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Abstract

This work develops a general procedure for clustering functional data which
adapts the clustering method High Dimensional Data Clustering (HDDC),
originally proposed in the multivariate context. The resulting clustering method,
called funHDDC, is based on a functional latent mixture model which fits the
functional data in group-specific functional subspaces. By constraining model
parameters within and between groups, a family of parsimonious models is
exhibited which allow to fit onto various situations. An estimation procedure
based on the EM algorithm is proposed for determinating both the model
parameters and the group-specific functional subspaces. Experiments on real-
world datasets show that the proposed approach performs better or similarly
than classical two-step clustering methods while providing useful interpreta-
tions of the groups and avoiding the uneasy choice of the discretization tech-
nique. In particular, funHDDC appears to always outperform HDDC applied
on spline coefficients.

1 Introduction

Cluster analysis consists in identifying groups of homogeneous data without us-
ing any prior knowledge on the group labels of the data. A lot of methods, from
k-means (Hartigan and Wong, 1978) or hierarchical classification to more recent
probabilistic model-based clustering (Banfield and Raftery, 1993; Celeux and Go-
vaert, 1995), have been proposed along the years. The clustering of time series,
or more generally of functions, is a difficult task since the data live in an infinite
dimensional space. We refer for instance to Warren Liao (2005) for a survey on time
series clustering. Although non-parametric approaches to functional clustering, as
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for instance Ferraty and Vieu (2006); Tarpey and Kinateder (2003), lead to power-
ful clustering algorithms, the present paper focuses on model-based clustering which
has moreover interesting interpretability properties.

Unlike in the case of finite dimensional data vectors, model-based methods for
clustering functional data are not directly available since the notion of probabil-
ity density function generally does not exist for such data (Delaigle and Hall, 2010).
Consequently, the use of model-based clustering methods on functional data consists
usually in first transforming the infinite dimensional problem into a finite dimen-
sional one and then in using a model-based clustering method designed for finite
dimensional data. The representation of functions in a finite space can be carried
out by either discretizing the time interval, decomposing the functions in a basis of
functions or by means of some principal components resulting from a functional prin-
cipal component analysis (FPCA, Ramsay and Silverman (2005)). The discretiza-
tion of the time interval is usually straightforward since in practice the functions
are already measured in a discrete scale. On the other hand, the choice of a basis of
functions may include well-defined functions such as natural cubic splines which are
very popular and enjoy some optimality properties (Wahba, 1990). Alternatively,
the decomposition of the functions can be done through specific time series models
such as ARMA or GARCH (see Frühwirth-Schnatter and Kaufmann (2008) for a
clustering algorithm based on such models). Note finally that in the case of using
functional principal components, the data functions have also to be decomposed in
a basis of functions in order to solve the functional eigen-decomposition problem.

Unfortunately, the resulting vectors are often high-dimensional. In particular,
the discretization of the observed curves usually leads to high-dimensional datasets
with sometimes less observations than dimensions. In such situations, model-based
clustering methods suffer from numerical problems and regularized approaches have
to be used. Among the regularized model-based clustering methods, we can cite the
parsimonious Gaussian mixture models (Banfield and Raftery, 1993; Celeux and Go-
vaert, 1995), which assume specific covariance structures, mixture of probabilistic
principal component analyzers (MixtPPCA, Tipping and Bishop (1999)) and high-
dimensional data clustering (HDDC, Bouveyron et al (2007)) which both assume
that high-dimensional data live in group-specific subspaces. In particular, the lat-
ter method has been used successfully in various application fields such as image
analysis (Bouveyron et al, 2007) or chemometry (Jacques et al, 2010).

The two-step approaches previously described perform the discretization and the
clustering steps separately, and this may lead to a loss of discriminative information.
Recently, a new approach due to James and Sugar (2003) allows the interaction
between the discretization and the clustering steps by introducing a stochastic model
for the basis coefficients. This approach is deemed by its authors to be particularly
effective when the functional data are sparsely sampled. In a similar spirit, we
propose in the present paper to adapt the HDDC method to functional data in
order to model and cluster the functional data in group-specific subspaces of low
dimensionality. The modeling of the functions of each group in a specific subspace
should, in addition to providing an eventually interesting clustering of the data,
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facilitate the interpretation of the clustered data.
The paper is organized as follows. Section 2 presents the proposed functional

latent mixture model as well as a family of parsimonious submodels. Maximum
likelihood estimation is described in Section 3. Section 4 first proposes an introduc-
tory example in order to highlight the main features of the proposed method. A
benchmark comparison with state-of-the-art methods is also provided in Section 4 on
real-world time series datasets. Finally, Section 5 provides some concluding remarks.

2 The functional latent mixture model

Clustering of functional data consists in identifying K homogeneous groups (or clus-
ters) among the data at hand (curves, times series or functions). To do this in a
model-based context, this section introduces a family of mixture models designed
for functional data which adapts the models of (Bouveyron et al, 2007) proposed in
the multivariate context.

2.1 Transformation of the observed curves

Let us first assume that the observed curves {x1, ..., xn} are independent realizations
of a L2-continuous stochastic process X = {X(t)}t∈[0,T ] for which the sample paths,
i.e. the observed curves, belong to L2[0, T ]. In practice, the functional expressions
of the observed curves are not known and we only have access to the discrete ob-
servations xij = xi(tij) at a finite set of ordered times {tij : j = 1, . . . , mi}. As
explained in Aguilera et al (2011), it is therefore necessary to first reconstruct the
functional form of the data from their discrete observations. A common way to
do this is to assume that curves belong to a finite dimensional space spanned by a
basis of functions (see for example Ramsay and Silverman (2005)). Let us therefore
consider such a basis {ψ1, . . . , ψp} and assume that the stochastic process X admits
the following basis expansion:

X(t) =

p
∑

j=1

γj(X)ψj(t), (1)

where γ = (γ1(X), ..., γp(X)) is a random vector in R
p and the number p of basis

functions is assumed to be fixed and known. The basis expansion of each observed
curve xi(t) =

∑p

j=1 γijψj(t) can be estimated by an interpolation procedure (see Es-
cabias et al (2005) for instance), if the curves are observed without noise, or by
least square smoothing, if they are observed with error. In the present paper the
second option will be used. In the following, a latent mixture model is proposed
for the modeling of the coefficient vectors {γ1, ..., γn} ∈ R

p of the observed curves
{x1, ..., xn} that one wants to cluster, where γi = (γi1, . . . , γip) for i = 1, ..., n.
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2.2 A group-specific functional latent model

Let us now consider just a set of nk observed curves, described by their coefficient
vectors {γ1, ..., γnk

} ∈ R
p, belonging to the same cluster, the kth cluster. Let us

first assume that {γ1, ..., γnk
} are independent realizations of a random vector Γ ∈

R
p. Let us also assume that the actual stochastic process associated with the kth

cluster can be described in an adequate way in a low-dimensional functional latent
subspace Ek[0, T ] of L2[0, T ] with dimension dk ≤ p. Let Ek[0, T ] be spanned by
the first dk elements of a group-specific basis of functions {ϕkj}j=1,...,dk in L2[0, T ].
This group-specific basis is obtained from {ψj}j=1,...,p by a linear transformation
ϕkj =

∑p

ℓ=1 qk,jℓψℓ with an orthogonal p × p matrix Qk = (qk,jℓ) = [Uk, Vk] that is
split, for later use, into two parts: Uk of size p× dk and Vk of size p× (p− dk) with
U t
kUk = Idk , V

t
kVk = Ip−dk and U t

kVk = 0.
Let {λ1, ..., λnk

} be the latent expansion coefficients of the curves in the group-
specific basis {ϕkj}j=1,...,dk. These coefficients are also assumed to be independent
realizations of a latent random vector Λ ∈ R

dk . The relationship between both bases
{ϕkj}j=1,...,dk and {ψj}j=1,...,p suggests that the random vectors Γ and Λ are linked
through the following linear transformation for the kth group:

Γ = UkΛ+ ε, (2)

where ε ∈ R
p is an independent and random noise term.

We now make some distributional assumptions on the random vectors Λ and ε.
Firstly, Λ is assumed to be distributed according to a multivariate Gaussian density:

Λ ∼ N (mk, Sk), (3)

where mk and Sk = diag(ak1, ..., akdk) are respectively the mean and the covariance
matrix of the kth group. Secondly, ε is assumed to be distributed according to a
multivariate Gaussian density:

ε ∼ N (0,Ξk). (4)

With these distributional assumptions, the distribution of Γ for the kth cluster is
finally:

Γ ∼ N (µk,Σk), (5)

where µk = Ukmk and Σk = UkSkU
t
k + Ξk.

We finally assume that the noise covariance matrix Ξk is such that ∆k = cov(Qt
kΓ) =

Qt
kΣkQk has the following form:

∆k =

























ak1 0
. . .

0 akdk

0

0

bk 0
. . .

. . .

0 bk































dk























(p − dk)

(6)

4



Λ

Γ

Z

π = {π1, ..., πK} mk ∈ Ek

Sk = diag(ak1, ..., akdk)

Wk = [Uk, Vk]

ε

bk

Figure 1: Graphical summary of the functional latent mixture (FLM) model.

with akj > bk for j = 1, ..., dk. With these notations and from a practical point of
view, one can say that the variance of the actual data of the kth group is therefore
modeled by ak1, ..., akdk whereas the parameter bk models the variance of the noise.
Similarly, the dimension dk can be considered as the intrinsic dimension of the latent
subspace of the kth group. Figure 1 summarizes all these notations.

2.3 The functional latent mixture model and its submodels

Let us now consider a set of n observed time series or curves {x1, ..., xn}, where
xi = {xi(t)}t∈[0,T ] (1 ≤ i ≤ n), that one wants to cluster into K homogeneous groups.
Let us assume that there exists an unobserved random variable Z = (Z1, . . . , ZK) ∈
{0, 1}K indicating the group membership of X: Zk is equal to 1 if X belongs to the
kth group and 0 otherwise. The clustering task aims therefore to predict the value
zi = (zi1, . . . , ziK) of Z for each observed curve xi.

As previously, each curve xi is assumed to be a sample path of X, admitting a
basis expansion summarized by the coefficient vector γi whose distribution is now a
mixture of Gaussians with density:

p(γ) =

K
∑

k=1

πkφ(γ;µk,Σk), (7)

where φ is the standard Gaussian density function, µk = Ukmk, Σk = Qk∆kQ
t
k and

πk = P (Zk = 1) is the prior probability of the kth group. This mixture model will
be hereafter referred to as the FLM[akjbkQkdk] model or the FLM (Functional Latent
Mixture) model for short.

Following the strategy of Bouveyron et al (2007), it is possible to obtain parsimo-
nious submodels from the FLM[akjbkQkdk ] model by constraining model parameters
within or between groups. For instance, fixing the first dk diagonal elements of ∆k

to be common within each class, we obtain the restricted model FLM[akbkQkdk ]. We
observed that the model FLM[akbkQkdk] often gives satisfying results (in term of clus-
tering accuracy) and this suggests that the assumption that each matrix ∆k contains
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FLM model
Number of
parameters

Nb of prms K = 4,
dk = 10, p = 100

[akjbkQkdk] ρ+ τ + 2K +D 4231
[akjbQkdk] ρ+ τ +K +D + 1 4228
[akbkQkdk] ρ+ τ + 3K 4195
[abkQkdk] ρ+ τ + 2K + 1 4192
[akbQkdk] ρ+ τ + 2K + 1 4192
[abQkdk] ρ+ τ +K + 2 4189

Table 1: Properties of the FLM models: ρ = Kp+K−1 is the number of parameters
required for the estimation of means and proportions, τ =

∑K

k=1 dk[p− (dk + 1)/2]
are the number of parameters required for the estimation of orientation matrices
Qk, and D =

∑K

k=1 dk.

only two different eigenvalues, ak and bk, seems to be an efficient way to regularize
the estimation of ∆k. Another possible type of regularization is to fix the parame-
ters bk to be common between the classes. This yields the models FLM[akjbQkdk ] and
FLM[akbQkdk] which both assume that the behavior of the error components outside
the class specific subspaces is common. This assumption can be viewed as modeling
the noise outside the latent subspace of the group by a single parameter b which is
a natural hypothesis when the data are obtained in a common acquisition process.
Among the 28 models proposed in the original article (Bouveyron et al, 2007), 6
models have been selected for their good practical behaviors to be considered in
the experiments of Section 4. Table 1 lists those 6 models and their corresponding
complexity (i.e. the number of parameters to estimate).

2.4 Links with related models

At this point, it is possible to establish some links with the methods mentioned
in Section 1. The closest strategy is obviously the direct use of HDDC on the
basis coefficients. This implies that a “standard” PCA is applied, conditionally
on the group membership posterior probabilities, to the data of each group. The
main difference between HDDC (Bouveyron et al, 2007) and its functional version,
described in Sections 2.2 and 2.3, is the use of a metric specific to the functional
data in the eigenspace projection. It is also possible to directly use HDDC on the
discretized data. In this case, the functional nature of the data is not considered at
all, what could be especially problematic when the curves are observed with noise.
The experiments presented in Section 4 will show that the use of the functional
version of HDDC both improve the clustering results and facilitate the interpretation
of the results by looking at the group-specific functional harmonics.
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3 Model inference: the funHDDC algorithm

In model-based clustering, the estimation of model parameters is traditionally done
by maximizing the likelihood through the EM algorithm (Dempster et al, 1977).
This iterative algorithm consists in maximizing the complete likelihood rather than
directly maximizing the likelihood which is an intractable problem with incomplete
data (the cluster memberships are unknown here). This section presents the update
formula of the EM algorithm in the case of the FLM model.

3.1 FunHDDC: an EM-based algorithm

Given the coefficient vectors γ1, ..., γn of the observed curves x1, ..., xn, the complete
log-likelihood of the data under the FLM model proposed above has the following
form:

ℓc(θ; γ1, ..., γn, z1, ..., zn) = −1

2

K
∑

k=1

ηk

[

dk
∑

j=1

(

log(akj) +
qtkjCkqkj

akj

)

+

p
∑

j=dk+1

(

log(bk) +
qtkjCkqkj

bk

)

− 2 log(πk)

]

+ ξ, (8)

where θ = (πk, µk, akj, bk, qkj) for 1 ≤ j ≤ dk and 1 ≤ k ≤ K, qkj is the jth column of
Qk, Ck =

1
ηk

∑n

i=1 zik(γi−µk)
t(γi−µk), ηk =

∑n

i=1 zik and ξ is a term not depending
on the parameter θ. As the class memberships zik are unknown, it is necessary to
estimate them (E step) before to maximize the complete likelihood (M step). These
two steps of the EM algorithm are described in details in the following.

E step This first step aims to compute, at iteration q, the expectation of the
complete log-likelihood conditionally on the current value of the parameter θ(q−1),
which reduces to the computation of t

(q)
ik = E[Zik|γi, θ(q−1)]. For the FLM[akbkQkdk]

model, the posterior probability t
(q)
ik can be computed as follows at iteration q:

t
(q)
ik = 1/

K
∑

ℓ=1

exp
(

H
(q−1)
k (γi)−H

(q−1)
ℓ (γi)

)

, (9)

with H
(q−1)
k (γ) defined for γ ∈ R

p as:

H
(q−1)
k (γ) = ||µ(q−1)

k − Pk(γ)||2Dk
+

1

b
(q−1)
k

||γ − Pk(γ)||2

+

dk
∑

j=1

log(a
(q−1)
kj ) + (p− dk) log(b

(q−1)
k )− 2 log(π

(q−1)
k ), (10)

where ||.||2Dk
is a norm on the latent space Ek defined by ||y||2Dk

= ytDky, Dk =

Q̃∆−1
k Q̃t and Q̃ is a p× p matrix containing the dk vectors of Uk completed by zeros
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such as Q̃ = [Uk, 0p−d], Pk is the projection operator on the latent space Ekdefined
by Pk(γ) = UkU

t
k(γ − µk) + µk.

Let us note that Hk(γ) is mainly based on two distances: the distance between
the projection of γ on Ek and the current mean of the kth group and the distance
between the observation and the subspace Ek. This classification function favors the
assignment of a new observation to the class for which it is close to the subspace and
for which its projection on the class subspace is close to the mean of the class. The
variance terms ak and bk balance the importance of both distances. For example,
if the data are very noisy, i.e. bk is large, it is natural to balance the distance
‖γ − Pk(γ)‖2 by 1/bk in order to take into account the large variance outside Ek.

M step This second step estimates the model parameters by maximizing the ex-
pectation of the complete likelihood conditionally on the posterior probabilities t

(q)
ik

computed in the previous step. Mixture proportions and means are updated as
usually by:

π
(q)
k =

n
(q)
k

n
, µ

(q)
k =

1

n
(q)
k

n
∑

i=1

t
(q)
ik γi, (11)

where n
(q)
k =

∑n

i=1 t
(q)
ik . Let us also introduce C

(q)
k = 1

n
(q)
k

∑n

i=1 t
(q)
ik (γi−µ

(q)
k )t(γi−µ(q)

k ),

the sample covariance matrix of group k, and W , the matrix of inner products
between the basis functions: W = (wjk)1≤j,k≤p =

´ T

0
ψj(t)ψk(t)dt. With these

notations, the update formula for the other model parameters akj, bk and qkj are in
the case of the FLM[akbkQkdk ] model, for k = 1, ..., K:

• the dk first columns of Qk are updated by the eigenvectors associated with the
largest eigenvalues of W

1
2C

(q)
k W

1
2 ,

• the variance parameters akj , j = 1, ..., dk, are updated by the dk largest eigen-

values of W
1
2C

(q)
k W

1
2 ,

• the variance parameters bk are updated by b
(q)
k = trace(W

1
2C

(q)
k W

1
2 )−∑dk

j=1 â
(q)
kj .

Proof of these results can be deduced from the proof of Bouveyron et al (2007),
by substituting the usual metric by the metric induced by the basis functions (W
here). The inference algorithm presented here will be referred to as funHDDC in
the following.

To summarize and roughly speaking, the funHDDC algorithm models and clus-
ters the time series through their projections in group-specific functional princi-
pal subspaces. These group-specific functional principal subspaces are obtained by
performing functional principal component analysis (Ramsay and Silverman, 2005)
conditionally on the posterior probabilities tik. However, it is important to notice
that, even though the modeling and the clustering are conducted in low-dimensional
subspace, no discriminative information is lost thanks to the noise term bk which
models the variance outside the subspaces.
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Figure 2: Estimation of the intrinsic dimension of the kth group using the scree
test of Cattell. On this example, the intrinsic dimension of the group subspace is
estimated to 4.

3.2 Estimation of hyper-parameters

The use of the EM algorithm for parameter estimation makes the funHDDC algo-
rithm almost automatic, except for the estimation of the hyper-parameters dk and
K. Indeed, the parameters dk and K cannot be determined by maximizing the like-
lihood since they both control the model complexity. The estimation of the intrinsic
dimensions dk is a difficult problem with no unique technique to use. In (Bouvey-
ron et al, 2007), the authors proposed a strategy based on the eigenvalues of the
class conditional covariance matrix Σk of the kth class. The jth eigenvalue of Σk

corresponds to the fraction of the full variance carried by the jth eigenvector of Σk.
The class specific dimension dk, k = 1, ..., K is estimated through the scree-test of
Cattell (Cattell, 1966) which looks for a break in the eigenvalues scree. The selected
dimension is the one for which the subsequent eigenvalues differences are smaller
than a threshold. Figure 2 illustrates the use of the Cattell’s scree-test. The thresh-
old can be provided by the user or selected using BIC (Schwarz, 1978). The number
of clusters K may have to be estimated as well and can be selected by the BIC
criterion.

3.3 Classification step

The funHDDC algorithm proposed above aims in the first place to infer the FLM
model introduced in the previous section. However, since we are interested in this
work in obtaining a partition of the data at hand, it is necessary to add a classifica-
tion step at the end of the funHDDC algorithm to provide the expected clustering.
In the model-based clustering framework, observations are usually assigned to a
group using the maximum a posteriori (MAP) rule. The MAP rule assigns an ob-

9



servation γi ∈ R
p to the group for which γi has the highest posterior probability

P (Zik = 1|γi) at the end of the algorithm. Therefore, this final classification step

mainly consists in assigning the observation γi to the group with the highest t
(qf )
ik ,

k = 1, ..., K, where qf is the last iteration of the algorithm before its convergence.

3.4 Convergence and numerical considerations

Firstly, since the funHDDC algorithm is an EM-based algorithm which respects the
classical conditions of the EM theory, its convergence to a local maximum of the
likelihood is guaranteed. Several strategies have been proposed in the literature for
initializing the EM algorithm in order to avoid the convergence to a local maximum.
A popular practice (Biernacki, 2004) executes the EM algorithm several times from a
random initialization and keep only the set of parameters associated with the highest
likelihood. This initialization procedure is used in the experiments presented in the
following section.

Secondly, it is important to remark in Equation (10) that, using the FLM model,
the E step does not require as usually to invert the empirical covariance matrices
thanks to the form of the matrix ∆. This allows the method to work even in high-
dimensional spaces where empirical covariance matrices are usually ill-conditioned.
Notice that, since Equation (10) does not require the computation of the (p − dk)
last eigenvectors of Σk, funHDDC can also be used when the number of observations
per group nk is smaller than p, as long as nk ≥ dk for k = 1, ..., K.

4 Experimental results

This section presents the results of experiments which aim to both illustrate the
funHDDC features and compare the proposed method to existing approaches.

4.1 An introductory example: the Canadian temperature

dataset

In this first experiment, the Canadian temperature data (available in the R package
fda and presented in detail in Ramsay and Silverman (2005)) are used to illustrate
the main features of the proposed functional clustering method. The dataset con-
sists in the daily measured temperatures at 35 Canadian weather stations across
the country. The funHDDC algorithm was applied here with the [akjbkQkdk] model,
which is the most general FLM model, using a basis of 20 natural cubic splines.
Spline functions are smooth piecewise polynomial functions where cubic indicates
the degree of the polynoms and natural indicates the boundary condition (nullity
of the second derivative) which ensures the unicity of the spline definition. Refer
for instance to Ramsay and Silverman (2005) for more details. Once the funHDDC
algorithm has converged, various informations are available and some of them are
of particular interest. Group means, intrinsic dimensions of the group-specific sub-
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Figure 3: Selection of the number K of groups with the BIC criterion for the Cana-
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[akjbkQkdk]) and estimated mean functions of the groups for the Canadian tem-
perature dataset (see text for details).
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Figure 5: Geographical positions of the Canadian weather stations according to their
group belonging provided by funHDDC. The colors indicate the group memberships:
group 1 in black, group 2 in red, group 3 in green and group 4 in blue.

spaces and functional principal components of each group could in particular help
the practitioner in understanding the clustering of the dataset at hand.

As discussed before, it is first important to select an appropriate number of com-
ponents for the dataset to cluster and this can be done using the BIC criterion.
Figure 3 shows the BIC values obtained with funHDDC on the Canadian temper-
ature dataset according to the number K of groups. As one can observe, the BIC
value increases until K = 4 and then stabilizes. Given the behavior of BIC, we
decide to select 4 groups rather than higher numbers, even the BIC criterion can be
slightly better, in order to facilitate the group interpretation. Figure 4 presents the
clustering into 4 groups obtained with funHDDC for the temperature dataset and
the estimated mean functions x̄k(t) =

∑p

j=1 µ̂kjψj(t) of the groups where µ̂kj are the
components of µ̂k estimated in Section 3.

At this point, it is very interesting to have a look at the name of the weather
stations gathered in the different groups formed by funHDDC. Indeed, it appears
that group 1 (black solid curves) is mostly made of continental stations, group 2
(red dashed curves) mostly gathers the stations of the North of Canada, group 3
(green dotted curves) mostly contains the stations of the Atlantic coast whereas
the Pacific stations are mostly gathered in group 4 (blue dot-dashed curves). For
instance, group 3 contains stations such as Halifax (Nova Scotia) and St Johns (New-
foundland) whereas group 4 has stations such as Vancouver and Victoria (both in
British Columbia). Figure 5 provides a map of the weather stations where the col-
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(a) Group 1 (mostly continental stations)
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(b) Group 2 (mostly Arctic stations)

0 100 200 300

−
40

−
20

0
20

40

time

1

0 100 200 300

−
40

−
20

0
20

40

PCA function 1 (Percentage of variability 91.1 )

Time

H
ar

m
on

ic
 1

++++++++++++++++++++
+++++

++++++
+++++++

+++++
+++++

++++++
+++++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

−−−−−−−−−−−−−−−−−
−−−−−

−−−−
−−−−

−−−
−−−
−−−−

−−−−
−−−−−

−−−−−
−−−−−

−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 100 200 300

−
40

−
20

0
20

40

PCA function 2 (Percentage of variability 6.5 )

Time

H
ar

m
on

ic
 2

+++++++++++++++
++++++

+++++
+++++

++++
++++

++++
++++

++++
+++++++

+++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

−−−−−−−−−−−−−−−−−−−−−
−−−−

−−−−
−−−−−

−−−−−−
−−−−−

−−−−−−−
−−−−−

−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(c) Group 3 (mostly Atlantic stations)
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(d) Group 4 (mostly Pacific stations)

Figure 6: The group means of the Canadian temperature data obtained with fun-
HDDC and the effects of adding (+) and subtracting (−) twice the square root of
the principal component variance (see text for details).
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Figure 7: Scores of the observed Canadian temperature curves into the group-specific
functional subspaces estimated with funHDDC. The colors indicate the group mem-
berships: group 1 in black, group 2 in red, group 3 in green and group 4 in blue.
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ors indicate their group membership. This figure shows that the obtained clustering
with funHDDC is very satisfying and rather coherent with the actual geographical
positions of the stations (the clustering accuracy is 71% here compared with the
geographical classification provided by (Ramsay and Silverman, 2005)). We recall
that the geographical positions of the stations has not been used by funHDDC to
provide the partition into 4 groups. In addition, the behavior of the temperature
means of the 4 groups confirms the common idea that seasons are more rude in
the North of Canada than in the South and that the continental cities have lower
temperatures than coast cities during the winter.

Another interesting thing, but not necessarily easy to visualize, is the specific
functional subspace of each group. A classical way to observe principal component
functions is to plot the group mean function x̄k as well as the functions obtained by
adding and subtracting to the mean function twice the square root of the principal
component variance, i.e. x̄k(t)± 2

√
akj for the jth principal component of group k.

Refer to (Ramsay and Silverman, 2005) for more details on this usual representation.
Figure 6 shows such a plot for the 4 groups of weather stations formed by funHDDC.
It first appears on the first principal component of each group that there is more
variance between the weather stations in winter than in summer. In particular, the
first principal component of group 4 (blue curves, mostly Pacific stations) reveals
a specific phenomenon which occurs at the beginning and the end of the winter.
Indeed, we can observe a high variance in the temperatures of the Pacific coast
stations at these periods of time which can be explained by the presence of mountain
stations in this group. The analysis of the second principal components reveals more
fine phenomena. For instance, the second principal component of group 1 (black
curves, mostly continental stations) shows a slight shift between the + and − along
the year which indicates a time-shift effect. This may mean that some cities of this
group have their seasons shifted, e.g. late entry and exit in the winter. Similarly,
the inversion of the + and − on the second principal component of the Pacific and
Atlantic groups (blue and green curves) suggests that, for these groups, the coldest
cities in winter are also the warmest cities in summer. On the second principal
component of group 2 (red curves, mostly Arctic stations), the fact that the + and
− curves are almost superimposed shows that the North stations have very similar
temperature variations (different temperature means but same amplitude) along the
year.

Finally, Figure 7 presents the scores of the curves into the two first functional
principal components of each group (coefficients (λi1, λi2) for the ith curve, as defined
in Section 2.2). These figures provide useful and interpretable maps of the temper-
ature functions. For instance, the first axis of each subspace seems to discriminate
the North and South cities. The figures also highlight the similarity between the
temperatures of Atlantic and Pacific stations. It also appears that, in this case,
the four functional subspaces seem to be parallel (same orientations but different
means). To summarize, this first experiment has highlighted that funHDDC, in ad-
dition to providing a meaningful partition of the data, allows interpretations which
would be certainly helpful in many application fields.
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Figure 8: Kneading, CBF, Face and ECG datasets.

4.2 Benchmark study: data and experimental setup

In the two following benchmark experiments, four real datasets will be under study:
the Kneading, CBF, Face and ECG datasets. These four datasets are plotted on
Figure 8. The first dataset (Kneading) comes from a study which aimed to predict
the quality of cookies (good, adjustable or bad) from the kneading curve representing
the resistance (density) of dough observed during the kneading process. The cor-
responding dataset is made of 115 curves observed at 241 equi-spaced time points.
Among the 115 cookies, 50 have been rated as good, 25 adjustable and 40 bad.
These data, provided by the Danone company, have been already studied in a su-
pervised classification context (Lévéder et al, 2004; Preda et al, 2007). These data
are known to be hard to discriminate, even for supervised classifiers, partly because
of the adjustable class. The three other datasets are taken from the UCR Time Se-
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ries Classification and Clustering website1. The CBF dataset is made of 930 curves
sampled from 3 groups at 128 instants of time. The Face dataset (Xi et al, 2006)
consists of 112 curves sampled from 4 groups at 350 instants of time. Finally, the
ECG dataset (Olszewski, 2001) consists of 200 curves from 2 groups sampled at 96
time instants.

We also have, for each dataset, the labels indicating the group membership
for each observation. These labels have been provided by human experts and are
available with the data. In order to compare the clustering ability of the studied
methods, we chose to use the correct classification rate (CCR) which measures the
adequation of the resulting clustering with the partition provided by the experts.
This measure varies between 0 and 1, and larger the CCR is, better the clustering
algorithm performs.

In the following, two benchmark experiments will allow to compare the clustering
ability of the funHDDC method with state-of-the-art methods. Firstly, funHDDC
will be compared to the fclust method of James and Sugar, described in Section 1,
which also takes into account the functional nature of the data. Secondly, funHDDC
will be compared to usual two-step methods in which the functional data are first
transformed into a finite dimensional vector (simple time discretization, projection
in a natural cubic spline basis with 20 basis functions or in functional principal
components basis) and then clustered by an usual clustering method (HDDC, Bou-
veyron et al (2007), MixtPPCA (Tipping and Bishop, 1999), GMM (Banfield and
Raftery, 1993; Celeux and Govaert, 1995) through the R package mclust, k-means
and hierarchical clustering via the R package hclust).

4.3 Benchmark study: comparison with fclust

A package implementing fclust for the R software is available on James’s website.
However, because of a memory limitation in the fclust package, we had to select a
reduced number of curves from the original four datasets. For the Kneading data, 50
curves have been randomly chosen in the 115 original ones, and for the three other
datasets, which are separated into a training and a test sample on the UCR website
(for supervised classification purpose), only the training part have been kept. For
funHDDC, a basis of 20 natural cubic splines has been chosen for each dataset. The
clustering results are provided by Table 2 which indicates the correct classification
rates for both methods, the BIC values and the intrinsic dimensions for each group-
specific functional subspace for funHDDC. These results clearly show that funHDDC
outperforms fclust on all the datasets. Moreover, it appears that the BIC criterion,
used for choosing the number of dimensions (tuned by a common threshold) and
the most appropriate submodel, often leads to select the most efficient funHDDC
models according to the highest correct classification rate (for three datasets among
four). It should nevertheless be noticed that fclust has been developed especially
for sparsely sampled functional data, and it would be interesting to compare both
methods on such data too.

1http://www.cs.ucr.edu/∼eamonn/time_series_data/
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Dataset Kneading CBF

Number of groups 3 3

Size 50 30

Method CCR BIC d CCR BIC d

Fun-HDDC [akjbkQkdk] 70 -2403 (2,1,1) 63.3 -2430 (1,1,1)
Fun-HDDC [akjbQkdk] 66.6 -2498 (1,1,1) 63.3 -2498 (1,1,1)
Fun-HDDC [akbkQkdk] 70 -2193 (1,1,1) 56.6 -2514 (1,1,1)
Fun-HDDC [akbQkdk] 66.6 -2402 (1,1,1) 63.3 -2402 (1,1,1)
Fun-HDDC [abkQkdk] 66.6 -2195 (1,2,1) 56.6 -2523 (1,1,1)
Fun-HDDC [abQkdk] 66.6 -2397 (1,1,1) 63.3 -2397 (1,1,1)

fclust 60 56.6

Dataset Face ECG

Number of groups 4 2

Size 24 100

Method CCR BIC d CCR BIC d

Fun-HDDC [akjbkQkdk] 62.5 -2162 (1,1,2,1) 77 -6667 (1,1)
Fun-HDDC [akjbQkdk] 50 -2286 1,1,1,1) 76 -6428 (1,1)
Fun-HDDC [akbkQkdk] 62.5 -2078 (2,1,1,1) 77 -6333 (1,1)
Fun-HDDC [akbQkdk] 58.3 -2083 (1,2,1,1) 77 -6191 (1,1)
Fun-HDDC [abkQkdk] 66.6 -2092 (2,1,2,1) 77 -6317 (1,1)
Fun-HDDC [abQkdk] 58.3 -2080 (2,1,1,1) 77 -6167 (1,1)

fclust 41.6 75

Table 2: Correct classification rates (CCR) in percentage, BIC values (if available),
and dimension of each class-specific functional subspace (d) for methods fclust and
funHDDC on parts of the Kneading, CBF, Face and ECG datasets.
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Fun-HDDC
Kneading Kneading

functional
2-steps discretized spline coeff. FPCA scores

methods (241 instants) (20 splines) (4 components)
[akjbkQkdk ] 64.35 HDDC 66.09 53.91 44.35
[akjbQkdk ] 62.61 MixtPPCA 65.22 64.35 62.61
[akbkQkdk] 64.35 mclust 63.48 50.43 60
[akbQkdk] 62.61 k-means 62.61 62.61 62.61
[abkQkdk] 64.35 hclust 63.48 63.48 63.48
[abQkdk] 62.61

Fun-HDDC
CBF CBF

functional
2-steps discretized spline coeff. FPCA scores

methods (128 instants) (20 splines) (17 components)
[akjbkQkdk ] 64.84 HDDC 68.60 51.18 68.17
[akjbQkdk ] 70.43 MixtPPCA 65.59 51.29 68.27
[akbkQkdk] 64.09 mclust 61.18 62.79 68.06
[akbQkdk] 70.65 k-means 64.95 54.09 64.84
[abkQkdk] 70.65 hclust 60.86 57.96 66.13
[abQkdk] 70.65

Fun-HDDC
Face Face

functional
2-steps discretized spline coeff. FPCA scores

methods (350 instants) (20 splines) (3 components)
[akjbkQkdk ] 56.25 HDDC 59.82 58.03 63.39
[akjbQkdk ] 54.44 MixtPPCA 54.54 61.36 64.77

[akbkQkdk] 51.78 mclust 62.5 57.14 55.36
[akbQkdk] 54.44 k-means 59.09 53.41 59.09
[abkQkdk] 60.71 hclust 50.89 56.25 48.21
[abQkdk] 57.14

Fun-HDDC
ECG ECG

functional
2-steps discretized spline coeff. FPCA scores

methods (96 instants) (20 splines) (19 components)
[akjbkQkdk ] 75 HDDC 74.5 73.5 74.5
[akjbQkdk ] - MixtPPCA 74.5 73.5 74.5
[akbkQkdk] 76.5 mclust 81 80.5 81.5

[akbQkdk] 74.5 k-means 74.5 72.5 74.5
[abkQkdk] 76.5 hclust 73 76.5 64
[abQkdk] 75

Table 3: Correct classification rates (CCR) in percentage for funHDDC (underlined
for the best model according BIC) and usual two-step methods on the Kneading,
CBF, Face and ECG datasets.

4.4 Benchmark study: comparison with usual two-step meth-

ods

In this section, the clustering performance of funHDDC is compared to the usual
two-step methods described in Section 1. The clustering results are summarized
in Table 3. For the four datasets, the correct classification rates of each funHDDC
submodel is provided, as well as for five classical clustering methods: HDDC, MixtP-
PCA, mclust, k-means and hclust. All these two-step methods are successively ap-
plied on discretized data, on the coefficients in a natural cubic splines basis expansion
(20 splines) and on functional PCA scores. For funHDDC, also applied with a basis
of 20 natural cubic splines, the correct classification of the best model according to
BIC is underlined.

In view of the results of Table 3, we can make two important remarks. Firstly,
funHDDC appears to outperform HDDC on the four datasets when HDDC is ap-
plied on spline coefficients. This demonstrates that taking into account the func-
tional nature of the data in the model of funHDDC allows to improve the clustering
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results compared to HDDC. Secondly, this benchmark study highlights the difficulty
of the discretization choice for the two-step methods. Indeed, each of the studied
method, except k-means, turned out to be the best method at least once over the
four datasets and this with a different discretization choice each time. In addition,
since the corresponding space in which the functions are represented are not similar,
model selection criteria cannot be used to choose between the discretization strate-
gies in an unsupervised classification context. From this point of view, funHDDC
appears to be a good alternative to two-step clustering methods for the clustering
of functional data since funHDDC presents the advantage of always providing sat-
isfying results in addition to not requiring to transform the functional data into
finite dimensional data. The use of funHDDC appears overall to be more tenable
than two-step methods, since the funHDDC submodel selected by BIC leads to a
satisfying classification rate for each dataset.

5 Conclusion

The main objective of the present work was to adapt the HDDC clustering method
to functional data. The resulting algorithm, called funHDDC, models and clusters
the high-dimensional functional data of each group in a specific functional sub-
space. The clustering and interpretation abilities of funHDDC have been illustrated
on several real-world datasets. In particular, funHDDC has been applied to the
well-known Canadian temperature dataset and it provided meaningful and under-
standable results. The proposed method has also been compared on four benchmark
datasets with a recent functional clustering method, fclust, and with classical two-
step methods. On the one hand, funHDDC turned out to clearly outperforms its
functional challenger fclust. On the other hand, funHDDC appeared to be always
satisfying and more stable than the two-step methods which furthermore suffer from
the difficulty to choose the discretization strategy. We want also to mention that
we considered only a cubic spline basis in this paper, but other basis functions like
P-splines or wavelets could bring good results. An extension of this work would be
to adapt the funHDDC method to multi-dimensional time series. This would be
possible by using a Gaussian model with block-diagonal covariance matrices within
the group-specific functional subspaces.
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