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Abstract

This work develops a general procedure for clustering fonel data which adapts the
efficient clustering method HDDC, originally proposed i tmultivariate context. The re-
sulting clustering method, called funHDDC, is based on afional latent mixture model
which fits the functional data in group-specific functionatbspaces. By constraining model
parameters within and between groups, a family of parsiomodels is exhibited which
allow to fit onto various situations. An estimation proceslbased on the EM algorithm is
proposed for estimating both the model parameters and thepegpecific functional sub-
spaces. Experiments on real-world datasets show that tipged approach performs better
or similarly than classical clustering methods while pding useful interpretations of the
groups.

Keywords:Functional data, time series clustering, model-basedteting, group-specific
functional subspaces, functional PCA.

1 Introduction

Cluster analysis consists in identifying groups of homagers data without using any prior
knowledge on the group labels of the data. A lot of methoasnfnon-parametric k-means [10]
or hierarchical classification to more recent probabdistiodel-based clustering [2, 6], have been
proposed along the years. The clustering of time series,ove igenerally of functions, is a dif-
ficult task since the data live in an infinite dimensional gpad/e refer for instance to [21] for a
survey on time series clustering. Although non-parametpjgroaches to functional clustering, as
for instance [8, 18], lead to powerful clustering algorignthe present paper focuses on model-
based clustering which have moreover interesting intéapiigy properties.

Unlike the finite dimensional cases, model-based methadsldistering functional data are
not directly available since the notion of probability dignsunction generally does not exist for
such data [7]. Consequently, the use of model-based dlugterethods on functional data con-
sists usually in first transforming the infinite dimensiopabblem into a finite one and then in
using a model-based clustering method designed for finiteedsional data. The expression of
functions in a finite space can be carried out by either digimg the time interval, decompos-
ing the functions onto a basis of functions or onto some alccomponents resulting from a
functional principal component analysis (FPCA) [16]. Thscdetization of the time interval is



usually straightforward since in practice the functions already measured in a discrete scale.
The functions can also be decomposed onto a basis of welledEfiunctions such as natural cubic
splines which are very popular and enjoy some optimalitypprbes [20]. The decomposition of
the functions can be done as well through specific time ser@gels such as ARMA or GARCH
(see [9] for a clustering algorithm based on such modelsje Nt in the case of using functional
principal components, the functions have to be also expdesgsa basis of functions in order to
solve the functional eigen-decomposition problem.

Unfortunately, the resulting vectors are often high-disienal. In particular, the discretiza-
tion or the decomposition of the functions onto a spline$éer instance, 20 natural cubic splines
will be used in the applications of the present paper) ugyédlld to high-dimensional datasets
with sometimes less observations than dimensions. In stichtisns, model-based clustering
methods suffer from numerical problems and regularizedagumimes have to be used. Among
the regularized model-based clustering methods, we cantlo@ parsimonious Gaussian mix-
ture models [2, 6], which assume specific covariance strestumixture of probabilistic principal
component analyzers (MixtPPCA, [19]) and high-dimensiaiaa clustering (HDDC, [4]) which
both assume that high-dimensional data live in group-§pesilbspaces. In particular, the latter
method have been used with success in various applicatilois Sech as image analysis [4] or
chemometry [11].

The clustering methods previously described all consist two-step methodology in which
the functional data are first transformed into a finite din@ma vector (thediscretizationstep)
and then clustered. Only model-based methods have beemomehtout some non-parametric
methods such as k-means could also be considered. Unftatyrthese two-step approaches do
separately the discretization and the clustering stebttas may lead to a loss of discriminative
information. Recently, a new approach due to James and $i2jpallows the interaction be-
tween the discretization and the clustering steps by inttimdy a stochastic model onto the basis
coefficients. This approach is announced to be particuffgctive when the functional data are
sparsely sampled. In the same spirit, we propose in therpaper to adapt the HDDC method
to functional data in order to model and cluster the functiatata in group-specific subspaces of
low dimensionality. The modeling of the functions of eacbug in a specific subspace should, in
addition to providing an interesting clustering of the d&ase the interpretation of the clustered
data.

The paper is organized as follows. Section 2 presents th@pea functional latent mixture
model as well as a family of parsimonious submodels and thecéted maximum likelihood
estimation. Section 3 first proposes an introductory exanmpbrder to highlight the main features
of the proposed method. A benchmark comparison with statlkesart methods is also provided
in Section 3 on real-world time series datasets. FinalltiSe 4 provides some concluding
remarks.

2 Mode-based clustering in functional subspaces

This section introduces a family of latent mixture modelsigeed for functional data which
adapts the models of [4], proposed in the multivariate cdantModel inference and estimation
of hyper-parameters are also discussed.

2.1 Thefunctional latent mixture model

Let us consider a set of observed time series or Curvgzgy, ..., x,}, wherex, = {Xi(t) }tco )
(1 <i < n), that one wants to cluster intb homogeneous groups.



On the one hand, let us first assume that the observed cue/@sdapendent realizations of a
Lo-continuous stochastic proceXs= {X(t) }tc[o,1) for which the sample pathgge. the observed
curvesy;, belong toL,[0, T]. In practice, the functional expressions of the observetdesuare
not known and we only have access to the discrete obsersagjon x(t;;) at a finite set of times
{tj - j=1,...,m}. As explained in [1], it is thus necessary to reconstructftimetional form
of the data from their discrete observations. A common wagotohis is to consider that curves
belong to a finite dimensional space spanned by a basis didasqsee, for example, [16]). Let
us therefore consider such a ba§i, ..., s} and assume that the stochastic proceéssimits
the following basis expansion:

p
X() =Y ni(), (1)
=1
with y; € R (j = 1,..., p) and where the numbgrof basis functions is assumed to be known and

fixed. The basis expansion of each observed curit¢ = szzl ¥ @j(t) can be estimated by an
interpolation procedure, if the curves are observed withoise, or by least square smoothing, if
they are observed with error.

Let also assume that there exists an unobserved va@abl€Z; ..., Zx) € {0,1} such that
Zk, the values oy for the curvex;, indicates ifx; belongs to théth group or not. The clustering
task aims therefore to predict the valueZafor each observed curve.

On the other hand, let us assume that there Bxighctional latent subspac&s[0, T}, ...,Ex[O, T]
(Ex[0,T] C Lp[0,T] for all k= 1,...,K) where the observed curves live conditionally to their
group belonging. For each observed curyelet y; be its latent representation which lives in
Ex[O,T] if zx = 1. We further assume that, in each group-specific functisnabpacey, the
latent time seriey;, such thay, = 1, are also sample paths ofg-continuous stochastic process
Y = {Y(t) }c[o,r] @dmitting a basis expansion depending on the group at hand:

dg

Y()iz=1= zlakjwj (1),
=

where{(J;j }j—14, iS the same basis of functions as in Equation (1), but withssipte reduced
number of functionsl, (dk < p), which becomes a parameter of the model.
We finally assume that is linked toX, conditionally toZ, through a linear transformation:

Xz=1= UNz=1+ Ez=1,

where% is a linear operator defined frol[0, T| to E[0, T] and represented bymx dx matrix
Uk, ande a noise function admitting the basis expansigt) = 2?21[3,- Wi(t).

We now make some distributional assumptions on the stachasicesseX, Y ande through
their respective basis expansions. Firstly, the basidiceefts{as,...,an} of Y are assumed to be
distributed, conditionally t&@, according to a multivariate Gaussian density:

a‘zk:l ~ JV(”‘() S()?

wheremy and S, = diag(ak, ..., aq,) are respectively the mean and the covariance matrix of the
kth group. Secondly, the basis coefficiefifs, ..., B, } of the noise functiore are assumed as well
to be distributed, conditionally td, according to a multivariate Gaussian density:

Bze—1~ A (0,lk).



With these distributional assumptions, the conditionatribution of the basis coefficients Hfis:
WC{,Zk:l ~ ‘/V(Ukaa rk)7

and its marginal distribution is therefore a mixture of Gaass:

K

p(y) = kzlrw(v, s Zx),

where @ is the Gaussian density functiopy = Uxmy, 2 = UkSkUiE +lgandm =P(Z=1) is

the prior probability of grougk. Let us also defin€y = [Ux,Vi| a p x p matrix which satisfies
}(Qk = QkQ}( = |p and for which thep x (p — dx) matrix V is the orthonormal complement of

defined above. We finally assume tlhatis such that\, = }(Zka has the following form:

a1 0
" 0 di
0 Ak,

0 o (-

0 by

with axj > by for j = 1,...,d¢ andk = 1,...,K. This model will be hereafter referred to as the
FLM 5, ;b,Q.d) Model or the FLM model for short. With these notations andnfpractical point

of view, one can say that the variance of the actual data dtkthgroup is therefore modeled by the
a1, ..., g, Whereas the parametbr models the variance of the noise. Similarly, the dimension
dk can be considered as the intrinsic dimension of the latdrgpace of théth group.

2.2 Thesubmodels of the FLM model

Following the strategy of [4], itis possible to obtain parshious submodels from the FL\, g4,
model by constraining model parameters within or betweenmg. For instance, fixing the fird
eigenvalues to be common within each class, we obtain the nestricted model FLM,p, o.d, -
We observed that the model FL, o 4 Often gives satisfying results and this suggests that the
assumption that each matey contains only two different eigenvalueg, andby, seems to be an
efficient way to regularize the estimation &f. Another possible type of regularization is to fix
the parameterby to be common between the classes. This yields the modelsgfhdyl, and
FLM a0 Which both assume that the variance outside the class spgaifspaces is common.
This assumption can be viewed as modeling the noise outisaéatent subspace of the group
by a single parametdy which is a natural hypothesis when the data are obtained omaron
acquisition process. Among the 28 models proposed in tlggnati article [4], 6 models have
been selected for their good practical behaviors to be dersil in the experiments of Section 3.
Table 1 lists those 6 models and their corresponding coriipléxe. the number of parameters to
estimate).

2.3 Modd inference

In model-based clustering, the estimation of model pararags traditionally done through the
maximum likelihood estimation procedure. Given the bagaasion coefficients, ..., y, of the



Number of Nb of prmsK = 4,

FLM model parameters d=10,p=100
[akj bk Qxdk] P+ T+2K+D 4231
[ajbQ«d] p+T+K+D+1 4228
[k bk Qkdk] P+ T+3K 4195
[abx Qdk] P+T+2K+1 4192
[abQdy] p+T+2K+1 4192
[abQqdy] p+T+K+2 4189

Table 1: Properties of the FLM modelg:= Kp+ K — 1 is the number of parameters required for
the estimation of means and proportions; SK_; dk[p— (dk+1)/2] andt = d[p— (d+1)/2] are
the number of parameters required for the estimation ohtateon matrice€), andD = zledk.
For asymptotic orders, the assumption tlak d < p is made.

observed curves,, ..., X,, the complete log-likelihood for the FLM model proposedabbas the
following form:

(01, 00) = —Ek;nk [gl<|09(3k1)+ Jak,-

p L .
+ <Iog(bk) + qk’\gquj> — 2log(Tx)

j=C+1

+¢,

whereg; is the jth column of Q, W = n—lk Sz — W)UV — ), 'k = S ,12zk and € is a
constant term. However, since the unsupervised classgificabntext is considered herieg. the
group labels of time series are unknown, the direct maxitioiaaof the complete log-likelihood
is intractable and it is necessary to use an iterative puoeet maximize it. In the model-based
clustering context, the EM algorithm is the traditionallttmdo so. The EM algorithm alternates
between an E step and a M step. For the FLM model introducedealioe EM algorithm takes
the following form:

E step This first step aims to compute, at iterati¢g), the expectation of the complete log-

likelihood conditionally to the current value of the paraa're?(q‘1>, which, in practice, reduces to

the computation ofﬁf‘) = E[zk|yi, 09 Y]. For the FLMab.oia) Model, the posterior probability
tik can be computed as follows at iterati@m):

K
i:1 H |_H 1)) >
tik /glexp( k(¥) —He(%))
with Hy(y) defined as:
dk
Hk(Y) = |l — R(V)[[B, + bikllv— R+ leog(akj) + (p— dk) log(bx) — 2log(7x),
J:

where||.||2, is a norm on the latent spai defined byl|y||2, =Y %y, Z = QA'Q' andQis a
p x p matrix containing thel, vectors ofJy completed by zeros such &s= [Uk,0p—d], R is the
matrix representing the projection operator on the latpateEy, i.e. R(y) = UU}y.



M step This second step estimates the model parameters by maxgrilz expectation of the
complete likelihood conditionally to the posterior probigies ti computed in the previous step.
Mixture proportions and means are estimated as usual by:

P 'S 1 nt'
=" uk—nki;.kv..

wheren, = S ; tic. Let us also introduc€y = n—lk S tik(V — )t (v — fi), the sample covariance
matrix of groupk, andW is the inner products between the basis functidvss (Wjk)1<jk<p =
fOT @ ()@ (t)dt. With these notations, the update formula for the other rhpdemeters are in
the case of the FLMj,q.4g Model, fork=1,...,K:

* the dk first columns ofQy are estimated by the eigenvectors associated with theskarge
eigenvalues o€ \W,

« the variance parameted;j, j = 1, ...,dx, are estimated by tha largest eigenvalues GkW,
* the variance parametelg is estimated bj?)k = tracgC W) — Z?k:lék i

Proof of these results can be deduce from the proof of [4]ubpgttuting the usual metric by the
metric induced by the basis function#/ (here). The inference algorithm presented here will be
referred to as funHDDC in the following.

To summarize and roughly speaking, the funHDDC algorithnmdef® and clusters the time
series through their projections in group-specific fun@igorincipal subspaces. These functional
principal subspaces per group are obtained by doing fumatjorincipal component analysis con-
ditionally to the posterior probabilitie. However, it is important to notice that even if the
modeling and the clustering are done in low-dimensionasgabe, no discriminative information
is lost thanks to the noise teribjp which models the variance outside the subspaces.

2.4 Estimation of hyper-parameters

The use of the EM algorithm for parameter estimation makesfunHDDC algorithm almost
automatic, except for the estimation of the hyper-parammaeigandK. Indeed, the parameters
dk andK can not be determined by maximizing the likelihood since theth control the model
complexity. The estimation of the intrinsic dimensiasis a difficult problem with no unique
technique to use. In [4], the authors proposed a strateggdbas the eigenvalues of the class
conditional covariance matriXy of the kth class. Thej!" eigenvalue o, corresponds to the
fraction of the full variance carried by th&' eigenvector of,. The class specific dimensial,
k=1,...,K is estimated through the scree-test of Cattell [5] whictkéofor a break in the eigen-
values scree. The selected dimension is the one for whichubgequent eigenvalues differences
are smaller than a threshold. The threshold can be provigétetuser or selected using BIC [17].
The number of clusters may have to be estimated as well and and can be also seleatdd tto
the BIC criterion. In the specific case of the modeldyQxdk| and[abQ.dk], it has been recently
proved [3] that the maximum likelihood estimatedpfis asymptotically consistent.

2.5 Linkswith related models

At this point, it is possible to establish some links with thethods presented in Section 1. The
closest strategy is obviously the direct use of HDDC on thesbeoefficients. This implies that a
“standard” PCA is applied, conditionally to the posterioolpabilities, to the data of each group.
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Figure 1. Selection of the numbkrof groups with the BIC criterion for the Canadian temperatur
dataset.

The main difference between HDDC and its functional vers#otihe use of a metric specific to
the functional data in the eigenspace projection. It is plsssible to directly use HDDC on the
discretized data. In this case, the functional nature ofiita is not considered at all, what could
be especially problematic when the curves are observedneitie. We believe that the use of the
functional version of HDDC will both improve the clusteringsults and ease the interpretation of
the results by looking at the group-specific functional hamros.

3 Experimental results

This section presents the results of experiments which@limoth illustrate the funHDDC features
and compare the proposed method to existing approaches.

3.1 Anintroductory example: the Canadian temperature dataset

In this first experiment, the Canadian temperature dataléea in theR packagefda and pre-
sented in details by [16]) are used to illustrate the maitufes of the proposed functional clus-
tering method. The dataset consists in the daily measumedet@tures at 35 Canadian weather
stations across the country. The funHDDC algorithm wasiaglere with theay b, Qx| model,
which is the most general FLM model, using a basis of 20 nhturtic splines. Once the fun-
HDDC algorithm has converged, several informations ardabla and some of them are of par-
ticular interest. Group means, intrinsic dimensions ofglfmip-specific subspaces and functional
principal components of each group could in particular hlegppractitioner in understanding the
clustering of the dataset at hand.

As discussed before, it is first important to select an apatgnumber of components for the
dataset to cluster and this can be done using the BIC criteFigure 1 shows the BIC values ob-
tained with funHDDC on the Canadian temperature datasetrdic to the numbeK of groups.
As one can observe, the BIC value increases Wt 4 and then stabilizes. This behaviour in-
dicates that 4 groups seem sufficient to model the datasktfunHDDC. Figure 2 presents the
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Figure 2: Clustering obtained with funHDDC (modekjbkQkdk]) and estimated means of the
groups for the Canadian temperature dataset.

Figure 3: Geographical positions of the Canadian weatlaiosts according to their group be-
longing provided by funHDDC.
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Figure 4: The group means of the Canadian temperature deamet with funHDDC and the
effects of adding (+) and subtracting (-) a suitable mugtifgt2 standard deviation) of each func-
tional principal component curve. 9
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clustering into 4 groups obtained with funHDDC and the eated mean functions of the groups
for the temperature dataset. At this point, it is very intéirey to have a look at the name of the
weather stations gathered in the different groups. Indéegpears that the group of red curves
gathers the stations of the North of Canada, the "black"mismade of continental stations, the
"blue” group contains the stations of the Pacific coast wawethe Atlantic stations are gathered
in the "green” group. For instance, the group of the greemesucontains stations such as Halifax
(Nova Scotia) and St Johns (Newfoundland) whereas the "lgitgip has stations such as Van-
couver and Victoria (both in British Columbia). Figure 3 pides a map of the weather stations
where the colors indicate their group belonging. This figeliews that the obtained clustering
with funHDDC is very satisfying and rather coherent with #utual geographical positions of the
stations (the clustering accuracy is 71% here). We recatlttiis partition of the data has been
obtained without any other information than the tempegatwrves. In addition, the observation
of the temperature means of the 4 groups confirms the comneartl@t seasons are more rude in
the North of Canada than in the South and that the contineitiies have lower temperatures than
coast cities during the winter.

Another interesting thing, but not necessary easy to vigelials the specific functional sub-
space of each group. A classical way to observe principapoo@nt functions is to plot the group
mean function as well as the functions obtained by addingsabtracting a suitable multiple of
the principal component function in question [16]. Figurshbws such a plot for the "continen-
tal", "arctic", "Atlantic coast" and "Pacific coast" groupweather stations. It first appears on the
first principal component of each group that there is moréamae between the weather stations
in winter than in summer. In particular, the first principahtponent of the "Pacific coast" group
(blue curves) reveals a specific phenomenon which occutseabdginning and the end of the
winter. Indeed, we can observe a high variance in the terhpesaof the Pacific coast stations at
these periods of time which can be explained by the preseno®uantain stations in this group.
The analysis of the second principal components reveale firee phenomena. For instance, the
second principal component of the "continental” groupdkleurves) shows a slight shift between
the + and - along the year which indicates a time-shift effébis may mean that some cities of
this group have their seasons shiftedy. late entry and exit in the winter. Similarly, the inver-
sion of the + and — on the second principal component of théiPand Atlantic groups (blue
and green curves) suggests that, for these groups, thestaltes in winter are also the warmest
cities in summer. On the second principal component of thetitd group (red curves), the fact
that the + and — curves are almost superimposed shows thhlotttle stations have very similar
temperature variations (different temperature meansasuesamplitude) along the year.

Finally, Figure 5 presents the scores of the curves intowloefitst functional principal com-
ponents of each group. These figures provide useful andonetable maps of the temperature
functions. For instance, the first axis of each subspacest®ediscriminate the North and South
cities. The figures also highlight the similarity betweea tamperatures of Atlantic and Pacific
stations. It also appears that, in this case, the four fonatisubspaces seem to be parallel (same
orientations but different means). To summarize, this @sgieriment has highlighted that fun-
HDDC, in addition to providing a meaningful partition of tidata, allows interpretations which
would be certainly helpful in many application fields.

3.2 Benchmark study: data and experimental setup

In the two following benchmark experiments, four real datawill be under studiekneading
CBF, FaceandECG. These four datasets are plotted on Figure 6. The first daideeading
comes from a study which consisted in predicting the qualftookies (good, adjustable or

11
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Figure 6:Kneading CBF, FaceandECGdatasets.
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bad) from the kneading curve representing the resistararesify) of dough observed during the
kneading process. The corresponding dataset is made ofuti&scobserved at 241 equispaced
instants of the time. Among the 115 cookies, 50 have beerefidwod, 25 adjustable and 40
bad. These data, provided by the Danone company, have besaalstudied in a supervised
context [13, 15]. These data are known to be hard to discatajreven for supervised classifiers,
partly because of the adjustable class. The three othesatataome from th&/CR Time Series
Classification and Clusteringvebsité. The CBF dataset is made of 930 curves sampled from
3 groups at 128 instants of time. TRace dataset [22] consists of 112 curves sampled from 4
groups at 350 instants of time. Finally, tBE€Gdataset [14] consists of 200 curves from 2 groups
sampled at 96 time instants.

In the following, two benchmark experiments will allow torapare the clustering ability of
the funHDDC method with state-of-the-art methods. FiehHDDC will be compared to the
fclust method of James and Sugar, described in Section 1, whichl$mash@ advantage to take
into account the functional nature of the data. Second, RIDA will be compared to usual two-
step methods in which the functional data are first transéarimto a finite dimensional vector
(simple time discretization, projection into a natural icupline basis or onto functional princi-
pal components) and then clustered by an usual clusterinigoth¢HDDC [4], MixtPPCA [19],
kmeans or GMM [2, 6] through thR packagemclus).

3.3 Benchmark study: comparison with fclust

A package implementinérlustfor the R software is available on the author’'s website. However,
because of a memory limitation in this package, we had tacseleeduced number of curves
from the original four datasets. For the Kneading data, 50esuhave been randomly chosen in
the 115 original ones, and for the three other datasets,hwdrie separated into a training and a
test sample on the UCR website (for supervised classificgiimpose), only the training part have
been kept. For funHDDC, a basis of 20 natural cubic splinedkan chosen for each dataset. The
clustering results are provided by Table 2 which indicaltesdorrect classification rates for both
methods, the BIC values and the intrinsic dimensions foh gaoup-specific functional subspace
for funHDDC. These results clearly show that funHDDC ouftipens fclust on all the datasets.
Moreover, it appears that the BIC criterion, used for chogs$he number of dimensions (tuned by
a common threshold) and the most appropriate submodek teanften select the most efficient
funHDDC models (for three datasets among four). It shoulkrtbeless be noticed thétlust
has been developed especially for sparsely sampled fuattiata, and it would be interesting to
compare both methods on such data too.

3.4 Benchmark study: comparison with usual two-step methods

In this section, the clustering performance of funHDDC isipared to the usual two-step methods
described in Section 1. The clustering results are sumethiizTable 3. For the four datasets, the
correct classification rates of each funHDDC submodelsasiged, as well as for four classical
clustering methods: HDDC, MixtPPCMclustand k-means. All these two-step methods are suc-
cessively applied on discretized data, on the coefficiengsnatural cubic splines basis expansion
(20 splines) and on functional PCA scores. For funHDDC, iapiso with a basis of 20 natural
cubic splines, the correct classification of the best modebmaling to BIC is underlined.

For the Kneading dataset, HDDC on discretized data appears the best method with a
correct classification rate of 880% whereas the best funHDDC models leads to a rate.8664

Ihttp://www.cs.ucr.edu/eamonn/time_series_data/
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dataset Kneading CBF

groups number 3 3
size 507 30
method cc BIC d cc BIC d

Fun-HDDCAB.QDx | 70 -2403 (2,1,1)] 63.3 -2430 (1,1,1
Fun-HDDCA;BQDy | 66.6 -2498 (1,1,1)| 63.3 -2498 (1,1,1
Fun-HDDCABQDx | 70 -2193 (1,1,1) | 56.6 -2514 (1,1,1
Fun-HDDCABQDy, | 66.6 -2402 (1,1,1)| 63.3 -2402 (1,1,1
Fun-HDDCABQDy | 66.6 -2195 (1,2,1)| 56.6 -2523 (1,1,1
Fun-HDDCABQDx | 66.6 -2397 (1,1,1)| 63.3 -2397 (1,1,1)

fclust 60 56.6

dataset Face ECG
groups number 4 2

size 24 100
method cc BIC d cc BIC d

Fun-HDDCABQDx | 625 -2162 (1,1,2,1) 77 -6667 (1,1
Fun-HDDCABQDx | 50 -2286 1,1,1,1) 76 -6428 (1,1)
Fun-HDDCAB.QDx | 625 -2078 (2,1,1,1)| 77 -6333 (1,1)
Fun-HDDCABQD, | 58.3 -2083 (1,2,1,1) 77 -6191 (1,1)
Fun-HDDCABQDy | 66.6 -2092 (2,1,2,1) 77 -6317 (1,1)
Fun-HDDCABQ.Dy 58.3 -2080 (2,1,1,1) 77 -6167 (1,1)
fclustt 41.6 75

Table 2: Percentages of correct classification (cc), BlGe&l[if available), and dimension of each
class-specific functional subspace (d) for methiotisstand funHDDC on parts of the Kneading,
CBF, Face and ECG datasets.
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Kneading Kneading
Fun-HDDC functional 2-steps discretized | spline coeff. FPCA scores
methods | (241 instants)| (20 splines) | (4 components)
AxjBkQxDx 64.35 HDDC 66.09 53.91 44.35
AxjBQDy 62.61 MixtPPCA 65.22 64.35 62.61
ABKQiDx 64.35 mclust 63.48 50.43 60
ABQDk 62.61 kmeans 62.61 62.61 62.61
ABQ«Dy 64.35
ABQDx 62.61
CBF CBF
Fun-HDDC functional 2-steps discretized | spline coeff. FPCA scores
methods | (128 instants)| (20 splines) | (17 components)
AxjBkQiDx 64.84 HDDC 68.60 51.18 68.17
AxjBQDy 70.43 MixtPPCA 65.59 51.29 68.27
ABKQiDx 64.09 mclust 61.18 62.79 68.06
ABQDg 70.65 kmeans 64.95 54.09 64.84
ABQxDx 70.65
ABQDy 70.65
Face Face
Fun-HDDC functional 2-steps discretized | spline coeff. FPCA scores
methods | (350 instants)| (20 splines) | (3 components)
Ax;BrkQkDx 56.25 HDDC 59.82 58.03 63.39
AxjBQDk 54.44 MixtPPCA 54.54 61.36 64.77
ABKQ«Dk 51.78 mclust 62.5 57.14 55.36
ABQDk 54.44 kmeans 59.09 53.41 59.09
ABQxDx 60.71
ABQDy 57.14
ECG ECG
Fun-HDDC functional 2-steps discretized | spline coeff. FPCA scores
methods (96 instants) | (20 splines) | (19 components)
Ax;BrkQkDx 75 HDDC 745 735 74.5
AxjBQDk - MixtPPCA 74.5 735 74.5
ABKQ«Dk 76.5 mclust 81 80.5 81.5
ABQDx 74.5 kmeans 74.5 725 74.5
ABQiDy 76.5
ABQDx 75

Table 3: Percentages of correct classification for funHDDxlérlined for the best model accord-
ing BIC) and usual two-steps methods on the Kneading, CBte Bad ECG datasets.
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and the model selected by BIC obtains@®0. For the CBF data, the best method is funHDDC
with the model selected by BIC, with a correct classificatiate of 7065%, whereas the best
classification rate of the two-step methods (still provibgdHDDC on discretized data) is 8%6.

For the Face data, the best approach is MixtPPCA on the anmadtPCA scores (647% versus
60.71% for funHDDC) andnclustis the most efficient method on the ECG data also on the FPCA
scores.

Each of the studied method, except k-means, turned out teeldzeist method at least once over
the four datasets and this benchmark study is thereforebteti@ elect a clear winner. The con-
clusion of these experiments could be that funHDDC is nbedgts a good alternative to two-step
clustering methods for the clustering of functional dataleled, funHDDC presents the advantage
of always providing satisfying results in addition to nou&ing to transform the functional data
into finite dimensional data. This is an important point sititis benchmark study has also high-
lighted that there are no absolute best way to discretizéuthetional data. Table 3 in fact shows
that each discretization has allowed at least once a tworstthod to win. In addition, since the
corresponding space in which the functions are represeaméadot similar, model selection criteria
cannot be used to choose between such strategies in an nnsegelassification context. From
this point of view, the use of funHDDC appears to be more tentian two-step methods, since
the funHDDC submodel selected by BIC leads to a satisfyiagsification rate for each dataset.

4 Conclusion

The main objective of the present work was to adapt the HDDGteting method to functional
data. The resulting algorithm, called funHDDC, models alndters the high-dimensional func-
tional data of each group in a specific functional subspabe.clustering and interpretation abil-
ities of funHDDC have been illustrated on several real-diathtasets. In particular, funHDDC
has been applied to the well-known Canadian temperatuasetaand it provided meaningful and
understandable results. The proposed method has also tsepaiecd on four benchmark datasets
with a recent functional clustering methdd|ust and with classical two-step methods. On the
one hand, funHDDC turned out to clearly outperforms its fiomal challengerfclust On the
other hand, funHDDC appeared to be always satisfying anc siable than the two-step meth-
ods which furthermore suffer from the difficulty to choose thscetization strategy. An extension
of this work would be to adapt the funHDDC method to multi-dimsional time series. This
would be possible by using a Gaussian model with block-diajoovariance matrices within the
group-specific functional subspaces.
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