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A numerical method for mean curvature motion in bounded domains with nonlinear Neumann boundary conditions is proposed and analyzed. It consists of a semi-Lagrangian scheme in the main part of the domain as proposed by Carlini, Falcone and Ferretti, combined with a finite difference scheme in small layers near the boundary to cope with the boundary condition. The consistency and monotonicity properties of the new scheme are studied for nonstructured triangular meshes in dimension two. Details on the implementation are given. Numerical tests are presented.

Introduction

We consider the mean curvature equation

∂u ∂t -trace I - Du ⊗ Du |Du| 2 D 2 u = 0 in Ω × (0, T ), (1) 
where Ω is a bounded domain of R n with a W 3,∞ boundary. The partial differential equation [START_REF] Abgrall | Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes[END_REF] can also be written

∂u ∂t -∆u + (D 2 u Du, Du) |Du| 2 = 0 in Ω × (0, T ), (2) 
or ∂u ∂t -div Du |Du| |Du| = 0 in Ω × (0, T ). (3) 
Here, Du stands for the space gradient, D 2 u for the Hessian matrix of second space derivatives of u and for any vector p ∈ R n , p p = pp T . The partial differential equation ( 1) is complemented with an initial condition u(x, 0) = u 0 (x), for x ∈ Ω, [START_REF] Barles | A simple proof of convergence for an approximation scheme for computing motions by mean curvature[END_REF] and with the nonlinear Neumann condition ∂u ∂n = θ|Du| on ∂Ω × (0, T ), [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] where θ is Lipschitz continuous function with |θ(x)| ≤ θ < 1.

To put our work into perspective, let us recall that Crandall and Lions [START_REF] Crandall | Convergent difference schemes for nonlinear parabolic equations and mean curvature motion[END_REF] have developed an analysis of explicit finite difference schemes for a class of possibly degenerate parabolic equations of the form: u ttrace(Θ(x, Du)Θ(x, Du) T D 2 u) = 0 for t > 0, x ∈ R n .

Here, Θ(x, p) is a N × M matrix valued function of (x, p) ∈ R n × R n and A T denotes the transpose of a matrix A. Note that the integer M is arbitrary and the equation is degenerate if Θ(x, p) is not invertible.

Our particular case (1) corresponds to the choice

Θ(x, p) = Θ(p) = I - p p |p| 2 , (7) 
(where | • | denotes the Euclidean norm). It is well known that in our case Θ is discontinuous at p = 0 and degenerate for p = 0. Since Θ(p) 2 = Θ(p) and Θ(p) = Θ(p) T , Θ(p) is a projection matrix, which in fact projects the diffusion orthogonally with respect to the gradient. We will work in the framework of level set methods using the theory of viscosity solutions, which allows to deal with both singularities of solutions and degeneracies of the parabolic operator (see [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] and [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for an introduction to this theory). Existence and uniqueness for the viscosity solutions to the Cauchy problem in R n have been proved independently by Evans and Spruck [START_REF] Evans | Motion of level sets by mean curvature[END_REF] and by Chen, Giga and Goto [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF]. Starting from those pioneering papers, the last years have witnessed a great development of the theory about curvature related flows, as well as its application to various fields like phase transitions, image processing, fluid dynamics, material science and crystallography (see the books [START_REF] Sethian | Level set methods and fast marching methods, volume 3 of Cambridge Monographs on Applied and Computational Mathematics[END_REF] and [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF] for a review of interesting applications and simulations). We refer the interested reader to the lecture notes [START_REF] Giga | Surface evolution equations[END_REF], [START_REF] Souganidis | Front propagation: theory and applications[END_REF] for the theory of viscosity solutions for surface evolution equations. Viscosity solutions of the boundary value problem (1)(4) [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] have been studied by Barles [START_REF] Barles | Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications[END_REF], see also Ishii and Ishii [START_REF] Ishii | An approximation scheme for motion by mean curvature with rightangle boundary condition[END_REF], Giga et al [START_REF] Giga | On the strong maximum principle and the large time behavior of generalized mean curvature flow with the Neumann boundary condition[END_REF]. Naturally, several attempts have been made to construct reliable approximation schemes. In particular, Evans [START_REF] Evans | Convergence of an algorithm for mean curvature motion[END_REF] and proved the convergence of semi-discrete approximations (only time is discretized). Finite difference schemes have been proposed by Osher and Sethian in the late eighties, see [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF] but the proof of convergence results for fully discrete approximation schemes came later with the paper by Crandall and Lions [START_REF] Crandall | Convergent difference schemes for nonlinear parabolic equations and mean curvature motion[END_REF]. Let us also mention that the approximation of the Mean Curvature Flow has been also tackled via finite element methods by several authors, although this approach usually suffers from the degeneracy of the second order operator. The main convergence results related to this approach which can take into account also the onset of singularities can be found in the papers by Nochetto and Verdi [START_REF] Nochetto | Convergence past singularities for a fully discrete approximation of curvature-driven interfaces[END_REF] and Dziuk and Deckelnick [START_REF] Deckelnick | A fully discrete numerical scheme for weighted mean curvature flow[END_REF]. In this work, we aim at modifying the semi-Lagrangian scheme introduced by Carlini et al in the recent article [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF] for [START_REF] Abgrall | Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes[END_REF] with no boundary conditions. The idea is to combine the previously mentioned scheme with a finite difference scheme for [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] in thin layers near ∂Ω. Note that a first version of the semi-Lagrangian scheme had been introduced in [START_REF] Falcone | Consistency of a large time-step scheme for mean curvature motion[END_REF] where consistency was proved assuming that the gradient of the solution could not vanish, i.e., in the nonsingular case. The second version proposed in [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF] can handle the singular case. For the latter, consistency, monotonicity (in a generalized sense), and thus convergence were proved. The main ingredient of the proof was a generalization of the result obtained for monotone schemes by Barles and Souganidis in [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. In [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF], the semi-Lagrangian scheme has only been defined for uniform Cartesian grids. Since we wish to deal with general domains, we have decided to use triangular meshes. Hence, compared to [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF], we need two more ingredients: the use of triangular meshes to accurately approximate the geometry and a local solver in small regions near ∂Ω for a first order Hamilton-Jacobi equation corresponding to the Neumann boundary condition. We will focus on the two-dimensional case (i.e. n = 2), for simplicity and because it is possible to obtain a convergence result in this case, but the scheme presented here can be used for three dimensional problems with tetrahedral meshes. We should mention that relatively few numerical schemes for Hamilton-Jacobi equation on nonstructured meshes have been proposed in the literature, probably because the hyperbolic nature of these equations and the link between viscosity solutions and entropy solutions for conservation laws have supported the use of structured grids and finite difference schemes: we mention the book of Sethian [START_REF] Sethian | Level set methods and fast marching methods, volume 3 of Cambridge Monographs on Applied and Computational Mathematics[END_REF], and [START_REF] Abgrall | Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes[END_REF] in which Abgrall has proved convergence for a scheme based on triangular meshes for Hamilton-Jacobi equations of the first order. Note that semi-Lagrangian schemes in the class proposed by Falcone and Ferretti in [START_REF] Falcone | Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods[END_REF] do not require structured grids and can be applied also to stationary problems. For example, in [START_REF] Sagona | An adaptive scheme on unstructured grids for the shape-fromshading problem[END_REF] a first order semi-Lagrangian method on unstructured grids is used to solve the first order Hamilton-Jacobi equation corresponding to the Shape-from-Shading problem. However, we preferred to use for the implementation of the boundary condition (5) a Godunov type scheme on the triangular mesh, and, to be more precise, an adaptation of the fast sweeping method for the eikonal equation on structured meshes originally proposed by Zhao [START_REF] Zhao | A fast sweeping method for eikonal equations[END_REF]. We will extend some of the theoretical results contained in [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF] to deal with the case of an open bounded domain Ω with Neumann boundary conditions. The general framework for our convergence result is the theory of viscosity solutions and, in particular, the results that have been established by Barles [START_REF] Barles | Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications[END_REF] (see also Ishii and Ishii [20]). The paper is organized as follows: In Section 2 we introduce our notations, present the scheme and give some hints for the implementation. Section 3 is devoted to the analysis of consistency and monotonicity; this two basic properties are necessary to establish convergence via the Barles-Souganidis abstract theorem [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. In particular, in § 3.1, we prove that the scheme is consistent. In § 3.2, we present an analysis of monotonicity for a regularization based on the addition of a viscosity term, as well as a a convergence result for this regularized version of the scheme. In Section 4, we report about some numerical results.

A numerical method in dimension two

An ingredient of the numerical method is the semi-Lagrangian scheme proposed in [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF] on a triangular mesh. The semi-Lagrangian method consists essentially of applying a finite difference scheme along a characteristic curve. The spatial step used in the semi-Lagrangian method will be of the order of δ. Therefore, for a node ξ whose distance to the boundary is smaller than δ, it is possible that the points needed by the scheme (the feet of the characteristics) fall out of the domain Ω. This is the essential reason why we choose to distinguish thin layers near the boundary (whose width is of the order of δ) in which we will use a finite difference scheme for the boundary condition (5) rather than [START_REF] Abgrall | Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes[END_REF]. In § 2.1, we start by carefully defining the geometry, the triangular mesh and the thin layers near the boundary. We recall some basic facts on finite elements on triangular meshes in § 2.2, and we present the scheme in § 2.3.

A nonstructured mesh

The domain Ω Consider (Y ℓ ) ℓ=0,...,L , L + 1 simply connected bounded domains of

R 2 such that Y ℓ ⊂⊂ Y 0 if 1 ≤ ℓ ≤ L and Y ℓ ∩ Y j = ∅ if 1 ≤ j < ℓ ≤ L.
Call (Γ ℓ ) ℓ=0,...,L the boundaries of (Y ℓ ) ℓ=0,...,L . The curves Γ ℓ are closed, connected and disjoint. We assume that Γ ℓ is parameterized by (φ ℓ 1 (θ), φ ℓ 2 (θ) where φ ℓ 1 and φ ℓ 2 are two smooth real valued functions defined in T the unit one-dimensional torus. We assume that (φ 0 1 (θ), φ 0 2 (θ)) turns counterclockwise as θ grows from 0 to 1, and that for 1 ≤ ℓ ≤ L, (φ ℓ 1 (θ), φ ℓ 2 (θ)) turns clockwise as θ grows from 0 to 1. Call Ω = Y 0 \ ∪ L ℓ=1 Y ℓ . We have ∂Ω = ∪ L ℓ=0 Γ ℓ . The curvilinear abscissa s ℓ is given by s ℓ (0) = 0 and ds ℓ dθ (θ) =

dφ ℓ 1 dθ (θ) 2 + dφ ℓ 2 dθ (θ) 2 .
Call

S ℓ = s ℓ (1)
. There exist two smooth S ℓ -periodic real valued functions x ℓ 1 and

x ℓ 2 such that s → (x ℓ 1 (s), x ℓ 2 (s)) is a parametrization of Γ ℓ . The exterior normal to ∂Ω at x ℓ 1 (s), x ℓ 2 (s) is n(s) = dx ℓ 2 ds (s), - dx ℓ 1 ds (s) .
The mesh Let us consider a family (T h ) of regular and quasiuniform triangular meshes of Ω. More precisely, T h , is a set of triangles such that • all the nodes lie in Ω.

• the intersection of two distinct triangles is either empty or a common vertex or a whole common edge of both triangles.

• the diameters of any triangle in T h and of its inscribed circle are both of the order of h.

• We define the open set Ω h such that Ω h = τ ∈T h τ and we call (ξ i ) 1≤i≤N h the nodes of T h . We assume that for all i, 1 ≤ i ≤ N h , ξ i ∈ ∂Ω h if and only if ξ i ∈ ∂Ω, that for each ℓ = 0, . . . , L, there are nodes of T h lying on Γ ℓ , and that the Hausdorff distance between ∂Ω and ∂Ω h is of the order of h 2 .

• We assume that ∂Ω h = ∪ L ℓ=0 Γ ℓ h where Γ ℓ h is a non empty polygonal line whose vertices are the nodes of T h lying on Γ ℓ .

Thin layers near ∂Ω Consider another positive number δ such that δ/h > N , where N is fixed positive integer. Let ω ℓ be the ring shaped domain defined by

ω ℓ := {x ∈ Ω h , d(x, Γ ℓ ) ≤ δ + h}.
Since the thickness of ω ℓ is of the order of δ, ω ℓ ⊂ Ω h and ω ℓ ∩ ω k = ∅, k = ℓ if δ is small enough. The parameter δ will be the step used in the semi-Lagrangian scheme, in which, for a node ξ, one needs to evaluate a function at two points located at a distance δ of ξ on an an approximate characteristic curve. In ω ℓ , this scheme cannot be applied, so we use instead a finite difference scheme for [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF].

Definition 1 (Internal and boundary nodes) We say that a vertex ξ of T h is a strongly internal mesh node if ξ does not belong to ∪ L ℓ=0 ω ℓ . In the opposite case, we say that ξ is a boundary node.

Since the Hausdorff distance between ∂Ω and ∂Ω h is of the order of h 2 , if δ is small enough, then for all the strongly internal mesh nodes ξ,

B(ξ, δ) ⊂ Ω h . ( 8 
)
Definition 2 We define the set of nodes Ξ ℓ h by Ξ ℓ h := {ξ; ξ is a boundary node lying in ω ℓ }. If ξ is a boundary node, then there exists a unique ℓ, 0 ≤ ℓ ≤ L such that ξ ∈ Ξ ℓ h . Hereafter, we assume that δ is small enough such that for any ξ ∈ Ξ ℓ h , the projection π ℓ (ξ) of ξ on Γ ℓ is uniquely defined as the point on Γ ℓ which minimizes the distance to ξ. The distance of ξ to Γ ℓ is then d(ξ, Γ ℓ ) = |ξπ ℓ (ξ)|. Similarly, we can extend the definition of the normal vector to Γ ℓ to the nodes in Ξ ℓ h by : for all ξ ∈ Ξ ℓ h , n ℓ (ξ) = n ℓ (π(ξ)). We can also define s ℓ (ξ) as the curvilinear abscissa of π ℓ (ξ). In practice, the set of nodes Ξ ℓ h and then π ℓ (ξ) for ξ ∈ Ξ ℓ h can be obtained in different ways. Without going to far into details, one can

• either solve eikonal equations on a much finer grid (a very fine uniform grid for example).

• or construct triangulations of regions approximating {x ∈ Ω, d(x, Γ ℓ ) ≤ δ + h} with a high resolution in the tangential direction to Γ ℓ , and perform a search method to see if a node ξ of T h belongs to Ξ ℓ h , and if yes to compute π ℓ (ξ) (by dichotomy for instance). The pair (d(ξ, Γ ℓ ), s ℓ (ξ)) is closed to an orthogonal system of coordinates in ω ℓ , and the nodes ξ ∈ Ξ ℓ h can be sorted by ordering either (d(ξ, Γ ℓ ), s ℓ (ξ)) or (s ℓ (ξ), d(ξ, Γ ℓ )) lexicographically. These two kinds of indexing will prove useful for what follows.

As an example, assume that the domain Ω has a hole, so L = 1; its outer boundary is parametrized by

x 1 = 2 cos(2πt) + 0.75 cos(4πt), x 2 = 2 sin(2πt) + 0.75 sin(4πt),
and its inner boundary is the unit circle of equation |x -(0.5, 0)| = 1. We take h ∼ 0.06 and δ ∼ 0.3. The mesh and the two layers near the boundaries are displayed in Figure 1: there are two lines around the layers' boundaries. Note that we have chosen a large value of δ for the layers to be visible.

Piecewise linear finite elements

For what follows, we need to define the space of functions

V h = {v ∈ C 0 (Ω h ), v| τ is affine, ∀τ ∈ T h }. For i = 1, . . . , N h , let λ i ∈ V h be the nodal basis function associated to node ξ i , i.e. λ i (ξ j ) = δ i,j , ∀j = 1, . . . , N h .
The finite element method for the heat equation in Ω h with Neumann conditions on ∂Ω h involves the stiffness matrix A ∈ R N h ×N h and the mass matrix M ∈ R N h ×N h , which will be useful below:

A i,j = Ω h Dλ i (x) • Dλ j (x)dx, M i,j = Ω h λ i (x)λ j (x)dx. ( 9 
)
It is well known that if all the triangles containing a vertex ξ i have acute angles then A i,j ≤ 0, for all j = i. Similarly, if all the triangles in a mesh T h have all acute angles, then the resulting matrix A is a M-matrix, (there is a discrete maximum principle). We will sometimes make the following assumption Assumption 1 For all the strongly internal nodes ξ i , all the triangles containing ξ i have acute angles, uniformly bounded away from 0 and π/2. In such a case, if ξ i = ξ j are two vertices of a triangle t ∈ T h containing a strongly internal node, then

A i,j ≤ -α, (10) 
for a positive constant α. For what follows, we will need the following definitions:

• For a real valued function w defined at the nodes of T h , we call I h [w] the piecewise affine interpolation of w.

• For a mesh node ξ i , let T h,i be the set of triangles τ of T h such that ξ i is a vertex of τ , and ω ξ i be the polygonal domain obtained as the union of the triangles in T h,i . We also define Σ i = {j : ξ j is a vertex of ω ξ i }.

The scheme

We approximate u(ξ i , n∆t), 1 ≤ i ≤ N h by u n i computed by a discrete numerical scheme. The proposed schemes differs according to the previously defined regions. At the strongly internal nodes, we will use the semi-Lagrangian scheme advocated by Carlini et al [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF] whereas in the thin regions near ∂Ω, namely ω ℓ , ℓ = 0, . . . , L, we will use a finite difference scheme for the equation

n ℓ (x) • Du(x) -θ|Du(x)| = 0. ( 11 
)
Note that the width of that region is controlled by the parameters δ and h according to the definition (2.1).

2.3.1

The scheme in ω ℓ , ℓ = 0, . . . , L

The nonlinear Neumann condition [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF] is not only imposed at the nodes on ∂Ω h , but also at all the boundary nodes in ω ℓ . Consider the steady state Hamilton-Jacobi equation [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF], and a monotone and consistent scheme for [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF] at the nodes in Γ ℓ h which we write

B ℓ (ξ i , u i , [u] ℓ , [[u]]) = 0, for all i such that ξ i ∈ Ξ ℓ h ( 12 
)
where

[u] ℓ = {u j , 1 ≤ j ≤ N h , j = i, ξ j ∈ Ξ ℓ h }, [[u]] = {u j , 1 ≤ j ≤ N h , ξ j is strongly internal}.
For example, a first order Godunov like scheme can be used, see §2. [START_REF] Barles | A simple proof of convergence for an approximation scheme for computing motions by mean curvature[END_REF]. Note that such an upwind scheme written at a given node ξ ∈ Ξ ℓ h may involve values at strongly internal mesh nodes. The values u n+1 i , for i such that ξ i ∈ Ξ ℓ h are computed by solving the system of nonlinear equation

B ℓ (ξ i , u n+1 i , [u n+1 ] ℓ , [[u n ]]) = 0, for all i such that ξ i ∈ Ξ ℓ h . ( 13 
)
The monotonicity of the scheme implies the existence and uniqueness of a solution, see [START_REF] Cockburn | Continuous dependence results for Hamilton-Jacobi equations[END_REF]. System ( 13) is solved by a fast sweeping method as in [START_REF] Zhao | A fast sweeping method for eikonal equations[END_REF], which consists of combining several Gauss-Seidel methods corresponding to different orderings of the nodes in Ξ ℓ h introduced in Definition 2; this is why it is useful to have having several lexicographic orderings of the nodes in Ξ ℓ h , all related to a close to orthogonal systems of coordinates (see § 2.1 and § 2.4 for more details on the implementation).

The scheme at the strongly internal nodes

At the strongly internal nodes, we essentially use the scheme proposed by Carlini et al [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF], with a slight modification due to the unstructured character of the present mesh. An important ingredient of the scheme is a linear discrete gradient operator: let ξ i be an internal mesh node. For any function v whose values at the mesh nodes is known, the discrete gradient of v at ξ i is defined by

[D h v](ξ i ) = j∈Σ i d j i,1 v(ξ j ) j∈Σ i d j i,2 v(ξ j ) , (14) 
We assume that if v is constant, then D h v = 0 and that the order of the approximation is q > 0, i.e. if Φ is a smooth function, then

max i |[D h Φ](ξ i ) -DΦ(ξ i )| ≤ Ch q . ( 15 
)
Example Let v be a continuous function defined on Ω h , such that for all τ ∈ T h , v| τ is affine.

Define the discrete gradient [D h v](ξ i ) by [D h v](ξ i ) = τ ∈T h,i |τ | |ω ξ i | D(v| τ ), (16) 
with the notation defined at the end of § 2.2. For a function defined at the mesh nodes, we set

[D h v](ξ i ) = τ ∈T h,i |τ | |ω ξ i | D(I h [v]| τ ). ( 17 
)
where I h is the Lagrange interpolation operator on piecewise affine functions. Note that [D h v](ξ i ) can also be written

|ω ξ i |[D h v](ξ i ) =     ω ξ i DI h [v] • e 1 ω ξ i DI h [v] • e 2     =      j =i v j ω ξ i Dλ j • e 1 j =i v j ω ξ i Dλ j • e 2      . ( 18 
)
It can be proved that this is a first order approximation, i.e. q = 1 in [START_REF] Evans | Motion of level sets by mean curvature[END_REF]. Moreover, it is well known that if the mesh is uniform and made with right isocele triangles, then the approximation is superconvergent, i.e. q = 2.

Remark 2 In general, it is possible to construct second order approximations of the gradient of v at ξ i by linear combinations of the values v(ξ j ), where ξ j are the vertices of ω ξ i . The idea is to use a third order interpolation operator of v on ω ξ i (exact on second order polynomials). Such an interpolation is not unique in general.

For each i = 1, . . . , N h , set

D n i = [D h u n ](ξ i ). ( 19 
)
Given two positive numbers C and s, the two sets of indices J n 1 and J n 2 are defined as follows:

J n 1 = {i = 1, . . . , N h ; ξ i is strongly internal and |D n i | ≥ Ch s }, J n 2 = {i = 1, . . . , N h ; ξ i is strongly internal and |D n i | < Ch s }. (20) 
If i ∈ J n 1 , then we introduce the unit vector Θ n i by

Θ n i = 1 |D n i | -(D n i ) 2 (D n i ) 1 (21) 
and we compute u n+1 i by

u n+1 i = u n i + ∆t δ 2 (I h [u n ](ξ i + δΘ n i ) + I h [u n ](ξ i -δΘ n i ) -2u n i ) , i ∈ J n 1 , (22) 
which is possible thanks to [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF].

Remark 3 It is useful to recall that the mapping

Θ : p → 1 |p| (p 2 , -p 1 ) T is differentiable in R 2 \{0}
and that its Jacobian matrix at p = 0 is

DΘ(p) =   -p 1 p 2 |p| 3 p 2 1 |p| 3 - p 2 2 |p| 3 p 1 p 2 |p| 3   ,
so the Frobenius norm of DΘ(p) equals 1/|p|.

Remark 4 Concerning the implementation of ( 22), the main difficulty is to locate the triangle containing the feet of the (generalized) characteristics, namely ξ i ± δΘ n i in order to compute the value of the solution at that point via a local interpolation operator. Trying to locate z ≡ ξ i +δΘ n i for example, one can start from a triangle containing ξ i and construct inductively a sequence (τ m ) of triangles closer and closer to z as follows: if τ m contains z, then stop. Else, call (A j ) j=1,2,3 the vertices of τ m and (w j ) j=1,2,3 the related barycentric coordinates. Compute the numbers w j (z). If there exists only one index j such that w j (z) < 0, say j = 1, then τ m+1 is the triangle sharing the edge A 2 A 3 with τ m . If on the contrary, we have w j (z) < 0 for two indices j, say j = 1 and j = 2, then choose τ m+1 as one of the two triangles sharing with τ m the edges

A 1 A 3 or A 2 A 3 .
The values u n+1 i , i ∈ J n 2 remain to be defined. We set

u n+1 i = - j =i A ij u n j A ii = j =i A ij u n j j =i A ij , i ∈ J n 2 , (23) 
where the matrix A has been defined in [START_REF] Cockburn | Continuous dependence results for Hamilton-Jacobi equations[END_REF]. We can also write [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF] in the following way:

  N h j=1 M ij   u n+1 i -u n i = -ǫ i ∆t N h j=1 A ij u n j , (24) 
where

ǫ i = N h j=1 M ij ∆tA ii .
We see that u n+1 i is found by performing one iteration of an explicit Euler scheme for a parabolic equation of the form ∂w ∂t ǫ(x)∆w = 0, [START_REF] Sagona | An adaptive scheme on unstructured grids for the shape-fromshading problem[END_REF] with mass lumping (we have replaced the mass matrix which is involved in the Galerkin approximation of ( 25) by a diagonal matrix whose i th diagonal coefficient is obtained by summing up all the coefficients of the i th row of the mass matrix M ), and where ǫ is a small (of the order of h 2 /∆t) variable coefficient. To summarize, if ξ i is a strongly internal node,

u n+1 i = u n i + ∆t δ 2 (I h [u n ](ξ i + δΘ n i ) + I h [u n ](ξ i -δΘ n i ) -2u n i ) , if i ∈ J n 1 , u n+1 i = -A -1 ii j =i A ij u n j , if i ∈ J n 2 . ( 26 
)
For a given index i = 1, . . . , N h , we write the nonlinear equation describing the scheme at node ξ i (i.e. ( 13) if ξ i ∈ Γ ℓ h ), ( 26) if ξ i is a strongly internal node) in the generic form

G ∆t (i, n, u n+1 , u n ) = 0, i = 1, . . . , N h . ( 27 
)
Remark 5 The scheme at strongly inner nodes can be interpreted in various ways: first, the method introduced in [START_REF] Falcone | Consistency of a large time-step scheme for mean curvature motion[END_REF] is used as long as |Du| is large enough: the stochastic dynamical system which is behind the degenerate parabolic operator is discretized and we obtain a system of "generalized characteristics" for the degenerate problem. The stochastic problem behind this interpretation has been introduced and analyzed by Buckdahn, Cardaliaguet and Quincampoix in [START_REF] Buckdahn | A representation formula for the mean curvature motion[END_REF] and Soner and Touzi in [START_REF] Soner | A stochastic representation for mean curvature type geometric flows[END_REF][START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF]. More recently, Kohn and Serfaty have given in [START_REF] Kohn | A deterministic-control-based approach to motion by curvature[END_REF] a discrete game interpretation, in which the degenerate parabolic operator is approximated by a time discretization of min-max type. Second, in order to handle the singular case |Du| = 0, the scheme proposed in [START_REF] Falcone | Consistency of a large time-step scheme for mean curvature motion[END_REF] is modified by switching to an approximation of the heat equation whenever |Du| is below a given threshold.

Property Invariance with respect to the addition of constants If we write the global scheme in the form

u n+1 = S ∆t (u n ),
then it is easy to prove that, for all real number k, we have,

S ∆t (u n + k) = S ∆t (u n ) + k.
Remark 6 It is interesting to note that, if Assumption 1 does not hold, then one may wish to use a scheme different from [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF]: it is well known that there exists a field of symmetric tensors x → a(x) such that a| t is constant for all t ∈ T h , and that there exist three positive constants α ≤ a < a independent of h such that for all ξ ∈ R 2 ,

• a satisfies the uniform continuity and ellipticity properties:

|a(x)ξ| ≤ a|ξ|, and ξ T a(x)ξ ≥ a|ξ| 2 ;

• the matrix A ∈ R N h ×N h : A i,j = Ω h a(x)Dλ i (x) • Dλ j (x)
dx is a M-matrix. Moreover, if ξ i = ξ j are two vertices of a same triangle t ∈ T h , then A i,j ≤ -α h 2 . Then, instead of (23), one may use

u n+1 i = - j =i A ij u n j A ii = j =i A ij u n j j =i A ij , i ∈ J n 2 .

An example of a Godunov like scheme for (11)

Let ξ i belong to Ξ ℓ h . For simplicity, when writing the scheme, we drop the index accounting for time. To recover a scheme of the form [START_REF] Deckelnick | A fully discrete numerical scheme for weighted mean curvature flow[END_REF], all the values of u related to boundary nodes should be taken at time t n+1 and all the values related to strongly internal nodes should be taken at time t n . If ξ i ∈ Γ ℓ , the line ξ i + Rn ℓ (ξ i ) cuts the polygonal line ∂ω ξ i at two points ξ ν,+ i and ξ ν,- i , with (ξ ν,+ i

-ξ i ) • n ℓ (ξ i ) > 0 and (ξ ν,- i -ξ i ) • n ℓ (ξ i ) < 0. We use the notation h ν,± i = |ξ ν,± i -ξ i |. Similarly, if t ℓ (ξ i ) = (-n ℓ 2 (ξ i ), n ℓ 1 (ξ i ))
, the line ξ i + Rt ℓ (ξ i ) cuts the polygonal line ∂ω ξ i at two points ξ τ,+ i and ξ τ,- i , with (ξ τ,+ i

-ξ i ) • t ℓ (ξ i ) > 0 and (ξ τ,- i -ξ i ) • t ℓ (ξ i ) < 0. We use the notation h τ,± i = |ξ τ,± i -ξ i |. An example is given in Figure 2. ∂Ω t ℓ (ξ i ) n ℓ (ξ i ) ξ ν,+ i ξ ν,- i ξ τ,- i ξ i ξ τ,+ i Figure 2: The construction of the scheme at ξ i ∈ Ξ ℓ h \Γ ℓ
We use the following finite differences:

D ν,+ i u = 1 h ν,+ i I h [u](ξ ν,+ i ) -u i , D ν,- i u = 1 h ν,- i u i -I h [u](ξ ν,- i ) , D τ,+ i u = 1 h τ,+ i I h [u](ξ τ,+ i ) -u i , D τ,- i u = 1 h τ,- i u i -I h [u](ξ τ,- i ) .
If θ < 0, then the Godunov scheme at ξ i is:

D ν,- i u -θ min(D ν,+ i u, 0) 2 + max(D ν,- i u, 0) 2 + min(D τ,+ i u, 0) 2 + max(D τ,- i u, 0) 2 1 2 = 0.
If θ > 0, then the Godunov scheme at ξ i is:

D ν,- i u -θ max(D ν,+ i u, 0) 2 + min(D ν,- i u, 0) 2 + max(D τ,+ i u, 0) 2 + min(D τ,- i u, 0) 2 1 2 = 0.
If on the contrary, ξ i lies on Γ ℓ , then we define ξ ν,- i and h ν,- i as above, but the nodes ξ τ,± i are now the two neighbors of ξ i on Γ ℓ ; we take h τ,± i = |ξ τ,± i ξ i |. If θ < 0, then the upwind scheme at ξ i is:

D ν,- i u -θ min(D τ,+ i u, 0) 2 + max(D τ,- i u, 0) 2 + (D ν,- i u) 2 1 2 = 0.
If θ > 0, then the Godunov scheme at ξ i is:

D ν,- i u -θ max(D τ,+ i u, 0) 2 + min(D τ,- i u, 0) 2 + (D ν,- i u) 2 1 2 = 0.

Analysis of the scheme

Our goal is to establish the convergence of our approximation scheme ( 26)-( 27) via the abstract result by Barles and Souganidis [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. To this end we will first prove that the scheme is consistent and monotone.

Let us recall, for readers convenience, the definition of viscosity solution for the the boundary value problem. We denote by F (p, X) and F (p, X) the lower and upper semicontinuous extensions of the function F (p, X) = -trace((I -p⊗p |p| 2 )X) at p = 0, given by

F (p, X) = F (p, X) if p = 0, -2|X| if p = 0 F (p, X) = F (p, X) if p = 0, 2|X| if p = 0.
With the notation:

G(x, η, p, X) = η + F (p, X) if x ∈ Ω, max(η + F (p, X), p • n -θ|p|) if x ∈ ∂Ω, G(x, η, p, X) = η + F (p, X) if x ∈ Ω, min(η + F (p, X), p • n -θ|p|) if x ∈ ∂Ω, (28) 
and following [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], we say that an upper semicontinuous function u is a subsolution if for all

Φ ∈ C 1 ( Ω × (0, T ]), if (x 0 , t 0 ) is a maximum point of u -Φ then G(x 0 , ∂Φ ∂t (x 0 , t 0 ), DΦ(x 0 , t 0 ), D 2 Φ(x 0 , t 0 )) ≤ 0; (29) 
we say that a lower semicontinuous function

u is a supersolution if for all Φ ∈ C 1 ( Ω × (0, T ]), if (x 0 , t 0 ) is a minimum point of u -Φ then G(x 0 , ∂Φ ∂t (x 0 , t 0 ), DΦ(x 0 , t 0 ), D 2 Φ(x 0 , t 0 )) ≥ 0. ( 30 
)

Consistency

Following Barles and Souganidis [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF], we say that the scheme ( 27) is consistent if for any smooth function Φ defined on [0, T ] × Ω, we have that for any t ∈ (0, T ] and x ∈ Ω, for any sequence of positive mesh parameters (h m , ∆t m , δ m ) tending to 0 with h m = o(δ m ), for any sequence ξ i,m tending to x as m → ∞, ξ i,m being a mesh node of T hm , and for any sequence t nm = n m h m tending to t as m tends to ∞,

G(x, ∂Φ ∂t (x, t), DΦ(x, t), D 2 Φ(x, t)) ≤ lim inf m→∞ G ∆t (i m , n m , Φ nm+1 , Φ nm ) ≤ lim sup m→∞ G ∆t (i m , n m , Φ nm+1 , Φ nm ) ≤ G(x, ∂Φ ∂t (x, t), DΦ(x, t), D 2 Φ(x, t)), (31) 
calling Φ n = (Φ(ξ j , n∆t)) j=1,...,N h .

Proposition 1 Assume that h 2 /∆t = o(1), h/δ = o(1) and h q-s /δ = o(1). Then the scheme is consistent.

Proof. Consider a sequence of positive mesh parameters (h m , ∆t m , δ m ) tending to 0 with h m = o(δ m ), a sequence ξ i,m (tending to x as m → ∞, ξ i,m being a mesh node of T hm , and a sequence t nm = n m h m tending to t as h tends to 0. For brevity, we will drop the index m when there is no ambiguity. We can make out four cases:

Case 1: x ∈ Ω and DΦ(x, t) = 0 In this case, we know that there exists ρ > 0 and κ > 0 such that the ball B(x, ρ) is contained in Ω and that |DΦ(y, s)| > κ for all y ∈ B(x, ρ) and s ∈ [min(0, tρ), max(T, t + ρ)]. Since [D h Φ(•, t)] is a consistent approximation of the gradient DΦ(•, t), we know that if h and ∆t are small enough, then for all the mesh nodes ξ contained in e.g. B(x, ρ/2), and for all the discrete times t n ∈ [min(0, tρ/2), max(T, t + ρ/2)], we have

|[D h Φ(•, t n )](ξ)| > Ch s
, where C and s are the constant used in [START_REF] Ishii | An approximation scheme for motion by mean curvature with rightangle boundary condition[END_REF]. Moreover, we can choose δ small enough such that all the mesh nodes contained in B(x, ρ/2) are internal mesh nodes. Therefore, for m large enough, for all the mesh nodes ξ i contained in the ball B(x, ρ/2) and for all the discrete times t n ∈ [min(0, tρ/2), max(T, t + ρ/2)],

G ∆t (i, n, Φ n+1 , Φ n ) = Φ(ξ i , t n+1 ) -Φ(ξ i , t n ) ∆t + 2Φ(ξ i , t n ) -I h [Φ n ](ξ i + δΘ n i ) -I h [Φ n ](ξ i -δΘ n i ) δ 2 ,
(32) where Θ n i is given by ( 21) with

D n i = [D h Φ n ](ξ i ).
Then, using the results contained in Carlini et al [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF], we have

lim m→∞ G ∆t (i, n, Φ n+1 , Φ n ) = ∂Φ ∂t -trace I - DΦ ⊗ DΦ |DΦ| 2 D 2 Φ (x, t), (33) 
which yields (31). In fact, following [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF], it can be seen that, if DΦ(x, t) = 0, then for m large enough and

|ξ i -x| ∼ h, |t -t n | ∼ ∆t, G ∆t (i, n, Φ n+1 , Φ n ) - ∂Φ ∂t -trace I - DΦ ⊗ DΦ |DΦ| 2 D 2 Φ (x, t) =O h 2 δ 2 + O h q δ + O(∆t) + O(δ 2 ). ( 34 
)
Case 2: x ∈ Ω and DΦ(x, t) = 0 a) Let us first suppose that for all m large enough,

D n i = [D h Φ n ](ξ i ) is such that |D n i | ≥ Ch s . If s < q, then for h small enough, DΦ(ξ i , t n ) = 0,
because the discrete gradient is an approximation of order q of the gradient. In this case, we have (32), and following [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF], this implies that

G ∆t (i, n, Φ n+1 , Φ n ) - ∂Φ ∂t -trace I - DΦ ⊗ DΦ |DΦ| 2 D 2 Φ (ξ i , t n ) =O h 2 δ 2 + O h q-s δ + O(∆t) + O(δ 2 ). (35) 
But

λ min (D 2 Φ(ξ i , t n )) ≤ trace I - DΦ ⊗ DΦ |DΦ| 2 D 2 Φ (ξ i , t n ) ≤ λ max (D 2 Φ(ξ i , t n ))
where

λ min (D 2 Φ(ξ i , t n )) (resp. λ max (D 2 Φ(ξ i , t n ))) is the smallest (resp. largest) eigenvalue of D 2 Φ(ξ i , t n ), so -2 D 2 Φ(ξ i , t n ) ≤ trace I - DΦ ⊗ DΦ |DΦ| 2 D 2 Φ (ξ i , t n ) ≤ 2 D 2 Φ(ξ i , t n ) . It h q-s = o(δ), this implies that ∂Φ ∂t (x, t) + F (0, D 2 Φ(x, t)) ≤ lim inf m → ∞ G ∆t (i, n, Φ n+1 , Φ n ) ≤ lim sup m → ∞ G ∆t (i, n, Φ n+1 , Φ n ) ≤ ∂Φ ∂t (x, t) + F (0, D 2 Φ(x, t)). (36) 
b) Let us now suppose that for all m large enough,

D n i = [D h Φ n ](ξ i ) is such that |D n i | < Ch s . Thus, G ∆t (i, n, Φ n+1 , Φ n ) = 1 ∆t (Φ n+1 i -Φ n i ) + ǫ i   N h j=1 M ij   -1 N h j=1 A ij Φ n j .
where

ǫ i = N h j=1 M ij ∆tA ii . It is simple to prove that if h 2 /∆t = o(1) then lim m → ∞ G ∆t (i, n, Φ n+1 , Φ n ) = ∂Φ ∂t (x, t), (37) 
which implies (36). From points a) and b), we easily deduce (31) when DΦ(x, t) = 0.

Case 3: x ∈ Γ ℓ ⊂ ∂Ω and DΦ(x, t) = 0 In this case, we know that there exists ρ > 0 and κ > 0 such that |DΦ(y, s)| > κ for all y ∈ B(x, ρ) ∩ Ω and s ∈ [min(0, tρ), max(T, t + ρ)]. a) Suppose that m large enough, ξ i is a strictly internal mesh node: in this case, we can replicate the arguments used in Case 1: for m large enough we may assume that ξ i ∈ B(ξ, h/2) ∩ Ω and obtain that

lim m→∞ G ∆t (i, n, Φ n+1 , Φ n ) = ∂Φ ∂t -trace I - DΦ ⊗ DΦ |DΦ| 2 D 2 Φ (x, t). (38) 
b) Suppose that for m large enough, ξ i belongs to Ξ ℓ h , so

G ∆t (i, n, Φ n+1 , Φ n ) = B ℓ (ξ y , Φ(ξ i , t n+1 ), [Φ n+1 ] ℓ , [[Φ n ]]), (39) 
see [START_REF] Crandall | Convergent difference schemes for nonlinear parabolic equations and mean curvature motion[END_REF] for the notations. Since this scheme is consistent with [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF], we see that

lim m→∞ G ∆t (i, n, Φ n+1 , Φ n ) = ∂Φ ∂n ℓ (x, t) -θ|DΦ(x, t)|. (40) 
From the results obtained in points a) and b), it is an easy matter to deduce (31) by extracting subsequences if necessary.

Case 4: x ∈ Γ ℓ ⊂ ∂Ω and DΦ(x, t) = 0 We argue as in Case 3, but we now have to consider three kinds of sequences (ξ i , t n ): a) Suppose that for m large enough, ξ i is a strictly internal mesh node, and

D n i = [D h Φ n ](ξ i ) is such that |D n i | ≥ Ch s .
In this case, we argue as in Case 2:a). b) Suppose that for m large enough, ξ i is a strictly internal mesh node, and

D n i = [D h Φ n ](ξ i ) is such that |D n i | < Ch s .
In this case, we argue as in Case 2:b). c) Suppose that for m large enough, ξ i belongs to Ξ ℓ h . We argue as in Case 3:b).

From the points a), b) and c), we deduce (31).

Monotonicity

To prove the monotonicity of the scheme, we suppose that Assumption 1 holds and we restrict ourselves to taking for [D h u] the first order approximation of the gradient defined in [START_REF] Giga | Surface evolution equations[END_REF], so q = 1. Hereafter, we suppose that

h 1-s = o(δ). (41) 
The standard definition of monotonicity is also replaced by a generalized monotonicity assumption stated as follows.

Definition 3 the scheme S ∆t is said to be monotone (in the generalized sense) if it satisfies the following conditions: let (h m , ∆t m , δ m ) and (ξ jm , t nm ) be generic sequences satisfying

(h m , ∆t m , δ m ) → 0 and (ξ jm , t nm ) → (ξ, t). (42) 
Then, for any smooth function φ,

if v jm ≤ φ nm-1 jm then S ∆tm (v; j m ) ≤ S ∆tm (φ nm-1 ; j m ) + o(∆t m ) (43) if φ nm-1 j ≤ v jm then S ∆tm (φ nm-1 ; j m ) ≤ S ∆tm (v; j m ) + o(∆t m ), ( 44 
)
where v is a set of node values, and S ∆t is a (possibly different) scheme consistent in the sense that it satisfies (31) in (ξ, t).

In the sequel, we write the scheme ( 13), [START_REF] Sethian | Level set methods and fast marching methods, volume 3 of Cambridge Monographs on Applied and Computational Mathematics[END_REF] in the following compact form:

u n+1 i = S(u n ; i). (45) 
Following the ideas contained in [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF], we will consider a scheme which results from the further introduction of a vanishing artificial viscosity in (45). The motivation for such an adaptation is the following. The scheme ( 22) is monotone only with respect to the nodes by the interpolation operator. On the other hand, the dependence on the values involved in the approximation of the gradient is more complex, and the introduction of the artificial viscosity term allows to gain monotonicity with respect to these values. Therefore, we will prove the generalized monotonicity property for the modified scheme u n+1 i = S(u n ; i): the scheme is not modified at boundary nodes, and if ξ i is a strongly internal node, then

S(u n ; i) = S(u n ; i) -W ∆t δh s+1 N h j=1 A ij u n j , if i ∈ J n 1 , = -(A ii ) -1 j =i A ij u n j , if i ∈ J n 2 , ( 46 
)
where W is a suitable positive constant. Finally, we do not need to consider boundary nodes, because the scheme ( 12) is monotone (in the classical sense). We thus focus on strongly internal nodes.

First inequality

To check (43), suppose now that for any sequence (ξ j , t n ) ≡ (ξ jm , t nm ) verifying (42), the following inequality holds

u n j ≤ ϕ n j ≡ Φ(ξ j , t n ) ( 47 
)
where u n is the solution of ( 13) and ( 26), for test functions Φ ∈ C ∞ ( Ω × [0, T ]). Since the monotonicity property does not depend on the iteration n, then, with no loss of generality, we can drop the dependency on t of the test function Φ. Condition (43) can be recast in the form

S(u n ; i) ≤ S(ϕ; i) + o(∆t), (48) 
where the choice of S may vary from one subcase to the other. We will often omit the time index, writing u for u n . The proof discriminates between two main cases. ∂u j ≥ 0, from the monotonicity of the piecewise linear Lagrange interpolation operator I h . On the other hand, if j ∈ Σ i , j = i, then calling z ± i = ξ i ± δΘ i , and assuming that z ± i do not lie on the boundary of a triangle of T h ,

∂S(u; i) ∂u j = ∆t δ D(I h [u])(z + i ) -D(I h [u])(z - i ) ∂Θ i ∂u j . ( 49 
)
It can be proved that there exists a constant

L independent of h such that if |[D h u](ξ i )| ≥ Ch s and j ∈ Σ i , -L ∆t δh s+1 ≤ ∂S(u; i) ∂u j ≤ L ∆t δh s+1 . (50) 
Therefore, differentiating S(u; i), we get

∂ S(u; i) ∂u j ≥ ∆t δh s+1 (-L -W A ij ) ≥ ∆t δh s+1 (-L + W α), (51) 
where α is the constant appearing in [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. Similarly, for a positive constant ā,

∂ S(u; i) ∂u i ≥ 1 + 2∆t δ 2 - ∆t δh s+1 (L + W A ii ) ≥ 1 + 2∆t δ 2 - ∆t δh s+1 (L + W ā). ( 52 
)
Therefore, if the conditions

-L + W α ≥ 0, 1 + 2∆t δ 2 -∆t δh s+1 (L + W ā) ≥ 0 (53)
are fulfilled, then ∂ b S(u;i)

∂u j ≥ 0, for all i such that |[D h u](ξ i )| ≥ Ch s
and for all j. Then, we conclude as in [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF]

. b) |[D h u](ξ i )| ≤ Ch s . Since Φ ∈ C ∞ (R 2 )
, by a Taylor expansion we can write:

Φ(ξ) = Φ(ξ i ) + (ξ -ξ i ) • DΦ(ξ i ) + 1 2 (ξ -ξ i ) • D 2 Φ(ξ i )(ξ -ξ i ) + O(|ξ -ξ i | 3 ).
Therefore

u j ≤ Φ(ξ i ) + (ξ j -ξ i ) • DΦ(ξ i ) + 1 2 (ξ j -ξ i ) • D 2 Φ(ξ i )(ξ j -ξ i ) + O(|ξ j -ξ i | 3 ).
On the other hand, we are going to use the special construction of [D h u](ξ i ) given in [START_REF] Giga | Surface evolution equations[END_REF]:

|ω ξ i |[D h u](ξ i ) =      j =i u j ω ξ i Dλ j • e 1 j =i u j ω ξ i Dλ j • e 2      .
Therefore, |[D h u](ξ i )| ≤ Ch s implies that for any constant vector ζ,

j =i u j ω ξ i Dλ j • ζ h ≤ Ch s+1 . (54) 
Hence,

-j =i A i,j u j = - ω ξ i DI h [u] • Dλ i + u i Dλ i • Dλ i = - j =i u j ω ξ i Dλ j • Dλ i ≤ - j =i u j ω ξ i Dλ j • (Dλ i - ζ h ) + Ch s+1 . (55) 
Under the assumptions on the mesh, it is always possible to choose ζ small enough such that C > -

ω ξ i Dλ j • (Dλ i - ζ h ) > c > 0, for all i, j ∈ Σ i , j = i. (56) 
With such a choice, exploiting the relations between the matrix involved in the artificial viscosity term and the linear interpolation operator of the gradient, we get

- j =i A i,j u j ≤ - j =i Φ(ξ j ) ω ξ i Dλ j • (Dλ i - ζ h ) + Ch s+1 = - j =i K j ω ξ i Dλ j • (Dλ i - ζ h ) + Ch s+1 , (57) 
where

K j = Φ(ξ i ) + (ξ j -ξ i ) • DΦ(ξ i ) + 1 2 (ξ j -ξ i ) • D 2 Φ(ξ i )(ξ j -ξ i ) + O(|ξ j -ξ i | 3 ).
From (57), we deduce that

- j =i A i,j u j ≤ -   j =i A i,j   Φ(ξ i ) + j =i (ξ j -ξ i ) • DΦ(ξ i ) ω ξ i Dλ j • ζ h - 1 2 j =i (ξ j -ξ i ) • D 2 Φ(ξ i )(ξ j -ξ i ) ω ξ i Dλ j • (Dλ i - ζ h ) + O(h s+1 ) (58) because -Φ(ξ i ) j =i ω ξ i Dλ j • ζ h = Φ(ξ i ) ω ξ i Dλ i • ζ h = 0, and - j =i (ξ j -ξ i ) • DΦ(ξ i ) ω ξ i Dλ j • Dλ i = DΦ(ξ i ) • ω ξ i Dλ i = 0.
Note also that j =i (ξ jξ i )

ω ξ i Dλ j • ζ h = |ω ξ i | ζ h .
Hence, choosing now ζ = -µ DΦ(ξ i ) |DΦ(ξ i )| with µ small enough such that (56) holds true yields

- j =i A i,j u n j ≤ -   j =i A i,j   Φ(ξ i ) -µ|DΦ(ξ i )| |ω ξ i | h - 1 2 j =i (ξ j -ξ i ) • D 2 Φ(ξ i )(ξ j -ξ i ) ω ξ i Dλ j • (Dλ i - ζ h ) + O(h s+1 ). (59) 
Next, using the fact that u n satisfies (23), we add and subtract ∆tF (DΦ(ξ), D 2 Φ(ξ)) (note that F = F = F , since we are in the case DΦ(ξ) = 0), obtaining

u n+1 j ≤ Φ(ξ i ) -∆tF (DΦ(ξ), D 2 Φ(ξ)) - 1 j =i A i,j      -µ|DΦ(ξ i )| |ω ξ i | h - 1 2 j =i (ξ j -ξ i ) • D 2 Φ(ξ i )(ξ j -ξ i ) ω ξ i Dλ j • (Dλ i - ζ h ) -∆t j =i A i,j F (DΦ(ξ), D 2 Φ(ξ)) + O(h s+1 )      . (60) 
Since Φ ∈ C ∞ and since from (53), ∆t = o(h), we have that asymptotically for h → 0 and ∆t → 0,

0 ≥ -µ|DΦ(ξ i )| |ω ξ i | h - 1 2 j =i (ξ j -ξ i ) • D 2 Φ(ξ i )(ξ j -ξ i ) ω ξ i Dλ j • (Dλ i - ζ h ) -∆t j =i A i,j F (DΦ(ξ), D 2 Φ(ξ)) + O(h s+1 ), (61) 
hence there exists a ∆t > 0 such that for every ∆t < ∆t:

u n+1 i ≤ Φ(ξ i ) -∆tF (DΦ(ξ), D 2 Φ(ξ)). ( 62 
)
The scheme denoted by S in (48) may now be chosen as a generic scheme satisfying (31) at ξ. Since the test function Φ does not depend on time, S(ϕ; i) verifies:

lim m→∞ ϕ(ξ im ) -S(ϕ; i m ) ∆t m = F (DΦ(ξ), D 2 Φ(ξ)),
so that we have Φ(ξ i ) -S(ϕ; i) = ∆tF (DΦ(ξ), D 2 Φ(ξ)) + o(∆t) and we finally get 

u n+1 i ≤ S(ϕ; i) + o(∆t). Case 2 DΦ(ξ) = 0. When |[D h u](ξ i )| ≤ Ch s the
u n+1 i = S(u n ; i) ≤ S(ϕ; i) (63) 
where S(ϕ; i) has been chosen in the following form

S(ϕ; i) = Φ(ξ i ) + ∆t δ 2 1 2 I h [ϕ](ξ i + δΘ n i ) + 1 2 I h [ϕ](ξ i -δΘ n i ) -Φ(ξ i ) - W ∆t δh s+1 j A i,j Φ(ξ j ),
where Θ n i is given by ( 21), i.e. is computed from the values of u n . The inequality (63) holds because the upwind points ξ i ± δΘ n i are the same on the left and right term and the time step ∆t verifies the second inequality in (53) . Moreover S is a consistent scheme, since under condition (41),

Φ(ξ i ) -S(ϕ; i) ∆t = (Θ n i ) T D 2 Φ(ξ i )Θ n i + o(1).
Therefore, following the same arguments used in Case 2a of the consistency proof,

F (DΦ(ξ), D 2 Φ(ξ)) ≤ lim inf m→∞ Φ(ξ im ) -S(ϕ; i m ) ∆t m ≤ ≤ lim sup m→∞ Φ(ξ im ) -S(ϕ; i m ) ∆t m ≤ F (DΦ(ξ), D 2 Φ(ξ)),
which yields the consistency for S at ξ.

Second inequality

We have to check assumption (44). We now assume that, for ∆t → 0 and (ξ i , t n ) → (x, t): u n i ≥ Φ(ξ i ).

(64)

We need to prove that S(u n ; i) ≥ S(ϕ; i) + o(∆t) (65) in which the choice of S will follow the same guidelines used in proving (43). A i,j u j = -

ω ξ i DI h [u] • Dλ i + u i Dλ i • Dλ i = - j =i u j ω ξ i Dλ j • Dλ i ≥ - j =i u j ω ξ i Dλ j • (Dλ i - ζ h ) -Ch s+1 , (66) 
and it is always possible to choose ζ small enough such that (56) holds true. With such a choice, j =i A i,j u j ≥ -(

j =i
A i,j )Φ(ξ i ) + j =i (ξ jξ i ) • DΦ(ξ i )

ω ξ i Dλ j • ζ h - 1 2 j =i (ξ j -ξ i ) • D 2 Φ(ξ i )(ξ j -ξ i ) ω ξ i Dλ j • (Dλ i - ζ h ) + O(h s+1 ). (67) 
Hence, choosing now ζ = -µ DΦ(ξ i ) |DΦ(ξ i )| with µ small enough such that (56) holds true one gets

- j =i A i,j u n j ≥ -   j =i A i,j   Φ(ξ i ) + µ|DΦ(ξ i )| |ω ξ i | h - 1 2 j =i (ξ j -ξ i ) • D 2 Φ(ξ i )(ξ j -ξ i ) ω ξ i Dλ j • (Dλ i - ζ h ) + O(h s+1 ). ( 68 
)
Since u n satisfies (23), we add and subtract ∆tF (DΦ(ξ), D 2 Φ(ξ)) (note that F = F = F , since we are in the case DΦ(ξ) = 0), obtaining Here, the domain is a ring with inner radius r = 1 and outer radius R = 2, and we take u 0 (x) = sin( 1625 ((x -0.5) 2 + x 2 2 )). We use an unstructured mesh such that h ∼ 0.02 and take ∆t = 0.002. The thickness of the layers near the boundaries is of the order of 0.2. The contour lines at different times, for θ = -0.5 , (resp. θ = 0.95) are displayed in Figure 5 (resp. 6). In the first (resp. second) case the contour lines make an angle of 30 o (resp ∼ 71.8 o ) with the normal to the boundary. Contour lines are displayed in Figure 7. We see that a level set with non empty interior appears.

u n+1 j ≥ Φ(ξ i ) -∆tF (DΦ(ξ), D 2 Φ(ξ)) - 1 j =i A i,j      µ|DΦ(ξ i )| |ω ξ i | h - 1 2 j =i (ξ j -ξ i ) • D 2 Φ(ξ i )(ξ j -ξ i ) ω ξ i Dλ j • (Dλ i - ζ h ) -∆t j =i A i,j F (DΦ(ξ), D 2 Φ(ξ)) + O(h s+1 )      , (69) 
Figure 7: Test 3: contour lines at t = 0, 0.08, 0.16, 0.24, 0.32, 0.8, 1.2, 2

Test 4

The domain is constructed as follows. It has a hole. The outer boundary is parametrized by

x 1 = 2 cos(2πt) + 0.75 cos(4πt), x 2 = 2 sin(2πt) + 0.75 sin(4πt), and the inner boundary is the unit circle centered at 0. We choose θ = -0.5 and u 0 (x) = sin(4|x|). We take an unstructured mesh with h = 0.02, δ = 0.1, ∆t = 0.001.

Contour lines are displayed in Figure 8.

Figure 1 :Remark 1

 11 Figure 1: The domain Ω, the mesh and the two layers near the boundaries

Case 1

 1 DΦ(ξ) = 0. a) ξ i is a strongly internal node and |[D h u](ξ i )| ≥ Ch s . Recall that we have denoted by Σ i the sets of node indices involved in the construction in [D h u](ξ i ). It is clear that if j / ∈ Σ i , then ∂S(u;i)

Case 1 :

 1 DΦ(ξ) = 0. As we have seen, for h → 0, the condition |D j [ϕ]| > Ch s is asymptotically satisfied. We consider the same subcases as before: a) ξ i is a strongly internal node and |[D h u](ξ i )| ≥ Ch s . The result is obtained exactly as the first inequality in Case 1 a). b) ξ i is a strongly internal node and |[D h u](ξ i )| ≤ Ch s . In this case, we use the same argument as for the first inequality in Case 1 b). Indeed, for any constant vector ζ, j =i

Figure 3 :

 3 Figure 3: h = 0.01: contour lines at t = 0.4, 0.8, 1.2, 1.6. The boundary zones are also presented in the figures.

Figure 4 :

 4 Figure 4: h = 0.0064: error in max norm vs. time

Figure 5 : 2 4. 2 . 2 3

 52223 Figure 5: Test 2: θ = -0.5, contour lines at t = 0, 0.08, 0.16, 0.24, 0.32, 0.8, 1.2, 2

Figure 6 :

 6 Figure 6: Test 2: θ = 0.95, contour lines at t = 0, 0.08, 0.16, 0.24, 0.32, 0.8, 1.2, 2

and as for the first inequality, there exists a ∆t > 0 such that for every ∆t < ∆t:

We add and subtract a generic scheme S satisfying (31) and get

Case 2 : DΦ(ξ) = 0. If ξ i is a strongly internal node and |[D h u](ξ i )| ≤ Ch s , then we use the monotonicity of the scheme [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF]. Else, if ξ i is a strongly internal node and

where S is the scheme chosen in the discussion of the first inequality, Case 2.

In conclusion, we have proved the following:

Theorem 1 Let us suppose that Assumption 1 holds and that [D h u] is the first order approximation of the gradient defined in [START_REF] Giga | Surface evolution equations[END_REF]. Under the same assumptions of Proposition 1 (with q = 1), and under conditions (41) and (53), the regularized scheme (46) is monotone in the sense given by Definition 3.

Corollary 1 Under the assumption of Theorem 1, the regularized scheme (46) is convergent.

Proof. The monotonicity of the regularized scheme comes from Theorem 1. For the consistency, the same proof as that of Proposition 1 can be used.

Remark 7

The analysis above has been made only in dimension two, for meshes with acute angles, in the case when A is given by ( 9) and the interpolation operator is given by [START_REF] Falcone | Consistency of a large time-step scheme for mean curvature motion[END_REF]. In this case A and the interpolation operator are closely related to each other and the proof takes advantage of this relationship. It would be very interesting to generalize the proof to cases when the two operators are more independent from each other, in particular for the scheme proposed in Remark 6, and also to dimension three.

Numerical results

Let us examine some numerical tests in dimension two in order to verify the efficiency and accuracy of our approximation scheme.

An example proposed by G. Barles

Take for Ω a ring with innner radius r and outer radius R > r, and set u 0 (x) = φ(|x| 2 ). G. Barles has proved in [START_REF] Barles | Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications[END_REF] that the viscosity solution of ( 1),( 4), ( 5) is

The partial differential equation holds up to the boundary |x| = r, and the boundary condition is lost there.

Results on a fully structured grid

Here, the domain is a ring with innner radius r = 0.1 and outer radius R = 0.4, and we have chosen u 0 (x) = 16|x| 2 , so u(x, t) = min(16(|x| 2 + 2t), 2.56). For a large integer N , the grid nodes are ξ i,j = (r + i(Rr)/N ) cos(2jπ/N ), sin(2jπ/N ) , i = 0, . . . , N, j = 1, . . . , N, and we take ∆t = (Rr)/(10N ) and δ = √ 2∆t + 2(Rr)/N . We have chosen θ = 0.5 On such a structured grid, the approximation of the gradient is a centered finite difference method in polar coordinates, so it is second order. Since the approximation of the gradient is second order, we choose s = 1. In this case, it is convenient to replace [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF] with an explicit Euler scheme for the equation In this case, as seen in Table 1, the error seems to decay like N -1 2 , which agrees with the estimates on the consistency error in (35).

Results on a nonstructured grid

The domain is a ring with inner radius r = 1 and outer radius R = 2. We take u 0 (x) = |x| 2 , so the viscosity solution of (1), ( 4), ( 5) is u(x, t) = min(|x| 2 + 2t, 4), for all θ. For a given parameter h, we choose ∆t = h/10, δ = √ 2∆t + 2h, s = 0.5.

We have chosen θ = -0.5. Table 2 contains the errors in maximum norm with respect to the explicit solution for different vales of h. It can be seen that the error decays to zero like √ h. The contour lines of the solution at different times are shown in Figure 3, along with the two circles representing the boundaries of the layers ω 1 and ω 2 . We that the scheme captures correctly the zones where the solution is constant. The error in maximum norm with respect to the explicit solution as a function of time is plotted in Figure 4.