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The spectrum of the twisted Dirac operator on Kähler submanifolds of the complex projective space

We establish an upper estimate for the small eigenvalues of the twisted Dirac operator on Kähler submanifolds in Kähler manifolds carrying Kählerian Killing spinors. We then compute the spectrum of the twisted Dirac operator of the canonical embedding CP d → CP n in order to test the sharpness of the upper bounds.

Introduction

One of the basic tools to get upper bounds for the eigenvalues of the twisted Dirac operator on spin submanifolds is the min-max principle. The idea consists in computing in terms of geometric quantities the so-called Rayleigh-quotient applied to some test section coming from the ambient manifold. In [START_REF] Bär | Extrinsic bounds for eigenvalues of the Dirac operator[END_REF], C. Bär established with the help of the min-max principle upper eigenvalue estimates for submanifolds in R n+1 , S n+1 and H n+1 , estimate which is sharp in the first two cases. In the same spirit, the first-named author studied in his PhD thesis [START_REF] Ginoux | Opérateurs de Dirac sur les sous-variétés[END_REF] different situations where the ambient manifold admits natural testspinors carrying geometric information.

In this paper, we consider a closed spin Kähler submanifold M of a Kähler spin manifold M and derive upper bounds for the small eigenvalues of the corresponding twisted Dirac operator in case M carries so-called Kählerian Killing spinors (see (2.3) for a definition). Interestingly enough, the upper bound turns out to depend only on the complex dimension of M (Theorem 2.2). Whether this estimate is sharp is a much more involved question. A first approach consists in finding lower bounds for the spectrum and to compare them with the upper ones. In Section 3, we prove a Kirchberg-type lower bound for the eigenvalues of any twisted Dirac operator on a closed Kähler manifold (Corollary 3.2). Here the curvature of the twisting bundle has to be involved. Even for the canonical embedding CP d → CP n , the presence of that normal curvature does not allow to state the equality between the lower bound and the upper one, see Proposition 3.3. The next approach consists in computing explicitly the spectrum of the twisted Dirac operator, at least for particular embeddings. In Section 4, we determine the eigenvalues (with multiplicities) of the twisted Dirac operator of the canonical embedding CP d → CP n , using earlier results by M. Ben Halima [START_REF] Halima | Spectrum of twisted Dirac operators on the complex projective space P 2q+1 (C)[END_REF]. We first remark that the spinor bundle of the normal bundle splits into a direct sum of powers of the tautological bundle (Corollary 4.4). We deduce the spectrum of the twisted Dirac operator in Theorem 4.8, where we also include the multiplicities with the help of Weyl's character formula. We conclude that, for d < n+1

2 , the twisted Dirac operator admits 0 as a lowest eigenvalue and (n + 1)(2d + 1 -n) for d ≥ n+1

2 (see Proposition 4.9). This implies that, for d = 1, the upper estimate is optimal for n = 3, 5, 7, however it is no more optimal for n ≥ 9.

This work is partially based on and extends the first-named author's PhD thesis [START_REF] Ginoux | Opérateurs de Dirac sur les sous-variétés[END_REF]Ch. 4]. for all ϕ ∈ Σ M |M = ΣM ⊗ ΣN . Here ΣN = Σ + N ⊕ Σ -N stands for the orthogonal and parallel splitting induced by the complex volume form, see e.g. [START_REF] Ginoux | Opérateurs de Dirac sur les sous-variétés[END_REF]Sec. 1.2.1] or [START_REF] Ginoux | On eigenvalue estimates for the submanifold Dirac operator[END_REF]Sec. 2.1]. The following Gauss-type formula holds for the spinorial Levi-Civita connections ∇ and ∇ := ∇ ΣM⊗ΣN on Σ M and ΣM ⊗ ΣN respectively: for all X ∈ T M and ϕ ∈ Γ(Σ M |M ),

∇ X ϕ = ∇ X ϕ + 1 2 2d j=1 e j • II(X, e j ) • ϕ, (2.2) 
where (e j ) 1≤j≤2d is any local orthonormal basis of T M and II the second fundamental form of the immersion.

Recall that, for a complex constant α, an α-Kählerian Killing spinor on a Kähler spin manifold ( M 2n , g, J) is a pair (ψ, φ) of spinors satisfying, for all X ∈ T M ,

∇ X ψ = -αp -(X) • φ ∇ X φ = -αp + (X) • ψ, (2.3) 
where p ± (X) := 1 2 (X ∓ iJ(X)). The existence of a non-zero α-Kählerian Killing spinor on ( M 2n , g, J) imposes the metric to be Einstein with scalar curvature S = 4n(n + 1)α 2 (in particular α must be either real or purely imaginary), the complex dimension n of M to be odd and the spinors ψ, φ to lie in particular eigenspaces of the Clifford action of Ω, namely

Ω • ψ = -iψ Ω • φ = iφ.
(2.4)

Actually a Kähler spin manifold carries a non-zero α-Kählerian Killing spinor with α ∈ R × if and only if it is the twistor-space of a quaternionic-Kähler manifold with positive scalar curvature (in particular it must be CP n if n ≡ 1 (4)), see [START_REF] Moroianu | La première valeur propre de l'opérateur de Dirac sur les variétés kähleriennes compactes[END_REF]. For purely imaginary α only partial results are known, the prominent examples being the complex hyperbolic space [START_REF] Kirchberg | Killing spinors on Kähler manifolds[END_REF]Thm. 13] as well as doubly-warped products associated to some circle bundles over hyperkähler manifolds [START_REF] Ginoux | Imaginary Kählerian Killing spinors[END_REF].

We need the following lemma [6, Lemme 4.4]:

Lemma 2.1 Let (M 2d , g, J) be a Kähler spin submanifold of a Kähler spin manifold ( M 2n , g, J) and assume the existence of an α-Kählerian Killing spinor (ψ, φ) on ( M 2n , g, J). Then 

(D ΣN M ) 2 (ψ + φ) = (d + 1) 2 α 2 (ψ + φ) + α 2 Ω N • Ω N • (ψ + φ). ( 2 
D 2 ϕ = D ΣN M 2 ϕ -d 2 |H| 2 ϕ -d 2d j=1 e j • ∇ N ej H • ϕ,
where H := 1 2d tr(II) is the mean curvature vector field of the immersion. In particular D 2 and (D ΣN M ) 2 coincide as soon as the mean curvature vector field of the immersion vanishes, condition which is fulfilled here. Using

2n j=1 p + (e j ) • p -(e j ) = i Ω -n and 2n j=1 p -(e j ) • p + (e j ) = -i Ω -n, we compute: Dψ = 2d j=1 e j • ∇ ej ψ (2.3) = -α 2d j=1 e j • p -(e j ) • φ = -α 2d j=1 p + (e j ) • p -(e j ) • φ = -α(iΩ • -d)φ = -α(i Ω • -d)φ + iαΩ N • φ (2.4) = (d + 1)αφ + iαΩ N • φ.
Similarly,

Dφ = 2d j=1 e j • ∇ ej φ (2.3) = -α 2d j=1 e j • p + (e j ) • ψ = -α 2d j=1 p -(e j ) • p + (e j ) • ψ = -α(-iΩ • -d)ψ = α(i Ω • +d)ψ -iαΩ N • ψ (2.4) = (d + 1)αψ -iαΩ N • ψ, so that D(ψ + φ) = (d + 1)α(ψ + φ) + iαΩ N • (φ -ψ).
To compute D 2 (ψ + φ) we need the commutator of Ω N • with D. For any ϕ ∈ Γ(Σ M |M ), one has 

D(Ω N • ϕ) = 2d j=1 e j • ∇ ej (Ω N • ϕ) = 2d j=1 e j • ∇ ej Ω N • ϕ + e j • Ω N • ∇ ej ϕ = 2d j=1 Ω N • e j • ∇ ej ϕ + e j • ∇ ej Ω N • ϕ = Ω N • Dϕ + 2d j=1 e j • ∇ ej Ω N • ϕ, with, for all X, Y ∈ T M and ν ∈ N M , ( ∇ X Ω N )(Y, ν) = -Ω N ( ∇ X Y, ν) = -g(J( ∇ X Y ), ν) = -g(J(II(X, Y )), ν), so that 2d j=1 e j • ∇ ej Ω N • ϕ = - 2d j,k=1 2n 
D 2 (ψ + φ) = (d + 1)α D(ψ + φ) + iα D(Ω N • (φ -ψ)) = (d + 1) 2 α 2 (ψ + φ) + i(d + 1)α 2 Ω N • (φ -ψ) + iαΩ N • D(φ -ψ) = (d + 1) 2 α 2 (ψ + φ) + i(d + 1)α 2 Ω N • (φ -ψ) + iαΩ N • ((d + 1)α(ψ -φ) -iαΩ N • (ψ + φ)) = (d + 1) 2 α 2 (ψ + φ) + α 2 Ω N • Ω N • (ψ + φ),
which concludes the proof.

Next we formulate the main theorem of this section. Its proof requires some further notations. Given any rank-2k-Hermitian spin bundle E -→ M with metric connection preserving the complex structure, the Clifford action of the Kähler form Ω E of E splits the spinor bundle ΣE of E into the orthogonal and parallel sum

ΣE = k r=0 Σ r E, (2.6) 
where

Σ r E := Ker(Ω E •-i(2r -k)Id) is a subbundle of complex rank k r . Moreover, given any V ∈ E, one has p ± (V ) • Σ r E ⊂ Σ r±1 E.
Theorem 2.2 (see [START_REF] Ginoux | Opérateurs de Dirac sur les sous-variétés[END_REF]Thm. 4.2]) Let (M 2d , g, J) be a closed Kähler spin submanifold of a Kähler spin manifold ( M 2n , g, J) and consider the induced spin structure on the normal bundle. Assume the existence of a complex µ-dimensional space of non-zero α-Kählerian Killing spinor on ( M 2n , g, J) for some α ∈ R × . Then there are µ eigenvalues λ of (

D ΣN M ) 2 satisfying λ ≤    (d + 1) 2 α 2 if d is odd d(d + 2)α 2 if d is even.
(2.7)

If moreover (2.7) is an equality for the smallest eigenvalue λ and some odd d, then

2d j=1 e j •II(X, e j )•ψ = 2d j=1 e j • II(X, e j ) • φ = 0.
N ), in particular this term must vanish. Analogously one has 2d j=1 e j •II(X, e j )•φ = 0. This concludes the proof.

To test the sharpness of the estimate (2.7), we would like to first compare it to an a priori lower bound. This is the object of the next section.

Kirchberg-type lower bounds

In this section, we aim at giving Kirchberg type estimates for any twisted Dirac operator on closed Kähler spin manifolds. First consider a Kähler spin manifold M of complex dimension d and let E be any rank 2k-vector bundle over M endowed with a metric connection. We define a connection on the vector bundle Σ := ΣM ⊗ E by ∇ := ∇ ΣM⊗E . The Dirac operator of M twisted with E is defined by

D E M : Γ(Σ) → Γ(Σ), D E M := 2d i=1 e i • ∇ ei
, where {e i } 1≤i≤2d is any local orthonormal basis of T M and "•" stands for the Clifford multiplication tensorized with the identity of E. The square of the Dirac-type operator D E M is related to the rough Laplacian via the following Schrödinger-Lichnerowicz formula [11, Thm. II.8.17]

(D E M ) 2 = ∇ * ∇ + 1 4 (Scal M + R E ),
where Scal M denotes the scalar curvature of M and R E is the endomorphism tensor field given by

R E : Σ -→ Σ ψ -→ 2 2d i,j=1 (e i • e j • Id ⊗ R E ei,ej )ψ.
Recall that for any eigenvalue λ of the Dirac operator, there exists an eigenspinor ϕ associated with λ such that ϕ = ϕ r + ϕ r+1 , where ϕ r is a section in Σ r := Σ r M ⊗ E. Here Σ r M is the subundle Ker(Ω • -i(2r -d)Id) of ΣM . Such an eigenspinor ϕ is called of type (r, r + 1). In order to estimate the eigenvalues of the twisted Dirac operator we define, as in the classical way, on each subbundle Σ r the twisted twistor operator for all X ∈ Γ(T M ), ψ r ∈ Σ r by [START_REF] Bourguignon | Moroianu A spinorial approach to Riemannian and conformal geometry[END_REF] 

P X ψ r := ∇ X ψ r + a r p -(X) • D + ψ r + b r p + (X) • D -ψ r , where a r = 1 2(r+1) , b r = 1 2(m-r+1) and D ± ψ r = 2d i=1 p ± (e i ) • ∇ ei ψ r .
We state the following lemma:

Lemma 3.1 For any eigenspinor ϕ of type (r, r + 1), we have the following inequalities

λ 2 ≥        1 4(1-ar ) inf Mϕ r (Scal M + R E ϕr ), 1 4(1-br+1) inf Mϕ r+1 (Scal M + R E ϕr+1 ), (3.1) 
where

R E φ := ℜ(R E (φ), φ |φ| 2 ) is defined on the set M φ = {x ∈ M | φ(x) = 0} for all spinor φ ∈ Σ.
Proof: Using the identity 2d i=1 e i • P ei ψ r = 0, one can easily prove by a straightforward computation that for any spinor

ψ r ∈ Σ r |P ψ r | 2 = |∇ψ r | 2 -a r |D + ψ r | 2 -b r |D -ψ r | 2 . (3.2)
Applying Equation (3.2) to ϕ r and ϕ r+1 respectively and integrating over M , we get with the use of the Schrödinger-Lichnerowicz formula that

0 ≤ M [λ 2 (1 -a r ) - 1 4 (Scal M + R E ϕr )]|ϕ r | 2 .
Also that,

0 ≤ M [λ 2 (1 -b r+1 ) - 1 4 (Scal M + R E ϕr+1 )]|ϕ r+1 | 2 ,
from which the proof of the lemma follows.

One can get rid of the dependence of the eigenspinors ϕ r and ϕ r+1 in the r.h.s. of (3.1):

Corollary 3.2 Let κ 1 be the smallest eigenvalue of the (pointwise) self-adjoint operator R E . Then λ 2 ≥    d+1 4d (Scal 0 + κ 1 ) if d is odd d 4(d-1) (Scal 0 + κ 1 ) if d is even
, where Scal 0 denotes the infimum of the scalar curvature.

Proof: Let us choose the lowest integer r ∈ {0, 1, • • • , d} such that ϕ is of type (r, r + 1). The existence of anti-linear parallel maps on ΣM commuting with the Clifford multiplication (see e.g. [7, Lemma 1]) allows to impose that r ≤ d-1 2 if d is odd and r ≤ d-2 2 if d is even. This concludes the proof.

In the following, we formulate the estimates (3.1) for the situation where M is a complex submanifold of the projective space CP n and E is the spinor bundle of the normal bundle N M of the immersion. To do this, we will estimate R E φ for all spinor field φ ∈ Σ in terms of the second fundamental form of the immersion.

Proposition 3.3 Let (M 2d , g, J) be a Kähler spin submanifold of the projective space CP n . For all spinor field φ ∈ Σ, the curvature is equal to

R E φ = -4ℜ(Ω • Ω N • φ, φ |φ| 2 ) - 2d i,j,p=1 ℜ(e i • e j • II(e i , e p ) • II(e j , e p ) • φ, φ |φ| 2 ) + |II| 2 . (3.3)
where Ω is the Kähler form of M.

Proof: First, recall that for all X, Y ∈ Γ(T M ) and U, V sections in N M , the normal curvature is related to the one of CP n via the formula [4, Thm. 1.

1.72] (R N M X,Y U, V ) = (R CP n X,Y U, V ) -(B X U, B Y V ) + (B Y U, B X V ) = 2g(X, J(Y ))g(J(U ), V ) - 2d p=1 g(II(X, e p ), U )g(II(Y, e p ), V ) + 2d p=1 g(II(Y, e p ), U )g(II(X, e p ), V ), (3.4) 
where B X : N M → T M is the tensor field defined by g(B X U, Y ) = -g(II(X, Y ), U ) and {e p } 1≤p≤2d is a local orthonormal basis of T M . Here we used the fact that the curvature of CP n is given for all (3.4), the normal spinorial curvature associated with any spinor field φ is then equal to

X, Y, Z ∈ T CP n by R CP n X,Y Z = (X ∧ Y + JX ∧ JY + 2g(X, JY )J)Z with (X ∧ Y )Z = g(Y, Z)X -g(X, Z)Y . Hence by
R E ei,ej φ = 1 4 2(n-d) k,l=1 g(R N M ei,ej e k , e l )e k • e l • φ = 1 2 2(n-d) k=1 g(e i , J(e j ))e k • Je k • φ - 1 2 2d p=1
[II(e i , e p ) • II(e j , e p ) • +g(II(e i , e p ), II(e j , e p ))]φ.

Thus, we deduce

R E (φ) = 2 2d i,j=1 J(e j ) • e j • Ω N • φ - 2d i,j,p=1 e i • e j • II(e i , e p ) • II(e j , e p ) • φ -e i • e j • g(II(e i , e p ), II(e j , e p ))φ = -4Ω • Ω N • φ - 2d i,j,p=1 e i • e j • II(e i , e p ) • II(e j , e p ) • φ + |II| 2 φ.
Finally, the scalar product of the last equality with φ |φ| 2 finishes the proof.

As we said in the proof of Corollary 3.2, the integer r can be chosen such that r

≤ d-1 2 if d is odd and r ≤ d-2
2 if d is even. However, we note that a priori no such choice can be made for s once r has been fixed. In particular, one cannot conclude that the smallest twisted Dirac eigenvalue of a totally geodesic M in M is (d + 1) 2 , even in the "simplest" case where M = CP d (the d-dimensional complex projective space). To test the sharpness of the estimate (2.7), we compute in the following section the spectrum of

D ΣN M for M = CP d canonically embedded in CP n .
4 The spectrum of the twisted Dirac operator D ΣN M on the complex projective space

In this section, we compute the spectrum of the Dirac operator of CP d twisted with the spinor bundle of its normal bundle when considered as canonically embedded in CP n . The eigenvalues will be deduced from M. Ben Halima's computations [START_REF] Halima | Spectrum of twisted Dirac operators on the complex projective space P 2q+1 (C)[END_REF]Thm. 1]. We also need to compute the multiplicities in order to compare the upper bound in (2.7) with an eigenvalue which may be greater than the smallest one. The results are gathered in Theorems 4.7 and 4.8 below.

The complex projective space as a symmetric space

Consider the d-dimensional complex projective space CP d as the right quotient SU d+1/ S(U d × U 1 ) , where

S(U d × U 1 ) := { B 0 0 det(B) -1 | B ∈ U d }.
In this section we want to describe its tangent bundle and its normal bundle when canonically embedded into CP n as homogeneous bundles, that is, as bundles associated to the S(U d ×U 1 )-principal bundle SU d+1 -→ CP d via some linear representation of S(U d ×U 1 ). The one corresponding to the tangent bundle is called the isotropy representation of the homogeneous space SU d+1/ S(U d × U 1 ) . To compute it explicitly we consider the following Ad(S(

U d × U 1 ))-invariant complementary subspace m :=      0 . . . 0 z 1 . . . . . . . . . 0 . . . 0 z d -z1 . . . -zd 0      | (z 1 , . . . , z d ) ∈ C d (4.1)
to the Lie-Algebra h of S(U d × U 1 ) in the Lie-algebra su d+1 = {X ∈ C(d + 1) | X * = -X and tr(X) = 0} and fix the (real) basis (A 1 , J(A 1 ), . . . , A d , J(A d )) of m, where:

• (A l ) jk = 1 if (j, k) = (l, d + 1), -1 if (j, k) = (d + 1
, l) and 0 otherwise;

• (J(A l )) jk = i if (j, k) = (l, d + 1) or (j, k) = (d + 1, l) and 0 otherwise.
It is easy to check that J defines a complex structure on m, which then makes m into a d-dimensional complex vector space, and that [m, m] ⊂ h. In particular CP d is a symmetric space. 

α : S(U d × U 1 ) -→ U d B 0 0 det(B) -1 -→ det(B) • B.
Proof: For k ∈ {1, . . . , d} and B ∈ U d we compute

Ad( B 0 0 det(B) -1 )(A k ) = B 0 0 det(B) -1 • A k • B * 0 0 det(B) = B 0 0 det(B) -1 •         0 . . . 0 0 . . . . . . 0 0 . . . 0 det(B) . . . . . . 0 -B * k1 . . . -B * kd 0         =      0 . . . 0 det(B)B 1k . . . . . . . . . 0 . . . 0 det(B)B dk -det(B) -1 B * k1 . . . -det(B) -1 B * kd 0      = d j=1 ℜe(det(B)B jk )A j + ℑm(det(B)B jk )J(A j ) = d j=1 det(B)B jk A j ,
which gives the result.

Recall that the tautological bundle of CP d is the complex line bundle γ d -→ CP d defined by

γ d := {([z], v) | [z] ∈ CP d and v ∈ [z]}.

It carries a canonical Hermitian metric defined by (

[z], v), ([z], v ′ ) := v, v ′ . Lemma 4.2 The normal bundle T ⊥ CP d of the canonical embedding CP d → CP n , [z] → [z, 0 n-d ], is unitarily isomorphic to γ * d ⊗C n-d
, where γ d -→ CP d is the tautological bundle of CP d and C n-d carries its canonical Hermitian inner product. In particular, the homogeneous bundle

T ⊥ CP d → CP d is associated to the S(U d × U 1 )-principal bundle SU d+1 -→ CP d via the representation ρ : S(U d × U 1 ) -→ U n-d B 0 0 det(B) -1 -→ det(B)I n-d .
Proof: Consider the map

CP d × C n-d φ -→ γ d ⊗ T ⊥ CP d ([z], v) -→ ([z], z) ⊗ d z π(0 d+1 , v),
where π : C n+1 -→ CP n is the canonical projection. It can be easily checked that φ is well-defined (the identity π(λz) = π(z) implies d z π = λd λz π) and is a unitary vector-bundle-isomorphism. This shows the first statement. Let (e 1 , . . . , e d+1 ) denote the canonical basis of C d+1 . The map

SU d+1 × C -→ γ d (A, λ) -→ ([Ae d+1 ], λAe d+1 ) induces a complex vector-bundle-isomorphism SU d+1 × C / S (U d × U 1 ) -→ γ d ,
where the right action of

S(U d × U 1 ) onto SU d+1 × C is given by (A, λ) • B 0 0 det(B) -1 := (A • B 0 0 det(B) -1 , det(B)λ). Thus γ d is isomorphic to the homogeneous bundle over CP d which is associated to the S(U d ×U 1 )-principal bundle SU d+1 -→ CP d via the representation S(U d × U 1 ) → U 1 , B 0 0 det(B) -1
→ det(B) -1 . This concludes the proof.

Note in particular that T ⊥ CP d is not trivial (and hence not flat because of π 1 (CP d ) = 0).

Spin structures on T CP d and T ⊥ CP d

From now on we assume that both d and n are odd integers. Then both T CP d and T CP n are spin, in particular T ⊥ CP d is spin. Since CP d is simply-connected, there is a unique spin structure on T CP d and on T ⊥ CP d . In this section we describe those spin structures as homogeneous spin structures. For that purpose one looks for Lie-group-homomorphisms S(

U d × U 1 ) α → Spin 2d and S(U d × U 1 ) ρ → Spin 2(n-d)
lifting α and ρ through the non-trivial two-fold-covering map Spin 2k ξ -→ SO 2k .

First we recall the existence for any positive integer k of a Lie-group homomorphism U k j -→ Spin c 2k with ξ c •j = ι, where Spin c 2k := Spin 2k × U 1/ Z 2 is the spin c group, ξ c : Spin c 2k -→ SO 2k ×U 1 , [u, z] → (ξ(u), z 2 ) is the canonical two-fold-covering map and ι : U k -→ SO 2k × U 1 , A → (A R , det(A)). The Lie-group homomorphism j can be explicitly described on elements of U k of diagonal form as:

j(diag(e iλ1 , . . . , e iλ k )) = e i 2 ( k j=1 λj ) • R e1,J(e1) ( λ 1 2 ) • . . . • R e k ,J(e k ) ( λ k 2 ),
where J is the canonical complex structure on C k and, for any orthonormal system {v, w} in R 2k and λ ∈ R, the element R v,w (λ) ∈ Spin 2k is defined by

R v,w (λ) := cos(λ) + sin(λ)v • w.
To keep the notations simple we denote by j both such Lie-group-homomorphisms U d -→ Spin c 2d and U n-d -→ Spin c 2(n-d) . Lemma 4.3 Let d < n be odd integers.

The spin structure on

T CP d is associated to the S(U d × U 1 )-principal bundle SU d+1 -→ CP d via the Lie-group-homomorphism α : S(U d × U 1 ) -→ Spin 2d B 0 0 det(B) -1 -→ det(B) -d+1 2 • j • α( B 0 0 det(B) -1 ).

The spin structure on

T ⊥ CP d is associated to the S(U d × U 1 )-principal bundle SU d+1 -→ CP d via the Lie-group-homomorphism ρ : S(U d × U 1 ) -→ Spin 2(n-d) B 0 0 det(B) -1 -→ det(B) -n-d 2 • j • ρ( B 0 0 det(B) -1 ).
Proof: It suffices to prove the results for elements of S(U d × U 1 ) of diagonal form. Indeed any element of S(U d × U 1 ) is conjugated in SU d+1 to such a diagonal matrix. Since SU d+1 is simply-connected the map SU d+1 → SO 2k × U 1 , P → (P AP -1 , det(A)) (where A ∈ U k is arbitrary), admits a lift through Spin c 2k ξ c -→ SO 2k × U 1 which is uniquely determined by the image of one single point. Therefore the lifts under consideration are uniquely determined on diagonal elements. For θ 1 , . . . , θ d ∈ R let M θ1,...,θ d := diag(e iθ1 , . . . , e iθ d , e -i( d j=1 θj ) ) ∈ S(U d × U 1 ). Then

u θ1,...,θ d := R e1,J(e1) ( θ 1 + d j=1 θ j 2 ) • . . . • R e d ,J(e d ) ( θ d + d j=1 θ j 2 )
lies in Spin 2d , only depends on [θ 1 , . . . , θ d ] ∈ R d / 2πZ d (if some θ k is replaced by θ k + 2mπ, then u θ1,...,θ d is replaced by (-1) m(d-1) u θ1,...,θ d , and d -1 is even) with ξ(u θ1,...,θ d ) = α(M θ1,...,θ d ). Therefore α(M θ1,...,θ d ) = u θ1,...,θ d . Moreover,

j • α(M θ1,...,θ d ) = e i 2 ( d j=1 θj+ d k=1 θ k ) • R e1,J(e1) ( θ 1 + d j=1 θ j 2 ) • . . . • R e d ,J(e d ) ( θ d + d j=1 θ j 2 ) = e i(d+1) 2 d j=1 θj • α(M θ1,...,θ d )
= det(diag(e iθ1 , . . . , e iθ d ))

d+1 2

• α(M θ1,...,θ d ),

which proves 1.

The other case is much the same: setting

ρ(M θ1,...,θ d ) := R e1,J(e1) ( d j=1 θ j 2 ) • . . . • R e n-d ,J(e n-d ) ( d j=1 θ j 2 ),
one obtains a well-defined Lie-group-homomorphism S(

U d × U 1 ) ρ → Spin 2(n-d) with ξ • ρ = ρ (the integer n -d is even) and j • ρ(M θ1,...,θ d ) = e i 2 n-d j=1 d k=1 θ k • R e1,J(e1) ( d j=1 θ j 2 ) • . . . • R e n-d ,J(e n-d ) ( d j=1 θ j 2 )
= det(diag(e iθ1 , . . . , e iθ d ))

n-d 2 ρ(M θ1,...,θ d ),
which shows 2 and concludes the proof.

In particular, we obtain the following Corollary 4.4 Let d < n be odd integers and consider the canonical embedding CP d → CP n as above.

Then there exists a unitary and parallel isomorphism 

Σ(T ⊥ CP d ) ∼ = n-d s=0 n -d s • γ n-d 2 -
( B 0 0 det(B) -1 ) = det(B) -n-d 2 • j • ρ( B 0 0 det(B) -1 ) = det(B) -n-d 2 • j(det(B)I n-d ).
Now it is elementary to prove that, for any positive integer k, any z ∈ U 1 and any s ∈ {0, . . . , k},

δ 2k • j(z • I k ) | Σ (s) 2k = z s • Id Σ (s) 2k
, where Σ

(s) 2k is the eigenspace of the Clifford action of the Kähler form to the eigenvalue i(2s -k) in the spinor space Σ 2k . In particular Σ (s) 2k splits into the direct sum of dim C (Σ (s) 2k ) copies of some onedimensional representation, with dim C (Σ

(s) 2k ) = k s . Since Σ 2k = ⊕ k s=0 Σ (s)
2k , we obtain the following splitting:

δ 2(n-d) • ρ = n-d s=0 det(•) -( n-d 2 -s) ⊗ Id Σ (s) 2(n-d) = n-d s=0 det(•) -( n-d 2 -s) ⊗ 1   n -d s   C , where det(•) : S(U d × U 1 ) → U 1 , B 0 0 det(B) -1
→ det(B), the trivial representation on C is denoted by 1 C and "1 l C " means that this representation appears with multiplicity l. 2. 2l(2l + d -1 -2m), where l ∈ N, l ≥ max(0, m + d+1 2 ).

3. 2(d + l)(d + 1 + 2(l -m)), where l ∈ N, l ≥ max(0, m -d+1 2 ).
The first family of eigenvalues corresponds to an irreducible representation of SU d+1 with highest weight given by [3, Prop. 2]

(r+2l- d -1 2 -m-ǫ, r + l - d -1 2 -m, . . . , r + l - d -1 2 -m r-1 , r+l- d + 1 2 -m+ǫ, r + l - d + 1 2 -m, . . . , r + l - d + 1 2 -m d-r-1
).

Similarly, the second family of eigenvalues corresponds to the highest weight

(2l - d + 1 2 -m, l - d + 1 2 -m, . . . , l - d + 1 2 -m d-1
).

The last family of eigenvalues corresponds to

(2l + d + 1 2 -m, l + d + 1 2 -m, . . . , l + d + 1 2 -m d-1
).

In the following, we will determine the multiplicities of the eigenvalues in Theorem 4.5. Indeed, we have Lemma 4.6 Let d ≥ 1 be an odd integer and m ∈ Z.

The multiplicities of the first family of the eigenvalues are equal to

d( d+1 2 + r -m + 2l -ǫ) (r + l)( d+1 2 -m + l -ǫ) • d + l -ǫ d • d -1 d -r -ǫ • d-1 2 + r -m + l d .
2. For the second family, we have

d k=2 (1 + l k -1 ) • (1 + 2l -d+1 2 -m d ) • d j=2 (1 + l -d+1 2 -m d -j + 1
).

3. For the last family of eigenvalues, the multiplicities are equal to

d k=2 (1 + l k -1 ) • (1 + 2l + d+1 2 -m d ) • d j=2 (1 + l + d+1 2 -m d -j + 1
).

In our convention, a product taken on an empty index-set is equal to 1.

Proof:

The required multiplicity can be computed with the help of the Weyl's character formula [START_REF] Baum | Eigenvalue estimates for Dirac operators coupled to instantons[END_REF] α∈∆+

1 + λ, α δ + , α ,
where λ is a highest weight of an irreducible SU d+1 -representation and ∆ + is the set of positive roots, i.e.

∆ + = {θ j -θ k , 1 ≤ j < k ≤ d, θ j + d k=1 θ k , 1 ≤ j ≤ d} and δ + = d k=1 (d -k + 1
)θ k is the half-sum of the positive roots of SU d+1 , see [3, p. 442]. Here the scalar product < ., . > is the Riemannian metric on the dual of a maximal torus of SU d+1 , which is defined by the following product of matrices < λ, λ ′ >= λ.β. t λ ′ where β is the matrix given by 2 d+1 -1 + (d + 1)δ jk 1≤j,k≤d . To compute the quotient in the Weyl's character formula, we treat the three cases separately: 1. Consider α of the form α = θ j -θ k for some 1 ≤ j < k ≤ d. Note that this form for α can only exist if d > 1. We compute

β • α = β •                      0 . . . 0 1 0 . . . 0 -1 0 . . . 0                      = 2 d + 1       d -1 . . . -1 -1 . . . . . . . . . . . . -1 -1 . . . -1 d       •                      0 . . . 0 1 0 . . . 0 -1 0 . . . 0                      = 2 d + 1                      0 . . . 0 d + 1 0 . . . 0 -d -1 0 . . . 0                      = 2(θ j -θ k ).
Therefore,

δ + , α = 2(d, d -1, . . . , 1) •                      0 . . . 0 1 0 . . . 0 -1 0 . . . 0                      = 2(d -j + 1 -(d -k + 1)) = 2(k -j).
For the highest weight λ corresponding to the first family of eigenvalues, we denote by u ′ the first component, u + the r -1 components, u the r-components and by u -the last d -r -1 components.

Thus, we have

λ, α = 2(u ′ , u + , u, u -) •                      0 . . . 0 1 0 . . . 0 -1 0 . . . 0                      = 2(u ′ -u + ) case j = 1, k ∈ {2, . . . , r} 2(u ′ -u) case j = 1, k = r + 1 2(u ′ -u -) case j = 1, k ∈ {r + 2, . . . , d} 0 case j, k ∈ {2, . . . , r} 2(u + -u) case j ∈ {2, . . . , r}, k = r + 1 2(u + -u -) case j ∈ {2, . . . , r}, k ∈ {r + 2, . . . , d} 2(u -u -) case j = r + 1, k ∈ {r + 2, . . . , d} 0 case j, k ∈ {r + 2, . . . , d} = 2(l -ǫ) case j = 1, k ∈ {2, . . . , r} 2(l + 1 -2ǫ) case j = 1, k = r + 1 2(l + 1 -ǫ) case j = 1, k ∈ {r + 2, . . . , d} 0 case j, k ∈ {2, . . . , r} 2(1 -ǫ)
case j ∈ {2, . . . , r}, k = r + 1 2 case j ∈ {2, . . . , r}, k ∈ {r + 2, . . . , d} 2ǫ case j = r + 1, k ∈ {r + 2, . . . , d} 0 case j, k ∈ {r + 2, . . . , d}.

We obtain, for α = θ j -θ k with 1 ≤ j < k ≤ d: 

1 + λ, α δ + , α = l-ǫ+k-j k-j case j = 1, k ∈ {2, . . . , r} l+1-2ǫ+k-j k-j case j = 1, k = r + 1 l+1-ǫ+k-j k-j case j = 1, k ∈ {r + 2, . . . ,
β • α = β •             1 . . . 1 2 1 . . . 1             = 2 d + 1       d -1 . . . -1 -1 . . . . . . . . . . . . -1 -1 . . . -1 d       •             1 . . . 1 2 1 . . . 1             = 2 d + 1             0 . . . 0 2d -(d -1) 0 . . . 0             = 2θ j .
Therefore,

δ + , α = 2(d, d -1, . . . , 1) •             0 . . . 0 1 0 . . . 0             = 2(d -j + 1).
Using the same notations as above, we compute

λ, α = 2(u ′ , u + , u, u -) •             0 . . . 0 1 0 . . . 0             = 2u ′ case j = 1 2u + case j ∈ {2, . . . , r} 2u case j = r + 1 2u -case j ∈ {r + 2, . . . , d} = 2(u -+ 1 + l -ǫ) case j = 1 2(u -+ 1)
case j ∈ {2, . . . , r} 2(u -+ ǫ) case j = r + 1 2u - case j ∈ {r + 2, . . . , d}.

We obtain, for α = θ j + d k=1 θ k with j ∈ {1, . . . , d}:

1 + λ, α δ + , α = u-+1+l-ǫ+d-j+1 d-j+1 case j = 1 u-+1+d-j+1 d-j+1 case j ∈ {2, . . . , r} u-+ǫ+d-j+1 d-j+1 case j = r + 1 u-+d-j+1 d-j+1
case j ∈ {r + 2, . . . , d}.

which, replacing u -by r -d+1 2 -m + l, gives

α∈∆+ 1 + λ, α δ + , α = d( d-1 2 + r -m + 2l) (r + l)( d-1 2 -m + l) • d + l -1 d • d -1 d -r -1 • d-1 2 + r -m + l d .
This shows 1.

2. Consider α of the form α = θ j -θ k for some 1 ≤ j < k ≤ d. We have already shown in the first part that δ + , α = 2(k -j). Let us denote by v + the first component and v the d -1 components of the highest weight corresponding to the second family of eigenvalues. We have

λ, α = 2(v + , v, . . . , v) •                      0 . . . 0 1 0 . . . 0 -1 0 . . . 0                      = 2l case j = 1 0 case j > 1.
Choosing α = θ j + d k=1 θ k with j ∈ {1, . . . , d}, we already know that δ + , α = 2(d -j + 1). Moreover,

λ, α = 2(v + , v, . . . , v) •             0 . . . 0 1 0 . . . 0             = 2(v + l) case j = 1 2v case j > 1.
Hence the product is given by

α∈∆+ 1 + λ, α δ + , α = d k=2 (1 + l k -1 ) • (1 + v + l d ) • d j=2 (1 + v d -j + 1
).

Of course only the central factor appears in case d = 1. Replacing v by its respective value gives 2. and 3. and concludes the proof.

As a consequence of Lemma 4.5 and Lemma 4.6, we obtain the 2 -r+m). The multiplicity of the eigenvalue corresponding to the choice of a triple (r, ǫ, l) as above is given by

d( d+1 2 + r -m + 2l -ǫ) (r + l)( d+1 2 -m + l -ǫ) • d + l -ǫ d • d -1 d -r -ǫ • d-1 2 + r -m + l d . 2. 2l(2l + d -1 -2m), where l ∈ N, l ≥ max(0, m + d+1 2 ), with multiplicity d k=2 (1 + l k -1 ) • (1 + 2l -d+1 2 -m d ) • d j=2 (1 + l -d+1 2 -m d -j + 1
).

3. 2(d + l)(d + 1 + 2(l -m))
, where l ∈ N, l ≥ max(0, m -d+1 2 ), with multiplicity

d k=2 (1 + l k -1 ) • (1 + 2l + d+1 2 -m d ) • d j=2 (1 + l + d+1 2 -m d -j + 1
).

Note that, since CP d is a symmetric space, the spectrum of every Dirac operator twisted with a homogeneous bundle over CP d is symmetric about the origin. Hence the spectrum of the Dirac operator of CP d twisted with γ m d can be easily deduced from that of its square.

We point out that the computations done by M. Ben Halima in [3, Thm. 1] contain a minor mistake (his m should be replaced by -m). It can be also checked that, up to a factor 4(d + 1) (his convention for the Fubini-Study metric is different from ours), our values coincide with his (his k is our l and his l is our d-r).

We can now formulate the (1 + l -n+1 2 + s d -j + 1

).

3. 2(d + l)(2d -n + 1 + 2(l + s)), where s ∈ {0, . . . , n -d}, l ∈ N, l ≥ max(0, n-1 2 -d -s), with multiplicity

n -d s • d k=2 (1 + l k -1 ) • (1 + 2l + d -n-1 2 + s d ) • d j=2 (1 + l + d -n-1 2 + s d -j + 1
).

Proof: Recall that, by . On the other hand, the multiplicity of the eigenvalue 4 is equal to 4 n n-1 2

. Hence the sum of these two multiplicities is ( n-1 2 + 4)

• n -1 n-1 2 
. That number is always greater than 2 n n+1 2

. However, if the multiplicity of the eigenvalue 0 is smaller than 2 n n+1 2

for n = 3, 5, 7, it is greater for n ≥ 9.

Thus, the equality in (2.7) is optimal for n = 3, 5, 7 but is never optimal as soon as n ≥ 9. In particular, the twisted Dirac operator on Kähler submanifolds behaves very differently from that on submanifolds immersed in real spaceforms, where analogous upper bounds are sharp in any dimension.

. 5 )

 5 Proof: Fix a local orthonormal basis (e j ) 1≤j≤2n of T M |M with e j ∈ T M for all 1 ≤ j ≤ 2d and e j ∈ N M for all 2d + 1 ≤ j ≤ 2n. Introduce the auxiliary Dirac-type operator D := 2d j=1 e j • ∇ ej : Γ(Σ M |M ) -→ Γ(Σ M |M ). As a consequence of the Gauss-type formula (2.2), the operators D 2 and (D ΣN M ) 2 are related by[START_REF] Ginoux | Opérateurs de Dirac sur les sous-variétés[END_REF] Lemme 4.1] 

  l=2d+1 g(J(II(e j , e k )), e l )e j • e k • e l • ϕ = -2d j,k=1 e j • e k • J(II(e j , e k )) • ϕ = 2d j=1 J(II(e j , e j )) • ϕ = 0, since the immersion is minimal. Hence D(Ω N • ϕ) = Ω N • Dϕ and we deduce that

Lemma 4 . 1

 41 The isotropy representation of the symmetric space SU d+1/ S(U d × U 1 ) is given in the complex basis (A 1 , . . . , A d ) of m by:

  s d , where Σ(T ⊥ CP d ) denotes the (complex) spinor bundle of T ⊥ CP d and, for each s ∈ {0, . . . , n -d}, the factor n -d s stands for the multiplicity with which the line bundle γ n-d 2 -s d appears in the splitting. Proof: By Lemma 4.3 and Lemma 4.2, one has, for any B ∈ U d : ρ

4. 3

 3 The twisted Dirac operator on CP d As a consequence of Corollary 4.4, the tensor product Σ(T CP d ) ⊗ Σ(T ⊥ CP d ) splits into subbundles of the form Σ(T CP d ) ⊗ γ m d for some integer m. Since this splitting is orthogonal and parallel, it is also preserved by the corresponding twisted Dirac operator. Hence it suffices to describe the Dirac operator of the twisted spinor bundle Σ(T CP d ) ⊗ γ m d over CP d as an infinite sum of matrices, where m ∈ Z is an arbitrary (non-necessarily positive) integer. The Dirac eigenvalues of Σ(T CP d ) ⊗ γ m d have been computed by M. Ben Halima in [3, Thm. 1]. Indeed, we have Theorem 4.5 For an odd integer d let CP d be endowed with its Fubini-Study metric of constant holomorphic sectional curvature 4. For an arbitrary m ∈ Z let the m th power γ m d of the tautological bundle of CP d be endowed with its canonical metric and connection. Then the eigenvalues (without multiplicities) of the square of the Dirac operator of CP d twisted by γ m d are given by the following families: 1. 2(r+l)•(d+1+2(l-m-ǫ)), where r ∈ {1, . . . , d-1}, ǫ ∈ {0, 1} and l ∈ N with l ≥ max(ǫ, d+1 2 -r+m).

Theorem 4 . 7

 47 Let d be a positive odd integer and m ∈ Z be arbitrary. Denote by γ d the tautological bundle of CP d . Then the spectrum of the square of the Dirac operator of CP d twisted with γ m d is given by the following family of eigenvalues: 1. 2(r+l)•(d+1+2(l-m-ǫ)), where r ∈ {1, . . . , d-1}, ǫ ∈ {0, 1} and l ∈ N with l ≥ max(ǫ, d+1

Theorem 4 . 8 2 .

 482 Let d < n be positive odd integers. Then the spectrum of the square of the Dirac operator of CP d twisted with the spinor bundle of the normal bundle of the canonical embedding CP d → CP n is given by the following family of eigenvalues:1. 2(r + l) • (2d + 1 -n + 2(s + l -ǫ)), where r ∈ {1, . . . , d -1}, s ∈ {0, . . . , n -d}, ǫ ∈ {0, 1} and l ∈ N with l ≥ max(ǫ, n+1 2 -r -s).The multiplicity of the eigenvalue corresponding to the choice of a 4-tuple (r, s, ǫ, l) as above is given byd(d -n-1 2 + r + s + 2l -ǫ) (r + l)(d -n-1 2 + s + l -ǫ) • n -d s • d + l -ǫ d • d -1 d -r -ǫ • d -n+1 2 + r + s + l d . 4l(l + s + d -n+1 2 ), where s ∈ {0, . . . , n -d}, l ∈ N, l ≥ max(0, n+1 2 -s), with multiplicity n -

, 1 and compare the multiplicities of the eigenvalues 0 and 4 with 2 n n+1 2 ,- 1 -

 121 Corollary 4.4, there exists a unitary and parallel isomorphism Σ(T CP d ) ⊗ Σ(T ⊥ CP d ) ∼ = where γ d is the tautological bundle of CP d and n -d s stands for the multiplicity with which the subbundle Σ(T CP d ) ⊗ γ n-d 2 -s d appears in the splitting. Therefore, the eigenvalues of the twisted Dirac operator acting on Σ(T CP d ) ⊗ Σ(T ⊥ CP d ) are those of Σ(T CP d ) ⊗ γ n-d 2 -s d, where s runs from 0 to n -d.Moreover, the multiplicity of the eigenvalue corresponding to some s is n -d s times the multiplicity Next we show that the estimate (2.7) is not always sharp. We consider the simplest case where d = which is the a priori number of eigenvalues bounded by 4 in (2.7). The multiplicity of the eigenvalue 0 is equal to 2s) since by replacing s by (n -1) -s the second sum is equal to the first one. A short computation gives

, the lowest eigenvalue is 2d(2d -n + 1). (b) For d ≤ n-1 2 , the lowest eigenvalue is 0.
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In order to compute the product we separate both cases ǫ = 0 and ǫ = 1.

• Case ǫ = 0: Then

which gives for the multiplicity in this case (replace u -by r -d+1 2 -m + l):

• Case ǫ = 1: Then