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Approximate Joint Singular Value Decomposition of
an Asymmetric Rectangular Matrix Set

Marco Congedo, Ronald PhlypMember, IEEEand Dinh-Tuan Phamylember, IEEE,

Abstract—The singular value decomposition C= UAVT is in several fields such as speech enhancement, image process-
among the most useful and widespread tools in linear algebra ing, geophysical data analysis, wireless communicatiath an
Often in engineering a multitude of matrices with common biological signal analysis [20].

latent structure are available. Suppose we have a set oK . . .

matrices {Cy,...,Cxk} for which we wish to find two orthogonal The AJD algc_)rlthms proposed so _farﬂ“ér according to
matrices U and V such that all products U C,V are as close as the restrictions imposed on the matrices that can be diago-
possible to rectangular diagonal form. We show that the prokem  nalized (Hermitiaysymmetric, positive semi-definite, normal),
can be solved fiiciently by iterating either power iterations the restrictions imposed on the joint diagonalizer sought-(
followed by an orthogonalization process or Givens rotatios. o qrthogonal or full-column rank), their convergence rate
The two proposed algorithms can be seen as a generalization . . . . .

of approximate joint diagonalization (AJD) algorithms to the 2and computational complexity per iteration. More impottgn
bilinear orthogonal forms. Indeed, if the input matrices are they difer in terms of the cost function to be optimized.
symmetric and U = V, the optimization problem reduces to For the sake of ficiency some algorithms rely on heuristics
that of orthogonal AJD. The dfectiveness of the algorithms is (e.g., [19], [9], [14]), whereas others have focused on teem

shown with numerical simulations an_d the aryaly&s of a large natural formulation based on Frobenius norri-diagonal
database of 84 electroencephalographic recordings. The gposed

algorithms open the road to new applications of the blind Minimization [15], [16], [8], [17], [10], [21]. Restrictig the

source separation framework, of which we give some example joint diagonalizer to the unitary or orthogonal case, aighta

for electroencephalographic data. forward least-squares objective function exists [4], [2d]this
Index Terms—bilinear orthogonal approximate joint diagonal-  €ase, BSS is achieved with the classical two-step procedure

ization, singular value decomposition, Bdwin orthogonalization, ~often encountered in independent component analysis (ICA)

power iteration, Jacobi iterations, Givens rotations data is whitened first, leaving the solution up to a rotation,

which is then found by unitaygrthogonal AJD algorithms [4],

[22], [23]. The work described in this paper operates within

. . this latter framework. Historically, AJD algorithms havd-a

Hereas the blind sourc_e.sepallratlon .(BS.S) prOblea?essed the joint diagonalization of Hermitian or symneetri

can be solved by the joint diagonalization of tw

i . . . Gnatrices. Therefore a joint diagonalizer is sought so apam s
symmetric matrices [1], [2], it has been soon discovered thr?oth the column space and the row space of the matrix set to

more robusft and fﬁ(_:ignt plind source separation alg_ori_thm%e diagonalizet As a consequence, the decomposition of the
can be obtained by joint diagonalization of a symmetric mlatrinput signal is performed along one dimension, typicalketa

set [3], [4], [5] [6, For a review see].The joint diagonalipam as the space, for example in electroencephalography (EEG),

gfta ”‘tattf";. set gerturbetdhby n0|S(|a (e.dg.f, due KT istlmatgsoqf the time, for example in functional magnetic resonance
ata statistics) does not have a closed form solution an ging. In this paper, we pose afirent AJD problem,

Fe obta;neg On% approxmw_ateiy. _Fr_otmd'Fhe PO'IF“ (t)'f V'eWJO hich is actually a bi-linear AJD. Indeed, we no longer requi
mizarda ?he ra, e ?pprqmma etJO'g lagon§t|_za lon oA a single joint diagonalization matrix spanning both theuowoh
extends the eigenvalue-eiegnvector decomposition simg:- and row space, instead, we require a pair of joint diagoeediz

gr_lx d|ag|c.)natlllzatl?n) andt|§s getn_eralhzdgd v;ehrsmn (two wixa with mutually orthogonal columns. One of the matrices spans
lagonalization) to a matrix set including three or more M3e column space while the other the row space of the matrix

trllces_.ﬂf\s suclh,_ I Ifha Xﬁg genljral and ﬂf’gblz _to:)I. “F_’El‘t set. This problem allows the AJD of non-symmetric, possibly
aigorithms solving the probiem are studied Intensiely rectangular matrices. From the point of view of linear algeb

the signal processing community [5], [7], [8], [9], [10L.AL o resultin S : X
g decomposition is an extension of the singular
[12], [13], [14], [15], [16], [17], [18], [19]. These advass value decomposition to a set comprising more than two

have allowed for Blind Source Separation (BSS) applicmio%atrices, which we name Approximate Joint Singular Value

M. Congedo and R. Phlypo are with the ViBS (VisionD€COMposition (AJSVD). As such, it promises to become
and Brain Signal Processing) Research Group, GIPSA laBn even more general and flexible tool, which reduces to
CNRS, INPG. 961, rue de la Houile Blanche, BP 46the previous AJD case for symmetric matrix sets. To solve
38402  Grenoble, France. E-mail: marco.congedo@gmail . com,
ronald.phlypo@gipsa-lab.grenoble-inp. fr

D.-T. Pham is with IMAG, CNRS. 51 rue des Mathmatiques, BP3&841 1There has been also some work on the approximate joint didigation of
Grenoble CEDEX 9, France. E-mallinh-Tuan.Pham@imag. fr normal matrices (possibly asymmetric), for which the cafuspace is spanned

Copyright (c) 2010 IEEE. Personal use of this material isriged. How- by the columns of the joint diagonalizer and the row spacehlyrows of its
ever, permission to use this material for any other purpasest be obtained inverse [18]. However, such decomposition does not findiegn in the
from the IEEE by sending a requestiabs-permissions@ieee.org BSS context.
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the AJSVD problem we propose two iterative algorithm$he identity matrix inR” is denoted byl 5, the matrix of
addressing the least-squares objective function, opetiiag zeros inR~* by 0 and|a| is the absolute value af. 1n(A)
road to new BSS approaches. For instance, we may constmit denote then-th eigenvalue of the matrid, wheren is an
matrix sets living in two dimensions, for example, space aratbitrary indexation. We will use the terms orthonormal and
time, yielding as solution both bases simultaneously. Ve asrthogonal for matrices € R*A for whichATA = AAT =1,
also enabled to study double sensor array recordings, wherand matricesA € R A > A, for which ATA = I,,,
the matrix set can be formed by cross-statistics between tvaspectively.

sensor arrays in order to concentrate on their similarity. S

far the bilinear AJD problem has been addressed only in the lll. M orrvation

computer vision community. In [24], Jacobi iterations were Bss py AJD of second-order sensor statistidkers a
proposed for the square case without allowing for dimensi@Ryible approach to separate EEG sources based on their char
reduction. In [25], a gradient approach to the bilinear AJRcteristic non-stationarity, spectral profile goexperimental
problem has been suggested, based on the natural gradientgRdition membership. The sources of interest are equitale
proach. This algorithm has shown to exhibit slow convergenc|ectric dipoles formed by assemblies of locally synchzedi
since only small step sizes are allowed to keep the updateg{amidal cells in the cortex. The currents induced by these
the manifold of orthonormal matrices. dipoles difuses through the head and reaches the scalp sensors
This paper is organized as it follows: in section Il we repofklectrodes). This process can be seen as a linear mixing
the notation used throughout. In section Ill we motivate OWrocess in good approximation. In the EEG literature the

study with the practical example of BSS in electroencemghalomixing phenomenon is known as the ™volume conduction
raphy (EEG) and we illustrate possible applications of dur &ffect”, see [26] for a review.

gorithms in the context of EEG. In section IV we formalize the aAs a consequence, we may write the observed potentials
bi-linear AJD in the real domain and we pose the optimizatiqr(t) € RP as

problem within a least-squares framework. We then show that X(t) = As(t) , (1)

it is possible to decouple the optimization problem in a namb _ . . . _

of simple quadratic form optimizations, alternating betwe whereA is aNt|me-|nvar|ant, full column rank_ mixing matrix
the estimation of the two joint diagonalizers to be foundeith @nd S(t) € R™,N < P holds the unknown time courses of
we present two simple andfieient iterative algorithms; the h sources components. The AJD scheme for BSS consists
first optimizes the least-squares objective function by grow!n €stimating a number of second-order statistical magrice
iterations and imposes unitarigythogonality at the end of directly from the multivariate observed measuremex(ts,
each iteration, extending upon previous work in [15], [16F-9-» Fourier cospectral matrices, covariance matricés es
[26]. The second operates by Givens rotations, extendipg UF;nated under dierent experimental conditions or covariance

the seminal work of [4]. We also provide a suggestion fdpatrices estimated inﬂérent temporal Windows [26]. Follgw-
initialization, which applies in general to all unitgeythogonal N9 EQ. (1), such matrices have theoretical fafp= AAKA ",

AJD algorithms. In section V we present results of numericiihere theAy represent the diagonal matrices of the unknown,
simulations and the diagonalization of cospectral magriok true source statlst|cs,_ thus we work under the assumptian th
a large (N=-84) EEG normative database, both witnessing i€ Sources are spatially uncorrelated.
favor of the good performance of the proposed aIgorithms.Under rather general conditions, it can then be shown that
Finally, section VI includes our discussion, where we ingthe AJD of the matrix set results in theéentificationof the

) . ) .. . T _ /j . . .
cate the extension to the complex case and we address 3gBnXing matrixB' = A~, yielding source estimates
limitations of our work. §t) = BTx(t) = BTAS(t) ,

up to the usual order and scaling indeterminacies [20],,[23]
II. Notations i.e.,BTA = PA, whereP andA are respectively a permutation

In the following we will indicate matrices by upper casénd a diagonal scaling matrix. This identification scheme is
bold face charactersAj, matrix sets by calligraphic lettersnamed blind because it does not rely on the knowledge of
(A), vectors by lower case bold face)( indices and scalars the mixing process. Furthermore, it does not depend on the
by lower case italicq) characters. Theth column ofA will ~Mixing process itself [27], but only on the uniqueness of
be denoted by, unless ambiguity between rows or column#e source statistics profilet,(Ci).k = 1,2...K along the
may exist, in which case we will us&;. andA to denote the diagonalization set. Precisely, following [28] (see al28][
i-th row, respectively column of. Constants will be noted [30]) let us define

in upper case italicsA). Notationstr(-), ()" and|| - || indicate 3 An(Ci)Am(Ci)
the trace of a matrix, the transpose operator and the Frobeni p = rplar}x kN s ,
norm, respectively. The operators Diggénd Gi(:) return a V2 [An(C)An(C] Zi [m(Ci) Am(Ci)]

matrix nullifying the df-diagonal or the diagonal elementsas the modulus of uniqueness of a diagonalization set; then
of its argument, respectively. Dig) nullifies not only the p <1 (no two such profiles are colinear) is the necessary and
off-diagonal elements of its argument but also the elememigticient condition for source identificatich= PAs.

on the diagonal with column index greater thAnAll these Upon congruence transformation®@f= {Cy,k = 1,2...K]},
operators are defined for both square and rectangular estrithe set{Ax = BTC¢B} contains zero f-diagonal elements
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and thus outputs uncorrelated source$edatively removing where the approximation is mainly due to the non-
the nuisance féects of volume conduction. diagonalizable noise part.

So far, identification has relied only on squared matricesWhen K = 1, the above decomposition is the singular
of source auto-statisticAy. In this work we allow theAyx value decomposition (SVD) o€; where only theN major
to be rectangular, so as to allow diagonalization sets sihgular values are retained on the diagonalAgfand the
the form Cx = UTAV. We then require the identificationcorresponding left and right eigenvectors are the colunins o
of both U and V under orthogonality constraints, yieldingu and V, respectively.UA;VT is then known as the best
the approximate joint diagonalization of an asymmetric ammdnk-N approximation toC; [33]. Only whenK = 1 and
possibly rectangular matrix set. N = rank(C,), the equality in Eq. (2) holds, whereas for the

In this framework,Ax no longer need to be restricted togeneral case wherg€ > 1 it may hold only approximately.
source auto-statistics, but may hold cross-statisticsvéoet WheneverP = Q = N and U = V, the above problem
two observation spaces. Thanks to this generalization, nesduces to the joint approximate orthogonal diagonabzati
approaches to blind identification are allowed. For instancof approximate Hermitigisymmetric matrices [4], [34]. In this
inceeasing attention is currently being paid to the intégna paper, we tackle the more general problem wkea Q, N <
and fusion of data acquired synchronously or asynchrogoushin(P, Q) and Cy # CI. We will treat the real case only,
from different modalities [31], such as EEG and magneddressing the extension to the complex case in Section VI.
toencephalography, EEG and functional magnetic resonance
@maging. D_ata fu_si_on refers t(_) the i_dea to use both modz_al_itig_ Objective Function
in a combined (joint) analysis, trying to find commonalities _ . .
between them. A special case of data fusion is hyperscania‘S is the case for the SVD_ofasmgIe matrix, we shal_l quk
ning, wherein the same modality is recorded synchronouf"?de_r the norm¢,. We consider the least-squares objective
between two individuals. Then, after whitening the data hction
each observation, one may jointly diagonalize a set of their s K 112
cross-statistics, allowing for a robust variant of the cz@oal T (U VAAIC) = Z ”Ck — UAV ” 3)
correlation analysis. Again, one may use Fourier cospectra k=1
matrices at dferent frequencies or covariance matrices with respect tdJ,V and the setA} of diagonal matrices with
different time windows. Note that the above extension to CCM non-zero entries.
(which is restricted to the cagé = 1 or to summation over the ~ Since||A[l* = tr(ATA) and because of the invariability of the
matrix set [32]), generally lowers the modulus of uniquend&ace under orthogonal transformations, the above aitezan

by adding matrices to the se€y/}. be rewritten as

Another example of this framework is a space-time analysis. K
Consider evoked response potential studies, wik = Z(”Ck”2+ ||Ak||2—2tr(AkUTCkV)) :
1...K are the time-locked observations whose columns are k=1

the observed potentials as a function of the time instarfter fixedU andV it is easily seen that the above criterion is
after stimulus onset and whose rows are with respect to thgnimized whenever

different electrode locations. After suitable transformatoore ) T

may jointly diagonalize directly the matricd€y} (without Ay = Diagy (U Ckv)’Vk :

resorting to second or higher order statistical estima)ionThe attained minimum is

yielding jointly the spatial filters and the time domain eatis. K

IV. METHODS T,V C) = kz:; (||Ck||2 -t ([Diag’\‘ (UTC"V)]Z))
A. Model One is thus led to the problem of maximizing
Consider the following generative model K K N
Cie= UAVT + Ny, IO VI0) = ) tr([Diagy (UTCWV)[) = 3 > [urowl”
whereU € R andV € R are orthogonal matrices, the < kL= (4)

matricesAy are diagonal matrices iRPQ with N < min(P, Q)  Whereu; andv; are thei-th columns ofU andV, respectively,

non-zero elements and, are matrices containing measuresatisfying the orthonormality constrainméuj = ViTVj = dij,
ment noise and estimation errors. with ¢;; the Kronecker delta, taking 1 if and onlyii= j and

Typically, the set 0 otherwise. For similar developments in the case of higher-
order cumulants, see [21].

_ l— P.
C={Ck=1...K.Cce R™ The expansion of Eq. (4) gives

is composed of statistical estimations of the signal paxtV ' N K 5 N
sharing a common latent structure and a randomly varying ZZ(UIC"V”) = Z ur Mu(V)un (5a)

noise contributioMy. We wish to identify the two orthonormal n=1 k=1 n=1

matricesU andV determining the latent structure, such that N
. = > ViMoUNe . (5b)

U'CV = Ay, VK, 2 P
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where Theorem 1 shows that the power iteration will converge in
the neighbourhood of the solution.
- TeT vo —
Mq(V) = Zk: CivaVg Gy ¥a=1...Q . (6a) " Now, if the seriesvIl converges tov, thenul!) converges

T almost surely to the principal eigenvector afl,(V) under
Z CyUpupCh, Vp=1...P . (6b)  the condition that the initial estimate contains a compoiren
k its direction. The power method has already proven useful in
Following Eq. (5), the search over the matri¢¢sandV can higher dimensional problems [35], although only for beat (i
be expressed as the maximization of the £,-norm sense) rank-1 approximations to the data and has
Dia T also been foundftective in symmetric AJD algorithms [15],
TV, C) Z Un Mn(V)Un [16]. The repeated updating af! andvl!! does not guarantee
! T that Ul and VIl are orthogonal. To correct divergence from
ZVHM”(U)V” : orthonormality, the matriced)'* and VI™*Y need to be
" taken back into the space of orthonormal matrices after each
sweep.

My(U)

J*V|U,C)

C. Optimization by power iterations

Eq. (5a) and (5b) are maximized by taking as the  QOrthogonalization:For transforming the matricds andV
principal eigenvector oM(V) (¥n) andv, as the principal to the space of orthonormal matrices after each power itera-
eigenvector ofM,(U) (Vn). tion, we have considered the Gram-Schmidt orthogonatirati

We have the following theorem: scheme, which is widely used in the signal processing com-

Theorem 1:Let Cx = UAVT + Nk where the entries ok munity, and the Lédwin orthogonalization transformatiay.
are uncorrelated with mean 0 and variamce The matrices \while the Gram-Schmidt orthogonalization proceeds sequen
Ma(V) and My(U) have eigenvalueB{47}+c* with algebraic tially, thus propagating errors in the estimation of thetues
multiplicity 1 and o with algebraic multiplicityP — 1 and throughout the orthogonalization process, Lédwin’s rodth
Q- 1, respectively. has proved more robust. LE{" be the matrix formed by the

Proof: We only prove the cas — +co andQ > P (or column vectorsi'! obtained through thBl power iterations on
P> Q). Instead of the sum ovés we use the expected valueyl'-1l gnd |etOl" = ¢g[r120[r]tﬂ“ be its SVD. The projection
U T

E{}. ) i of U on the space of orthonormal matrices under the
The Tmatrlces TMn(V)T can ~ be , wrliten , 8S norm is then given byl = gy, Similarly, we obtain
E{(Ul}kv + Nk) ViV (UAkV + Nk) } - E{/ln}l_'lnun to IP_' \7[r] = ¢\7[r]z\7[r]lﬂ;[/[r] as the SVD oVl and VI = ¢\‘/[r]lﬁ\1;[r].
The eigenvalues are thug{12} + o> and o® with algebraic As compared with the Gram-Schmidt orthogonalization, we
multiplicity 1 andP-1, respectively, whereas the eigenvectorgo not fix any vector, nor an update order.

remain unchanged with respect to the noiseless case. Stopping Criterion: From the eigenvalue equations
The proof goes analogously for the matrickt(U). B M,(Vun = 3 223(Cun and Mp(U)vp = 3 43(Ci)Vn,
If E{A2} > 0, the principal eigenvectors of the matricest follows that [[Mn(V)unll = [IMa(UIVall = Sk A3(Ck) =

Mn(V) and Mn(U) can dficiently be obtained through poweru! M,(V)un = v Mn(U)v,. The sum
iterations. Denoting by the iteration index, we have [r+1] o (]
AT = T IMGVIDU + MUV (20)
ul = Mi(V)ul! n
VL”” = Mn(U)VH] can thus be used to determine convergence without explicit
computation of the gradient of the cost function. Partidyja

e algorithm can be stopped Wh@n— y[”ll/y[r]) approaches
0. Notice that this stopping criterion is an average ciiteri

Based on theorem 1, the convergence rate of the po
method for finding the principal eigenvectay of Mp(U) is

given by over theP + Q decoupled optimizations.
22 The algorithm has been summarized in Algorithm 1.
'E{AH]Z} B < tan@o)E{Aﬁ}(%) J I
1 n
o2 2 D. Optimization by Givens rotations
« E|—n—s . o
"\ E{42} + 02 To avoid the projection step after each update, one can
1 ) o2 consider updates that optimize overand V in the space
~ R;An(Ck/)l/KZk/l%(ck)"'O'z > of orthonormal matrices. A well known approach consists

of subsequent multiplicative updates within the group of
whered, is the angle between the initializatio) and the rotational matrices (a subset of the orthonormal matrices

eigenvectow,. consisting of those orthonormal matrices whose determinan
However,U and V are not known and current estimategduals 1), also known as the Jacobi iterations or subsequent
must be used, yielding Givt_ans rotations [37]_. o
[r+1] T _Slnce Ie_f‘_[ and right multiplication ofCy as uTcyVv
Un = Ma(V¥)up yields a bilinear orthonormal transform d@, it can be

Vil = Ay carried out by successive planar rotations. L& =
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Algorlthm 1 AJSVD by power iterations major eigenvector of
Input: set ofK matricesC = {Cx € R™%k=1...K} K )
Initialize U € RP® and VI € R¥ (if no information Z[ Chi +Cj CkJch i C; i Cui ] . (13)
available let them be the identity matrices R™" and Ckuck ji = Cii Ck,lj Ck ji +Ck|]
RQxQ)
N = min(P,Q),r « 0 wheneveri < j < N or as the normalized major eigenvector

while no convergenceo of

K ~2
r—r+1 Ck'iL CkuCli
= < . 14
for n=1to N do Z[ —Cuiii Ckiij Ck” (14)
Calculate M, (VI™=Y) from Eq. (6a) . _

ul? = M, (V[r—l]) ulr-1 fori<N<j<Q. N _ _ _
Note that the explicit calculation af is not needed, since

end for h
one can form the matrix

OrthogonalizeUl"

forn=1toN do cosd  sing
Calculate M, U[r]) from Eq. (6b) GC=| _sing cow ]
[ _ (1) /[r~1]
Vh Mn(U Vh . . . .
end for dlrectl_y from the normalized major eigenvectors and apipéy t
Orthogonalizev" following update rules
end while oyl « [ yle (15a)
[ gkt } - GT[ g ] (15b)
(UI-1Te (V1) be the transformed matrices at iteration 2k k-
m of the algorithm. The idea is to pick an index paignd
(i,)) €{l...n...NA\{(1,1)...(n,n)...(N,N)} and rotate the
columnsu; andu; as [vi vil < [vi vjlG (16a)
[ui uj] « [ujcosd —ujsind u;sing + u; coss] [Ck?" Ck?i'] A [Cki'i Ck?'i]G : (16b)

Moreover, the eigenvalues and corresponding eigenvectors

while keeping all other columns df as well as all columns . : .
can be obtained algebraically at a low computational cost.

of V fixed. Accordingly, thei-th row f:k;i. and thej-th row

Cyj. of Cy are transformed as , o _
Stopping Criterion: Convergence occurs when only negli-

Ci. ék;i.cose—f:k;j.sine gible changes to the matricés and V take place. This is
(;k;j_ [ ék;i.sin9+ (;k;j_ cosy | - equivalent to have small rotational angles only, sing| <
for all index pairs ofU andV, with £ some arbitrary small
The optimal rotation angle should be chosen as to maximiggue. The algorithm has been summarized in Algorithm 2.
the criterion in Eq. (4). If we choose< j < N, the criterion
depends on the rovv§k. and Ck, only through the terms

>xC k“ and ch2 The angle that maximizes Eq. (4) isE. Initialization

given by From Eg. (4), we have
K 2 2 A A
Ck“ +Ck Cu:jiCukij — CkIICk]I cosd T T
arg max i ( U Zk ckc
I 5'”9 } {kzzi‘{ Crji Cuij — Cuii Cucj Cz; +C&; sind 3 yr s CTCk ZAZ (17)
11) k

: Diagonality of the products in Eq. (17) is a necessary, albei
The cntenonjD'aggu.,u [{uk}, V, C) is thus maximized by not sufficient condition. Thus, for both algorithms we can ini-
choosing [co# sind]' as the normalized major eigenvectotialize U andV as the matrices whose columns are the eigen-
of the central matrix in the above expression. Slmllarlyewh vectors ofy CkCT andy CTCk, respectively. A numerically
a pairi < N < j < P is chosen, only the terny CZ; is preferable, aIbe|t equwalent procedure is to initializas the
affected. Hence, by the above result, the criterion is maxichizeeft singular vectors of €;...Ck...Ck] and V as the left
by choosing [co8 sin6]™ as the normalized major eigenvectosingular vectors of¢] ...C[ ... C{]. Note that, ifc? = 0, this

of 3 actually solves the AJSVD problem. However ggfsincreases,
K Ci'ii, Ck,I Ck i this initialization will progressively be more distant frothe
kZ; _ék;iick;ji ck i (12) solution, thus it is worthy only for data with relatively g

signal to noise ratios. In general, AJD algorithms converge
Analogous reasoning yield the update rules for the columregardless the initialization and the two proposed alpgorg

of V, acting on the columnék;.i andék;.,— of Cy. The optimal are no exception. The initialization proposed here is tmlg o
angle is found by choosing the [c@ssing]T as the normalized useful to speed up convergence.
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Algorithm 2 AJSVD with Givens rotations given by

Initialize U andV (if no igf'())rmatiog gvailable let them be o2
the identity matrices iR™" and R~¥*%) Dpiag(U, V) = . 21
while no convergenceo o : ﬁzn E{A3(C} + o &
for i from 1 toN; j fromi+1toP do
if j <N then A. Simulated Data
perform update according to (15) witB obtained
from Eq. (11)
else
perform update according to (15) wifB obtained

from Eq. (12)

For a first evaluation of the two proposed algorithms for the
approximate diagonalization of a set of asymetric rectéargu
matrices, we generate a s@tof K input matrices inR'>16,
Each input matrix is generated & = UAVT + Ni, where
the diagonal elements oAy are i.i.d. following a normal

and if distribution with mean zero and standard deviation one and
fen . ]?r 1toN: if 1t q the entries oNy are i.i.d. following a normal distribution with
orif| jrgmN th:n » 1 fromi+1toQdo mean zero and standard deviation= 0.1. FurthermoreJ

andV are randomly generated orthonormal matrice®R P
andRR*Q, respectively, obtained through a QR-decomposition
of random matrices with i.i.d. elements drawn from the
normal distributionN\(0,1). The main objective of this first
experiment will be to show the accuracy of the theoretical
performance estimation using Eq. (21) when the number of

perform update according to (16) wifB obtained
from Eq. (13)

else
perform update according to (16) witB obtained
from Eq. (14)

end if matricesKk — +oco. For comparison we choog€ = 50 and
end for
) K = 250.
end while

The theoretically expectedK( — +c0) performance
®piag(U, V) in the above case witk{43} = 1 is simply given
by
V. ResuLts o2

Dpiag(U, V) = 1102

— (22)

To test AJSVD we run the algorithm on simulated data
and on a large database comprising 84 electroencephaluograpig. 1(a)&(b) show the results for both the power method
recordings. followed by Lodwin’s orthogonal correction method and the

Since C is based on the common structurkls and V, Jacobi method using Givens rotations. Both the 100 indafidu
we can evaluate the algorithm’s performance by taking ttiealisations and their average are shown.

performance criterion The results in Fig. 1 confirm the accuracy of the theoretical
expectation of the performance measure in Eqg. (21). It cam al
ouUM) = P [(U[r])T U] (18a) be seen that the Jacobi iterations have a better performance
T than the power iterations with respect to thé&-diagonal
oy (vl = PI|(V1)"V| (18b)  criterion for this settings.

o 3 A second approach consists in the evaluation of the perfor-
whereU, V, Ol and VI contain onlyN columns ofU, V, mance indices in Eq. (18). To this goal we realize 100 runs
Ul and Vv respectively andPI(H) is Moreau’s performance for i.i.d. 1,(Cy) taken from a normal distribution having zero

index [38] defined as mean and unit variance, under varying levels of i.i.d. zero
mean, normally distributed noise with varying variance and
PI(H) = 1 (Z 2p [Nl _ 1] for a varying number of matricek (P = 12 Q = 16). Since
2(N = 1)\ &4 | maxs [hysl we do not want to evaluate the influence of the initialization
1y stage, botlJ andV were initialized as the identity matrices
+Z max ol ) (19) in their respective dimensions. The results can be found in

Y Fig. 2 and Table I. A stopping criterion of 200 iterations has

When the ground truth is not available, as is the case when RN used here, such that the algorithms could be compared

run the algorithm on real data with unknown latent strugturBY their asymptotic convergence. _ _
we use the following performance criterion: From both Fig. 1 and 2 we observe that, despite ttikedi

ence of the two algorithms with respect to th&-diagonal

oo e 2 criterion (see Fig. 1), the identification of the principsl
- 1 [( ) K ] columns ofU andV performs almost equally well. We have
(DDiag(U 7V ) = K(M _ 1) Z

iteration in the neighbourhood of the solution, while tlEsbt
(20) the case for the Jacobi iterations. The obtained resultsegst
whereM = max(P, Q). For a given noise variance and singulain favour of the good performance of Jacobi iterations, even
value matricegAg}, the expected performancl (- +) is in the rectangular case.

Y T~ 1P been able to show the global convergence of the power
| piag| (0)" e




CONGEDOET AL: AJSVD 7

—40 -40
-50 )
-60 601, e -60 k
10° 10° 10° 10° 10° 10° 10°
(@) o =00K=1 (b) & =0.0,K = 2 (©) o = 0.0,K = 10 (d) o = 0.0,K = 100
o‘ 0 0 0
o _10\\_
-20 -20
-30 -30
-40 -40
-50 -50 -50 -50
10° 10° 10° 10° 10° 10° 10° 10°
() or=01LK=1 fo=0LK=2 (@) o= 01K =10 (h) o = 0.1, K = 100
0 0 0 0
-10 -10 —10 ™ "
-20 -20 -20
-30 -30 -30
10° 10 10° 10 10° 10 10° 10
() o =05K=1 () o= 05K =2 (K) o = 05K = 10 () o = 0.5,K = 100
o 0 0 0
-5 -5 -5 -5
& -10 -10 -10
15 -15 -15
2 10°
iteration r _2200 10° —2300 10° —2&:00 10
(Mmo=10K=1 (No=10K=2 (0) o = 10,K = 10 (p) o = 1.0,K = 100

Fig. 2: Moreau-Amari's performance index [Eq. (18)] for testimated linear transformations. From left to right we énav
K =1,2,10, 100 matrices and top-down we have a noise level with standevdtiono = 0,0.1,0.5 and 1. The continuous
lines correspond to the power method and the discontinupas to the Given’s rotations. X-axes range from iteratioto O
iteration 200. Equal scaling of the Y-axis (in dB) in each rbas been used for ease of comparison.

B. EEG Database algorithms. The average (with standard deviation bars) non
diagonality [Eq. 20] and number of iterations applying five
We use the NTE (Nova Tech EEG, Inc.) normative databag@ferent stopping criteria are displayed in Fig. 3. The non-
comprising 84 EEG recordings obtained on healthy indivisluadiagonality function reaches its minimum using as stopeerit
aged in between 17 and 35 years old at rest with the ey@sn 10°° for Lodwin and 102 for Jacobi. For those values
closed. The data was acquired from 19 electrodes plaagé average number of iterations is respectively 198 and 260
according to the standard international/2M system and and their standard deviations are comparable. For this real
sampled at 128 samples per second. After artifact rejectierataset, it appears that Algorithm 1 converges faster {inge
about 90 seconds of EEG was available for each recording. \8fenumber of iterations).
apply the blind source separation procedure describedah [2
Fourier cospectral matrices at 0.5 Hz resolution were egéoh
by FFT on 2-sec windows with 50% overlap using the Welch
tapering [39]. The cospectra in between 1 and 28 Hz wereThe algorithms we propose are simple to implement, allow-
summed and the sum whitened. The whitening tranform wagy quick testing of new BSS approaches in the community.
then applied to each of the cospectra in the 1-28 Hz rangheir numerical complexity per iteration i©(42KN3) for
and the set was subsequently subjected to the two propotieal power iterations an@(6K MN?) for the Jacobi iterations,

VI. Discussion



8 SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING

0.016 10000

0.015
c
8 0014 1000 T
B
£
Z 0013 ”
> c
& i
§ 0.012 % 100
5 8
8 0.011 -
F I

c

10

§ 0.01

0.008 T T 1 T T T T

10~-3 10~4 10°5 10~6 107 101 10"2 103 10"4 10°5 103 10%4 105 10%6 1047 101 10°-2 103 104 10°5
Stop Criterium Stop Criterium
(@) (b)

Fig. 3: (a) The non-diagonality measured through Eqg. (22) dolving the AJSVD by power iterations with Lddwin
orthogonalization (light grey bars) and by Givens rotagigdark grey bars) as obtained on the Nova Tech EEG normative
database. Each bar represents the average (on a total oh@4}fandard deviation obtained with the stopping critegento
1073, 104, 1075, 106 and 107 for the power iterations and 1§ 102, 103, 10* and 10° for the Givens Rotations. (b)
The corresponding average and standard deviation of thdauof iterations needed for convergence.

-15 TABLE I: The average of the performance index [Eq. (18a)]
(in dB) over 100 Monte Carlo runs as a function of the noise
=20 level and the number of matrices using (a) Lodwin symmetric
_og! orthogonalization and (b) Jacobi iterations.
2 (a) Lodwin
3 -3¢ ]
8 : a\K |1 2 5 10 50 100
_35 %, 0.00 | -1152 -1899 -3252 -55.27 -157.27 -157.38
(S [ 0.10 | -6.78  -10.22 -14.85 -16.98 -20.90 -22.38
020 | -523 -653 -11.02 -1371 -17.78  -19.38
—40 ‘ : 1 030 | -480 -535 -7.81 -11.16 -1593 -17.38
. 040 | 452 -489 -566 -814 -1437 -15.99
—45 ‘ ‘ ‘ ‘ 050 | -4.54 -462 -508 -6.14 -13.14  -14.87
° itel%tion ir}é}ex 20 25 0.60 | -441  -453 -474 519 -11.44  -13.78
(@ 0.70 | 442  -445 -463 -482 -855 -12.41
0.80 | -4.35 -440 -454 -466 -6.24 -10.07
0.90 | -4.35 -446 -446 -460 -5.39 -7.33
-2 — 1.00 | -434 -435 438 -449 -4.96 -5.90
—L6dwin
---Givens .
- Theoryt (b) Jacobi
K |1 2 5 10 50 100
0.00 | -11.78 -1875 -35.76 -5959 -158.29 -158.46
0.10 | -6.69  -10.22 -14.89 -16.98 -20.90 -22.38
020 | -5.30 -6.45 -11.07 -13.70 -17.78  -19.38
030 | 482 -538 -7.88 -11.20 -1593  -17.38
0.40 | -452 -487 -573 -829 -1437 -15.99
050 | -4.48 -463 -504 -617 -13.14  -14.87
0.60 | 439 -454 -474 520 -11.78  -13.79
R S 070 | -4.35 -445 -463 -483 -9.75 -12.69
S ——— e —— 0.80 | 433 -443 451 -462 -6.88 -11.54
10 15 20 25 0.90 | -4.33 -444 -444 -457 564 -8.97
iteration index 1.00 | -437 432 446 -445 -501 -6.47

(b)
Fig. 1. The performance index of Eq. (20) as a function of
the iteration index for the data as described in section V-A.
The theoretical expected value of Eq. (22) is indicated withhich is in line with existing AJD algorithms. However, the
the dotted line. In gray, the 100 individual realisatione arconvergence rate of our algorithm is rather low, thus exten-
plotted and in black the mean over these realisations. Thiens to the bi-linear case of optimization schemes may be
continuous lines are used for the power iteration methaghestigated in the future, as well as non-orthogonal smhst
(AJSVD Algorithm 1) and the discontinuous lines for theo the AJSVD problem, avoiding the whitening step [9], [14],
Jacobi method (AJSVD Algorithm 2). [19].

The appropriate stopping criterion for AJD algorithms with
linear convergence depends on the data at hand. The diag-
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onalization of the large EEG normative database we have] J.-F. Cardoso and A. Souloumiac, “Blind beamformingion-Gaussian
performed (Fig. 3) provides an indication, but this is a mere _ signals’IEE Proc.-F, vol. 140, no. 6, pp. 362-370, 1993.

. . [5] E. Moreau, “A generalization of joint-diagonalizatiamiteria for source
empirical approach. Future research could focus on an iadapt separation "IEEE Trans. Signal Processvol. 49, no. 3, pp. 530-541,

procedure to set the optimal stopping criterion, balancing march 2001.
between computational resources and the required accurdéy F. J. Theis and Y. Inouye, “On the use of Joilnt diagonalaa in blind
: signal processing,” ifProc. IEEE International Symposium on Circuits
of the dfered solution. o and Systems ISCAS 200¢os, Greece, 2006, pp. 3589—3592.
The AJSVD algorithm 1 based on power iterations cafy;; p. T. Pham, “Joint approximate diagonalization of pivsit definite
easily be extended to the complex domain; iffises to matrices,”SIAM Journal on Matrix Analysis and Applicationsol. 22,
define the Frobenius norm of a mati&x e CP*Q as||C||2 = no. 4, pp. 1136-1152, 2000.

2 H H . [8] R. \oligraf and K. Obermayer, “Quadratic optimizatioor fsimultaneous
ZP Zq ICqu = trC"C, where-" denotes the conjugate trans- matrix diagonalization,1EEE Trans. Signal Processcol. 54, no. 9, pp.

pose. It is then easily seen that the equations in section IV 3270-3278, Sept. 2006.

transform accordingly and that we are left with the maximizal® P. Tichavsky and A. Yeredor, “Fast approximate joinagtnalization

tion of incorporating weight matrices/EEE Trans. Signal Processvol. 57,
no. 3, pp. 878-891, March 2009.

[10] E. M. Fadaili, N. T. Moreau, and E. Moreau, “Nonorthogérjoint

K K N
JOFF,VI0) = Z tr|Diagy (UM C V)2 = Z Z luf Cvif? diagonalizatiofzero diagonalization for source separation based on
— time-frequency distributions,JEEE Trans. Signal Processvol. 55,

k=1 i=1 no. 5, pp. 16731687, May 2007.
which is equivalent to the maximization by parts of [11] X.-L. Li and X.-D. Zhang, “Nonorthogonal joint diagolization free of
degenerate solution/EEE Trans. Signal Processvol. 55, no. 5, pp.
Diag(y|V.C) = Z ud Mo(V)U 1803-1814, May 2007.
J ( IV, ) - n n( ) n [12] F. Wang, Z. Liu, and J. Zhang, “Nonorthogonal joint diaglization

) algorithm based on trigonometric parameterizatidBEE Trans. Signal
leag(V | U,C) = ZV#Mn(U)Vn . Process. vol. 55, no. 11, pp. 5299-5308, Nov. 2007.
n [13] G. Zhou, Z. Yang, Z. Wu, and J. Zhang, “Non-orthogonahfaliagonal-
ization with diagonal constraintsProgress in Natural Sciencevol. 18,
Now, since the above equations contain the Hermitian pesiti  pp. 735-739, 2008.
semidefinite matrices\,(V) and M,(U), their eigenvalues [14] A. Souloumiac, “Nonorthogonal joint diagonalizatidny combining

" . - givens and hyperbolic rotationsiEEE Trans. Signal Processvol. 57,
are real positive and the power iteration methods can be used | 6, pp. 22222231, June 2009,

as defined for the real case. In contrast, the Jacobi itesatigi5)] M. congedo and D.-T. Pham, “Least-squares joint diafjeation of
need to be adapted appropriately to the complex case. To this a matrix set by a congruence transformation,”Simgaporean-French

; ; IPAL Symposium (SinFra’092009.
end, we propose the use of the algorithm for complex leeﬂ%] DT Pyhaﬁq am(j M Coﬁge do, “Least square joint diagaation

rotations as has been described in [34]. of matrices under an intrinsic scale constraint,” 8th International
Conference on Independent Component Analysis and Sigpata&®n
(ICA 2008) 2008, pp. 298-305.

S. Degerine and E. Kane, “A comparative study of apprmte joint

The algorithms we propose are simple and numericall diagqnaliza_tion algorithms fo_r blind source separationpiesence of
. 9 . . P p P y additive noise,"IEEE Trans. Signal Processvol. 55, no. 6, pp. 3022—
efficient. Numerical simulations show good convergence prop- 331, june 2007.

erties using either the power method combined with Lodwing] R. Iferroudjene, K. Abed-Meraim, and A. Belouchranh tiew jabobi-
symmetric orthonormalization or Jacobi iterations. Initidd, like method for joint diagonalization of arbitrary non-defive matri-
we have shown heuristically that both the power method and gg%’g_App"ed Mathematics and Computatiowol. 211, pp. 363-373,
the Jacobi iterations have global convergent behaviouhén t19] A. ziehe, P. Laskov, G. Nolte, and K.-R. Milller, “A fagtigorithm
bilinear case, with an asymptotic convergence close to the for joint diagonalization with non-orthogonal transfortioas and its

: : application to blind source separationjburnal of Machine Learning
theoretical value. The analysis of a large EEG database also Researchvol. 5. pp. 777-800, 2004,

shows good performance. The new framework opens the rqagl p. comon and C. Jutten, Ed#iandbook of Blind Source Separation.
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to new blind source separation applications. Independent Component Analysis and Applicatio@xford: Academic
Press, 2010.
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