier-Stokes system.

We assume that, for each mesh 7 and each time step §t, we are given approximate values

{CQ, keT, ne]0,N— 1ﬂ}, and {vzg, keT,0€&, ne[0,N— 1]]}
We define the discrete divergence to be
1
(divo)p =— Y |olvp,, VkeT,¥ne[0,N—1].

|K| o€l

By adapting the proofs given above, we can show that all the results in this paper remain valid provided that we have the
following properties:
e Local conservativity :

Ve = V3, Yo =k|c€ &, Vnelo,N]. (6.1)
e Bounds on (¢ + divv)™: We assume that there exists dtmax > 0, 0 < v < 1 and M > 0 such that for any mesh

and any 0t < tmax, we have

ot (sup (cf + (divv)z)_> <7, Vne[0,N —1],
xeT

xeT

N-1
Z ot (sup (ce + (divv)ﬁ)_) <M.
n=0
The L*° bound we shall obtain will then depend on ~ and M.
e L' convergence of the reaction coefficient:

N

Z Z Czﬂ]tnvtnﬁ»l[x’c - C, in Ll(]O,T[XQ).
=0 el (5t,hT)—>0

e L' convergence of the divergence:
N
3N (dive) e g e —— dive, in L'(]0, T[xQ). (6.2)

ne0reT (6t,h7)—0

e L' convergence of the vector field:

DI

n=0keT oc€lx

—— 0. (6.3)
(8t,h1)—0

tn+1
otlo|v?  — V- Vio)dx dt
Ko
tn Jo

e L' convergence of the normal trace of the vector field on the boundary:

N
DD DS R T (v-v), in L*(J0,T[xT).
n=0c€&Epq

Assumption (6.3) is not so straightforward to interpret. It really has to be understood as a kind of convergence in
(L*(J0, T[x))¢ and not in L'(]0, T[, (W11(Q))9), even though it is needed for v to belong to this last space in order for
the traces of v on edges to be well defined. We will give an alternative formulation of this assumption in a particular case
(yet not too far from generality).

Let us assume that each control volume k is convex and that we can choose a point xx € Kk such that p,. = sup{r >
0, B(xx,r) C K} satisfies

dyc
sup — S e max-
k€T Px
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This assumption is a usual regularity assumption on the meshes we consider. We then define the so-called half-diamond
cell Dy, to be the pyramid (triangle if d = 2) based on ¢ and with z as a principal vertex. The above assumptions lead
to the following properties for any x € 7

k= |J Dro and |o|dc < Creg,,, |Drol, Vo €&y
ce€

We also introduce the diamond cells D, = Dy, for o € Ehbg N Ex and Dy = Dyy U Dy, for o = k|2 € Eint.
With these additional notation and assumption on the meshes, we can treat the following two examples
e First of all, by using for instance Lemma 6.2 in [DE06], we get

tn t’!L
Ydxdt — — ) dx dt
\D| . / (V- Vo) da |0| . /U Vi) dx

< Chr ZZ > |0|d’c/ / |W\dfﬂdt<0rcgmaxh7/ /IWIdwdt (6.4)
tn
1

n=0xeT o€k
This proves that the choice vy, = §t| Dy / v - Vo) dx dt, satisfies the property (6.3). Furthermore, we
n

tn+1
/ / (v- V,Cg)dacdtf— /v Vyo)dxdt
D, lo| Jin

N ntl T
|o]d
<Chr Y > ) |DUT /t /D |Vv|dacdt§0regmax/0 /Q\Vv|dmdt,

n=0 k€T c€Ex

S Y Y de

n=0xeT c€éx

also have

Zzzw

n=0x€eT o€k

and thus, by a density argument, we see that (6.2) also holds in that case.
e Suppose now that v7_ has the following form v, = V* - v, for some vector V* € R? (notice that (6.1) is then
satisfied). Then, (6.4) shows that (6.3) is satisfied as soon as the following convergence holds

Vg g ———w, in (LY(]0,T[xQ))%
ZZ; i, v, i (L]0, T[x0)

The fact that (6.2) is satisfied is an additional condition which depend on the particular choice of V.
The two examples above, show that for a given v € L'(]0,7[,(W1(Q))?), the property (6.3) can be interpreted as a
strong Lt convergence property towards v for some sequence of piecewise constant functions.
REMARK 6.1. The fact that we only need L' convergence of the vector field to obtain strong convergence of the
associated weak solution of the transport problem is a well-known feature in the study of the stability of such solutions with
respect to variations of the data (see for instance [DLO7, BF11]).

6.3. Remark on the renormalization property. The renormalization property (1.7) was proven for smooth
functions 5. We want here to show that it still holds for piecewise smooth functions.
LEMMA 6.2. Assume that (1.2), (1.3) and (1.4) hold and let p be the unique bounded weak solution to (1.1) for given
data p° and p™™
1. For any a # 0, we have the following property

c+dive =0, for almost every (t,x) in the level set {p = a}.

2. For any function 3 : R +— R which is continuous and piecewise C', we have the renormalization property (1.7).
Proof. Notice that the first property of the Lemma can not hold for o = 0 (for instance the solution p = 0 is an
obvious counter-example).
1. For any 0 < ¢ < 1, we define

VE(s — a)

Bels) = (s — )2 +¢e

which is a smooth function satisfying ||5c|r~ < 1 and ||5]L~ < 1. We observe that

B:(s) —>0 Vs € R,

e—0
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sB.(5) a, for s =aq,
=0 |0, fors#a.

We then apply (1.7) and find that, for any ¢ € C°(]0, T[x€2) we have
T
[ [ (30004 Autopo - V6 4 5.t aiv 1o patio)e-+ divers ) dade =0,
o Ja
We now pass to the limit when € — 0 by the Lebesgue convergence theorem to obtain
T
a/ / (c+divo)dli,—ny dzdt = 0.
o Ja

Since a # 0, and ¢ + dive € LY(]0, T[x€2) and by weak-% density of C3°(]0, T[x€) into L>(]0, T[x), we deduce
that

T
/ / (c+dive)ply,—q) dzdt =0,
0o Ja

for any ¢ € L*(]0,T[x). Which gives the expected result.

. Let 8: R+ R be a continuous piecewise C! function. Notice that (1.7a) has a (weak) sense even though /3 is not

well-defined at some points since for such points a € R (even for a = 0) we have, by the first point of the Lemma,

T
/ /(c—|— divv)ply,—aypdrdt =0, Vo e L>(]0,T[xQ).
0o Ja

Such a piecewise smooth function S can be written as the sum of a smooth function and of a finite linear

combination of functions of the form s — |s — «;|. It is then enough to prove the claim for 3(s) = |s — «| for
2
some a € R. To this end, we define §.(s) = ((9_7‘1))“ which is smooth, we apply (1.7) with 8. and then we pass
S— £
to the limit when € — 0, using the fact that 3. simply converges to |s — «| and that 8. simply converges towards

sgn(s — a).

6.4. Discrete renormalization property. As a consequence of the previous remarks, we may now study what
happens when one takes a non-linear function of the approximate solution p7 s:. It is well known that such mathematical
operations are very important to obtain useful estimates in the theoretical study of many systems (incompressible and
compressible Navier-Stokes equations, Saint-Venant equations, and so on). The aim of the main theorem of this section
is to show that these algebraic operation can also be performed at the discrete level, the price to pay being a remainder
term which strongly converges in L' towards 0 when 6¢ and hz tend to 0.

Let us begin by a straightforward consequence of our strong convergence theorem 5.2 and the Lebesgue dominated
convergence theorem.

LEMMA 6.3. Under the same assumptions as for Theorem 5.2, for any continuous map B : R — R, we have

BloT.5t) m B(p), in LP(]0,T[xQ) for any p < 400 and in L (|0, T[xQ) weak-x,
t,hr)—

B(vpT,5t) m B(vp), in LP(J0, T[XT, |duy|) for any p < +oo0.
ST )—

The main result of this section is the following.
THEOREM 6.4. For any 3 : R — R which is continuous and piecewise C*, the approzimate solution (P )neo,N] Satisfy
KeT

the following set of equations

x|

B

n+1y _ n
G 2000 S~ (i Bt — i B + Y leloleBlert)

ot

g€EKNEint g€EKLNEvLg
+ Kl B (o) p ™+ Ikl (div o) (B (0 o™ = Blt)) = kIR, Vne [0,N —1],Vk € T, (6.5)

where the remainder term Ry 5 = (RZJrl)ne[[o,N—l]] satisfy

KeT

R 1 0
IRz sellrqorixe) sy
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Furthermore, when 3 is convex we have

Rt <0, VkeT,Vne[0,N —1].

REMARK 6.2. Since (3 is only assumed to be piecewise C', we need to make precise the value of 3 at the singular
points of 3. At the present point, we will assume that at each singular point s € R, the prescribed value 3'(s) strictly lies
between the left and right limits B'(s%).

We will see at the end, that we may choose in fact any value for 3’ at singular points, see Corollary 6.6.

Proof. First of all, we observe that only the restriction of 8 on the interval [—pmax, Pmax] Plays a role in formula (6.5).
Hence, we may assume that 3 has a finite number of singular points. In that case, such a function 8 can be written as
follows

B(s) = Bols) + D auls — kil,
=1

where k; € R, o; € R* and 3y € C'.
We write Gy = ﬂaL — By where ﬁ(:)t are convex C! functions on [—pmax, Pmax]- Hence, we can write 3 = 8+ — 3~ where

B =B () + D> ails—kil, and B7(s) =B (s)+ Y lulls —Ki.
1<i<m 1<i<m
a; >0 a; <0

The approximate solution pr 5+ being fixed, the definition of Ry s5; is linear with respect to 3, and we will then denote
when necessary Rz 5:(3). It is then enough to prove the result for § = 35 and for §(.) = |. — k| for any k € R (in that
case, we conventionally set v = '(k) €] — 1, 1], see Remark 6.2).

e We assume first that 3 is C' and convex. We find that

\’CIRﬁ“(ﬁ):%IK\( (o) = B = (o™ = p)B (pH)

S Iavﬁo{(ﬁ(pﬁ“) B — B (o — i)
og€€xNEint

S |o—|vfzg[<ﬁ<pz+l> Blor) — B ()t — pn ).

c€ELNELa

By convexity of 3, we observe that R2T(3) < 0 for any n € [0, N],x € 7.
e We now consider the case when 3(s) = |s — k| for some k € R, with (k) = v €] — 1,1[. This function can be
approximated by the smooth convex function . ,(s) = €log cosh (% + atanh’y) in such a way that

Per(5) — Is =kl = B(s),

Bz (8) —» sen(s — k) + 705 k-
Hence, for this particular function 3, we still have Ry 5:(3) = lim._.o R7 5¢(8:,4) < 0.

e The previous arguments show that, if 3 is continuous, piecewise C! and convex, then Rt s5:(3) < 0. Therefore,
the L'-norm of Rt s:(3) can be computed by summing all the equations (6.5) for n € [0, N — 1] and x € 7. We
get

— | Rz 5:(8 ||L1:25tZ|K|R”“ D IKIB(eR) = > xkIB(pR)

n=0 xeT KkeT xeT
+ Z& S lelrsepth) + Z&Z | ((c + (divo)R) B (o) p ™ — (dive) R B(pe™™)) . (6.6)
n=0  o0€&pa n=0 KeT

Let us prove that all those terms converge towards their continuous counterparts.
— The convergence of the first two terms is straightforward from (5.3) and Remark 3.2.
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— Let us denote the boundary term by

Zét > JolrB(path)

= 0€Epa

Choosing a smooth vector field w close enough to v, we have
Sw) =S —w)+ S(w).
Furthermore, since § is bounded on [—pmax, Pmax] we have
1S(v = w)| < Cppnellv = wllLrgo,rixr) < Cppasllv — wllzrgorwrie)),

and

S(w)/OT/F(w'V)ﬂ(WJ) dx dt
—/OT/F(U)'V)ﬂ(WPT,&t)dJCdt
—/OT/F(W'V)ﬁ(’YPT,Jt)dxdt

T
<O LW)(Ot +hr) +Cp 8 / / lv-v||vor,se — vpldx dt + Cppo 5llv — w10 7(x1)-
0 I

T
+ Cppnans3 / / lw - v||ypr.60 — vp|dz dt
0o JT

T
+Cpmax,ﬁ/ /|v"/||wT,at—wldwdHCpmax,ﬁ [v—wl|L1go, 7<)
0 I

Therefore, we have

—/OT/F(U-V)B(W) dx dt

< Cpraer8llv = wllLrgorwr1(9)) + Cppan, L (W) (6 + hr) + [0 — Yo7 6t L1 0. T[T | dp )5

T
and thus S(v) converges towards / /(U V) |yp|? dz dt when (5t,h7) —
r

— The interior term containing B(p2™!) can be written

T
/ /(div 0)B(pT 5¢) da dt,
0 Q

and then we can perform the limit by Lemma 6.3.

— The terms containing 3’ need special care since 3’ is not continuous. Let us denote by A the finite set of
discontinuity points of s — $/3'(s) in [—pPmax, Pmax)- Note that 0 ¢ A.
We first remark that the product p7 s5:3'(p1 s¢) is bounded in L>(]0, T[x ) and that p7 s strongly converges
towards p in L'. Therefore, there is a subsequence for which pz s5; converges almost everywhere and such
that pr 53 (pr 5¢) has a weak-x limit denoted by G.
By definition of A, we have

p1.5t8 (p1.50) L pgay pﬁ( J{pgzay, almost everywhere,

(6t,hr

and thus, by the Lebesgue convergence theorem, we can identify one part of the L weak-x limit, namely
we have G]l{pgA} = pB'(p)1ipgay. We then deduce that

Z k(e + (div o)) B (ph)pntt = / / c+divv)pr.se¥ (pr.se) do dt

KeT

T
—>/ /(c—i—divv)Gd:zcdtz/ /(c+divv)pﬁ'(p)]l{pgA}da:dt—i—/ /(c—i—divv)G]l{peA} dx dt
(6t,hT)=0 Jo Jo o Ja 0 JQ

=0, by Lemma 6.2
since A is finite and 0 € A
T
_ / / (c + divo)pd(p) da dt.
0 Q
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This computation being true for any convenient subsequence, we deduce that the convergence holds for the
whole sequence.
We can now pass to the limit in (6.6) and find that

T
0
~ IRzl ———s /Q B(p(T, )) dz — /Q B(5°) da + /0 /E By0) (v - v) da dt

T / / e0B'(p) + (div) (o8 (p) — B(p)) daz .

By the renormalization property (1.7) (see also Lemma 6.2) we know that this limit is exactly 0 and then we
deduce the strong convergence to 0 in L' of the remainder term Rt s¢.
O
Applying the previous result with 3(s) = s? shows, in particular, that the numerical diffusion terms in the estimate
(3.16) which leads to the weak L?(H") estimate (3.13) are not only bounded but in fact tend to zero when hz and &t tend
to 0.
COROLLARY 6.5. Under the same assumptions as for Theorem 5.2, we have the following properties

N—-1
(St n+l _ n |2
nz:% o7 Zal —>(6t,hT)HO

N-1 N-1
Z ot Z lo|[vg [ (pg "t = p)? + Z t Z o ur | (pn+Y — prt)2 0
n=0 0€ELa n=0 cE€Ent (6t,hr)—

vy <0 o=K|c

We conclude this section by a corollary of the previous result which is the discrete counterpart of Lemma 6.2.
COROLLARY 6.6.
1. For any o € R\ {0}, we have

N-1
n 3 n
,;0 &;;T Ielleic + (divo)ellen_ay oy O

2. The result of Theorem 6.4 still holds for any choice of the value of 3’ at singular points.
Proof.

1. We define 51(s) = |s—«| with the choice 31 (a) = 1/2 and fa(s) = |s— «| with the choice 85(a) = —1/2. We apply
the result of Theorem 6.4 to §; and 2, denoting by Rt 5:(81) and Ry s:(02) the associated remainder terms.
The functions 3 and (5 coincide everywhere, and 8] and 5 coincide everywhere except in ov. We then subtract
the two set of equations to obtain for any n € [0, N — 1] and x € T

a(c? + (dive)?) if ptt =a
Rntl B1) — Rnt+1 ﬁ _ < x ©
K (1) K (2) Oifp2+1#a
The result follows from the fact that both Rz 5:(51) and Rt s5:(32) converge to 0 in L' when (6t,h7) — 0.
2. This is a straightforward consequence of the first point of the Corollary.

7. Conclusion. In this paper, we proposed an analysis of the (implicit) upwind finite volume scheme on general
unstructured grids in any dimension for initial and boundary value problems of transport type. The framework considered is
one of the weaker possible since in particular the regularity of the velocity field is only assumed to be L*(]0, T[, (W 1(€2))%).
In that case, Cauchy-Lipschitz theory does not apply and our analysis is then directly based on the renormalized solutions
theory for the partial differential equation under study. The main result is the strong convergence in L>°(]0, T'[, L?(?)) of
the approximate solutions towards the unique weak solution of the problem.

We conclude by raising two open questions of interest related to this problem:

e Is it possible to prove an error estimate for the upwind finite volume method for such regularities of the data?
Introducing regular Lagrangian flows (see [DLOT]) instead of usual characteristic flows of the Cauchy-Lipschitz
theory should be of some help.

e It is known (since [Amb04]), that most of the theoretical results on renormalized solutions of the transport equation
remain valid in the case where the vector field lies in L!(]0,7[,(BV(Q2))¢) (and usual additional boundedness
assumptions on its divergence). Does the present analysis, including boundary conditions, remains valid in this
more general framework 7

27



Acknowledgments. The author wishes to warmly thank T. Gallouét and R. Herbin for many stimulating discussions on the

topic of this paper.

[Amb04]
[BF11]

[BGPO5]
[Boy05]
[CGHY3]
[CVV00]
[DE06]
[Des96]
[DesO4al
[Des04b]
[DL8Y]
[DLO7]
[DL11]
[EGHO00]

[Fet11]
[Kuz76]

[LeV02]
[Mer08]

[MV07]
[OV06]

[VV03]

REFERENCES

L. Ambrosio. Transport equation and Cauchy problem for BV vector fields. Invent. Math., 158(2):227-260, 2004.

F. Boyer and P. Fabrie. Flements of analysis for the study of some models of incompressible viscous flows. in preparation.
Springer-Verlag, 2011.

D. Bouche, J.-M. Ghidaglia, and F. Pascal. Error estimate and the geometric corrector for the upwind finite volume method applied
to the linear advection equation. SIAM J. Numer. Anal., 43(2):578-603 (electronic), 2005.

F. Boyer. Trace theorems and spatial continuity properties for the solutions of the transport equation. Differential Integral Equations,
18(8):891-934, 2005.

S. Champier, T. Gallouét, and R. Herbin. Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on
a triangular mesh. Numer. Math., 66(2):139-157, 1993.

Y. Coudiere, J.-P. Vila, and P. Villedieu. Convergence d’un schéma volumes finis explicite en temps pour les systémes hyperboliques
linéaires symétriques en domaines bornés. C. R. Acad. Sci. Paris Sér. I Math., 331(1):95-100, 2000.

J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math., 105(1):35—
71, 2006.

B. Desjardins. A few remarks on ordinary differential equations. Comm. Partial Differential Equations, 21(11-12):1667-1703, 1996.

B. Despres. Convergence of non-linear finite volume schemes for linear transport. In Notes from the XIth Jacques-Louis Lions
Hispano-French School on Numerical Simulation in Physics and Engineering (Spanish), pages 219-239. Grupo Anal. Teor.
Numer. Modelos Cienc. Exp. Univ. Cadiz, Cadiz, 2004.

B. Despreés. Lax theorem and finite volume schemes. Math. Comp., 73(247):1203-1234 (electronic), 2004.

R.J. DiPerna and P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98(3):511-547,
1989.

C. De Lellis. Notes on hyperbolic systems of conservation laws and transport equations. In Handbook of differential equations:
evolutionary equations. Vol. III, Handb. Differ. Equ., pages 277-382. Elsevier/North-Holland, Amsterdam, 2007.

F. Delarue and F. Lagoutiére. Probabilistic analysis of the upwind scheme for transport equations. Archive for Rational Mechanics
and Analysis, 199:229-268, 2011. 10.1007/s00205-010-0322-x.

R. Eymard, T. Gallouét, and R. Herbin. Finite volume methods. In Handbook of numerical analysis, Vol. VII, Handb. Numer.
Anal., VII, pages 713-1020. North-Holland, Amsterdam, 2000.

A. Fettah. Analyse de modéles en mécanique des fluides compressibles. PhD thesis, Université de Provence, 2011.

N.N. Kuznecov. The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear
equation. Z. Vyéisl. Mat. i Mat. Fiz., 16(6):1489-1502, 1627, 1976.

R.J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University
Press, Cambridge, 2002.

B. Merlet. L>°- and L2-error estimates for a finite volume approximation of linear advection. STAM J. Numer. Anal., 46(1):124-150,
2007/08.

B. Merlet and J. Vovelle. Error estimate for finite volume scheme. Numer. Math., 106(1):129-155, 2007.

M. Ohlberger and J. Vovelle. Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite
volume method. Math. Comp., 75(253):113-150 (electronic), 2006.

J.-P. Vila and P. Villedieu. Convergence of an explicit finite volume scheme for first order symmetric systems. Numer. Math.,
94(3):573-602, 2003.

28



