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Abstract 

The work presents the results of experiments related to the electrical and dynamical 

behaviour of a 500W, twenty cell Polymer Electrolyte Fuel Cell (PEFC) stack operated under 

fault condition and connected to an anti-parallel diode acting as a by-pass. The stack is placed in 

an experimental set-up that reproduces the electrical coupling in series of two fuel cells. The 

results allow the evaluation of the by-pass diode solution in the case of specific degraded working 

modes such as the break of the gas reactant feeding. The experiments presented in this article 

constitute an extrapolation and a complementary investigation of the preliminary results already 

achieved on a two cell PEFC stack and which had demonstrated the capability of the reverse 

diode to electrically isolate a fuel cell stack under fault. The proposed experiments focus on the 

dynamic behaviour of the stack under degraded working modes and point out the key-role of the 

fuel cell stack impedance in the triggering of the anti-parallel diode switching. 

 

Keywords: Polymer Electrolyte Fuel Cell; Multi-stack Fuel Cell; Fault tolerance; Degraded 

working modes; By-pass diode 

 

1. Introduction 

  

Today for many energy conversion systems involving fuel cells (FCs) for stationary, 

transportation or even auxiliary power units (APU) applications, it becomes crucial and 

unavoidable to ensure a continuation of operation in case of a fault. It is essential to develop some 

technical concepts which permit degraded working modes and come to a fault tolerant fuel cell 

(FC) generator. Strengthen reliability, high power availability and power delivery continuation 

are fundamental for a vehicle (to reach the next station in case of a public transport) but also for 



 

stand-alone applications which need uninterrupted power delivery (hospitals, APU for 

emergency…) [1,2]. Moreover the isolation of a FC stack under fault is important in order to 

protect its internal components which are very sensitive to degraded working situations. In the 

case of a Polymer Electrolyte Fuel Cell (PEFC) technology, the Membrane Electrode Assembly 

(MEA) can be subjected to different failures: membrane break, internal gas leakage, cell flooding 

or drying, poisoning of the catalysts areas...Redundancy and continuation of power delivery can 

be achieved through a multi-stack FC association when one FC stack remains out-of-work after a 

faulty operation [3,4,5]. A single stack (or group of cells) can be affected by several degradations 

during its operation, particularly when the power varies and consequently the amount of gas 

reactant. Some inhomogeneous gas distributions and induced local sub-stoichiometries 

(starvation phenomena) may also occur more frequently in larger stacks fed by fast gas flow 

changes. In some cases involving fast load variations, the coupling of FCs with additional buffer 

energy storage elements (super-capacitors, power batteries) is also required [6,7]. A hybrid FC 

system is often considered for transportation applications in order to adapt the dynamical 

response of the FC generator to transient load phases and for energy saving during the braking 

phases of the vehicle [6-8]. 

 

As an example of possible operating problem, let us consider the case of cells suffering from 

fuel starvation, which means that the cells are not fed with sufficient amounts of reactive gases. 

Then, the cell voltages will drop down below a low threshold, which can be critical for the cell 

operation and performances and for their lifetime as well. In order to isolate and protect the stack 

one solution consists in monitoring the cell voltages and shutting down an affected stack if a 

critical low voltage is detected. Another complementary solution should consist in the use of 

reverse by-pass diodes electrically connected in anti-parallel to each FC stack or groups of cells. 

These diodes can isolate the defective cells (or even an entire stack) and authorize the 

continuation of power delivery. This technique has already been used in the industrial sector to 



 

ensure the continuation of power delivery by hydrogen / oxygen FC stacks in a sub-marine [9]. 

Some diodes can also be employed in order to protect either each individual cell or a group of 

cells within a stack. With the diodes allowing the deviation of the stack current, the cells are 

prevented against the possible adverse effect of low or reverse voltages. In the patents [4,5,9,10], 

the authors describe some FC systems comprising a plurality of stack assemblies having their 

integrated diodes. 

 

The solution of by-pass diodes used in case of a faulty stack has already been evaluated at the 

FC LAB laboratory in Belfort. Preliminary works have been conducted on a two cell PEFC stack 

[11,12]. This first study is now extrapolated to a twenty cell PEFC stack. Experiments and test 

analyses through modelling are proposed in this article. 

 

The article is organised as follow: First the problematic of power delivery continuation for 

multi-stack FCs using by-pass diodes is reminded. Secondly, a modelling and simulation 

approach permit to describe the behaviour of the FC stack under a specific degraded conditions. 

The switching capability of the anti-parallel diode and the key-role of the FC internal resistance 

in the triggering of the diode conduction are pointed out. Then, experimental tests have been 

performed and the various results analysed. The twenty cell PEFC under test with its anti-parallel 

diode is respectively connected in series to a constant and adjustable DC voltage source (0-20V) 

which emulates a second FC. As a second experiment, the PEFC is connected in series to a 12V 

lead-acid battery to represent a hybrid power source. Some specific degraded working modes will 

be imposed to the FC stack alike the sudden interruption of the gas reactant feeding to the FC. 

The aim is to observe and understand the behaviour of the PEFC stack under these degraded 

situations and to validate experimentally the role of the anti-parallel diode as a by-pass to the 

faulty stack. Current and power regulations are applied to the load during the tests. Let us remind 

that the work should be especially useful for electrical engineers and easily understandable by 



 

them since the models, simulations and tests presented in the paper are electrical engineering 

oriented. 

 

2. Isolation of a FC stack under fault using a diode by-pass 

 

As already mentioned in the introduction, an association of hydrogen / oxygen PEFC 

modules equipped with anti-parallel diodes has already been used in the case of an air 

independent propulsion system for submarine application [9]. In the Submarine Class 212 from 

German Navy, eight 30-50kW PEFC modules are connected in series. If one of the FC modules 

fails, it is switched off, while the others continue to operate. Depending on the series connection 

of the FC modules, a diode connected between the electrical plugs of each module is necessary to 

ensure the current flow while one or more FC module(s) are out of operation. This principle of 

FC by-pass could be implemented in vehicles like electric buses, light rail vehicles (trams) taking 

into account the possible degraded working modes of the stacks linked to the constraints of the 

transportation environment. 

 

The US patent publication [5] presents a switching system and control method implemented 

with a multi-stack FC system. The switching system enables FC stacks to be connected in series 

for providing power to load while removing the particular disadvantages of a series circuit. In the 

case of a stack fault, the faulty stack may be bypassed, whereby the remaining stacks provide 

power to the power user at a reduced capacity. The stack under fault is continuously monitored 

and is reintroduced to the series circuit if the fault clears. If the fault reoccurs once again “a 

predetermined number of times” after the stack has been reintroduced, a “reduced capacity” mode 

is initiated. Additionally, in the event of a reduced or an increased current demand, FC stacks are 

selectively switched in and out of the series connection, for limiting the overall operation voltage 

range of the FC stack system. 



 

For the power supply of a DC network for on-board applications a possible solution should 

consist in using a power generator composed of n PEFC stacks connected in series (Fig. 1). This 

solution leads to an increase of the global input voltage and thus the voltage constraints on the 

load power converter are reduced as well as the current amplitude constraints for a given 

transmitted power. The FC multi-stack power generator is connected to a DC-DC power 

converter, which adapts the input voltage to the DC-Link voltage of the on-board electrical 

network. A battery imposes the DC bus potential and is also used for transient load power phases. 

For simplification, each FC stack is represented in Fig. 1 as an ideal voltage source with a static 

resistance in series. 

 

 

Fig. 1. Possible simplified scheme for multi stack FC association equipped with anti-parallel by-

pass diodes used for on-board systems. 

 

Such an approach dealing with reliable operation involving protection by-pass diodes is also 

employed in photovoltaic (PV) generation systems. Some groups of ten to twenty PV cells 

connected in series to produce a reasonably high output voltage have an anti-parallel diode to 

ensure power delivery continuation in case of fault (mainly for partial lighting deficiency, a by-



 

pass diode serves to decrease the effect of shadowing in the photovoltaic system while 

minimizing the power drops under shady conditions). The concerned references are mentioned in 

[13-18]. 

 

3. Approach by simulation for a twenty cell PEFC stack 

 

The simulation represents the electrical coupling of a twenty cell PEFC stack with its anti-

parallel diode (Diode AP) with a DC voltage source in order to simulate a twin-stack FC 

coupling. A contactor placed in series with the FC remains closed during the simulation. It is 

mainly used as a cut-off circuit for the stack protection or even is used to force a sudden circuit 

opening. Figure 2 shows the electrical circuit topology which was considered respectively for the 

simulation and following experiments described in section 4. 
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Fig. 2. Electrical circuit topology showing the PEFC, the Diode AP and all the devices used for 

simulation and experiments. 

 



 

The simulations are performed for two situations: first without and then with two additional 

diodes connected in series (Diode S2) with the FC stack under test. The addition of diode S2 will 

have a positive impact over the “switching on” behaviour of the anti-parallel Diode AP. It forces 

the triggering of the Diode AP conduction by imposing a sufficient voltage drop to enable the 

Diode AP conduction. Such a solution is necessary when the tested FC stack has some voltage 

and series resistance values that are too low to polarise the anti-parallel diode and to let it by-pass 

the FC current. The electrical source connected in series with the investigated stack is a 20V 

constant voltage source and the load current is imposed using a constant current source element. 

The model adopted for the FC is basically composed of an electrical voltage source E [V] in 

series with a pure resistance Rm [Ω], which represents the high frequency impedance of the FC 

corresponding to the resistance of the membranes. Such an (E, Rm) simplified model is sufficient 

to analyse the “switching on” behaviour of the anti-parallel diode. Since the value of the 

membrane resistance is always lower than the total polarization resistance, the (E, Rm) model can 

be considered as the “worst-case” for the triggering of the anti-parallel diode conduction. The 

value of the global twenty cell stack resistance (Rm) is 36 [mΩ]. The simulations are done with 

the E [V] voltage decreasing from 20V to 0V as a ramp in order to simulate a progressive break 

in the reactive gas feeding. Simulations are based on MATLAB/Simulink
®
 software [19]. 

 

The currents involved in the circuit are linked by Eq. (1) and the FC voltage is given by Eq. (2): 

 

DiodeAPFCLoad III           (1) 

 

FCmFC IREU            (2) 

 



 

The Diode AP technology is a Fast Recovery Epitaxial Diode (FRED). The conduction threshold 

of the Diode AP is VF = 2.2V (high voltage threshold for FRED diodes given at 25°C compared 

to other conventional diodes technologies). 

 

3.1. Diode AP switching condition without the addition of Diode S2 in series with the FC 

 

If the internal resistance of the contactor placed in series with the FC stack is neglected, the 

following relation Eq. (3) between the Diode AP voltage (VD_AK) and the FC voltage (VFC) is 

obtained: 

FCmFCAKD IREUV _         (3) 

 

When E equals zero or reaches values close to zero (during the starvation phase in particular), the 

FC behaves like a pure resistance (Rm) and the current in the FC stack is dependent both on the 

resistance Rm and on the conducting threshold of the Diode AP (VF [V] diode forward voltage). 

The current IFClim through the stack is limited by Eq. (4): 

 

mFlimFC RVI            (4) 

 

Then, the following relations corresponding to two different states can be considered: 

 

 ILoad ≤ IFClim: Diode AP is blocked;  IFC = I Load  and  IDiode AP= 0 

 ILoad > IFClim: Diode AP is conducting; IFC= IFClim  and  IDiode AP= ILoad - IFClim 

 

3.2. With the addition of Diode S2 in series with the FC 

 

The equation considering Diode S2 (voltage VDS2) added in series with the FC is:  



 

 

2_2__ SDFCmSDFCAKD VIREVUV        (5) 

 

When the FC potential equals zero (E=0), taking into account the conduction threshold of Diode 

S2 (VFS2) and neglecting its series resistance in conduction, the FC current is limited by:  

 

mFS2FFClim R)V(VI           (6) 

 

If the value of the series resistance of Diode S2 (RFS2) is not considered as negligible regarding 

the resistance value of the FC (Rm), then the FC current is limited by: 

 

)R(R)VV(I FS2mFS2FFClim          (7) 

 

If the value of Diode S2 conduction threshold (VFS2 [V]) is equal to VF or higher, no current is 

passing through the FC electrical branch. The conduction thresholds of both diodes (Diode AP 

and Diode S2) impose the current amplitude in the FC branch during the switching. 

 

Figures 3a and 3b show simulation results performed for a 10A load current amplitude. In the 

first case (Fig. 3a) without the addition of Diode S2, the Diode AP does not conduct. The 

conduction threshold (VF) of the Diode AP is not reached. For the second simulation (Fig. 3b) 

with additional Diode S2 connected in series with the FC stack, the same 10A load current 

amplitude is applied and the Diode AP is switched-on forced by the created voltage drop. The FC 

current is given by Eq. (7). 
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Fig. 3. Simulation results for a 10A load current. (a) Diode AP blocked without additional Diode 

S2; (b) Diode AP switches-on with additional Diode S2. 

 

The presented simulations demonstrate that the results can be very different depending on the 

FC stack resistance and load current. It should be noted that the conduction threshold of the 

Diode AP can be adjusted, either by choosing a suitable technology for the Diode AP (Schottky 

diodes having low threshold conduction, fast switching diodes…) or by associating more than 

one diode in series or in parallel. These simulation results will obviously be validated by a series 

of experiments but the first results provided in this section already show that the modelling tools 

developed can be very helpful to design elementary electrical topologies in order to better 

understand the diode switching phenomena and dynamic behaviour of the PEFC. 

 

4. Experimental investigations on a twenty cell PEFC stack 

 

The FC degraded working modes may have two main origins. The first cause is a possible 

inadequacy in the gas reactant supply to the stack or even a breakdown of the stack feeding in 

hydrogen and/or air. Thus, the voltages of the cells decrease dangerously and can lead to the 

starvation of several cells or to the starvation of the complete FC module [20,21]. The second 



 

possible origin of a degraded working mode can be related with an electrical phenomenon such as 

a contactor switch-off or a short-circuit occurring in the power electronic interface.  

Indeed, the shutting-down of a stack can occur following to one fault detection in the system. In 

both cases, the role of the anti-parallel diode is essential to ensure the current derivation and the 

electrical isolation of the faulty stack. In order to evaluate and characterise the electrical 

behaviour of the FC equipped with an anti-parallel diode, some degraded working modes have 

been imposed to a PEFC stack under test. Various experiments have been performed by the 

means of a specific set-up representing the coupling in series of two FC stacks (Fig. 2). The first 

FC is a twenty cell PEFC stack delivering a DC output voltage (UFC) which is the sum of the 

twenty single cell voltages. A variable 0-20V DC voltage source connected in series to the first 

stack simulates the second FC generator in operating condition. Another experiment will be 

conducted with the connection of an electrochemical lead-acid battery in series with the FC stack. 

All the experiments have been carried out in order to characterise and evaluate precisely the 

“switching-on” of the by-pass diode (Diode AP) and simultaneously the dynamic behaviour of 

the PEFC stack to these transient fault operating situations. The experimental testing protocol for 

each experiment is described in the following subsections. 

 

The experiments are realised using a 1kW in-house test bench developed in the FC 

Laboratory (FCLAB) in Belfort [22,23]. The architecture of the test bench is specifically 

dedicated to the work on PEFC system integration aspects. The electrical and fluidic topologies 

of the test bench have been specially designed to study new concepts of flexible and modular 

structures for embedded FC systems. In comparison with a FC test stand allowing accurate FC 

stack characterisations, the test bench functionalities are simplified and the number of sensors is 

reduced. However, the main physical parameters of the FC stack can be measured and they can 

be controlled in order to manage the FC operating conditions efficiently and with sufficient 

accuracy to operate the FC properly. The load current can be imposed using an electronic load 



 

(TDI Dynaload, RBL 100-300-2000 series). The stack voltage and the individual cell voltages are 

monitored. The stack temperature can be mastered using a dedicated temperature control circuit 

filled with deionised water. In all the following experiments, the investigated 500W twenty cell 

stack (BZ500 series from the ZSW - UBzM Company [24]) is fed by compressed air and dry 

hydrogen. The air flow is regulated through the variable speed of a compressor. It is possible to 

humidify the air stream using a humidification system based on the enthalpy wheel technology. 

However during the experiments described in this paper, only low air Humidity Rates (HR = 25% 

at 22°C) were needed to operate the investigated PEFC. Hydrogen is stored in high pressure 

cylinders (at 200 bar) located outside of the test room. The FC is operated in dead-end mode at 

the anode side. Hydrogen flushes can be realised either at regular time-spaced intervals or set 

when a low cell voltage threshold is reached. The complete control and data acquisition processes 

are based on National Instruments systems (PXI – SCXI set and LabVIEW software). A flow 

chart of the bench module supporting the twenty cells PEFC is shown in Fig. 4. 

 

 

Fig. 4. Scheme of the FC test module used to investigate the behaviour of the twenty cell stack. T 

and P correspond respectively to the temperature and pressure sensors. 



 

The electrical schematic set-up to perform the tests is reproduced in Fig. 5. 
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Fig. 5. Electrical set-up reproducing the series coupling of two electrochemical power devices. 

One FC stack with its by-pass diode is connected in series with a DC source (either a 20V power 

source emulating another FC stack or a 12V lead-acid electrochemical battery). 

 

4.1. First experiment: PEFC connected in series with a constant DC voltage supply 

 

Let’s refer to Fig.5. The diode by-pass function (Diode AP) acts as a derivation circuit for the 

FC current. The electronic load imposes the load current amplitude. The Diode AP is an IXYS 

DSEI 2x61-10B (2x60A) Fast Recovery Epitaxial Diode (FRED) [25] connected in anti-parallel 

to the PEFC stack under test. The package contains two independent diodes which are connected 

in parallel to constitute the anti-parallel Diode AP. FRED diodes have been selected because they 

have very short recovery times and offer low switching losses. They are often used as 

freewheeling diodes in power converters and for circuit protection like snubber diodes. Two 



 

diodes from a Semikron half bridge (IGBT/Diode module) SKM 75GB123D (1200V - 75A) [26] 

are connected in series with the PEFC; they constitute the Diode S2 used to impose a sufficient 

voltage drop which allows the switching of Diode AP for low voltages and current amplitudes 

which is the case in our tests. An on/off switch contactor is placed in series with the FC. A 

second one is positioned on the load circuit branch. Two sensors measure respectively the current 

in the two branches: LEM1 (current transducer type LA 50-S) is used for the FC current and 

LEM2 (type LA205-S) for the load current. The current passing through the Diode AP is deduced 

from both previous current measurements. The second FC in series is emulated by a Nemic-

Lambda PWS (750-20) DC power supply which voltage ranges from 0 to 20V (in the same 

voltage range as the studied FC). 

The picture in Fig. 6 shows the experimental test bench with the 500W twenty cell PEFC 

stack under test integrated in its experimental environment, the reverse Diode AP, the packaging 

with two diodes in series (Diode S2) with the PEFC and the DC power supply. 

 

 

 

Fig. 6. Picture of the test bench with the 20 cell PEFC in its experimental environment. 

 



 

4.1.1. Test 1: 5A load current and sudden opening of the contactor in series with the FC 

 

To perform this first test, the diodes in series with the FC (Diode S2) are disconnected. The 

PEFC operates at 22°C (ambient temperature); the water temperature at the stack outlet gives a 

good picture of the temperature inside the PEFC assembly. The FC is supplied by dry hydrogen 

in dead-end mode with flushes at a pressure of 200 [bar rel.] and low humidified compressed air. 

The water temperature at stack inlet for the cooling of the PEFC is 17°C. The use of such a low 

temperature level permits to reach a steady-state operation in a very short moment and thus to 

save time in the experiments. In this first test, the load current reference is set to 5A. However, a 

current offset (0.3A) is measured by the sensors (LEM1 and LEM2) linked with the FC current 

and load current due to a low amplitude leakage current flowing in the circuit. During the steady-

state phase, the FC voltage is UFC =15.5V (Fig. 7c) and the FC current IFC =5.3A. The FC power 

reaches 82W. The air compressor speed is 400 rpm, and the air flow estimated value of 15 

Nl.min
-1

. 

 

The contactor in series with the FC is switched-off (open) and the Diode AP switches 

instantaneously into conduction in order to ensure the current continuation to the load. The FC 

current falls to zero and the Diode AP relieves the load current (green dotted line in Fig. 7b). 

Then, the electrical contactor is switched-on (closed) once again and the FC delivers the load 

current. The Diode AP is automatically switched-off. 

 

The temperature of the stack reaches acceptable values. At the end of the test, the FC 

temperature is close to 21°C. Temperatures are maintained at a nearly constant value during the 

test. The minimal and maximal FC cell voltages reach acceptable values (minimum 0.6V) also 

during the transition phases (Fig. 7d). 
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Fig. 7. Diode AP switching for 5A load current and sudden opening of the contactor in series 

with the FC. (a) Hydrogen and air rel. pressures at inlets; (b) measured currents; (c) measured FC 

voltage; (d) FC minimal and maximal cell voltages. 

 

4.1.2. Test 2: Break in the air flow feeding the cathode and progressive switching of the 

Diode AP for a 10A load current amplitude 

 

A preliminary experiment has been initiated using only one of the two diodes (Diode S2) in 

series with the FC stack, but no conduction of the Diode AP was observed. Thus, the two diodes 

present in the packaging are connected in series to increase the voltage gap and allow the 

switching of the Diode AP. 



 

 

The PEFC stack still operates in dead-end mode with purges. The load current is imposed at 

10A level and controlled. The air compressor speed is 600 rpm, which corresponds to an air flow 

of 25 Nlmin
-1

. The contactor in series with the FC stack remains closed during the experiment. 

The air gas flow is voluntarily stopped by imposing a zero reference on the compressor (acting as 

an air flow regulator) so that the air pressure at stack inlet falls down to zero (Fig. 8a). 

Simultaneously the load current continues to pass through the FC and the stack operates in 

abnormal condition with insufficient gas supply. The FC voltage decreases consequently to 

values close to zero Volts and when the Diode AP conduction threshold is reached, the Diode AP 

switches-on progressively. The dynamic response time of the Diode AP is within a couple of 

seconds (Fig. 8b). During the next constant phase, the FC power is 154W (15V; 10.3A) (Fig. 8b 

and 8c). 
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Fig. 8. Break in the air flow supply; Diode AP switching observed for 10A load current 

amplitude. (a) Hydrogen and air rel. pressures at inlets; (b) measured currents; (c) measured FC 

voltage; (d) FC minimal and maximal cell voltages. 

 

The cell voltages decrease to low values related with starvation phenomenon (Fig. 8d). To 

avoid such situation and any irreversible damage for the stack, the FC is fed again with air so that 

its global voltage increases rapidly. Another current switching between the PEFC and Diode AP 

is realised adopting the same test protocol: stop of the air gas flow by imposing a zero speed 

reference on the compressor. The air pressure at stack inlet falls to zero [mbar] and the Diode AP 

switching is achieved successfully. 

 

4.1.3. Test 3: With a 15V DC voltage source and 25A load current amplitude 

 

The voltage of the DC source is now set to constant 15V voltage amplitude. Test 3 is 

performed for a 25A load current amplitude. In this test the FC power reaches 320W (12.8V, 

25A) during the steady-state phase. The power delivered by the DC voltage is 375W (15V, 25A) 

(Fig. 9b to Fig. 9d). The same operating mode is adopted. The Diode AP switches-on into 

conduction for a while. The current is shared between the Diode AP and the FC. The Diode AP 

current reaches around 22A, whereas the FC current reaches 3A during the commutation phase, 



 

taking into account the voltage drop caused by Diode S2. Then the load current reference is 

decreased to 15A. 
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Fig. 9. Diode AP switching for a 25A load current amplitude and 15V DC voltage supply. (a) 

Hydrogen and air rel. pressures at inlets; (b) measured currents; (c) measured FC and DC supply 

voltages; (d) FC and DC supply power; (e) measured temperatures; (f) FC minimal and maximal 

cell voltages. 

 

The graphics in (Fig. 9e) and (Fig. 9f) show the evolution of the temperatures in the stack as 

well as minimal and maximal cell voltages during the test. The FC water temperature reaches a 

peak of 41°C before fault occurrence. At the end of Test 3, the FC impedance is measured at no-

load using the Agilent 4338B milliohm meter [27]. The measurement is realised after feeding the 

anode and cathode respectively with dry hydrogen and low humidified air in order to dry the 

membranes. The no-load voltage of the stack is 19V. The impedance of the twenty PEFC stack is 

in the range of 36 to 38mΩ at about 1.5 kHz. This value can be correlated with the resistance 

value (Rm) of the stack used for the simulation. Then the PEFC stack is fed normally with gas 

reactants and a current reference is imposed to the stack. 

 

4.2. Second experiment: with a 12V Lead-acid battery connected in series with the PEFC 

 

Nowadays, many studies dealing with the topic of electrical coupling between FCs and 

batteries and with power management strategies between the two devices are carried out [28]. In 

our study, the set made of the two electro-chemical sources can be considered as a low power 

twin-source hybrid system. Experimental results will be presented in the following section 

illustrating the electrical coupling of the 20 cell PEFC with a 12V electrochemical lead-acid 

battery connected in series. 

The battery is a 12V / 4Ah valve regulated lead-acid battery (Yuasa NP4-12). The battery 

replaces the constant voltage supply used in the previous experiments. The internal resistance of 

the battery is equal to 40mΩ at 1 kHz. To simplify the scheme of the experimental set-up, the 



 

battery is represented in as an ideal 12V voltage source (Fig. 5.). At the beginning of the tests, the 

battery is fully charged to 12.4V. 

 

4.2.1. Test 4: PEFC / 12V battery coupling and applying load current regulation 

 

After a gradual step-up, the load current remains controlled at a 5A reference (Fig. 10b). Like 

for the previous experiments, the air flow is stopped to induce a break in the gas reactant feeding. 

The FC voltage decreases and when the conduction threshold (VF) of the Diode AP is reached, 

the progressive switching of the reverse diode can be observed. During the experiment the battery 

is discharged from 12.4V to 11V (Fig. 10c). The power delivered by the battery is around 60W 

(Fig. 10d). 
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Fig. 10. Test with one 12V battery in series with the FC and imposing load current regulation. (a) 

Hydrogen and air rel. pressures at inlets; (b) measured currents; (c) measured FC and battery 

voltages; (d) FC and battery delivered power. 

 

4.2.2. Test 5: Power regulation strategy with the coupling PEFC and battery 

 

In this test, the control strategy is modified and the load power is regulated. The power is 

established by successive power steps (Fig. 11d) until the value of 70W (reaching 30W on the 

battery and 40W on the PEFC). Then, the air gas flow is stopped and the switching of the Diode 

AP is progressively achieved (Fig. 11b). 
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Fig. 11. Test with 12V battery in series with the PEFC and imposing power regulation strategy. 

(a) Hydrogen and air rel. pressures at inlets; (b) measured currents; (c) measured FC and battery 

voltages; (d) FC and battery delivered power. 

 

4.2.3. Test 6: Power regulation and opening of the contactor in series with the FC 

 

This test constitutes an identical approach but with the sudden opening of the contactor in 

series with the FC (Fig. 12a to 12d). During this test, the battery reacts to the transient step and 

ensures the current continuation. The FC power falls to zero while the battery provides the power 

to the load. The Diode AP by-pass is automatically achieved. 
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Fig. 12. PEFC / 12V battery coupling, power regulation and contactor opening. (a) Hydrogen and 

air rel. pressures at inlets; (b) measured currents; (c) measured FC and battery voltages; (d) FC 

and battery delivered power. 

 

This last test illustrates the dynamic behaviours of both the PEFC and the lead-acid battery in 

response to a sudden load step. Both sources demonstrate their capabilities to react 

complementary to the current perturbation induced. 

 

5. Conclusions 

 

Several experimental tests have been performed in order to analyze the behaviour of a 500W 

twenty cell PEFC associated with an anti-parallel (reverse) diode (Diode AP) acting as a by-pass 

to the stack under fault. This technique has already been adopted by industrials for power 

applications involving multi-stack FCs. In a first approach, simulations have been performed on a 

twenty cell PEFC in order to better understand the switching mechanisms and dynamic behaviour 

of the twenty cell PEFC / Diode AP assembly. Then, various experimental tests were conducted. 

The PEFC was firstly placed in a series electrical assembly connected to a DC voltage supply, 

which could emulate a second stack for instance and secondly with a lead-acid battery in order to 

simulate a hybrid twin-source coupling. The faults which were voluntarily caused on the PEFC 

stack were a sudden opening of the contactor in series with the FC stack and a break in the gas 

reactant feeding with a fast decrease of the FC voltage consequently. All the different tests have 

illustrated the possibility of stack isolation by the anti-parallel diode. However, the switching of 

the diode is not instantaneous; it depends on both the value of the internal impedance of the FC 

stack and the load current amplitude. In the experiments, it was therefore necessary to add diodes 

in series with the FC in order to increase the voltage threshold which leads to the conduction of 

the anti-parallel diode. The value of the internal resistance of the FC (high frequency resistance of 



 

the membrane) plays a key-role in the triggering of the diode conduction. Anyway the connection 

of an anti-parallel diode on the plugs of a FC has demonstrated to be a solution which allows 

operating the FC under degraded working modes and ensures a power delivery continuation in 

case of a faulty working of the FC. 
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