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1 Accuracy across datasets

To estimate the predictive performance of a signature across datasets, we used each dataset in
turn to learn a list of 100 genes; restraining the three other datasets to these genes, we estimate
the AUC of a nearest centroids (NC) classifier by 10-fold cross-validation on each dataset. We
report the results in Table 1 as averages over the three test datasets. For each training dataset, we
highlighted the method with the best results. In the last row, we report average results over the
4× 3× 10 = 120 folds.

Training data Type Random T-test Entropy Bhatt. Wilcoxon SVM RFE GFS Lasso Elastic Net

GSE1456

S 0.59(0.10) 0.63(0.13) 0.60(0.10) 0.63(0.13) 0.61(0.14) 0.61(0.13) 0.61(0.11) 0.62(0.11) 0.62(0.11)
E-M 0.60(0.12) 0.63(0.14) 0.60(0.12) 0.61(0.14) 0.61(0.14) 0.61(0.11) 0.60(0.12) 0.63(0.11) 0.60(0.12)
E-E 0.60(0.13) 0.63(0.13) 0.58(0.10) 0.63(0.12) 0.61(0.13) 0.61(0.11) 0.62(0.12) 0.63(0.11) 0.62(0.11)
E-S 0.60(0.14) 0.63(0.14) 0.59(0.10) 0.63(0.11) 0.61(0.13) 0.61(0.13) 0.62(0.13) 0.63(0.12) 0.63(0.09)

GSE2034

S 0.62(0.15) 0.62(0.15) 0.57(0.20) 0.59(0.19) 0.58(0.19) 0.60(0.18) 0.62(0.15) 0.63(0.16) 0.63(0.16)
E-M 0.63(0.17) 0.63(0.15) 0.60(0.15) 0.64(0.16) 0.58(0.19) 0.63(0.17) 0.62(0.16) 0.62(0.16) 0.62(0.16)
E-E 0.64(0.14) 0.63(0.15) 0.56(0.19) 0.58(0.19) 0.59(0.19) 0.63(0.16) 0.60(0.18) 0.61(0.16) 0.61(0.16)
E-S 0.61(0.17) 0.63(0.16) 0.56(0.17) 0.57(0.19) 0.59(0.19) 0.63(0.15) 0.62(0.17) 0.62(0.16) 0.63(0.16)

GSE2990

S 0.64(0.14) 0.64(0.15) 0.56(0.14) 0.60(0.16) 0.60(0.16) 0.62(0.16) 0.64(0.15) 0.66(0.13) 0.65(0.13)
E-M 0.61(0.15) 0.66(0.16) 0.59(0.17) 0.65(0.13) 0.58(0.16) 0.65(0.15) 0.62(0.14) 0.64(0.15) 0.64(0.15)
E-E 0.61(0.14) 0.66(0.15) 0.54(0.14) 0.57(0.19) 0.59(0.15) 0.62(0.15) 0.63(0.15) 0.65(0.14) 0.66(0.14)
E-S 0.62(0.15) 0.66(0.14) 0.55(0.14) 0.57(0.18) 0.60(0.16) 0.64(0.15) 0.63(0.14) 0.65(0.14) 0.65(0.14)

GSE4922

S 0.65(0.15) 0.66(0.15) 0.59(0.16) 0.63(0.14) 0.64(0.16) 0.64(0.14) 0.62(0.12) 0.65(0.14) 0.65(0.14)
E-M 0.65(0.12) 0.67(0.15) 0.64(0.13) 0.66(0.16) 0.65(0.15) 0.64(0.13) 0.65(0.15) 0.66(0.14) 0.64(0.13)
E-E 0.65(0.15) 0.66(0.15) 0.57(0.16) 0.63(0.15) 0.66(0.15) 0.64(0.12) 0.65(0.13) 0.67(0.13) 0.66(0.14)
E-S 0.65(0.15) 0.65(0.15) 0.60(0.16) 0.62(0.16) 0.66(0.16) 0.63(0.12) 0.63(0.10) 0.66(0.13) 0.65(0.13)

Average

S 0.62(0.14) 0.64(0.15) 0.58(0.15) 0.61(0.15) 0.61(0.16) 0.62(0.15) 0.62(0.13) 0.64(0.13) 0.64(0.14)
E-M 0.62(0.14) 0.65(0.15) 0.61(0.15) 0.64(0.15) 0.61(0.16) 0.63(0.14) 0.62(0.14) 0.64(0.14) 0.62(0.14)
E-E 0.62(0.14) 0.64(0.15) 0.56(0.15) 0.60(0.17) 0.61(0.16) 0.63(0.13) 0.62(0.14) 0.64(0.14) 0.64(0.14)
E-S 0.62(0.15) 0.64(0.15) 0.58(0.15) 0.60(0.16) 0.61(0.16) 0.63(0.14) 0.62(0.14) 0.64(0.14) 0.64(0.13)

Table 1: AUC obtained with Nearest Centroids when a signature is learnt from one dataset and
tested by 10-fold cross-validation on the three remaining datasets. Standard error is shown within
parentheses. For each training dataset, we highlighted the best performance. The Type column
refers to the use of feature selection run a single time (S) or through ensemble feature selection,
either with the mean (E-M), exponential (E-E) or stability selection (E-S) procedure to aggregate
lists.

2 Stability as a function of signature size

We observe in Figure 1 that the relative stability of the different methods does not depend on
the size of the signature over a wide range of values, confirming that the differences observed for
signatures of size 100 reveal robust differences between the methods
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Random T−test Entropy Bhatt. Wilcoxon SVM RFE GFS Lasso E−Net

Figure 1: Stability of different methods in the between-dataset setting, as a function of the size of
the signature.

3 Stability in the hard-perturbation and between-dataset settings

The lack of stability observed between different signatures can be attributed to different factors,
including (i) diferences in cohorts that may differ in potentially relevant factors, (ii) differences in
microarray technologies, (iii) differences in experimental protocols and (iv) random instability due
to small sample size. Ein-Dor et al. (2006) has highlighted the importance of the small size effect
by testing the stability of signatures estimated on non-overlapping bootstrap samples of a given
dataset where all other factors are constant. Comparing the stability of signature in this hard-
perturbation setting with the stability in the between-datasets setting (see definitions in Section
2.4) offers the opportunity to investigate the instability due to the first and third factor: how less
stable are signatures estimated on data from two independent cohorts, than signatures estimated
on data from the same cohort? Figure 2 illustrates this difference for one feature selection method.
It shows the stability of the t-test in both settings with respect to the number of samples used to
estimate signatures. While both curves remain low, we observe like Ein-Dor et al. (2006) a very
strong effect of the number of samples. Interestingly, we observe that for very small sample sizes the
stability in the hard-perturbation setting is a good proxy for the stability in the between-dataset
setting. However, the slope of the hard-perturbation setting stability seems sharper, suggesting
that the gap would stretch for larger sample sizes, should the blue curve be extrapolated. These
results suggest that the main reason for signature instability for a given microarray technology is
really the sample size issue.

4 Functional stability in the soft- and hard-perturbation settings

Figures 3a, 3b and 3c show the functional stability for all methods in the three settings. While
the baseline stability, as obtained by random signatures, is approximatively the same regardless of
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Figure 2: Evolution of stability of t-test signatures with respect to the size of the training set in
the hard-perturbation and the between datasets settings from GSE2034 and GSE4922.

the setting, we observe that, like stability at the gene level, soft- and hard-perturbation can lead
to very different interpretations. This suggests again that the high functional stability obtained by
several methods in the soft-perturbation setting is mainly due to the overlap in samples. Hence the
hard-perturbation setting seems to be a much better proxy for the between-datasets framework.

5 Issues with selection by relative entropy and Bhattacharyya dis-

tance

Gene selection by relative entropy and Bhattacharyya distance is more stable but less accurate
than random selection, which suggests a bias in the method which may preferably and consistently
select particular genes, not necessarily very predictive. To elucidate this behavior, we investigated
the genes selected by these two methods. We noticed that they tend to be systematically expressed
at low levels, as shown in Figure 4, and that they barely depend on the labels, which explains
the high stability but small accuracy. In fact the frequently selected genes systematically show a
multimodal yet imbalanced distribution due to the presence of outliers, as illustrated on figure 5. As
soon as, by chance, one class of samples contains one or more outliers when the other class doesn’t,
this type of distribution is responsible for a very high variance ratio between the two classes, thus
leading to a very high value of the entropy and Bhattacharyya statistics. It is therefore likely that,
although stable and interpretable, the molecular signatures generated by these two methods lead
to erroneous interpretation.
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Figure 3: GO Stability for a signature of size 100. Average and standard errors are obtained over
the four datasets. a) Soft-perturbation setting. b) Hard-perturbation setting. c) Between-datasets
setting.
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Figure 4: Estimated cumulative distribution functions (ECDF) of the first ten genes selected by
four methods on GSE1456. They are compared to the ECDF of 500 randomly chosen background
genes.
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Figure 5: Estimated distribution of the first gene selected by entropy and Bhattacharyya distance.
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