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Abstract

This work develops a general procedure for clustering functional data which adapts the
efficient clustering method HDDC, originally proposed in the multivariate context. The re-
sulting clustering method, called funHDDC, is based on a functional latent mixture model
which fits the functional data in group-specific functional subspaces. By constraining model
parameters within and between groups, a family of parsimonious models is exhibited which
allow to fit onto various situations. An estimation procedure based on the EM algorithm is
proposed for estimating both the model parameters and the group-specific functional sub-
spaces. Experiments on real-world datasets show that the proposed approach performs better
or similarly than classical clustering methods while providing useful interpretations of the
groups.
Keywords:Functional data, time series clustering, model-based clustering, group-specific
functional subspaces, functional PCA.

1 Introduction

Cluster analysis consists in identifying groups of homogeneous data without using any prior
knowledge on the group labels of the data. A lot of methods, from non-parametric k-means [10]
or hierarchical classification to more recent probabilistic model-based clustering [2, 6], have been
proposed along the years. The clustering of time series, or more generally of functions, is a dif-
ficult task since the data live in an infinite dimensional space. We refer for instance to [21] for a
survey on time series clustering. Although non-parametricapproaches to functional clustering, as
for instance [8, 18], lead to powerful clustering algorithms, the present paper focuses on model-
based clustering which have moreover interesting interpretability properties.

Unlike the finite dimensional cases, model-based methods for clustering functional data are
not directly available since the notion of probability density function generally does not exist for
such data [7]. Consequently, the use of model-based clustering methods on functional data con-
sists usually in first transforming the infinite dimensionalproblem into a finite one and then in
using a model-based clustering method designed for finite dimensional data. The expression of
functions in a finite space can be carried out by either discretizing the time interval, decompos-
ing the functions onto a basis of functions or onto some principal components resulting from a
functional principal component analysis (FPCA) [16]. The discretization of the time interval is
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usually straightforward since in practice the functions are already measured in a discrete scale.
The functions can also be decomposed onto a basis of well-defined functions such as natural cubic
splines which are very popular and enjoy some optimality properties [20]. The decomposition of
the functions can be done as well through specific time seriesmodels such as ARMA or GARCH
(see [9] for a clustering algorithm based on such models). Note that in the case of using functional
principal components, the functions have to be also expressed in a basis of functions in order to
solve the functional eigen-decomposition problem.

Unfortunately, the resulting vectors are often high-dimensional. In particular, the discretiza-
tion or the decomposition of the functions onto a spline basis (for instance, 20 natural cubic splines
will be used in the applications of the present paper) usually yield to high-dimensional datasets
with sometimes less observations than dimensions. In such situations, model-based clustering
methods suffer from numerical problems and regularized approaches have to be used. Among
the regularized model-based clustering methods, we can cite the parsimonious Gaussian mix-
ture models [2, 6], which assume specific covariance structures, mixture of probabilistic principal
component analyzers (MixtPPCA, [19]) and high-dimensional data clustering (HDDC, [4]) which
both assume that high-dimensional data live in group-specific subspaces. In particular, the latter
method have been used with success in various application fields such as image analysis [4] or
chemometry [11].

The clustering methods previously described all consist ina two-step methodology in which
the functional data are first transformed into a finite dimensional vector (thediscretizationstep)
and then clustered. Only model-based methods have been mentioned but some non-parametric
methods such as k-means could also be considered. Unfortunately, these two-step approaches do
separately the discretization and the clustering steps, and this may lead to a loss of discriminative
information. Recently, a new approach due to James and Sugar[12] allows the interaction be-
tween the discretization and the clustering steps by introducing a stochastic model onto the basis
coefficients. This approach is announced to be particularlyeffective when the functional data are
sparsely sampled. In the same spirit, we propose in the present paper to adapt the HDDC method
to functional data in order to model and cluster the functional data in group-specific subspaces of
low dimensionality. The modeling of the functions of each group in a specific subspace should, in
addition to providing an interesting clustering of the data, ease the interpretation of the clustered
data.

The paper is organized as follows. Section 2 presents the proposed functional latent mixture
model as well as a family of parsimonious submodels and the associated maximum likelihood
estimation. Section 3 first proposes an introductory example in order to highlight the main features
of the proposed method. A benchmark comparison with state-of-the-art methods is also provided
in Section 3 on real-world time series datasets. Finally, Section 4 provides some concluding
remarks.

2 Model-based clustering in functional subspaces

This section introduces a family of latent mixture models designed for functional data which
adapts the models of [4], proposed in the multivariate context. Model inference and estimation
of hyper-parameters are also discussed.

2.1 The functional latent mixture model

Let us consider a set ofn observed time series or curves{x1, ...,xn}, wherexi = {xi(t)}t∈[0,T ]

(1≤ i ≤ n), that one wants to cluster intoK homogeneous groups.
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On the one hand, let us first assume that the observed curves are independent realizations of a
L2-continuous stochastic processX = {X(t)}t∈[0,T ] for which the sample paths,i.e. the observed
curvesxi , belong toL2[0,T]. In practice, the functional expressions of the observed curves are
not known and we only have access to the discrete observations xi j = xi(ti j ) at a finite set of times
{ti j : j = 1, . . . ,mi}. As explained in [1], it is thus necessary to reconstruct thefunctional form
of the data from their discrete observations. A common way todo this is to consider that curves
belong to a finite dimensional space spanned by a basis of functions (see, for example, [16]). Let
us therefore consider such a basis{ψ1, . . . ,ψp} and assume that the stochastic processX admits
the following basis expansion:

X(t) =
p

∑
j=1

γ jψ j(t), (1)

with γ j ∈ R ( j = 1, . . . , p) and where the numberp of basis functions is assumed to be known and
fixed. The basis expansion of each observed curvexi(t) = ∑p

j=1γi j ψ j(t) can be estimated by an
interpolation procedure, if the curves are observed without noise, or by least square smoothing, if
they are observed with error.

Let also assume that there exists an unobserved variableZ = (Z1, . . . ,ZK) ∈ {0,1}K such that
zik, the values ofZk for the curvexi , indicates ifxi belongs to thekth group or not. The clustering
task aims therefore to predict the value ofZ for each observed curvexi .

On the other hand, let us assume that there existK functional latent subspacesE1[0,T], ...,EK [0,T]
(Ek[0,T] ⊂ L2[0,T] for all k = 1, . . . ,K) where the observed curves live conditionally to their
group belonging. For each observed curvexi , let yi be its latent representation which lives in
Ek[0,T] if zik = 1. We further assume that, in each group-specific functionalsubspaceEk, the
latent time seriesyi, such thatzik = 1, are also sample paths of aL2-continuous stochastic process
Y = {Y(t)}t∈[0,T ] admitting a basis expansion depending on the group at hand:

Y(t)|Zk=1 =
dk

∑
j=1

αk jψ j(t),

where{ψ j} j=1,dk is the same basis of functions as in Equation (1), but with a possible reduced
number of functionsdk (dk ≤ p), which becomes a parameter of the model.

We finally assume thatY is linked toX, conditionally toZ, through a linear transformation:

X|Zk=1 = UkY|Zk=1 + ε|Zk=1,

whereUk is a linear operator defined fromL2[0,T] to Ek[0,T] and represented by ap×dk matrix
Uk, andε a noise function admitting the basis expansionε(t) = ∑p

j=1β jψ j(t).
We now make some distributional assumptions on the stochastic processesX, Y andε through

their respective basis expansions. Firstly, the basis coefficients{α1, ...,αn} of Y are assumed to be
distributed, conditionally toZ, according to a multivariate Gaussian density:

α|Zk=1 ∼ N (mk,Sk),

wheremk andSk = diag(ak1, ...,akdk) are respectively the mean and the covariance matrix of the
kth group. Secondly, the basis coefficients{β1, ...,βn} of the noise functionε are assumed as well
to be distributed, conditionally toZ, according to a multivariate Gaussian density:

β|Zk=1 ∼ N (0,Γk).
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With these distributional assumptions, the conditional distribution of the basis coefficients ofX is:

γ|α ,Zk=1 ∼ N (Ukα ,Γk),

and its marginal distribution is therefore a mixture of Gaussians:

p(γ) =
K

∑
k=1

πkφ(γ ;µk,Σk),

whereφ is the Gaussian density function,µk = Ukmk, Σk = UkSkU t
k + Γk andπk = P(Zk = 1) is

the prior probability of groupk. Let us also defineQk = [Uk,Vk] a p× p matrix which satisfies
Qt

kQk = QkQt
k = Ip and for which thep× (p−dk) matrixVk is the orthonormal complement ofUk

defined above. We finally assume thatΓk is such that∆k = Qt
kΣkQk has the following form:

∆k =

























ak1 0
...

0 akdk

0

0

bk 0
...

...
0 bk































dk























(p−dk)

with ak j > bk for j = 1, ...,dk and k = 1, ...,K. This model will be hereafter referred to as the
FLM[ak jbkQkdk] model or the FLM model for short. With these notations and from a practical point
of view, one can say that the variance of the actual data of thekth group is therefore modeled by the
ak1, ...,akdk whereas the parameterbk models the variance of the noise. Similarly, the dimension
dk can be considered as the intrinsic dimension of the latent subspace of thekth group.

2.2 The submodels of the FLM model

Following the strategy of [4], it is possible to obtain parsimonious submodels from the FLM[ak jbkQkdk]

model by constraining model parameters within or between groups. For instance, fixing the firstdk

eigenvalues to be common within each class, we obtain the more restricted model FLM[akbkQkdk].
We observed that the model FLM[akbkQkdk] often gives satisfying results and this suggests that the
assumption that each matrix∆k contains only two different eigenvalues,ak andbk, seems to be an
efficient way to regularize the estimation of∆k. Another possible type of regularization is to fix
the parametersbk to be common between the classes. This yields the models FLM[ak jbQkdk] and
FLM[akbQkdk] which both assume that the variance outside the class specific subspaces is common.
This assumption can be viewed as modeling the noise outside the latent subspace of the group
by a single parameterb which is a natural hypothesis when the data are obtained in a common
acquisition process. Among the 28 models proposed in the original article [4], 6 models have
been selected for their good practical behaviors to be considered in the experiments of Section 3.
Table 1 lists those 6 models and their corresponding complexity (i.e. the number of parameters to
estimate).

2.3 Model inference

In model-based clustering, the estimation of model parameters is traditionally done through the
maximum likelihood estimation procedure. Given the basis expansion coefficientsγ1, ...,γn of the
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FLM model
Number of
parameters

Nb of prmsK = 4,
d = 10, p = 100

[ak jbkQkdk] ρ + τ̄ +2K +D 4231
[ak jbQkdk] ρ + τ̄ +K +D+1 4228
[akbkQkdk] ρ + τ̄ +3K 4195
[abkQkdk] ρ + τ̄ +2K +1 4192
[akbQkdk] ρ + τ̄ +2K +1 4192
[abQkdk] ρ + τ̄ +K +2 4189

Table 1: Properties of the FLM models:ρ = Kp+K−1 is the number of parameters required for
the estimation of means and proportions,τ̄ = ∑K

k=1dk[p−(dk +1)/2] andτ = d[p−(d+1)/2] are
the number of parameters required for the estimation of orientation matricesQk, andD = ∑K

k=1dk.
For asymptotic orders, the assumption thatK ≪ d ≪ p is made.

observed curvesx1, ...,xn, the complete log-likelihood for the FLM model proposed above has the
following form:

ℓ(θ ;γ1, ...,γn) = −
1
2

K

∑
k=1

nk

[

dk

∑
j=1

(

log(ak j)+
qt

k jWkqk j

ak j

)

+
p

∑
j=dk+1

(

log(bk)+
qt

k jWkqk j

bk

)

−2log(πk)

]

+ ξ ,

whereqk j is the jth column ofQk, Wk = 1
nk

∑n
i=1zik(γi − µk)

t(γi − µk), nk = ∑n
i=1 zik and ξ is a

constant term. However, since the unsupervised classification context is considered here,i.e. the
group labels of time series are unknown, the direct maximization of the complete log-likelihood
is intractable and it is necessary to use an iterative procedure to maximize it. In the model-based
clustering context, the EM algorithm is the traditional tool to do so. The EM algorithm alternates
between an E step and a M step. For the FLM model introduced above, the EM algorithm takes
the following form:

E step This first step aims to compute, at iteration(q), the expectation of the complete log-
likelihood conditionally to the current value of the parameter θ (q−1), which, in practice, reduces to
the computation oft(q)

ik = E[zik|yi ,θ (q−1)]. For the FLM[akbkQkdk] model, the posterior probability
tik can be computed as follows at iteration(q):

tik = 1/
K

∑
ℓ=1

exp(Hk(γi)−Hℓ(γi)) ,

with Hk(γ) defined as:

Hk(γ) = ||µk−Pk(γ)||2Dk
+

1
bk
||γ −Pk(γ)||2 +

dk

∑
j=1

log(ak j)+ (p−dk) log(bk)−2log(πk),

where||.||2
Dk

is a norm on the latent spaceEk defined by||y||2
Dk

= ytDky, Dk = Q̃∆−1
k Q̃t andQ̃ is a

p× p matrix containing thedk vectors ofUk completed by zeros such asQ̃ = [Uk,0p−d], Pk is the
matrix representing the projection operator on the latent spaceEk, i.e. Pk(y) = UkU t

ky.
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M step This second step estimates the model parameters by maximizing the expectation of the
complete likelihood conditionally to the posterior probabilities tik computed in the previous step.
Mixture proportions and means are estimated as usual by:

π̂k =
nk

n
, µ̂k =

1
nk

n

∑
i=1

tikγi .

wherenk = ∑n
i=1 tik. Let us also introduceCk = 1

nk
∑n

i=1 tik(γi − µ̂k)
t(γi − µ̂k), the sample covariance

matrix of groupk, andW is the inner products between the basis functions,W = (w jk)1≤ j,k≤p =
´ T

0 φ j(t)φk(t)dt. With these notations, the update formula for the other model parameters are in
the case of the FLM[akbkQkdk] model, fork = 1, ...,K:

• the dk first columns ofQk are estimated by the eigenvectors associated with the largest
eigenvalues ofCkW,

• the variance parametersak j, j = 1, ...,dk, are estimated by thedk largest eigenvalues ofCkW,

• the variance parametersbk is estimated bŷbk = trace(CkW)−∑dk
j=1 âk j.

Proof of these results can be deduce from the proof of [4], by substituting the usual metric by the
metric induced by the basis functions (W here). The inference algorithm presented here will be
referred to as funHDDC in the following.

To summarize and roughly speaking, the funHDDC algorithm models and clusters the time
series through their projections in group-specific functional principal subspaces. These functional
principal subspaces per group are obtained by doing functional principal component analysis con-
ditionally to the posterior probabilitiestik. However, it is important to notice that even if the
modeling and the clustering are done in low-dimensional subspace, no discriminative information
is lost thanks to the noise termbk which models the variance outside the subspaces.

2.4 Estimation of hyper-parameters

The use of the EM algorithm for parameter estimation makes the funHDDC algorithm almost
automatic, except for the estimation of the hyper-parameters dk andK. Indeed, the parameters
dk andK can not be determined by maximizing the likelihood since they both control the model
complexity. The estimation of the intrinsic dimensionsdk is a difficult problem with no unique
technique to use. In [4], the authors proposed a strategy based on the eigenvalues of the class
conditional covariance matrixΣk of the kth class. Thejth eigenvalue ofΣk corresponds to the
fraction of the full variance carried by thejth eigenvector ofΣk. The class specific dimensiondk,
k = 1, ...,K is estimated through the scree-test of Cattell [5] which looks for a break in the eigen-
values scree. The selected dimension is the one for which thesubsequent eigenvalues differences
are smaller than a threshold. The threshold can be provided by the user or selected using BIC [17].
The number of clustersK may have to be estimated as well and and can be also selected thanks to
the BIC criterion. In the specific case of the models[akbkQkdk] and[abQkdk], it has been recently
proved [3] that the maximum likelihood estimate ofdk is asymptotically consistent.

2.5 Links with related models

At this point, it is possible to establish some links with themethods presented in Section 1. The
closest strategy is obviously the direct use of HDDC on the basis coefficients. This implies that a
“standard” PCA is applied, conditionally to the posterior probabilities, to the data of each group.
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Figure 1: Selection of the numberK of groups with the BIC criterion for the Canadian temperature
dataset.

The main difference between HDDC and its functional versionis the use of a metric specific to
the functional data in the eigenspace projection. It is alsopossible to directly use HDDC on the
discretized data. In this case, the functional nature of thedata is not considered at all, what could
be especially problematic when the curves are observed withnoise. We believe that the use of the
functional version of HDDC will both improve the clusteringresults and ease the interpretation of
the results by looking at the group-specific functional harmonics.

3 Experimental results

This section presents the results of experiments which aim to both illustrate the funHDDC features
and compare the proposed method to existing approaches.

3.1 An introductory example: the Canadian temperature dataset

In this first experiment, the Canadian temperature data (available in theR packagefda and pre-
sented in details by [16]) are used to illustrate the main features of the proposed functional clus-
tering method. The dataset consists in the daily measured temperatures at 35 Canadian weather
stations across the country. The funHDDC algorithm was applied here with the[ak jbkQkdk] model,
which is the most general FLM model, using a basis of 20 natural cubic splines. Once the fun-
HDDC algorithm has converged, several informations are available and some of them are of par-
ticular interest. Group means, intrinsic dimensions of thegroup-specific subspaces and functional
principal components of each group could in particular helpthe practitioner in understanding the
clustering of the dataset at hand.

As discussed before, it is first important to select an appropriate number of components for the
dataset to cluster and this can be done using the BIC criterion. Figure 1 shows the BIC values ob-
tained with funHDDC on the Canadian temperature dataset according to the numberK of groups.
As one can observe, the BIC value increases untilK = 4 and then stabilizes. This behaviour in-
dicates that 4 groups seem sufficient to model the dataset with funHDDC. Figure 2 presents the
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Figure 2: Clustering obtained with funHDDC (model[ak jbkQkdk]) and estimated means of the
groups for the Canadian temperature dataset.
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Figure 4: The group means of the Canadian temperature data obtained with funHDDC and the
effects of adding (+) and subtracting (−) a suitable multiple (±2 standard deviation) of each func-
tional principal component curve. 9
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Figure 5: Projection of the observed Canadian temperature curves into the specific functional
subspaceof each group estimated with funHDDC.
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clustering into 4 groups obtained with funHDDC and the estimated mean functions of the groups
for the temperature dataset. At this point, it is very interesting to have a look at the name of the
weather stations gathered in the different groups. Indeed,it appears that the group of red curves
gathers the stations of the North of Canada, the "black" group is made of continental stations, the
"blue" group contains the stations of the Pacific coast whereas the Atlantic stations are gathered
in the "green" group. For instance, the group of the green curves contains stations such as Halifax
(Nova Scotia) and St Johns (Newfoundland) whereas the "blue" group has stations such as Van-
couver and Victoria (both in British Columbia). Figure 3 provides a map of the weather stations
where the colors indicate their group belonging. This figureshows that the obtained clustering
with funHDDC is very satisfying and rather coherent with theactual geographical positions of the
stations (the clustering accuracy is 71% here). We recall that this partition of the data has been
obtained without any other information than the temperature curves. In addition, the observation
of the temperature means of the 4 groups confirms the common idea that seasons are more rude in
the North of Canada than in the South and that the continentalcities have lower temperatures than
coast cities during the winter.

Another interesting thing, but not necessary easy to visualize, is the specific functional sub-
space of each group. A classical way to observe principal component functions is to plot the group
mean function as well as the functions obtained by adding andsubtracting a suitable multiple of
the principal component function in question [16]. Figure 4shows such a plot for the "continen-
tal", "arctic", "Atlantic coast" and "Pacific coast" groupsof weather stations. It first appears on the
first principal component of each group that there is more variance between the weather stations
in winter than in summer. In particular, the first principal component of the "Pacific coast" group
(blue curves) reveals a specific phenomenon which occurs at the beginning and the end of the
winter. Indeed, we can observe a high variance in the temperatures of the Pacific coast stations at
these periods of time which can be explained by the presence of mountain stations in this group.
The analysis of the second principal components reveals more fine phenomena. For instance, the
second principal component of the "continental" group (black curves) shows a slight shift between
the + and − along the year which indicates a time-shift effect. This may mean that some cities of
this group have their seasons shifted,e.g. late entry and exit in the winter. Similarly, the inver-
sion of the + and − on the second principal component of the Pacific and Atlantic groups (blue
and green curves) suggests that, for these groups, the coldest cities in winter are also the warmest
cities in summer. On the second principal component of the "arctic" group (red curves), the fact
that the + and − curves are almost superimposed shows that theNorth stations have very similar
temperature variations (different temperature means but same amplitude) along the year.

Finally, Figure 5 presents the scores of the curves into the two first functional principal com-
ponents of each group. These figures provide useful and interpretable maps of the temperature
functions. For instance, the first axis of each subspace seems to discriminate the North and South
cities. The figures also highlight the similarity between the temperatures of Atlantic and Pacific
stations. It also appears that, in this case, the four functional subspaces seem to be parallel (same
orientations but different means). To summarize, this firstexperiment has highlighted that fun-
HDDC, in addition to providing a meaningful partition of thedata, allows interpretations which
would be certainly helpful in many application fields.

3.2 Benchmark study: data and experimental setup

In the two following benchmark experiments, four real datasets will be under studies:Kneading,
CBF, FaceandECG. These four datasets are plotted on Figure 6. The first dataset (Kneading)
comes from a study which consisted in predicting the qualityof cookies (good, adjustable or
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Figure 6:Kneading, CBF, FaceandECGdatasets.
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bad) from the kneading curve representing the resistance (density) of dough observed during the
kneading process. The corresponding dataset is made of 115 curves observed at 241 equispaced
instants of the time. Among the 115 cookies, 50 have been judged good, 25 adjustable and 40
bad. These data, provided by the Danone company, have been already studied in a supervised
context [13, 15]. These data are known to be hard to discriminate, even for supervised classifiers,
partly because of the adjustable class. The three other datasets come from theUCR Time Series
Classification and Clusteringwebsite1. The CBF dataset is made of 930 curves sampled from
3 groups at 128 instants of time. TheFacedataset [22] consists of 112 curves sampled from 4
groups at 350 instants of time. Finally, theECGdataset [14] consists of 200 curves from 2 groups
sampled at 96 time instants.

In the following, two benchmark experiments will allow to compare the clustering ability of
the funHDDC method with state-of-the-art methods. First, funHDDC will be compared to the
fclust method of James and Sugar, described in Section 1, which has also the advantage to take
into account the functional nature of the data. Second, funHDDC will be compared to usual two-
step methods in which the functional data are first transformed into a finite dimensional vector
(simple time discretization, projection into a natural cubic spline basis or onto functional princi-
pal components) and then clustered by an usual clustering method (HDDC [4], MixtPPCA [19],
kmeans or GMM [2, 6] through theR packagemclust).

3.3 Benchmark study: comparison with fclust

A package implementingfclust for theR software is available on the author’s website. However,
because of a memory limitation in this package, we had to select a reduced number of curves
from the original four datasets. For the Kneading data, 50 curves have been randomly chosen in
the 115 original ones, and for the three other datasets, which are separated into a training and a
test sample on the UCR website (for supervised classification purpose), only the training part have
been kept. For funHDDC, a basis of 20 natural cubic splines has been chosen for each dataset. The
clustering results are provided by Table 2 which indicates the correct classification rates for both
methods, the BIC values and the intrinsic dimensions for each group-specific functional subspace
for funHDDC. These results clearly show that funHDDC outperforms fclust on all the datasets.
Moreover, it appears that the BIC criterion, used for choosing the number of dimensions (tuned by
a common threshold) and the most appropriate submodel, leads to often select the most efficient
funHDDC models (for three datasets among four). It should nevertheless be noticed thatfclust
has been developed especially for sparsely sampled functional data, and it would be interesting to
compare both methods on such data too.

3.4 Benchmark study: comparison with usual two-step methods

In this section, the clustering performance of funHDDC is compared to the usual two-step methods
described in Section 1. The clustering results are summarized in Table 3. For the four datasets, the
correct classification rates of each funHDDC submodels is provided, as well as for four classical
clustering methods: HDDC, MixtPPCA,mclustand k-means. All these two-step methods are suc-
cessively applied on discretized data, on the coefficients in a natural cubic splines basis expansion
(20 splines) and on functional PCA scores. For funHDDC, applied also with a basis of 20 natural
cubic splines, the correct classification of the best model according to BIC is underlined.

For the Kneading dataset, HDDC on discretized data appears to be the best method with a
correct classification rate of 66.09% whereas the best funHDDC models leads to a rate of 64.35%

1http://www.cs.ucr.edu/∼eamonn/time_series_data/
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dataset Kneading CBF
groups number 3 3
size 502 30
method cc BIC d cc BIC d
Fun-HDDCAk jBkQkDk 70 -2403 (2,1,1) 63.3 -2430 (1,1,1)
Fun-HDDCAk jBQkDk 66.6 -2498 (1,1,1) 63.3 -2498 (1,1,1)
Fun-HDDCAkBkQkDk 70 -2193 (1,1,1) 56.6 -2514 (1,1,1)
Fun-HDDCAkBQkDk 66.6 -2402 (1,1,1) 63.3 -2402 (1,1,1)
Fun-HDDCABkQkDk 66.6 -2195 (1,2,1) 56.6 -2523 (1,1,1)
Fun-HDDCABQkDk 66.6 -2397 (1,1,1) 63.3 -2397 (1,1,1)
fclust3 60 56.6

dataset Face ECG
groups number 4 2
size 24 100
method cc BIC d cc BIC d
Fun-HDDCAk jBkQkDk 62.5 -2162 (1,1,2,1) 77 -6667 (1,1)
Fun-HDDCAk jBQkDk 50 -2286 1,1,1,1) 76 -6428 (1,1)
Fun-HDDCAkBkQkDk 62.5 -2078 (2,1,1,1) 77 -6333 (1,1)
Fun-HDDCAkBQkDk 58.3 -2083 (1,2,1,1) 77 -6191 (1,1)
Fun-HDDCABkQkDk 66.6 -2092 (2,1,2,1) 77 -6317 (1,1)
Fun-HDDCABQkDk 58.3 -2080 (2,1,1,1) 77 -6167 (1,1)
fclust4 41.6 75

Table 2: Percentages of correct classification (cc), BIC values (if available), and dimension of each
class-specific functional subspace (d) for methodsfclustand funHDDC on parts of the Kneading,
CBF, Face and ECG datasets.
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Fun-HDDC
Kneading Kneading

functional
2-steps discretized spline coeff. FPCA scores

methods (241 instants) (20 splines) (4 components)
Ak jBkQkDk 64.35 HDDC 66.09 53.91 44.35
Ak jBQkDk 62.61 MixtPPCA 65.22 64.35 62.61
AkBkQkDk 64.35 mclust 63.48 50.43 60
AkBQkDk 62.61 kmeans 62.61 62.61 62.61
ABkQkDk 64.35
ABQkDk 62.61

Fun-HDDC
CBF CBF

functional
2-steps discretized spline coeff. FPCA scores

methods (128 instants) (20 splines) (17 components)
Ak jBkQkDk 64.84 HDDC 68.60 51.18 68.17
Ak jBQkDk 70.43 MixtPPCA 65.59 51.29 68.27
AkBkQkDk 64.09 mclust 61.18 62.79 68.06
AkBQkDk 70.65 kmeans 64.95 54.09 64.84
ABkQkDk 70.65
ABQkDk 70.65

Fun-HDDC
Face Face

functional
2-steps discretized spline coeff. FPCA scores

methods (350 instants) (20 splines) (3 components)
Ak jBkQkDk 56.25 HDDC 59.82 58.03 63.39
Ak jBQkDk 54.44 MixtPPCA 54.54 61.36 64.77
AkBkQkDk 51.78 mclust 62.5 57.14 55.36
AkBQkDk 54.44 kmeans 59.09 53.41 59.09
ABkQkDk 60.71
ABQkDk 57.14

Fun-HDDC
ECG ECG

functional
2-steps discretized spline coeff. FPCA scores

methods (96 instants) (20 splines) (19 components)
Ak jBkQkDk 75 HDDC 74.5 73.5 74.5
Ak jBQkDk - MixtPPCA 74.5 73.5 74.5
AkBkQkDk 76.5 mclust 81 80.5 81.5
AkBQkDk 74.5 kmeans 74.5 72.5 74.5
ABkQkDk 76.5
ABQkDk 75

Table 3: Percentages of correct classification for funHDDC (underlined for the best model accord-
ing BIC) and usual two-steps methods on the Kneading, CBF, Face and ECG datasets.
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and the model selected by BIC obtains 62.61%. For the CBF data, the best method is funHDDC
with the model selected by BIC, with a correct classificationrate of 70.65%, whereas the best
classification rate of the two-step methods (still providedby HDDC on discretized data) is 68.6%.
For the Face data, the best approach is MixtPPCA on the functional PCA scores (64.77% versus
60.71% for funHDDC) andmclustis the most efficient method on the ECG data also on the FPCA
scores.

Each of the studied method, except k-means, turned out to be the best method at least once over
the four datasets and this benchmark study is therefore not able to elect a clear winner. The con-
clusion of these experiments could be that funHDDC is nevertheless a good alternative to two-step
clustering methods for the clustering of functional data. Indeed, funHDDC presents the advantage
of always providing satisfying results in addition to not requiring to transform the functional data
into finite dimensional data. This is an important point since this benchmark study has also high-
lighted that there are no absolute best way to discretize thefunctional data. Table 3 in fact shows
that each discretization has allowed at least once a two-step method to win. In addition, since the
corresponding space in which the functions are representedare not similar, model selection criteria
cannot be used to choose between such strategies in an unsupervised classification context. From
this point of view, the use of funHDDC appears to be more tenable than two-step methods, since
the funHDDC submodel selected by BIC leads to a satisfying classification rate for each dataset.

4 Conclusion

The main objective of the present work was to adapt the HDDC clustering method to functional
data. The resulting algorithm, called funHDDC, models and clusters the high-dimensional func-
tional data of each group in a specific functional subspace. The clustering and interpretation abil-
ities of funHDDC have been illustrated on several real-world datasets. In particular, funHDDC
has been applied to the well-known Canadian temperature dataset and it provided meaningful and
understandable results. The proposed method has also been compared on four benchmark datasets
with a recent functional clustering method,fclust, and with classical two-step methods. On the
one hand, funHDDC turned out to clearly outperforms its functional challengerfclust. On the
other hand, funHDDC appeared to be always satisfying and more stable than the two-step meth-
ods which furthermore suffer from the difficulty to choose the discetization strategy. An extension
of this work would be to adapt the funHDDC method to multi-dimensional time series. This
would be possible by using a Gaussian model with block-diagonal covariance matrices within the
group-specific functional subspaces.
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