
HAL Id: hal-00559251
https://hal.science/hal-00559251

Submitted on 25 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximate Joint Singular Value Decomposition of an
Asymmetric Rectangular Matrix Set
Marco Congedo, Ronald Phlypo, Dinh-Tuan Pham

To cite this version:
Marco Congedo, Ronald Phlypo, Dinh-Tuan Pham. Approximate Joint Singular Value Decomposition
of an Asymmetric Rectangular Matrix Set. IEEE Transactions on Signal Processing, 2011, 59 (1),
pp.415-424. �10.1109/TSP.2010.2087018�. �hal-00559251�

https://hal.science/hal-00559251
https://hal.archives-ouvertes.fr


SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Approximate Joint Singular Value Decomposition of
an Asymmetric Rectangular Matrix Set

Marco Congedo, Ronald Phlypo,Member, IEEE,and Dinh-Tuan Pham,Member, IEEE,

Abstract—The singular value decomposition C= UΛVT is
among the most useful and widespread tools in linear algebra.
Often in engineering a multitude of matrices with common
latent structure are available. Suppose we have a set ofK
matrices {C1, . . . ,CK} for which we wish to find two orthogonal
matrices U and V such that all products UTCkV are as close as
possible to rectangular diagonal form. We show that the problem
can be solved efficiently by iterating either power iterations
followed by an orthogonalization process or Givens rotations.
The two proposed algorithms can be seen as a generalization
of approximate joint diagonalization (AJD) algorithms to the
bilinear orthogonal forms. Indeed, if the input matrices are
symmetric and U = V, the optimization problem reduces to
that of orthogonal AJD. The effectiveness of the algorithms is
shown with numerical simulations and the analysis of a large
database of 84 electroencephalographic recordings. The proposed
algorithms open the road to new applications of the blind
source separation framework, of which we give some example
for electroencephalographic data.

Index Terms—bilinear orthogonal approximate joint diagonal-
ization, singular value decomposition, L̈odwin orthogonalization,
power iteration, Jacobi iterations, Givens rotations

I. Introduction

W Hereas the blind source separation (BSS) problem
can be solved by the joint diagonalization of two

symmetric matrices [1], [2], it has been soon discovered that
more robust and efficient blind source separation algorithms
can be obtained by joint diagonalization of a symmetric matrix
set [3], [4], [5] [6, For a review see].The joint diagonalization
of a matrix set perturbed by noise (e.g., due to estimates of
data statistics) does not have a closed form solution and can
be obtained only approximately. From the point of view of
linear algebra, the approximate joint diagonalization (AJD)
extends the eigenvalue-eiegnvector decomposition (single ma-
trix diagonalization) and its generalized version (two matrix
diagonalization) to a matrix set including three or more ma-
trices. As such, it is a very general and flexible tool. Iterative
algorithms solving the AJD problem are studied intensivelyin
the signal processing community [5], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. These advances
have allowed for Blind Source Separation (BSS) applications
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in several fields such as speech enhancement, image process-
ing, geophysical data analysis, wireless communication and
biological signal analysis [20].

The AJD algorithms proposed so far differ according to
the restrictions imposed on the matrices that can be diago-
nalized (Hermitian/symmetric, positive semi-definite, normal),
the restrictions imposed on the joint diagonalizer sought (uni-
tary/orthogonal or full-column rank), their convergence rate
and computational complexity per iteration. More importantly,
they differ in terms of the cost function to be optimized.
For the sake of efficiency some algorithms rely on heuristics
(e.g., [19], [9], [14]), whereas others have focused on the more
natural formulation based on Frobenius norm off-diagonal
minimization [15], [16], [8], [17], [10], [21]. Restricting the
joint diagonalizer to the unitary or orthogonal case, a straight-
forward least-squares objective function exists [4], [21]. In this
case, BSS is achieved with the classical two-step procedure
often encountered in independent component analysis (ICA);
data is whitened first, leaving the solution up to a rotation,
which is then found by unitary/orthogonal AJD algorithms [4],
[22], [23]. The work described in this paper operates within
this latter framework. Historically, AJD algorithms have ad-
dressed the joint diagonalization of Hermitian or symmetric
matrices. Therefore a joint diagonalizer is sought so as to span
both the column space and the row space of the matrix set to
be diagonalized1. As a consequence, the decomposition of the
input signal is performed along one dimension, typically taken
as the space, for example in electroencephalography (EEG),
or the time, for example in functional magnetic resonance
imaging. In this paper, we pose a different AJD problem,
which is actually a bi-linear AJD. Indeed, we no longer require
a single joint diagonalization matrix spanning both the column
and row space, instead, we require a pair of joint diagonalizers
with mutually orthogonal columns. One of the matrices spans
the column space while the other the row space of the matrix
set. This problem allows the AJD of non-symmetric, possibly
rectangular matrices. From the point of view of linear algebra
the resulting decomposition is an extension of the singular
value decomposition to a set comprising more than two
matrices, which we name Approximate Joint Singular Value
Decomposition (AJSVD). As such, it promises to become
an even more general and flexible tool, which reduces to
the previous AJD case for symmetric matrix sets. To solve

1There has been also some work on the approximate joint diagonalization of
normal matrices (possibly asymmetric), for which the column space is spanned
by the columns of the joint diagonalizer and the row space by the rows of its
inverse [18]. However, such decomposition does not find application in the
BSS context.
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the AJSVD problem we propose two iterative algorithms
addressing the least-squares objective function, openingthe
road to new BSS approaches. For instance, we may construct
matrix sets living in two dimensions, for example, space and
time, yielding as solution both bases simultaneously. We are
also enabled to study double sensor array recordings, wherein
the matrix set can be formed by cross-statistics between two
sensor arrays in order to concentrate on their similarity. So
far the bilinear AJD problem has been addressed only in the
computer vision community. In [24], Jacobi iterations were
proposed for the square case without allowing for dimension
reduction. In [25], a gradient approach to the bilinear AJD
problem has been suggested, based on the natural gradient ap-
proach. This algorithm has shown to exhibit slow convergence,
since only small step sizes are allowed to keep the updates in
the manifold of orthonormal matrices.

This paper is organized as it follows: in section II we report
the notation used throughout. In section III we motivate our
study with the practical example of BSS in electroencephalog-
raphy (EEG) and we illustrate possible applications of our al-
gorithms in the context of EEG. In section IV we formalize the
bi-linear AJD in the real domain and we pose the optimization
problem within a least-squares framework. We then show that
it is possible to decouple the optimization problem in a number
of simple quadratic form optimizations, alternating between
the estimation of the two joint diagonalizers to be found. Then,
we present two simple and efficient iterative algorithms; the
first optimizes the least-squares objective function by power
iterations and imposes unitarity/orthogonality at the end of
each iteration, extending upon previous work in [15], [16],
[26]. The second operates by Givens rotations, extending upon
the seminal work of [4]. We also provide a suggestion for
initialization, which applies in general to all unitary/orthogonal
AJD algorithms. In section V we present results of numerical
simulations and the diagonalization of cospectral matrices of
a large (N=84) EEG normative database, both witnessing in
favor of the good performance of the proposed algorithms.
Finally, section VI includes our discussion, where we indi-
cate the extension to the complex case and we address the
limitations of our work.

II. Notations

In the following we will indicate matrices by upper case
bold face characters (A), matrix sets by calligraphic letters
(A), vectors by lower case bold face (a), indices and scalars
by lower case italic (a) characters. Thei-th column ofA will
be denoted byai , unless ambiguity between rows or columns
may exist, in which case we will useA i· andA ·i to denote the
i-th row, respectively column ofA. Constants will be noted
in upper case italics (A). Notationstr(·), (·)T and‖ · ‖ indicate
the trace of a matrix, the transpose operator and the Frobenius
norm, respectively. The operators Diag(·) and Off(·) return a
matrix nullifying the off-diagonal or the diagonal elements
of its argument, respectively. DiagA(·) nullifies not only the
off-diagonal elements of its argument but also the elements
on the diagonal with column index greater thanA. All these
operators are defined for both square and rectangular matrices.

The identity matrix inRA×A is denoted byI A, the matrix of
zeros inRA×A by 0A and |a| is the absolute value ofa. λn(A)
will denote then-th eigenvalue of the matrixA, wheren is an
arbitrary indexation. We will use the terms orthonormal and
orthogonal for matricesA ∈ RA×A for whichATA = AAT = I A

and matricesA ∈ R
A1×A2,A1 ≥ A2 for which ATA = I A2,

respectively.

III. M otivation

BSS by AJD of second-order sensor statistics offers a
flexible approach to separate EEG sources based on their char-
acteristic non-stationarity, spectral profile and/or experimental
condition membership. The sources of interest are equivalent
electric dipoles formed by assemblies of locally synchronized
pyramidal cells in the cortex. The currents induced by these
dipoles diffuses through the head and reaches the scalp sensors
(electrodes). This process can be seen as a linear mixing
process in good approximation. In the EEG literature the
mixing phenomenon is known as the ”‘volume conduction
effect”’, see [26] for a review.

As a consequence, we may write the observed potentials
x(t) ∈ RP as

x(t) = As(t) , (1)

whereA is a time-invariant, full column rank mixing matrix
and s(t) ∈ RN,N ≤ P holds the unknown time courses of
the sources components. The AJD scheme for BSS consists
in estimating a number of second-order statistical matrices
directly from the multivariate observed measurementsx(t),
e.g., Fourier cospectral matrices, covariance matrices esti-
mated under different experimental conditions or covariance
matrices estimated in different temporal windows [26]. Follow-
ing Eq. (1), such matrices have theoretical formCk = AΛkAT ,
where theΛk represent the diagonal matrices of the unknown,
true source statistics, thus we work under the assumption that
the sources are spatially uncorrelated.

Under rather general conditions, it can then be shown that
the AJD of the matrix set results in theidentificationof the
demixing matrixBT = Â−1, yielding source estimates

ŝ(t) = BTx(t) = BTAs(t) ,

up to the usual order and scaling indeterminacies [20], [23],
i.e., BTA = P∆, whereP and∆ are respectively a permutation
and a diagonal scaling matrix. This identification scheme is
named blind because it does not rely on the knowledge of
the mixing process. Furthermore, it does not depend on the
mixing process itself [27], but only on the uniqueness of
the source statistics profilesλn(Ck), k = 1, 2 . . .K along the
diagonalization set. Precisely, following [28] (see also [29],
[30]) let us define

ρ = max
m,n

∣∣∣∣∣∣∣

∑
k λn(Ck)λm(Ck)√∑

k [λn(Ck)λn(Ck)]
∑

k [λm(Ck)λm(Ck)]

∣∣∣∣∣∣∣
,

as the modulus of uniqueness of a diagonalization set; then
ρ < 1 (no two such profiles are colinear) is the necessary and
sufficient condition for source identification̂s= P∆s.

Upon congruence transformation ofC = {Ck, k = 1, 2 . . .K},
the set {Λk = BTCkB} contains zero off-diagonal elements
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and thus outputs uncorrelated sources, effectively removing
the nuisance effects of volume conduction.

So far, identification has relied only on squared matrices
of source auto-statisticsΛk. In this work we allow theΛk

to be rectangular, so as to allow diagonalization sets of
the form Ck = UT

ΛkV. We then require the identification
of both U and V under orthogonality constraints, yielding
the approximate joint diagonalization of an asymmetric and
possibly rectangular matrix set.

In this framework,Λk no longer need to be restricted to
source auto-statistics, but may hold cross-statistics between
two observation spaces. Thanks to this generalization, new
approaches to blind identification are allowed. For instance,
inceeasing attention is currently being paid to the integration
and fusion of data acquired synchronously or asynchronously
from different modalities [31], such as EEG and magne-
toencephalography, EEG and functional magnetic resonance
imaging. Data fusion refers to the idea to use both modalities
in a combined (joint) analysis, trying to find commonalities
between them. A special case of data fusion is hyperscan-
ning, wherein the same modality is recorded synchronously
between two individuals. Then, after whitening the data of
each observation, one may jointly diagonalize a set of their
cross-statistics, allowing for a robust variant of the canonical
correlation analysis. Again, one may use Fourier cospectral
matrices at different frequencies or covariance matrices in
different time windows. Note that the above extension to CCA
(which is restricted to the caseK = 1 or to summation over the
matrix set [32]), generally lowers the modulus of uniquenes
by adding matrices to the set{Ck}.

Another example of this framework is a space-time analysis.
Consider evoked response potential studies, whereCk, k =
1 . . .K are the time-locked observations whose columns are
the observed potentials as a function of the time instants
after stimulus onset and whose rows are with respect to the
different electrode locations. After suitable transformation, one
may jointly diagonalize directly the matrices{Ck} (without
resorting to second or higher order statistical estimations),
yielding jointly the spatial filters and the time domain patterns.

IV. M ethods

A. Model

Consider the following generative model

Ck = UΛkVT + Nk ,

whereU ∈ RP×P and V ∈ RQ×Q are orthogonal matrices, the
matricesΛk are diagonal matrices inRP×Q with N ≤ min(P,Q)
non-zero elements andNk are matrices containing measure-
ment noise and estimation errors.

Typically, the set

C = {Ck; k = 1 . . .K,Ck ∈ R
P×Q}

is composed of statistical estimations of the signal partUΛkVT

sharing a common latent structure and a randomly varying
noise contributionNk. We wish to identify the two orthonormal
matricesU andV determining the latent structure, such that

UTCkV ≅ Λk,∀k , (2)

where the approximation is mainly due to the non-
diagonalizable noise part.

When K = 1, the above decomposition is the singular
value decomposition (SVD) ofC1 where only theN major
singular values are retained on the diagonal ofΛ1 and the
corresponding left and right eigenvectors are the columns of
U and V, respectively.UΛ1VT is then known as the best
rank-N approximation toC1 [33]. Only when K = 1 and
N = rank(C1), the equality in Eq. (2) holds, whereas for the
general case whereK > 1 it may hold only approximately.

WheneverP = Q = N and U = V, the above problem
reduces to the joint approximate orthogonal diagonalization
of approximate Hermitian/symmetric matrices [4], [34]. In this
paper, we tackle the more general problem whenP , Q,N ≤
min(P,Q) and Ck 6 CT

k . We will treat the real case only,
addressing the extension to the complex case in Section VI.

B. Objective Function

As is the case for the SVD of a single matrix, we shall work
under the normℓ2. We consider the least-squares objective
function

JLS(U,V, {Λk}|C) =
K∑

k=1

∥∥∥Ck − UΛkVT
∥∥∥2

(3)

with respect toU,V and the set{Λk} of diagonal matrices with
N non-zero entries.

Since‖A‖2 = tr(ATA) and because of the invariability of the
trace under orthogonal transformations, the above criterion can
be rewritten as

K∑

k=1

(
‖Ck‖

2 + ‖Λk‖
2 − 2tr

(
ΛkUTCkV

))
.

For fixedU andV it is easily seen that the above criterion is
minimized whenever

Λk = DiagN

(
UTCkV

)
,∀k .

The attained minimum is

JLS({Λk}|U,V,C) =
K∑

k=1

(
‖Ck‖

2 − tr
([

DiagN

(
UTCkV

)]2))

One is thus led to the problem of maximizing

JOFF(U,V|C) =
K∑

k=1

tr
([

DiagN

(
UTCkV

)]2)
=

K∑

k=1

N∑

i=1

[
uT

i Ckvi

]2
,

(4)
whereui andvi are thei-th columns ofU andV, respectively,
satisfying the orthonormality constraintsuT

i u j = vT
i v j = δi j ,

with δi j the Kronecker delta, taking 1 if and only ifi = j and
0 otherwise. For similar developments in the case of higher-
order cumulants, see [21].

The expansion of Eq. (4) gives

N∑

n=1

K∑

k=1

(
uT

n Ckvn

)2
=

N∑

n=1

uT
nMn(V)un (5a)

=

N∑

n=1

vT
nMn(U)vn , (5b)
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where

Mq(V) =
∑

k

CkvqvT
q CT

k ,∀q = 1 . . .Q , (6a)

Mp(U) =
∑

k

CT
k upuT

pCk,∀p = 1 . . .P . (6b)

Following Eq. (5), the search over the matricesU andV can
be expressed as the maximization of

JDiag(U|V,C) =
∑

n

uT
nMn(V)un ,

JDiag(V|U,C) =
∑

n

vT
nMn(U)vn .

C. Optimization by power iterations

Eq. (5a) and (5b) are maximized by takingun as the
principal eigenvector ofMn(V) (∀n) and vn as the principal
eigenvector ofMn(U) (∀n).

We have the following theorem:
Theorem 1:Let Ck = UΛVT + Nk where the entries ofNk

are uncorrelated with mean 0 and varianceσ2. The matrices
Mn(V) andMn(U) have eigenvaluesE{λ2

n}+σ
2 with algebraic

multiplicity 1 and σ2 with algebraic multiplicityP − 1 and
Q− 1, respectively.

Proof: We only prove the caseK → +∞ and Q≫ P (or
P≫ Q). Instead of the sum overk, we use the expected value
E{·}.

The matrices Mn(V) can be written as

E
{(

UΛkVT + Nk

)
vnvT

n

(
UΛkVT + Nk

)T
}
= E{λ2

n}unuT
n + σ

2I P.

The eigenvalues are thusE{λ2
n} + σ

2 and σ2 with algebraic
multiplicity 1 andP−1, respectively, whereas the eigenvectors
remain unchanged with respect to the noiseless case.

The proof goes analogously for the matricesMn(U).
If E{λ2

n} > 0, the principal eigenvectors of the matrices
Mn(V) andMn(U) can efficiently be obtained through power
iterations. Denoting byi the iteration index, we have

u[r+1]
n = Mn(V)u[r]

n

v[r+1]
n = Mn(U)v[r]

n

Based on theorem 1, the convergence rate of the power
method for finding the principal eigenvectorvn of Mn(U) is
given by
∣∣∣∣∣E

{
λ[r]

n
2
}
− E{λ2

n}

∣∣∣∣∣ ≤ tan(θ0)E{λ2
n}

(
λ2 (Mn(U))2

λ1 (Mn(U))2

)2i

∝ E{λ2
n}

(
σ2

E{λ2
n} + σ

2

)2i

≈
1
K

∑

k′
λ2

n(Ck′)
σ2

1/K
∑

k λ
2
n(Ck) + σ2

,

whereθ0 is the angle between the initializationv[0]
n and the

eigenvectorvn.
However, U and V are not known and current estimates

must be used, yielding

u[r+1]
n = Mn(V[r])u[r]

n

v[r+1]
n = Mn(U[r+1])v[r]

n

Theorem 1 shows that the power iteration will converge in
the neighbourhood of the solution.

Now, if the seriesV[r] converges toV, thenu[r]
n converges

almost surely to the principal eigenvector ofMn(V) under
the condition that the initial estimate contains a component in
its direction. The power method has already proven useful in
higher dimensional problems [35], although only for best (in
the ℓ2-norm sense) rank-1 approximations to the data and has
also been found effective in symmetric AJD algorithms [15],
[16]. The repeated updating ofu[r]

n andv[r]
n does not guarantee

that U[r] and V[r] are orthogonal. To correct divergence from
orthonormality, the matricesU[r+1] and V[r+1] need to be
taken back into the space of orthonormal matrices after each
sweep.

Orthogonalization:For transforming the matricesU andV
to the space of orthonormal matrices after each power itera-
tion, we have considered the Gram-Schmidt orthogonalization
scheme, which is widely used in the signal processing com-
munity, and the Lödwin orthogonalization transformation[36].
While the Gram-Schmidt orthogonalization proceeds sequen-
tially, thus propagating errors in the estimation of the vectors
throughout the orthogonalization process, Lödwin’s method
has proved more robust. LetÛ[r] be the matrix formed by the
column vectorsu[r]

n obtained through theN power iterations on
u[r−1]

n and letÛ[r] = φÛ[r]ΣÛ[r]ψT
Û[r]

be its SVD. The projection
of Û[r] on the space of orthonormal matrices under theℓ2-
norm is then given byU[r] = φÛ[r]ψT

Û[r] . Similarly, we obtain
V̂[r] = φV̂[r]ΣV̂[r]ψT

V̂[r] as the SVD ofV̂[r] and V[r] = φV̂[r]ψT
V̂[r] .

As compared with the Gram-Schmidt orthogonalization, we
do not fix any vector, nor an update order.

Stopping Criterion: From the eigenvalue equations
Mn(V)un =

∑
k λ

2
n(Ck)un and Mn(U)vn =

∑
k λ

2
n(Ck)vn,

it follows that ‖Mn(V)un‖ = ‖Mn(U)vn‖ =
∑

k λ
2
n(Ck) =

uT
nMn(V)un = vT

nMn(U)vn. The sum

γ[r+1] =
∑

n

‖Mn(V[r])u[r]
n ‖ + ‖Mn(U[r])v[r]

n ‖ (10)

can thus be used to determine convergence without explicit
computation of the gradient of the cost function. Particularly,
the algorithm can be stopped when

(
1− γ[r+1]/γ[r]

)
approaches

0. Notice that this stopping criterion is an average criterion
over theP+ Q decoupled optimizations.

The algorithm has been summarized in Algorithm 1.

D. Optimization by Givens rotations

To avoid the projection step after each update, one can
consider updates that optimize overU and V in the space
of orthonormal matrices. A well known approach consists
of subsequent multiplicative updates within the group of
rotational matrices (a subset of the orthonormal matrices
consisting of those orthonormal matrices whose determinant
equals 1), also known as the Jacobi iterations or subsequent
Givens rotations [37].

Since left and right multiplication ofCk as UTCkV
yields a bilinear orthonormal transform ofCk, it can be
carried out by successive planar rotations. LetC̃k =
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Algorithm 1 AJSVD by power iterations

Input: set ofK matricesC = {Ck ∈ R
P×Q; k = 1 . . .K}

Initialize U[0] ∈ RP×P and V[0] ∈ RQ×Q (if no information
available let them be the identity matrices inRP×P and
RQ×Q)
N = min(P,Q) , r ← 0
while no convergencedo

r ← r + 1
for n = 1 to N do

CalculateMn

(
V[r−1]

)
from Eq. (6a)

u[r]
n =Mn

(
V[r−1]

)
u[r−1]

n

end for
OrthogonalizeU[r]

for n = 1 to N do
CalculateMn

(
U[r]

)
from Eq. (6b)

v[r]
n =Mn

(
U[r]

)
v[r−1]

n

end for
OrthogonalizeV[r]

end while

(U[r−1])TCk(V[r−1]) be the transformed matrices at iteration
m of the algorithm. The idea is to pick an index pair
(i, j) ∈ {1 . . .n . . .N}2\{(1, 1) . . . (n, n) . . . (N,N)} and rotate the
columnsui andu j as

[ui u j ] ← [ui cosθ − u j sinθ ui sinθ + u j cosθ]

while keeping all other columns ofU as well as all columns
of V fixed. Accordingly, thei-th row C̃k;i· and the j-th row
C̃k; j· of C̃k are transformed as

[
C̃k;i·

C̃k; j·

]
←

[
C̃k;i· cosθ − C̃k; j· sinθ
C̃k;i· sinθ + C̃k; j· cosθ

]
.

The optimal rotation angle should be chosen as to maximize
the criterion in Eq. (4). If we choosei < j < N, the criterion
depends on the rows̃Ck;i· and C̃k; j· only through the terms∑

k C̃2
k;ii and

∑
k C̃2

k; j j . The angle that maximizes Eq. (4) is
given by

arg max
θ

[
cosθ
sinθ

]T


K∑

k=1


C̃2

k;ii + C̃2
k; j j C̃k; j j C̃k;i j − C̃k;ii C̃k; ji

C̃k; j j C̃k;i j − C̃k;ii C̃k; ji C̃2
k; ji + C̃2

k;i j




[
cosθ
sinθ

]
.

(11)
.

The criterionJDiag
(
ui , u j |{uk},V,C

)
is thus maximized by

choosing [cosθ sinθ]T as the normalized major eigenvector
of the central matrix in the above expression. Similarly, when
a pair i ≤ N < j ≤ P is chosen, only the term

∑
k C̃2

k;ii is
affected. Hence, by the above result, the criterion is maximized
by choosing [cosθ sinθ]T as the normalized major eigenvector
of

K∑

k=1

[
C̃2

k;ii −C̃k;ii C̃k; ji

−C̃k;ii C̃k; ji C̃2
k; ji

]
. (12)

Analogous reasoning yield the update rules for the columns
of Ṽ, acting on the columns̃Ck;·i andC̃k;· j of C̃k. The optimal
angle is found by choosing the [cosθ sinθ]T as the normalized

major eigenvector of

K∑

k=1


C̃2

k;ii + C̃2
k; j j C̃k; j j C̃k; ji − C̃k;ii C̃k;i j

C̃k; j j C̃k; ji − C̃k;ii C̃k;i j C̃2
k; ji + C̃2

k;i j

 . (13)

wheneveri < j ≤ N or as the normalized major eigenvector
of

K∑

k=1

[
C̃2

k;ii −C̃k;ii C̃k;i j

−C̃k;ii C̃k;i j C̃2
k;i j

]
. (14)

for i ≤ N < j < Q.
Note that the explicit calculation ofθ is not needed, since

one can form the matrix

G =
[

cosθ sinθ
− sinθ cosθ

]

directly from the normalized major eigenvectors and apply the
following update rules

[ui u j ] ← [ui u j ]G (15a)[
C̃k;i·

C̃k; j·

]
← GT

[
C̃k;i·

C̃k; j·

]
(15b)

and

[vi v j ] ← [vi v j ]G (16a)[
C̃k;·i C̃k; j·

]
←

[
C̃k;·i C̃k;· j

]
G . (16b)

Moreover, the eigenvalues and corresponding eigenvectors
can be obtained algebraically at a low computational cost.

Stopping Criterion: Convergence occurs when only negli-
gible changes to the matricesU and V take place. This is
equivalent to have small rotational angles only, or| sinθ| < ε

for all index pairs ofU and V, with ε some arbitrary small
value. The algorithm has been summarized in Algorithm 2.

E. Initialization

From Eq. (4), we have


UT ∑
k

(
CkCT

k

)
U

VT ∑
k

(
CT

k Ck

)
V
=

∑

k

Λ2
k (17)

Diagonality of the products in Eq. (17) is a necessary, albeit
not sufficient condition. Thus, for both algorithms we can ini-
tialize U andV as the matrices whose columns are the eigen-
vectors of

∑
k CkCT

k and
∑

k CT
k Ck, respectively. A numerically

preferable, albeit equivalent procedure is to initializeU as the
left singular vectors of [C1 . . .Ck . . .CK ] and V as the left
singular vectors of [CT

1 . . .C
T
k . . .C

T
K ]. Note that, ifσ2 = 0, this

actually solves the AJSVD problem. However, asσ2 increases,
this initialization will progressively be more distant from the
solution, thus it is worthy only for data with relatively high
signal to noise ratios. In general, AJD algorithms converge
regardless the initialization and the two proposed algorithms
are no exception. The initialization proposed here is thus only
useful to speed up convergence.
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Algorithm 2 AJSVD with Givens rotations

Initialize U andV (if no information available let them be
the identity matrices inRP×P andRQ×Q)
while no convergencedo

for i from 1 to N; j from i + 1 to P do
if j ≤ N then

perform update according to (15) withG obtained
from Eq. (11)

else
perform update according to (15) withG obtained
from Eq. (12)

end if
end for
for i from 1 to N; j from i + 1 to Q do

if j ≤ N then
perform update according to (16) withG obtained
from Eq. (13)

else
perform update according to (16) withG obtained
from Eq. (14)

end if
end for

end while

V. Results

To test AJSVD we run the algorithm on simulated data
and on a large database comprising 84 electroencephalographic
recordings.

Since C is based on the common structuresU and V,
we can evaluate the algorithm’s performance by taking the
performance criterion

ΦU(U[r]) = PI
[(

Ũ[r]
)T

Ũ
]

(18a)

ΦV(V[r]) = PI
[(

Ṽ[r]
)T

Ṽ
]

(18b)

whereŨ, Ṽ, Ũ[r] and Ṽ[r] contain onlyN columns ofU, V,
U[r] andV[r] respectively andPI(H) is Moreau’s performance
index [38] defined as

PI(H) =
1

2(N − 1)

(∑

α

[ ∑
β |hαβ|

maxδ |hαδ|
− 1

]

+
∑

γ

[ ∑
η |hηγ|

maxκ |hκγ|
− 1

] )
(19)

When the ground truth is not available, as is the case when we
run the algorithm on real data with unknown latent structure,
we use the following performance criterion:

ΦDiag(U[r] ,V[r]) =
1

K(M − 1)

∑

k

∥∥∥∥∥Off
[(

Ũ[r]
)T

CkṼ[r]
]∥∥∥∥∥

2

∥∥∥∥∥Diag
[(

Ũ[r]
)T

CkṼ[r]
]∥∥∥∥∥

2

(20)
whereM = max(P,Q). For a given noise variance and singular
value matrices{Λk}, the expected performance (K → +∞) is

given by

ΦDiag(U,V) =
σ2

1
N

∑
n E{λ2

n(Ck)} + σ2
. (21)

A. Simulated Data

For a first evaluation of the two proposed algorithms for the
approximate diagonalization of a set of asymetric rectangular
matrices, we generate a setC of K input matrices inR12×16.
Each input matrix is generated asCk = UΛkVT + Nk, where
the diagonal elements ofΛk are i.i.d. following a normal
distribution with mean zero and standard deviation one and
the entries ofNk are i.i.d. following a normal distribution with
mean zero and standard deviationσ = 0.1. Furthermore,U
andV are randomly generated orthonormal matrices inRP×P

andRQ×Q, respectively, obtained through a QR-decomposition
of random matrices with i.i.d. elements drawn from the
normal distributionN(0, 1). The main objective of this first
experiment will be to show the accuracy of the theoretical
performance estimation using Eq. (21) when the number of
matricesK → +∞. For comparison we chooseK = 50 and
K = 250.

The theoretically expected (K → +∞) performance
ΦDiag(U,V) in the above case withE{λ2

n} = 1 is simply given
by

ΦDiag(U,V) =
σ2

1+ σ2
(22)

Fig. 1(a)&(b) show the results for both the power method
followed by Lödwin’s orthogonal correction method and the
Jacobi method using Givens rotations. Both the 100 individual
realisations and their average are shown.

The results in Fig. 1 confirm the accuracy of the theoretical
expectation of the performance measure in Eq. (21). It can also
be seen that the Jacobi iterations have a better performance
than the power iterations with respect to the off-diagonal
criterion for this settings.

A second approach consists in the evaluation of the perfor-
mance indices in Eq. (18). To this goal we realize 100 runs
for i.i.d. λn(Ck) taken from a normal distribution having zero
mean and unit variance, under varying levels of i.i.d. zero
mean, normally distributed noise with varying variance and
for a varying number of matricesK (P = 12,Q = 16). Since
we do not want to evaluate the influence of the initialization
stage, bothU and V were initialized as the identity matrices
in their respective dimensions. The results can be found in
Fig. 2 and Table I. A stopping criterion of 200 iterations has
been used here, such that the algorithms could be compared
by their asymptotic convergence.

From both Fig. 1 and 2 we observe that, despite the differ-
ence of the two algorithms with respect to the off-diagonal
criterion (see Fig. 1), the identification of the principalN
columns ofU and V performs almost equally well. We have
been able to show the global convergence of the power
iteration in the neighbourhood of the solution, while this is not
the case for the Jacobi iterations. The obtained results witness
in favour of the good performance of Jacobi iterations, even
in the rectangular case.



CONGEDOET AL.: AJSVD 7

10
0

10
2−60

−40

−20

0

(a) σ = 0.0,K = 1
10

0
10

2−60

−50

−40

−30

−20

−10

(b) σ = 0.0,K = 2
10

0
10

2−60

−40

−20

0

(c) σ = 0.0, K = 10
10

0
10

2−60

−40

−20

0

(d) σ = 0.0, K = 100

10
0

10
2−50

−40

−30

−20

−10

0

(e) σ = 0.1,K = 1
10

0
10

2−50

−40

−30

−20

−10

0

(f) σ = 0.1, K = 2
10

0
10

2−50

−40

−30

−20

−10

0

(g) σ = 0.1, K = 10
10

0
10

2−50

−40

−30

−20

−10

0

(h) σ = 0.1, K = 100

10
0

10
2

−30

−20

−10

0

(i) σ = 0.5, K = 1
10

0
10

2

−30

−20

−10

0

(j) σ = 0.5, K = 2
10

0
10

2

−30

−20

−10

0

(k) σ = 0.5, K = 10
10

0
10

2

−30

−20

−10

0

(l) σ = 0.5, K = 100

10
0

10
2−20

−15

−10

−5

0

Φ

iteration r

 

 

(m) σ = 1.0, K = 1
10

0
10

2−20

−15

−10

−5

0

(n) σ = 1.0,K = 2
10

0
10

2−20

−15

−10

−5

0

(o) σ = 1.0, K = 10
10

0
10

2−20

−15

−10

−5

0

(p) σ = 1.0, K = 100

Fig. 2: Moreau-Amari’s performance index [Eq. (18)] for theestimated linear transformations. From left to right we have
K = 1, 2, 10, 100 matrices and top-down we have a noise level with standarddeviationσ = 0, 0.1, 0.5 and 1. The continuous
lines correspond to the power method and the discontinuous lines to the Given’s rotations. X-axes range from iteration 0to
iteration 200. Equal scaling of the Y-axis (in dB) in each rowhas been used for ease of comparison.

B. EEG Database

We use the NTE (Nova Tech EEG, Inc.) normative database
comprising 84 EEG recordings obtained on healthy individuals
aged in between 17 and 35 years old at rest with the eyes
closed. The data was acquired from 19 electrodes placed
according to the standard international 10/20 system and
sampled at 128 samples per second. After artifact rejection,
about 90 seconds of EEG was available for each recording. We
apply the blind source separation procedure described in [26].
Fourier cospectral matrices at 0.5 Hz resolution were estimated
by FFT on 2-sec windows with 50% overlap using the Welch
tapering [39]. The cospectra in between 1 and 28 Hz were
summed and the sum whitened. The whitening tranform was
then applied to each of the cospectra in the 1-28 Hz range
and the set was subsequently subjected to the two proposed

algorithms. The average (with standard deviation bars) non-
diagonality [Eq. 20] and number of iterations applying five
different stopping criteria are displayed in Fig. 3. The non-
diagonality function reaches its minimum using as stop crite-
rion 10−6 for Lödwin and 10−3 for Jacobi. For those values
the average number of iterations is respectively 198 and 260
and their standard deviations are comparable. For this real
dataset, it appears that Algorithm 1 converges faster (in terms
of number of iterations).

VI. D iscussion

The algorithms we propose are simple to implement, allow-
ing quick testing of new BSS approaches in the community.
Their numerical complexity per iteration isO(42KN3) for
the power iterations andO(6KMN2) for the Jacobi iterations,
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(a) (b)

Fig. 3: (a) The non-diagonality measured through Eq. (22) for solving the AJSVD by power iterations with Lödwin
orthogonalization (light grey bars) and by Givens rotations (dark grey bars) as obtained on the Nova Tech EEG normative
database. Each bar represents the average (on a total of 84) and standard deviation obtained with the stopping criterionset to
10−3, 10−4, 10−5, 10−6 and 10−7 for the power iterations and 10−1, 10−2, 10−3, 10−4 and 10−5 for the Givens Rotations. (b)
The corresponding average and standard deviation of the number of iterations needed for convergence.
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Fig. 1: The performance index of Eq. (20) as a function of
the iteration index for the data as described in section V-A.
The theoretical expected value of Eq. (22) is indicated with
the dotted line. In gray, the 100 individual realisations are
plotted and in black the mean over these realisations. The
continuous lines are used for the power iteration method
(AJSVD Algorithm 1) and the discontinuous lines for the
Jacobi method (AJSVD Algorithm 2).

TABLE I: The average of the performance index [Eq. (18a)]
(in dB) over 100 Monte Carlo runs as a function of the noise
level and the number of matrices using (a) Lödwin symmetric
orthogonalization and (b) Jacobi iterations.

(a) Lödwin

σ\K 1 2 5 10 50 100
0.00 -11.52 -18.99 -32.52 -55.27 -157.27 -157.38
0.10 -6.78 -10.22 -14.85 -16.98 -20.90 -22.38
0.20 -5.23 -6.53 -11.02 -13.71 -17.78 -19.38
0.30 -4.80 -5.35 -7.81 -11.16 -15.93 -17.38
0.40 -4.52 -4.89 -5.66 -8.14 -14.37 -15.99
0.50 -4.54 -4.62 -5.08 -6.14 -13.14 -14.87
0.60 -4.41 -4.53 -4.74 -5.19 -11.44 -13.78
0.70 -4.42 -4.45 -4.63 -4.82 -8.55 -12.41
0.80 -4.35 -4.40 -4.54 -4.66 -6.24 -10.07
0.90 -4.35 -4.46 -4.46 -4.60 -5.39 -7.33
1.00 -4.34 -4.35 -4.38 -4.49 -4.96 -5.90

(b) Jacobi

σ\K 1 2 5 10 50 100
0.00 -11.78 -18.75 -35.76 -59.59 -158.29 -158.46
0.10 -6.69 -10.22 -14.89 -16.98 -20.90 -22.38
0.20 -5.30 -6.45 -11.07 -13.70 -17.78 -19.38
0.30 -4.82 -5.38 -7.88 -11.20 -15.93 -17.38
0.40 -4.52 -4.87 -5.73 -8.29 -14.37 -15.99
0.50 -4.48 -4.63 -5.04 -6.17 -13.14 -14.87
0.60 -4.39 -4.54 -4.74 -5.20 -11.78 -13.79
0.70 -4.35 -4.45 -4.63 -4.83 -9.75 -12.69
0.80 -4.33 -4.43 -4.51 -4.62 -6.88 -11.54
0.90 -4.33 -4.44 -4.44 -4.57 -5.64 -8.97
1.00 -4.37 -4.32 -4.46 -4.45 -5.01 -6.47

which is in line with existing AJD algorithms. However, the
convergence rate of our algorithm is rather low, thus exten-
sions to the bi-linear case of optimization schemes may be
investigated in the future, as well as non-orthogonal solutions
to the AJSVD problem, avoiding the whitening step [9], [14],
[19].

The appropriate stopping criterion for AJD algorithms with
linear convergence depends on the data at hand. The diag-
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onalization of the large EEG normative database we have
performed (Fig. 3) provides an indication, but this is a mere
empirical approach. Future research could focus on an adaptive
procedure to set the optimal stopping criterion, balancing
between computational resources and the required accuracy
of the offered solution.

The AJSVD algorithm 1 based on power iterations can
easily be extended to the complex domain; it suffices to
define the Frobenius norm of a matrixC ∈ CP×Q as ‖C‖2 =∑

p
∑

q |Cpq|
2 = trCHC, where·H denotes the conjugate trans-

pose. It is then easily seen that the equations in section IV
transform accordingly and that we are left with the maximiza-
tion of

JOFF(U,V | C) =
K∑

k=1

tr|DiagN(UHCkV)|2 =
K∑

k=1

N∑

i=1

|uH
i Ckvi |

2

which is equivalent to the maximization by parts of

JDiag(U |V,C) =
∑

n

uH
nMn(V)un

JDiag(V |U,C) =
∑

n

vH
nMn(U)vn .

Now, since the above equations contain the Hermitian positive
semidefinite matricesMn(V) andMn(U), their eigenvalues
are real positive and the power iteration methods can be used
as defined for the real case. In contrast, the Jacobi iterations
need to be adapted appropriately to the complex case. To this
end, we propose the use of the algorithm for complex Givens
rotations as has been described in [34].

VII. Conclusion

The algorithms we propose are simple and numerically
efficient. Numerical simulations show good convergence prop-
erties using either the power method combined with Lödwin
symmetric orthonormalization or Jacobi iterations. In addition,
we have shown heuristically that both the power method and
the Jacobi iterations have global convergent behaviour in the
bilinear case, with an asymptotic convergence close to the
theoretical value. The analysis of a large EEG database also
shows good performance. The new framework opens the road
to new blind source separation applications.
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