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Abstract

The thermal resistance of an interface between two materials, conceptualized by Kapitza, is an important physical
phenomenon encountered in many situations of practical interest. The numerical treatment of this phenomenon has
up to now run into difficulties due to the temperature discontinuity. In this work, a general and efficient computational
procedure for modelling the Kapitza thermal resistance is proposed, which is based on the extended finite element
method (XFEM) in tandem with a level-set method. The steady thermal conduction in a two-phase material with the
Kapitza thermal resistance at the interface is first formulated in a variational way and then numerically treated with the
proposed computational procedure. Different three-dimensional numerical examples with known analytical solutions
show the high accuracy and robustness of the proposed computational procedure in capturing the temperature jump
across an interface.
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1. Introduction

An interface between two materials often exhibits
a thermal resistance posing a barrier to heat flow and
leading to a temperature jump across the interface.
This phenomenon was observed and conceptualized
by Kapitza [7] who measured the thermal interface
resistance between various metals and liquid helium.
The thermal resistance also occurs at solids/solids
interfaces, as shown experimentally in many works
(see, e.g., [4,16,14,3]). Accounting for the Kapitza
thermal resistance is especially important to large-
scale integrated circuitry, components and sensors,
because the heat transport and energy dissipation
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through interfaces in such systems are comparable
or even dominant over those in bulk. Inmaterials sci-
ence, the Kapitza thermal resistance has long been
recognize to be of theoretical and practical impor-
tance (see, e.g., [11] [17]).
The numerical modelling of the Kapitza thermal

resistance has up to now run into difficulties. Indeed,
the treatment of the temperature jump at an inter-
face requires a discontinuous temperature approxi-
mation, which cannot be handled with the classical
Finite Element Method (FEM) or Boundary Ele-
ment Method (BEM) [9]. In the context of FEM, the
meshing of an interface is needed and has to conform
with that of the neighbouring volume parts, and ap-
propriate surface elements must be constructed [5].
For interfaces of complex geometry, this is a difficult
issue. In the present work, we propose a general and
efficient computational procedure for modelling the
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Kapitza thermal resistance, which is based on the
extended finite element method (XFEM) [1,10,15,2]
in tandem with a level-set method [12]. The steady
thermal conduction in a two-phase material with the
Kapitza thermal resistance at an arbitrarily shaped
interface is first formulated in a variational way and
then numerically treated with the proposed com-
putational procedure. In particular, the interface is
described implicitly in a regular background mesh
through a level-set method; the temperature jump
is ensured by a discontinuous scheme based on en-
richment functions. This method is simple and does
not require any surface elements. Finally, we show
the high accuracy and robustness of our computa-
tional procedure in modelling the Kapitza thermal
resistance through benchmarks for which exact an-
alytical solutions are available.

2. Formulation of the problem

2.1. Strong form

Let a body Ω be divided by an interface Γ into
two parts Ω(1) and Ω(2), possibly made of two dif-
ferent solid phases, and let x be the position vector
of a current point in Ω. The solid-solid interface Γ is
assumed to exhibit the Kapitza thermal resistance
α. Thus, the thermal behavior of Γ is specified byJqnK = 0 on Γ, (1)

JT (x)K = −αqn on Γ, (2)

where J.K = (.)(2) − (.)(1) denotes the jump across
Γ, qn is the normal heat flux and T the tempera-
ture. The Kapitza resistance α can be evaluated at
different temperatures by measuring the ratio of the
temperature drop to the heat flux across an inter-
face [17]. Adopting the Fourier law for the bulk solid
phases, the steady heat flux and temperature fields
can be obtained by solving the problem formulated
by the fields equations

∇ · q(x)− r(x) = 0 in Ω(i), i = 1, 2, (3)

q(x) = −k(i)(x)∇T (x), i = 1, 2, (4)

together with the interface equations (1) and (2) and
some appropriate boundary conditions. Above, q(x)
denotes the heat flux, r(x) is a heat source term and
k(i) the conductivity tensor of phase i. In a rather
general way, we consider the Dirichlet and Neumann
boundary conditions prescribed on the complemen-
tary and disjoints portions of ∂Ω, denoted by ∂ΩT

and ∂Ωq, as follows:

 q · ν = −q̄ν on ∂Ωq,

T = T̄ on ∂ΩT .
(5)

In the above, ν is the outward unit vector normal
to ∂Ω. For later use and without loss of generality,
let the interface Γ be characterized by a function ϕ :
R3 → R as its zero-level set:

Γ =
{
x ∈ R3 |ϕ(x) = 0

}
. (6)

The unit vector n normal to Γ is directed from Ω(1)

into Ω(2).

2.2. Weak form

For the sake of clarity, we assume ∂Ωq ⊆ ∂Ω(2).
The weak form associated with Eqs. (3)-(5) is given
as follows:
Find T (i) ∈ D =

{
T = T̄ on ∂Ω

(i)
T , T ∈ H1(Ω(i))

}
with i = 1 or 2, such that∫

Ω(1)

q(1) ·∇(δT (1))dΩ−
∫
Γ

q(1) · nδT (1)dΓ

+

∫
Ω(1)

rδT (1)dΩ = 0, (7)∫
Ω(2)

q(2) ·∇(δT (2))dΩ+

∫
Γ

q(2) · nδT (2)dΓ

+

∫
Ω(2)

rδT (2)dΩ+

∫
∂Ωq

q̄νδT
(2)dΓ = 0, (8)

for all δT (i) ∈ H1
0 (Ω

(i)) with

H1
0 (Ω

(i)) =
{
δT ∈ H1(Ω(i)), δT = 0 on ∂Ω

(i)
T

}
. (9)

Adding Eqs. (7) and (8) yields:∫
Ω

q ·∇(δT )dΩ+

∫
Γ

(
q(2) · nδT (2) − q(1) · nδT (1)

)
dΓ

+

∫
Ω

rδTdΩ+

∫
∂Ωq

q̄νδTdΓ = 0. (10)

Invoking the continuity of qn on Γ, we obtain∫
Ω

q ·∇(δT )dΩ+

∫
Γ

qnJδT KdΓ
+

∫
Ω

rδTdΩ+

∫
∂Ωq

q̄νδTdΓ = 0. (11)

Introducing (2) and (4) into the above expression
leads finally to:∫

Ω

k(x)∇T ·∇(δT )dΩ+

∫
Γ

JT K 1
α

JδT KdΓ
=

∫
Ω

rδTdΩ+

∫
∂Ωq

q̄νδTdΓ. (12)
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This equation is the basis for the following numerical
treatment.

3. Computational procedure based on
XFEM and the level-set method

The domain Ω is discretized by nodes that do not
necessarily match the interface Γ. Here tetrahedra
are adopted for meshes for the reason of simplicity
and robustness. Regular meshes can then be chosen
for parallelepipedic domains, even if the interface is
arbitrarily shaped.
The interface Γ being defined by (6), the unit nor-

mal vector n(x) can be numerically evaluated by

n(x) =
∇ϕ(x)

∥∇ϕ(x)∥ (13)

with

∇iϕ(x) =
n∑

j=1

∂Nj(x)

∂xi
ϕj , (14)

whereNj(x) are standard finite element shape func-
tions, ϕj are the nodal values of the level-set function
ϕ, n is the number of nodes of an element contain-
ing x. In the present paper, we employ linear finite
element shape functions in tetrahedral elements.
The approximation of the temperature at a point

x inside an element Ωe is given by:

Th(x) =
n∑

i=1

Ni(x)Ti +
m∑
j=1

Nj(x)Ψ(x)aj . (15)

The second term in the right-hand member of this
equation is intended for capturing the temperature
jump across Γ. Precisely, aj are the additional un-
knowns, and Ψ is the enrichment function which
takes the form

Ψ(x) =
1

2
sgn(

n∑
i=1

Ni(x)ϕi). (16)

In the second term of Eq. (12), the approximated
temperature jump has the expressionJTh(x)K = Th(x+)− Th(x−), (17)

where the superscripts + and − denote the sides of
Γ. Introducing (15) and (16) into (17) and invoking
the continuity of Ni(x) across Γ, we obtainJTh(x)K = m∑

j=1

Nj(x)aj . (18)

The expressions of the approximated temperature
variation δTh and jump JδThK are taken to be similar
to those of Th and JδThK.
With the aid of (15) and (18), the discrete approx-

imation of (12) is finally provided by the system of
linear equations
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Fig. 1. Discontinuous patch test related to interfacial resis-
tance: (a) Geometry; (b) Mesh and interface.

(K+Ks)d = Q. (19)

The matrix K, associated with the bulk thermal
conductivity, is defined by

K =

∫
Ω

BTk(x)BdΩ, (20)

whereB is the matrix of shape functions derivatives.
In (19), the matrix Ks, due to the Kapitza thermal
resistance of Γ, is specified by

Ks =

∫
Γ

1

α
ÑT ÑdΓ, (21)

where Ñ is the matrix defined through JThK = Ñde

with de being the nodal unknowns vector of element
Ωe. Finally, Q is the generalized heat flux vector
calculated by

Q =

∫
∂Ωq

NT q̄νdΓ +

∫
Ω

NT rdΩ, (22)

where N is the matrix of shape functions and d is
the vector of generalized unknowns.
The numerical integration of the volume integrals

is carried out by employing one Gauss point in non
enriched elements (not intersected by the interface).
Enriched elements are subdivided into tetrahedra on
each side of the interface Γ, and the four-point Gauss
quadrature is applied to each sub-tetrahedron. For
the surface integral, the interface is approximated
by triangles resulting from the intersection of the
zero-level-set and the tetrahedral mesh. The three-
points Gauss quadrature scheme is applied to the
collection of triangles.

4. Numerical examples

4.1. Discontinuous patch test related to interfacial
resistance

In this example, we propose a benchmark with a
planar and resistive interface. The problem geome-
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Table 1. Relative energy error norm for

the discontinuous patch test.

α \k1/k2 1 10 100

0 1.7× 10−8 2.2× 10−8 2.2× 10−8

1 1.9× 10−8 2.2× 10−8 2.2× 10−8

10 1.9× 10−8 2.2× 10−8 2.2× 10−8

103 1.9× 10−8 2.2× 10−8 2.2× 10−8

try is defined in figure 1. By considering equilibrium
in each phase, boundary conditions T (−1) = 0 and
T (1) = 1, the continuity of normal flux across the
interface located at (x = ξ) and the one-dimensional
jump condition JT (ξ)K = −αqn(ξ), we obtain the
following exact solution:

T (x) =
k2(x+ 1)

γ
∀x ∈ [−1; ξ [ ,

T (x) =
(k1x+ β)

γ
∀x ∈ ] ξ; 1] ,

(23)

with  γ = ξ(k2 − k1) + k1(1 + αk2) + k2,

β = ξ(k2 − k1) + k2(1 + αk1).
(24)

Different computations are performed for differ-
ent values of the resistance α ranging from 10−5

W/m2K (nearly perfect interface) to 1000 W/m2K
(nearly insulating interface) and for different value
of the ratio k1/k2, k2 = 1 W/mK. A unidirectional
conduction model (k(i) = kie1⊗e1) is chosen to ren-
der the solution purely one-dimensional. The inter-
face position is ξ = 0.09 m. The mesh is not regular,
with roughly 11 nodes on each sides of the cube.
The relative energy error norm (see e.g. [18]) is

computed for different values of ki and various in-
terface positions. The results obtained are reported
in Table 1, indicating that the method allows pass-
ing this discontinuous patch test roughly at the ma-
chine precision, and the temperature discontinuity
is accurately reproduced.
In figure 2, the calculated and exact temperature

fields are plotted versus the x coordinate for k1 = 0.1
W/mK and k2 = 1W/mK. We can observe that the
strong temperature discontinuity is well captured by
the proposed numerical procedure.

4.2. Benchmark with spherical thermally resistive
interface

A composite sphere Ω is composed of a coating
of outer radius r2 and a core of radius r1, which
are separated by an interface with the Kapitza re-
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Fig. 2. Exact and computed solutions to the discontinuous
patch test for different interface resistances α, k1 = 0.1
W/mK and k2 = 1 W/mK.

sistance α. This spherical composite is submitted to
a homogeneous temperature gradient field

T = T̄ = −e0 · x (25)

on its boundary ∂Ω. In (25), e0 is a constant vector
and is, with no loss of generality, set to be e0 =
(0, 0, e0)T . Both the core and coating forming the
composite sphere are assumed to be isotropic and
individually homogeneous.
Then, the temperature and heat flux fields are,

in the system of cordinates (r, θ, φ) associated to an
orthonormal basis (er, eθ, eφ), given by (see, e.g.,
[6])

T (i) = −
(
air +

bi
r2

)
cosω , (26)

q(i)r = k(i)
(
ai − 2

bi
r3

)
cosω ,

q
(i)
θ = −k(i)

(
ai +

bi
r3

)
sinω , q(i)φ = 0, (27)

In these expressions, ω denotes the angle between e0

and er, i = 1 refers to the core and i = 2 is relative
to the coating. By writing the continuity conditions
at the interface r = r1 and avoiding the singularity
at r = 0, it follows that

a1 =
3k2r1r

3
2

β + γ
e0 , a2 =

β

β + γ
e0 (28)

b2 =
γ

β + γ
e0 (29)

β = (k1r1 + 2k2 (αk1 + r1)) r
3
2

(30)

γ = (k1k2α+ (k2 − k1)r1) r
3
1

(31)
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Fig. 3. Problem of a composite sphere: (a) geometry; (b)
mesh of the cube cut out of the sphere.

We cut out a cubic domain of side length L = 4r1
out of a sphere as shown in figure 3, and prescribe
the exact temperature solution (26) on its exter-
nal boundary. The numerical parameters are r1 = 1
m, r2 = 3 m, k1 = 0.01 W/mK, k2 = 1 W/mK,
e0 = 1. The convergence of the numerical solution
is examined for different values of the Kapitza resis-
tance α ranging from α = 10−5 W/m2K to α = 103

W/m2K. The corresponding results are presented in
figure 4. The convergence rate R is in all cases close
to the optimal one R = 1.
The temperature field is plotted versus radius r

for α = 10 W/K and α = 100 W/K in figure 5,
along a line x = −rez. The latter shows that the
temperature jump across the interface is accurately
captured.
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Fig. 4. Convergence analysis for the thermal problem of im-

perfectly bonded inclusion with different interfacial resis-
tances
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Fig. 5. Exact and computed solutions for the spherical bench-
mark problem for different values of the Kapitza resistance
α.

Finally, let us consider another problem in which
both the bulk phases consists of the same material
(k1 = k2 = 1 W/mK), the Kapitza resistance varies
between α = 10−5 W/m2K (nearly perfectly con-
ducting interface) and α = 103 W/m2K (nearly per-
fectly insulating interface), and the boundary con-
ditions are the same as in the former problem. The
computated temperature field is plotted in a plane
tangent to e0 and passing by the origin in figure 6.
The influence of the Kapitza resistance on the con-
tinuity of the temperature field is clearly reflected
even though the interface does not conform to the
tetrahedral mesh. The observed oscillations are only
due to the post-processing which does not take into
account the discontinuity in the elements.
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Fig. 6. Effect of the Kapitza resistance coefficient α on the
temperature field: (a) α = 0; (b) α = 1; (c) (b) α = 103.

5. Conclusion

A simple and general numerical procedure has
been proposed to model the Kapitza thermal resis-
tance at an arbitrarily shaped interface. This pro-
cedure is framed within the extended finite element
method combinedwith the level-setmethod. Its high
accuracy and robustness have been evidenced by the
benchmark tests presented. It can be used to study
the effects of the Kapitza thermal resistance occur-
ing not only in materials but also in many other sys-
tems such as large-scale integrated circuitry, device
components and sensors.
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