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Abstract

Motivation Biomarker discovery from high-dimensional data is a crucial problem with
enormous applications in biology and medicine. It is also extremely challenging from a
statistical viewpoint, but surprisingly few studies have investigated the relative strengths
and weaknesses of the plethora of existing feature selection methods.

Methods We compare 32 feature selection methods on 4 public gene expression datasets
for breast cancer prognosis, in terms of predictive performance, stability and functional
interpretability of the signatures they produce.

Results We observe that the feature selection method has a significant influence on
the accuracy, stability and interpretability of signatures. Simple filter methods generally
outperform more complex embedded or wrapper methods, and ensemble feature selection
has generally no positive effect. Overall a simple Student’s t-test seems to provide the best
results.

Availability Code and data are publicly available at
http://cbio.ensmp.fr/∼ahaury/.

1 Introduction

Biomarker discovery from high-dimensional data, such as transcriptomic or SNP profiles, is a
crucial problem with enormous applications in biology and medicine, such as diagnosis, prog-
nosis, patient stratification in clinical trials or prediction of the response to a given treatment.
Numerous studies have for example investigated so-called molecular signatures, i.e., predictive
models based on the expression of a small number of genes, for the stratification of early breast
cancer patients into low-risk or high-risk of relapse, in order to guide the need for adjuvant
therapy (Sotiriou and Pusztai, 2009).

While predictive models could be based on the expression of more than a few tens of genes,
several reasons motivate the search for short lists of predictive genes. First, from a statistical
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and machine learning perspective, restricting the number of variables is often a way to reduce
over-fitting when we learn in high dimension from few samples and can thus lead to better
predictions on new samples. Second, from a biological viewpoint, inspecting the genes selected
in the signature may shed light on biological processes involved in the disease and suggest novel
targets. Third, and to a lesser extent, a small list of predictive genes allows the design of cheap
dedicated prognostic chips.

Published signatures share, however, very few genes in common, raising questions about their
biological significance (Ioannidis, 2005). Independently of differences in cohorts or technologies,
Ein-Dor et al. (2005) and Michiels et al. (2005) demonstrate that a major cause for the lack of
overlap between signatures is that many different signatures lead to similar predictive accuracies,
and that the process of estimating a signature is very sensitive to the samples used in the phase
of gene selection. Specifically, Ein-Dor et al. (2006) suggest that many more samples than
currently available would be required to reach a descent level of signature stability, meaning in
particular that no biological insight should be expected from the analysis of current signatures.
On the positive side, some authors noticed that the biological functions captured by different
signatures are similar, in spite of the little overlap between them at the gene level (Shen et al.,
2008; Reyal et al., 2008; Wirapati et al., 2008).

From a machine learning point of view, estimating a signature from a set of expression data
is a problem of feature selection, an active field of research in particular in the high-dimensional
setting (Guyon and Elisseeff, 2003). While the limits of some basic methods for feature selection
have been highlighted in the context of molecular signatures, such as gene selection by Pearson
correlation with the output (Ein-Dor et al., 2006), there are surprisingly very few and only partial
investigations that focus on the influence of the feature selection method on the performance
and stability of the signature. Lai et al. (2006) compared various feature selection methods
in terms of predictive performance only, and Abeel et al. (2010) suggest that ensemble feature
selection improves both stability and accuracy of SVM recursive feature elimination (RFE),
without comparing it with other methods. However, it remains largely unclear how ”modern”
feature selection methods such as the elastic net (Zou and Hastie, 2005), SVM RFE or stability
selection (Meinshausen and Bühlmann, 2010) behave in these regards and how they compare to
more basic univariate techniques.

Here we propose an empirical comparison of a panel of feature selection techniques in terms
of accuracy and stability, both at the gene and at the functional level. Using four breast cancer
datasets, we observe significant differences between the methods. Surprisingly, we find that
ensemble feature selection, i.e., combining multiple signatures estimated on random subsamples,
has generally no positive impact, and that simple filters can outperform more complex wrapper
or embedded methods.

2 Methods

2.1 Feature selection methods

We compare eight common feature selection methods to estimate molecular signatures. All
methods take as input a matrix of gene expression data for a set of samples from two categories
(good and bad prognosis in our case), and return a set of genes of a user-defined size s. These
genes can then be used to estimate a classifier to predict the class of any sample from the
expression values of these genes only. Feature selection methods are usually classified into three
categories (Kohavi and John, 1997; Guyon and Elisseeff, 2003): filter methods select subsets
of variables as a pre-processing step, independently of the chosen predictor; wrapper methods
utilize the learning machine of interest as a black box to score subsets of variable according to
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their predictive power; finally, embedded methods perform variable selection in the process of
training and are usually specific to given learning machines. We have selected popular methods
representing these three classes, as described below.

2.1.1 Filter methods

Univariate filter methods rank all variables in terms of relevance, as measured by a score which
depends on the method. They are simple to implement and fast to run. To obtain a signature
of size s, one simply takes the top s genes according to the score. We consider the following
four scoring functions to rank the genes: the Student’s t-test and Wilcoxon sum-rank test, which
evaluate if each feature is differentially expressed between the two classes; and the Bhattacharyya
distance and relative entropy to calculate a distance between the distributions of the two groups.
We used the MATLAB Bioinformatics toolbox to compute these scoring functions.

2.1.2 Wrapper methods

Wrapper methods attempt to select jointly sets of variables with good predictive power for a
predictor. Since testing all combinations or variables is computationally impossible, wrapper
methods usually perform a greedy search in the space of sets of features. We test SVM recursive
feature elimination (RFE) (Guyon et al., 2002), which starts with all variables and iteratively
removes the variables which contribute least to a linear SVM classifier trained on the current
set of variables. We remove 20% of features at each iteration until s remain, and then remove
them one by one in order to rigourously rank the first s. Following (Abeel et al., 2010), we
set the SVM parameter C to 1, and checked afterwards that other values of C did not have
a significant influence on the results. Alternatively, we test a Greedy Forward Selection (GFS)
strategy for least squares regression also termed Orthogonal Matching Pursuit, where we start
from no variable and add them one by one by selecting each time the one which minimizes the
sum of squares, in a 3-fold internal cross-validation setting. This algorithm was implemented in
the SPAMS toolbox for Matlab initially published along with Mairal et al. (2010).

2.1.3 Embedded methods

Embedded methods are learning algorithms which perform feature selection in the process of
training. We test the popular Lasso regression (Tibshirani, 1996), where a sparse linear predictor
β ∈ R

p is estimated by minimizing the objective function R(β)+λ‖β‖1, where R(β) is the mean
square error on the training set (considering the two categories as ±1 values) and ‖β‖1 =∑p

i=1
|βi|. λ controls the degree of sparsity of the solution, i.e., the number of features selected.

We fix λ as the smallest value which gives a signature of the desired size s. Alternatively, we
tested the elastic net (Zou and Hastie, 2005), which is similar to the Lasso but where we replace
the ℓ1 norm of β by a combination of the ℓ1 and ℓ2 norms, i.e., we minimize R(β) + λ‖β‖1 +
λ/2‖β‖2

2
and ‖β‖2

2
=

∑p
i=1

β2

i . By allowing the selection of correlated predictive variables, the
elastic net is supposed to be more robust than the Lasso while still selecting predictive variables.
Again, we tune λ to achieve a user-defined level of sparsity. For both algorithms, we used the
code implemented in the SPAMS toolbox.

2.2 Ensemble feature selection

Many feature selection methods are known to be sensitive to small perturbations of the train-
ing data, resulting in unstable signatures. In order to ”stabilize” variable selection, several
authors have proposed to use ensemble feature selection on bootstrap samples: the variable
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selection method is run on several random subsamples of the training data, and the differ-
ent lists of variables selected are merged into a hopefully more stable subset (Bi et al., 2003;
Meinshausen and Bühlmann, 2010; Abeel et al., 2010).

For each feature selection method described above, we tested in addition the following three
aggregation strategies for ensemble feature selection. We first bootstrap the training samples
B = 50 times (i.e., draw a sample of size n from the data with replacement B times) to get B
rankings (r1...rB) of all features by applying the feature selection method on each sample. For
filter methods, the ranking of features is naturally obtained by decreasing score. For RFE and
GFS, the ranking is the order in which the features are added or removed in the iterative process.
For Lasso and elastic net, the ranking is the order in which the variables become selected when
λ decreases. We then aggregate the B lists by computing a score Sj = 1/B

∑B
b=1

f(rbj) for

each gene j as an average function of its rank rbj in the b-th bootstrap experiment. We test the
following functions of the rank for aggregation:

• Ensemble-mean (Abeel et al., 2010): we simply average the rank of a gene over the boot-
strap experiments, i.e., we take f(r) = r .

• Ensemble-stability selection (Meinshausen and Bühlmann, 2010): we measure the percent-
age of bootstrap samples fro which the gene ranks in the top s, i.e., f(r) = 1 if r ≤ s, 0
otherwise.

• Ensemble-exponential : we propose a soft version of stability selection, where we average
an exponentially decreasing function of the rank, namely f(r) = exp−r/s.

Finally, for each rank aggregation strategy, the aggregated list is the set of s genes with the
largest score.

2.3 Accuracy of a signature

In order to measure the predictive accuracy of a feature selection method, we assess the per-
formance of various supervised classification algorithms trained on the data restricted to the
selected signature. More precisely, we tested 5 classification algorithms: nearest centroids (NC),
k-nearest neighbors (KNN) with k = 9, linear SVM with C = 1, linear discriminant analysis
(LDA) and naive Bayes (BAYES). The parameters of the KNN and SVM methods were fixed
to arbitrary default values, and we checked that no significantly better results could be ob-
tained with other parameters by testing a few other parameters. We assess the performance of
a classifier by the area under the ROC curve (AUC), in two different settings. First, on each
dataset, we perform a 10-fold cross-validation (CV) experiment, where both feature selection
and training of the classifier are performed on 90% of the data, and the AUC is computed on the
remaining 10% of the data. This is a classical way to assess the relevance of feature selection of
a given dataset. Second, to assess the performance of the signature across datasets, we estimate
a signature on one dataset, and assess its accuracy on other datasets by again running a 10-fold
CV experiment where only the classifier (restricted to the genes in the signature) is retrained
on each training set. In both cases, we report the mean AUC across the folds and datasets, and
assess the significance of differences between methods with a two-sided paired t-test.

2.4 Stability of a signature

To assess the stability of feature selection methods, we compare signatures estimated on different
samples in various settings. First, to evaluate stability with respect to small perturbation of
the training set, we randomly subsample each dataset into pairs of subsets with 80% of sample
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overlap, estimate a signature on each subset, and compute the overlap between two signatures
in a pair as the fraction of shared genes, i.e., |S1∩S2|/s. Note that this corresponds to the figure
of merit defined by Ein-Dor et al. (2006). The random sampling of subsets is repeated 20 times
on each dataset, and the stability values are averaged over all samples. We will refer to this
procedure the soft-perturbation setting in the remaining. Second, to assess stability with respect
to strong perturbation within a dataset, we repeat the same procedure but this time with no
overlap between two subsets of samples. In practice, we can only sample subsets of size N/2,
where N is the number of samples in a dataset, to ensure that they have no overlap. Again,
we measure the overlap between the signatures estimated on training sets with no sample in
common. We call this procedure the hard-perturbation setting. Finally, to assess the stability
across datasets, we estimate signatures on each dataset independently, using all samples on each
dataset, and measure their overlap. We call this procedure the between-datasets setting below.

2.5 Functional interpretability and stability of a signature

To interpret a signature in terms of biological functions, we perform functional enrichment
analysis by inspecting the signature for over-represented Gene Ontology (GO) terms. This may
hint at biological hypothesis underlying the classification (Shen et al., 2008; Reyal et al., 2008).
We performed a hypergeometrical test on each of the 5830 GO biological process (BP) terms
that were associated to at least one gene in our dataset, and corrected the resulting p-values
for multiple testing through the procedure of Benjamini and Hochberg (1995). To assess the
interpretability of a signature, i.e., how easily one can extract a biological interpretation, we
computed the number of GO terms over-represented at 5% FDR. To compare two signatures in
functional terms, we first extracted from each signature the list of 10 GO terms with the smallest
p-values, and compared the two lists of GO terms by the similarity measure of Wang et al. (2007)
which takes into account not only the overlap between the lists but also the relationships between
GO BP. Finally, to assess the functional stability of a selection method, we followed a procedure
similar to the one presented in Section 2.4 and measured the mean functional similarity of
signatures in the soft-perturbation, hard-perturbation and between-datasets settings.

3 Data

We collected 4 breast cancer datasets from Gene Expression Omnibus (Barrett et al., 2009),
as described in Table 1. The four datasets address the same problem of predicting metastatic
relapse in breast cancer on different cohorts, and were obtained with the Affymetrix HG-U133A
technology. We used a custom CDF file with EntrezGene ids as identifiers (Dai et al., 2005) to
estimate expression levels for 12, 065 genes on each array, and normalized all arrays with the
Robust Multi-array Average procedure (Irizarry et al., 2003).

Dataset name ♯ examples ♯ positives source

GSE1456 159 40 Pawitan et al. (2005)
GSE2034 286 107 Wang et al. (2005)
GSE2990 125 49 Sotiriou et al. (2006)
GSE4922 249 89 Ivshina et al. (2006)

Table 1: The four breast cancer datasets used in this study.
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4 Results

4.1 Accuracy

We first assess the accuracy of signatures obtained by different feature selection methods. In-
tuitively, the accuracy refers to the performance that a classifier trained on the genes in the
signature can reach in prediction. Although some feature selection methods (wrapper and em-
bedded) jointly estimate a predictor, we dissociate here the process of selecting a set of genes
and training a predictor on these genes, in order to perform a fair comparison common to all
feature selection methods. We tested the accuracy of 100-gene signatures obtained by each fea-
ture selection method, combined with 5 classifiers to build a predictor as explained in Section
2.3. Table 2 shows the mean accuracies (in AUC) over the datasets reached by the different
combinations in 10-fold cross-validation.

Globally, we observe only limited differences between the feature selection methods, for a
given classification method. In particular the selection of a random signature reaches a baseline
AUC comparable to that of other methods, confirming results already observed by Ein-Dor et al.
(2005). Second, we observe that, among all classification algorithms, the simple NC classifier
consistently gives good results compared to other classifiers. We therefore choose it as a default
classification algorithm for further assessment of the performance of the signatures below. Figure
1 depicts graphically the AUC reached by each feature selection method with NC as a classifier,
reproducing the first three lines of Table 2. In the single-run framework, the t-test performs
significantly better than most methods (p < 0.001 against random, p < 0.01 against entropy,
Bhattacharyya, Wilcoxon and GFS). Lasso and Elastic Net perform similarly and show an AUC
significantly higher than GFS and Entropy (p < 0.05). Except for the t-test, random feature
selection is not significantly worse than any other algorithm. Finally, we observe that ensemble
methods for feature selection do not bring any improvement in accuracy in general since only
Bhattacharyya and GFS benefit from ensemble-mean (resp. p < 0.05 and p < 0.1) and no
significant improvement is obtained from the use of the two remaining ensemble aggregation
methods.

Class. Type Random t-test Entropy Bhatt. Wilcoxon SVM RFE GFS Lasso Elastic Net

NC
S 0.62(0.17) 0.66(0.14) 0.58(0.15) 0.60(0.15) 0.62(0.15) 0.62(0.15) 0.58(0.15) 0.63(0.15) 0.63(0.15)
E-M 0.62(0.15) 0.65(0.14) 0.59(0.15) 0.63(0.15) 0.62(0.15) 0.63(0.14) 0.62(0.13) 0.61(0.16) 0.63(0.15)
E-E 0.61(0.15) 0.65(0.14) 0.59(0.15) 0.61(0.16) 0.62(0.15) 0.61(0.15) 0.58(0.13) 0.63(0.13) 0.63(0.14)
E-S 0.63(0.14) 0.65(0.14) 0.58(0.15) 0.61(0.15) 0.62(0.15) 0.63(0.15) 0.59(0.12) 0.63(0.13) 0.63(0.14)

KNN
S 0.59(0.16) 0.61(0.15) 0.52(0.11) 0.57(0.13) 0.63(0.15) 0.60(0.15) 0.59(0.13) 0.60(0.17) 0.60(0.17)
E-M 0.61(0.14) 0.62(0.15) 0.57(0.15) 0.60(0.15) 0.64(0.16) 0.62(0.15) 0.61(0.12) 0.61(0.15) 0.60(0.12)
E-E 0.55(0.13) 0.63(0.15) 0.53(0.10) 0.54(0.10) 0.63(0.16) 0.60(0.17) 0.54(0.16) 0.61(0.14) 0.60(0.17)
E-S 0.60(0.13) 0.63(0.15) 0.54(0.11) 0.54(0.12) 0.62(0.16) 0.58(0.14) 0.55(0.14) 0.62(0.14) 0.60(0.14)

LDA
S 0.54(0.12) 0.56(0.12) 0.51(0.14) 0.55(0.13) 0.52(0.12) 0.56(0.12) 0.50(0.13) 0.58(0.14) 0.57(0.14)
E-M 0.53(0.10) 0.55(0.13) 0.55(0.13) 0.58(0.12) 0.56(0.13) 0.60(0.15) 0.52(0.14) 0.59(0.14) 0.60(0.13)
E-E 0.54(0.13) 0.53(0.15) 0.52(0.15) 0.53(0.11) 0.53(0.14) 0.57(0.13) 0.53(0.15) 0.59(0.12) 0.58(0.13)
E-S 0.54(0.13) 0.52(0.13) 0.54(0.13) 0.55(0.12) 0.52(0.14) 0.57(0.16) 0.54(0.15) 0.59(0.15) 0.60(0.13)

NB
S 0.57(0.14) 0.60(0.13) 0.58(0.11) 0.58(0.14) 0.57(0.13) 0.56(0.14) 0.54(0.11) 0.59(0.15) 0.59(0.15)
E-M 0.59(0.13) 0.59(0.14) 0.57(0.14) 0.59(0.13) 0.57(0.13) 0.56(0.13) 0.59(0.12) 0.57(0.15) 0.57(0.14)
E-E 0.55(0.15) 0.60(0.14) 0.58(0.12) 0.57(0.13) 0.58(0.13) 0.57(0.14) 0.58(0.11) 0.58(0.12) 0.58(0.13)
E-S 0.58(0.14) 0.60(0.14) 0.57(0.13) 0.57(0.13) 0.58(0.13) 0.56(0.14) 0.58(0.10) 0.58(0.11) 0.58(0.13)

SVM
S 0.56(0.18) 0.56(0.15) 0.55(0.11) 0.55(0.12) 0.54(0.15) 0.62(0.14) 0.51(0.16) 0.62(0.15) 0.62(0.15)
E-M 0.51(0.15) 0.55(0.14) 0.59(0.16) 0.60(0.13) 0.56(0.13) 0.62(0.15) 0.55(0.16) 0.61(0.16) 0.61(0.16)
E-E 0.54(0.16) 0.54(0.15) 0.54(0.13) 0.54(0.12) 0.55(0.15) 0.61(0.17) 0.56(0.17) 0.63(0.13) 0.62(0.16)
E-S 0.54(0.17) 0.55(0.18) 0.56(0.12) 0.56(0.12) 0.54(0.14) 0.61(0.16) 0.55(0.17) 0.63(0.14) 0.62(0.16)

Table 2: AUC obtained for each combination of feature selection and classification method,
in 10-fold cross validation and averaged over the datasets. Standard error is shown within
parentheses. For each selection algorithm, we highlighted the setting in which it obtained the
best performance. The Type column refers to the use of feature selection run a single time (S) or
through ensemble feature selection, either with the mean (E-M), exponential (E-E) or stability
selection (E-S) procedure to aggregate lists.
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Figure 1: Area under the ROC curve for a signature of size 100 in a 10-fold CV setting and
averaged over the four datasets

In order to check how these results depend on the size of the signature, we plot in Figure 2
the AUC of the 9 feature selection methods, with or without ensemble averaging, combined with
a NC classifier, as a function of the size of the signature. Interestingly, we observe that in some
cases the AUC seems to increase early, implying that fewer than 100 genes may be sufficient
to obtain the maximal performance. Indeed, while it is significant that 100-gene signatures
perform better than a list of fewer than 10 features (p < 0.05 regardless of the method or the
setting), signatures of size 50 do not lead to significantly worse performances in general. It is
worth noting that some algorithms have an increasing AUC curve in this range of sizes, and we
observe no overfitting that may lead to a decreasing AUC when the number of features increases.
Random selection was previously shown to give an AUC equivalent to other methods for a large
signature, but as we observe on this picture, the fewer genes the larger the gap in AUC.

Finally, we estimate the predictive performance of a signature across datasets (Supplemen-
tary Table 1). Entropy is significantly less accurate than all other methods. T-test significantly
outperforms other filter methods, and elastic net and Lasso also perform significantly better than
Wilcoxon and SVM RFE. T-test and SVM RFE benefit from ensemble-mean, but no method
significantly benefits from ensemble-exponential or ensemble-stability selection.

4.2 Stability of gene lists

We now assess the stability of signatures created by different feature selection methods at the
gene level. Figure 3 compares the stability of 100-gene signatures estimated by all feature se-
lection methods tested in this benchmark, in the three experimental settings: soft-perturbation,
hard-perturbation and between-datasets settings. The results are averaged over the bootstrap
replicates and the four datasets. It appears very clearly and significantly that filter methods
provide more stable lists than wrappers and embedded methods. It also seems that ensemble-
exponential and ensemble-stability selection yield much more stable signatures than ensemble-
average. It is worth noting that a significant gain in robustness through bootstrap is only
observable for relative entropy and Bhattacharyya distance. Interestingly, SVM-RFE seems to
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Figure 2: AUC of a NC classifier trained as a function of the size of the signature, for different
feature selection methods, in a 10-fold CV setting averaged over the four datasets

benefit from ensemble aggregation in the soft-perturbation setting, as observed by Abeel et al.
(2010), but this effect seems to vanish in the more relevant hard-perturbation and between-
dataset settings. We also observed that the relative stability of the different methods does not
depend on the size of the signature over a wide range of values, confirming that the differences
observed for signatures of size 100 reveal robust differences between the methods (Supplementary
Figure 1).

Obviously, Figures 3b and 3c are very much alike while Figure 3a stands aside. They confirm
that the hard-perturbation setting is the best way to estimate the behavior of the algorithms
between different studies. The larger stability observed in the between-datasets setting compared
to the hard perturbation setting for some methods (e.g., t-test) is essentially due to the fact that
signatures are trained on more samples in the between-dataset setting, since no split is required
within a dataset (Supplementary Figure 2). This suggests that, as predicted by Ein-Dor et al.
(2006), the main reason for signature instability for a given technology is really the sample size
issue, and not differences in cohorts or experimental protocols.

4.3 Interpretability and functional stability

Even when different signatures share no or little overlap in terms of genes, it is possible that
they encode the same biological processes and be useful if we can extract information about
these processes from the gene lists in a robust manner. In the case of breast cancer prognostic
signatures, for example, several recent studies have shown that functional analysis of the signa-
tures can highlight coherent biological processes (Fan et al., 2006; Reyal et al., 2008; Shen et al.,
2008; Abraham et al., 2010; Shi et al., 2010). Just like stability at the gene level, it is therefore
important to assess the stability of biological interpretation that one can extract from signatures.

First, we evaluate the interpretability of signatures of size 100, i.e., the ability of functional
analysis to bring out a biological interpretation for a signature.

As shown on Figure 4a, the four filter methods appear to be much more interpretable than
wrappers/embedded methods. However, it should be pointed out that the number of significant
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GO terms is often zero regardless of the algorithm, leading to large error bars. Ensemble methods
do not seem to enhance the interpretability of signatures.

Second, we assess on Figure 4b the stability of the functional interpretation in the between-
dataset setting (the soft- and hard-perturbation settings are shown in Supplementary Figure
3). Stability results at the functional level are overall very similar to the results at the gene
level, namely, we observe that univariate filters are overall the most stable methods, and that
the hard-perturbation setting returns a trustworthy estimate of the inter-datasets stability. In
particular, we note that in the single-run settings, only signatures obtained from filters are
significantly more stable than random at (p < 0.05). We also note that Ensemble-mean never
improves the functional stability and that Ensemble-exponential/Ensemble stability selection
return more stable signatures than single-run for Entropy and Bhattacharyya (p < 10−22) as
well as for GFS (p < 10−6) and Lasso (p = 0.029) although less significantly.

5 Discussion

We compared a panel of 32 feature selection methods in light of two important criteria: accuracy
and stability, both at the gene and at the functional level. Figure 5 summarizes the relative
performance of all methods, and deserves several comments.

Taking random feature selection as a baseline, we first notice the strange behaviour of gene
selection by Batthacharyya distance and relative entropy: they are both more stable but less
accurate than random selection. A careful investigation of the genes they select allowed us to
identify that they tend to select genes with low expression levels, independently of the sample
labels, as explained in Supplementary Figures 4 and 5. This unwanted behaviour can easily be
fixed by pre-filtering genes with small variations, but it highlights the danger of blindly trusting
a feature selection method, which in this case gives very stable and interpretable signatures.

Second, we observe that among the other methods, only elastic net, Lasso and t-test clearly
outperform random in terms of accuracy, and only t-test outperforms it in terms of stability.
Overall, t-test gives both the best performance and the best stability. The fact that the Lasso
is not stable is not surprising since, like most multivariate methods, it tries to avoid redundant
genes in a signature and should therefore not be stable in data where typically many genes
encode for functionally related proteins. What was less expected is that neither the elastic net,
which was designed exactly to fight this detrimental property of Lasso by allowing the selection
of groups of correlated genes, nor stability selection, which is supposed to stabilize the features
selected by Lasso, were significantly more stable than the Lasso. In addition, we also found
very unstable behaviours at the functional level. This raises questions about the relevance
of these methods for gene expression data. Similarly, the behavior of wrapper methods was
overall disappointing. SVM RFE and Greedy Forward Selection are neither more accurate, nor
more stable or interpretable than other methods, while their computational cost is much higher.
Although we observed like Abeel et al. (2010) that SVM RFE can benefit from ensemble feature
selection, it remains below the t-test both in accuracy and stability.

Overall we observed that ensemble method which select features by aggregating signatures
estimated on different bootstrap samples increased the stability of some methods in some cases,
but did not clearly improve the best methods. Regarding the aggregation step itself, we advise
against the use of ensemble-average, i.e. averaging the ranks of each gene over the bootstrapped
lists, regardless of the selection method. Ensemble-stability selection or ensemble-exponential
gave consistently better results. The superiority of the latter two can be explained by the high
instability of the rankings, as discussed in Iwamoto and Pusztai (2010).

Regarding the choice of method to train a classifier once features are selected, we observed
that the best accuracy was achieved by the simplest one, namely the nearest centroids classifier,
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used e.g. by Lai et al. (2006); Abraham et al. (2010). An advantage of this classifier is that
it does not require any parameter tuning, making the computations fast and less prone to
overfitting.

We noticed that evaluating the stability and the interpretability in a soft-perturbation setting
may lead to untrustworthy results. The best estimation seems to be obtained in the hard-
perturbation setting experiments. The lack of stability between datasets has been explained
by four arguments. First data may come from different technological platforms, which is not
the case here. Second and third, there are differences in experimental protocols and in patient
cohorts, which is indeed the case between datasets; fourth, the small number of sample leads
statistical instability. We however obtained very similar stability in the hard-perturbation setting
(within each dataset) and in the inter-datasets results. This suggests that the main source of
instability is not the difference in cohorts or experimental protocols, but really the statistical
issue of working in high dimension with few samples.
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Figure 3: Stability for a signature of size 100. Average and standard errors are obtained over the
four datasets. a) Soft-perturbation setting. b) Hard-perturbation setting. c) Between-datasets
setting.
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Figure 4: GO interpretability and functional stability of for a signature of size 100. a) Average
number of GO BP terms significantly over-represented. b) Functional stability in the between-
datasets setting.
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Figure 5: Accuracy versus stability for each method in the between-datasets setting. We show
here the average results over the four datasets.
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