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ABSTRACT

When pointing to a target on a computer desktop, we may
think we are taking the shortest possible path. But new
shortcuts become possible if we allow the mouse cursor to
jump from one edge of the screen to the opposite one, i.e.,
if we turn the desktop into a torus. We discuss the design of
TORUSDESKTOP, a pointing technique that allows to wrap
the cursor around screen edges to open this pointing back-
door. A dead zone and an off-screen cursor feedback make
the technique more usable and more compatible with every-
day desktop usage. We report on three controlled experi-
ments conducted to refine the design of the technique and
evaluate its performance. The results suggest clear benefits
of using the backdoor when target distance is more than 80%
the screen size in our experimental conditions.
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INTRODUCTION

When flying from New-York to San Francisco, one usu-
ally does not fly around the globe across the Atlantic and
the Pacific Oceans. Yet we often do it on our computers:
we routinely move our mouse pointer from one side of the
screen to the opposite side – e.g., to select a tool or invoke
a menu command – ignoring potential trajectory shortcuts.
Such shortcuts would only require a small modification to
the mouse behavior: when the pointer goes past a screen
edge it re-appears on the opposite side, as in the Asteroids
or Pac-Man video-games (see Figure 1).

We introduce TORUSDESKTOP, a pointing technique which
opens these shortcuts on our computer desktops. Although
many pointing facilitation techniques have been already pro-
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Figure 1. The Pac-Man video-game and a case scenario where pointing
through screen edges could be beneficial.

posed, most of them are target-aware [26, 3], i.e., they re-
quire knowledge of all the potential targets the user may ac-
quire. These techniques can be extremely efficient but they
are sensitive to distractors and are difficult to integrate to
existing systems. Only a few target-agnostic pointing facil-
itation techniques have been introduced and the results have
been mixed. TORUSDESKTOP is target-agnostic, making it
easy to integrate to existing systems and compatible with
most existing pointing facilitation techniques.

TORUSDESKTOP teleports the mouse cursor to the opposite
side of the screen when it goes past one of the screen’s edges.
This technique is sometimes referred to as cursor wrapping.
One consequence of this wrapping behavior is that the short-
est path between two points is not necessarily the on-screen
segment that connects them. Although this may evoke a
sphere topology, wrapping the cursor around screen edges
actually turns the computer desktop into a torus.

The idea of wrapping the mouse cursor around screen or
window edges is not new. In addition to video games from
the early 80’s, a few system tweaks and mouse drivers sup-
port this technique. But current implementations are all
under-designed as the cursor immediately jumps when it
reaches a screen edge. This can yield several problems:
first, it is easy to trigger the wrapping inadvertently. Second,
it might be difficult to find the new location of the cursor.
Third, the technique prevents the user from using the border
to acquire targets that are located on screen edges. TORUS-
DESKTOP addresses these issues by introducing a wrapping
dead zone and visual feedback to anticipate cursor jumps.

As cursor wrapping has never been studied experimentally,
it is not clear whether it should be supported natively by op-
erating systems and better publicized among end users, or
simply abandoned. Our initial Fitt’s Law simulations (con-



sidering all possible pointing tasks on a 2560x1600 display
with 40-pixel targets) suggest that cursor wrapping should
outperform direct pointing in more than 40% of all possible
pointing tasks. But it is unlikely that the question can be ade-
quately answered by a naive Fitts’ Law simulation: choosing
to use cursor wrapping or not might have an impact on effi-
ciency, and large cursor jumps might be distracting to users
and could result in a drop in performance.

Thus we conducted three controlled experiments to refine
our design and evaluate its performance. The results of the
two first experiments identify the best off-screen feedback,
and suggest that a dead zone of 5 − 10% the size of the
screen should be provided to enable edge pointing. Our fi-
nal experiment confirms that our naive Fitts’ Law simulation
is overly optimistic as it does not account for factors such
as the distraction produced by cursor teleportation or the
cost of having to chose whether or not to use the backdoor.
Nevertheless, our experiment reveals that TORUSDESKTOP

is still faster than direct pointing for targets whose distance
is greater than 80% the width of a 2560-pixel wide display.
This suggests that enabling cursor wrapping is worthwhile,
especially in situations where commonly-accessed widgets
are located close to the edges of the screen (Figure 1) or
when going back-and-forth between two very distant targets.

RELATED WORK

A fundamental tool in the area of target acquisition is Fitts’
law [20]. This law models the movement time to acquire
a target of size W at distance D as a linear function of an
index of difficulty ID usually defined as log
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W

+ 1
)

. Ac-
cording to this law, techniques that try to facilitate pointing
increase W , reduce D or do both [3]. They are either target-
aware or target-agnostic.

Target-Aware Techniques

Most techniques that increase W are target-aware. They ei-
ther expand the targets themselves [21] – sometimes in the
motor space only [27, 9] – or expand the cursor’s activation
area [15, 12]. Target-aware techniques for reducing D try
to predict the target(s) the user wants to acquire. They then
bring the cursor closer to the target [2, 16] or bring potential
targets closer to the cursor [4]. Another way to reduce D
is to use a grid of cursors and a target-aware algorithm that
tries to select the appropriate cursor [19].

However, target-aware techniques fail when there are a large
number of potential targets, and they are difficult to imple-
ment at a system-wide level because they require access to
target information that is solely available at a system-level.

Target-Agnostic Techniques

Effective target-agnostic pointing facilitation techniques are
relatively rare. Speed-adaptive C-D gain has been modeled
as a technique that increases W in motor space, but exper-
iments did not confirm the improvements predicted by the
model [11]. Angle Mouse adapts C-D gain to trajectory cur-
vature, but it has been shown to only benefit motor-impaired
users [26]. Finally, visual and motor-space uniform magnifi-
cation (i.e., W and D increased in the same proportion) have
been shown to improve pointing performance, but only for
very small targets [24].

Other techniques employ more than one input device at a
time. For example, D can be reduced in a target-agnostic
manner using eye tracking. MAGIC [28] uses eye tracking
to define an area where the pointer is automatically warped.
The Rake cursor uses a grid of cursors and eye tracking for
cursor selection [10, 25]. These techniques benefit from the
increase in input bandwidth provided by gaze tracking, but
they cannot be implemented on standard computer hardware.

Adaptive [18] and adaptable [13] methods have also been
considered: DirtyDesktops [18] creates magnetic fields
around frequently-selected locations on the screen and
UIMarks [13] lets users specify on-screen locations whose
acquisition will be facilitated. However, adaptative tech-
niques improve pointing only for frequently-selected targets
and adaptable techniques require user intervention.

Edge and Displayless Pointing

HCI practitioners early noticed that targets on screen edges
are easier to acquire because screen edges stop the cursor,
effectively increasing W in the motor space. Edge pointing
has been studied experimentally in [14, 1].

Edge pointing becomes problematic in multi-display envi-
ronments: by default, desktop environments treat multiple
displays as a single space, disabling edge pointing between
them. Mouse Ether [5] takes into account the space between
the displays as well as display size and resolution to compute
a motor space – the ether – that lies between the displays.
This re-enables edge pointing, since stopping the mouse in
the ether warps the pointer to the closest display edge.

Mouse Ether is conceptually similar to our dead zones: they
both add off-screen pointing space that (among other things)
enable edge pointing. One problem with Mouse Ether is the
absence of visual feedback when the cursor is in the ether.
Several techniques have been proposed to visualize the lo-
cation of off-screen objects: Halo [7] surrounds off-screen
objects with rings large enough to reach the edge of the dis-
play, and Wedge [17] uses a triangle pointing towards the
off-screen object. A recent study suggested that augment-
ing Mouse Ether with Halo helps, while also suggesting that
Mouse Ether itself (with or without feedback) hurts perfor-
mance when displays are sufficiently far apart [23].

Cursor Warping vs. Cursor Wrapping

Cursor warping refers to the sudden teleportation of the
mouse cursor to a possibly distant place. It has been used
to reduce pointing distance in some target-aware pointing
techniques [2, 16] as well as in target-agnostic ones [28].
Manually-triggered cursor warping has also been used for
rapidly switching between displays in multi-monitor envi-
ronments [8]. However, it is also believed that sudden cursor
jumps can be confusing to users and can slow them down [6].

Cursor wrapping should not be confused with cursor warp-
ing: wrapping the mouse cursor around screen edges in-
volves a specific type of cursor warping, going from one
edge of the screen to the opposite one. Several applications
exist that support cursor wrapping. More than 15 years ago,
the FVWM X Window Manager could be configured to en-



Figure 2. Wrapping dead zone (right) and expansion of targets located
on the screen edge (left).

able it. Today, system-level tools provide the same feature1.
But as discussed previously, none of these applications pro-
vide a dead zone or off-screen feedback. Moreover, to our
knowledge, such techniques have never been evaluated.

THE TORUSDESKTOP TECHNIQUE

The TORUSDESKTOP extends direct cursor wrapping tech-
niques with two additional features in order to make it usable
and compatible with everyday desktop usage:

• a wrapping dead zone that adds a displayless pointing
space around screen edges in order to help users antici-
pate cursor jumps and to re-enable edge pointing;

• a wrapping feedback that provides visual feedback on the
cursor’s location inside the dead zone to further increase
user’s control over cursor wrapping.

Wrapping Dead Zone

The wrapping dead zone is a displayless frame added around
the screen edges. When the cursor reaches a screen edge,
the user needs to cross this space before the cursor gets tele-
ported to the opposite edge (Figure 2). This design presents
three advantages:

Prevention of accidental triggering. In situations where
users do not want to cross the screen, the wrapping dead
zone prevents them from wrapping the cursor accidentally.
Accidental wrapping can be distracting – especially repeti-
tive wrapping when following a screen edge – and can slow
users down since they have to bring the cursor back once
they realize it has jumped. They may even lose the cursor
altogether if they do not realize it has moved to the opposite
side. The dead zone addresses this issue by making it more
difficult to trigger the wrapping and allowing to cancel it.

Support for anticipation. In cases users want to cross the
screen, the wrapping dead zone helps them anticipate the
cursor jump and gives them time to switch their visual at-
tention to the region where the cursor will re-appear. Addi-
tionally, it provides users with more flexibility, as they can
adapt their mouse movement while crossing the dead zone
to control where and when the cursor will re-appear.

Compatibility with edge pointing. As discussed previously,
targets located on screen edges are faster to acquire, a feature
that is now commonly used in window management systems
and desktops (e.g., Mac OS’ menu bars and MS Windows’
task bar). While a naive implementation of the wrapping

1E.g., www.networkactiv.com/SoundyMouse.html,
www.digicowsoftware.com/detail?_app=Wraparound

technique defeats edge pointing, using a large enough dead
zone re-enables this feature as clicks within the dead zone
are dispatched to the screen edge where the cursor comes
from (Figure 2 left).

However, using a dead zone raises two issues. First, it in-
creases the distance users have to cover during cursor wrap-
ping so it may reduce the number of cases where the tech-
nique is useful. Second, it is not clear which dead zone sizes
are small enough not to impede cursor wrapping, while be-
ing large enough to allow comfortable edge pointing. These
questions will be later addressed in our experiment sections.

Wrapping Feedback

When crossing a dead zone, a standard mouse cursor would
stop on the screen’s edge and the user would have to blindly
move a virtual cursor within the dead zone. It has been
suggested that visual feedback about the position of an off-
screen cursor helps pointing in displayless space [23], so we
chose to augment the dead zone with visual feedback. Since
there are many possible designs, we identified the three fol-
lowing requirements for TORUSDESKTOP visual feedback:

Position along the edge. The feedback needs to show
where the cursor is located along the screen edge: for ex-
ample if the exiting edge is vertical, users need to keep track
of the cursor’s y-coordinate to be able to predict where it will
re-appear on the opposite edge.

Position within the dead zone. The feedback also needs to
show the cursor’s position in the orthogonal direction, i.e.,
how deep the cursor is in the dead zone. This is necessary for
users to be able to predict when the cursor will be teleported
and better anticipate its arrival. This also allows users to
see how far they can go before the cursor jumps to prevent
accidental triggering, especially during edge pointing.

Feedback mirroring. The two pieces of information above
should be shown both near the edge where the cursor exits
the screen and near the opposite edge. Thus, users can use
the feedback whether they are focusing on the exiting side
– i.e., when moving close to the edge or when doing edge
pointing – or on the reentering side – i.e., when using cursor
wrapping to point to a distant target.

We experimented with three feedback methods: Halos, Ar-
row and Ghost. Figure 3 explains these three techniques in
detail: DZ is the dead zone size, d is the cursor’s distance to
the dead zone entrance and the constant k is Halo’s intrusion
distance. Gray arrows depict how cursor movements map to
movements of visual feedback.

Halos. Halo [7] is a technique for providing on-screen
feedback for off-screen objects, e.g., showing the location
of points of interest in a map on a handheld device. It shows
an arc of circle next to the screen edge; the circle is centered
on the off-screen object in order to convey its direction and
distance. In our case the off-screen object is the cursor it-
self, so when it enters the dead zone, we display a Halo both
on the exit and on the entrance sides of the screen (Figure
3a). As in the original technique, the arcs stick out from the
displayless space with a fixed intrusion distance k.

www.networkactiv.com/SoundyMouse.html
www.digicowsoftware.com/detail?_app=Wraparound
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Figure 3. Halos, Arrow and Ghost TORUSDESKTOP feedback tech-
niques for a top-to-bottom cursor wrapping.

Arrow. The Arrow feedback is inspired from a variant of
Halo called Wedge [17]. Arrow’s triangular shape is similar
to Wedge’s but unlike Wedge, its intrusion distance is not
fixed and its shape does not change. Instead, it is a solid
triangle of constant size, always perpendicular to the screen
edge, that sticks out on both sides (Figure 3b). On the exit
side, its flat end is attached to the cursor and its tail sticks
out. On the entrance side, its tail is attached to the cursor
and its flat end sticks out. The angle formed by the flat end
conveys the cursor’s distance in a way similar to Wedge.

Ghost. Finally, we propose a simpler visual feedback
called Ghost, specifically designed for wrapping dead zones.
Next to the dead zone’s exit (bottom of Figure 3c), a circular
shape is displayed whose distance to the edge is the same
as the cursor’s. In other terms, the edge acts like a mirror
and the circular shape is like the cursor’s reflection on that
mirror. The same circular shape is displayed at the same
distance near the dead zone’s entrance.

Even if these wrapping feedback techniques fulfill the re-
quirements we identified, it is not clear how much they help,
if they help at all. We investigate this question in our study.

Corners

In a torus topology, the four screen corners are equivalent.
So when the cursor reaches a corner, it is not clear where it
should exit. Besides, the behavior of the cursor in the vicin-
ity of a corner can be disturbing. For example, a cursor going
to the top-right corner will re-appear either on the top-left or
on the bottom-right. These two locations are nevertheless
close to each other on the torus, so if the user approaches
a corner with a 45-degree angle, the cursor will eventually
appear on the opposite corner no matter which path it takes.
However, the cursor will rapidly jump twice on the screen,
which can be visually disturbing. To address these issues,
we added four corner zones of 20 pixels each. When the
cursor reaches one of these zones, it simply re-appears on
the diagonally opposite corner after the dead zone crossing.

PRELIMINARY EXPERIMENTS

We conducted two preliminary experiments in order to refine
the design of the technique before comparing it with direct
pointing. The first experiment compares the feedback tech-

niques and provides a first sense of the impact of the dead
zone on movement time. The second one investigates the
compatibility of TORUSDESKTOP with edge pointing.

Apparatus & Participants

The two experiments were conducted on a workstation run-
ning Mac OS X and with a 2560×1600 30” LCD monitor 2.
Such large displays are becoming more and more common
and are likely to become a standard once their price drops.
The TORUSDESKTOP software was implemented in Java.
The mouse was a standard optical mouse with 500 dpi reso-
lution and default system acceleration.

Eight unpaid volunteers, all male and right-handed, partic-
ipated in the experiments. Participants were experienced
mouse users with ages ranging from 24 to 31 (median 26.5).
Each participant took about 60 minutes to complete each ex-
periment after which they were given a short questionnaire.

Experiment 1: Feedback & Dead Zone

This experiment addresses the following questions:

• Q1: Which wrapping feedback (including no feedback) is
the best, with and without a dead zone?

• Q2: Does dead zone size affect movement time?

Task & Design. A trial was a TORUSDESKTOP pointing
task requiring subjects to cross either the left or the right
edge of the screen. Subjects had to click on a start target
at a distance DB1 to its closest edge and then acquire a goal
target at a distance DB2 to the opposite edge by crossing the
closest edge. Both start and goal targets were circles of 40
pixels. Targets were lying on the screen’s horizontal center-
line or placed above and below the centerline at a distance
of 300 pixels, depending on the factor ALIGN (see Figure 4a).
Task direction was either left to right (DIR = LR) or right to
left (DIR = RL).

The experiment was a within-subject design with the main
factors: (i) Feedback: FB = None, Halos, Arrow, Ghost; and (ii)
Dead zone size: DZ = 0, 125, 250, 500.

Auxiliary factors were: (i) Distance of the start target to its
closest edge, DB1 (Distance to Border 1) = 50, 150; (ii) Dis-
tance of the goal target to the opposite edge, DB2 (Distance
to Border 2) = 50, 150, 300; (iii) ALIGN and DIR.

Concerning the values we chose for dead zone size, 0 is the
baseline condition implemented in former cursor wrapping
techniques. 125 and 250 seem to be realistic values for edge
pointing [1]. We added 500 for completeness although we
expect it to be too large to be used in practice. Note that
for DZ = 0, the feedback condition is irrelevant and we only
need to test the condition for feedback = None.

We grouped trials into blocks according to DZ × FB. We
used 2 orders of presentation for DZ, increasing and decreas-
ing, and counterbalanced the presentation order of FB. Be-
fore each DZ × FB condition, participants did one block
of 24 practice trials then 2 blocks of measured trials. We
hence collected 8 (PARTICIPANT) × 48 × (4(DZ)×1(FB=None)
+ 3(DZ=125,250,500)×3(FB)) = 4992 trials for analysis.
2Yielding 100.63 ppi and a pixel size of 0.025 cm.
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Figure 4. (a) Examples of target placement in experiment 1. Start targets are green, goal targets are red. Case 1: ALIGN = yes, DIR = RL, DZ on the
left. Case 2: ALIGN = no, DIR = LR, DZ on the right. (b) MT per deadzone and feedback. (c) OverShoot per deadzone and feedback.

We collected three measures: (i) MT, the time from the click
on the start target to a successful click on the goal target;
(ii) Error, whether or not there was a click outside the target;
and (iii) OverShoot, the distance in pixels of the furthest point
reached by the pointer to the goal target.

Quantitative Results. We removed 0.75% outliers (trials
with a MT that is 3 standard deviations apart from the mean
MT within the condition) and duplicated the data for DZ = 0
for each FB in order to perform a full factorial analysis: FB

× DZ × Random(PARTICIPANT) with MT, Error and OverShoot.

An analysis of variance reveals an effect of DZ on MT (F3,21 =

80.0, p < 0.0001). A Tukey post-hoc test shows a significant
difference in means between all DZ, with MT increasing with
DZ (Figure 4b). We observed no significant effect of FB on
MT. However, we found a significant interaction FB × DZ

(F9,63 = 2.62, p = 0.0123), which can be observed in Figure
4b: the difference between mean MTs for each FB value is the
largest for DZ = 500. Indeed a post-hoc test shows no sig-
nificant difference between the FBs for DZ ≤ 250, whereas
for DZ = 500, Ghost is significantly faster than Halos and None,
and Arrow is significantly faster than None.

We found an average error rate of 7.9%. An analysis of vari-
ance using a nominal logistic test for the model Error ∼ FB ×
DZ reveals no significant effect, error rates being very close
for each FB × DZ (min 5.0%, max 9.9%).

For OverShoot, we found a significant effect of both FB

(F3,21 = 6.32, p = 0.0032) and DZ (F3,21 = 8.01, p = 0.0010)
(see Figure 4c). Post-hoc Tukey tests show that Ghost exhibits
significantly less OverShoot than other feedback and that Over-

Shoot is significantly larger for DZ = 500. However, there is
a significant interaction FB × DZ (F9,63 = 3.82, p = 0.0007),
which can be observed in Figure 4c: OverShoot is significantly
lower for Ghost than for all other FB when DZ = 250. For DZ

= 125, the only significant difference is between Ghost and
None. For DZ = 500 we observe more OverShoot for None than
for other feedback and less for Ghost than for Arrow.

Qualitative Results. In the post-experiment questionnaire,
participants were asked to rank the feedback techniques
globally and for each dead zone size. Among the eight par-
ticipants, five globally ranked Ghost first, and each of the
three other techniques was ranked first by one participant
(Ghost was ranked second, third and last in these cases).
Rankings by DZ are consistent with global ranking. Only
three participants ranked None higher for DZ = 125.

Summary. Back to our first question Q1, Ghost seems to be
the best choice for TORUSDESKTOP for all dead zone sizes:
even if it does not exhibit a significantly better performance
– except for the limit case DZ = 500 – it yields the smallest
OverShoot and was preferred by participants. Concerning Q2,
it is confirmed that MT increases with DZ.

Experiment 2: Edge Pointing

The questions this second experiment addresses are:

• Q1: Does a dead zone help users performing edge-
pointing tasks? If yes, is there an optimal dead zone size?

• Q2: Does wrapping feedback help or impede users during
edge pointing?

Stimuli & Design. A trial consisted in an edge pointing task
where the subject had to click on a circular start target and
then acquire a goal target on a screen edge. The goal tar-
get was located to the left or right end of the screen, and
was vertically centered (Figure 5a). It had a width of 40
pixels and two possible heights H = 40, 125 – a size com-
parable to buttons on typical task bars and menu bars. Start
targets were located on a 3 × 3 grid designed to cover sev-
eral angles of approach. Their location was defined by DB

= 200, 1200, 2200, their distance to the edge where the goal
target was, and DH = 0, 600,−600, their distance to the hor-
izontal centerline of the screen.

The experiment was a within-subject design with the same
main factors as the first experiment: (i) Feedback: FB = None,
Ghost; and (ii) Dead zone: DZ = 0, 125, 250, 500, inf. Given
the findings of the first experiment, we only tested the None

and Ghost feedback techniques in this experiment. We used
the same dead zone sizes as in the first experiment and added
an ‘infinite’ size (i.e., no cursor wrapping) as a baseline con-
dition to test standard edge pointing.

Trials were grouped into blocks by DZ × FB. For each DZ ×
FB condition, participants started with one practice block of
2 × 2(H) × 3(DB) × 3(DH) = 36 trials, then proceeded with
two measured blocks. Thus, for each participant, we col-
lected 2 × 36 × (2(DZ=0,inf) + 2(FB) × 3(DZ=125,250,500))
= 576 trials for analysis.

In addition to MT and Error (defined as in previous experi-
ment), we measured the dead zone distance effectively used
UseDistDZ – i.e., the maximum horizontal travel distance in-
side the dead zone – and the number of times the cursor went
past the dead zone DZOverShoot.
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Figure 5. (a) Target placement in experiment 2. (b) MT per deadzone and feedback. (c) Error rate per deadzone and feedback.

Quantitative Results. We removed 0.97% outliers and du-
plicated the data for DZ = 0 and DZ = inf with the Ghost feed-
back to be able to perform a full factorial analysis FB × DZ

× Random(PARTICIPANT).

An analysis of variance reveals an effect of DZ on MT (F4,28 =

38.6, p < 0.0001). As expected MT decreases as DZ increases
(Figure 5b). A post-hoc Tukey test shows that (i) DZ = 0 is
significantly slower than DZ ≥ 125; (ii) DZ = 125 is signifi-
cantly slower than DZ ≥ 500; (iii) DZ = 250 is significantly
slower than DZ = inf; and that (iv) difference is not signifi-
cant for other DZ pairs. Indeed, we observe that the biggest
improvement is from DZ = 0 to DZ = 125 (a 20% speed up).

As Figure 5b suggests, an analysis of variance reveals no
effect of FB (F1,7 = 0.42, p = 0.5463) and no interaction FB

× DZ (F4,28 = 0.55, p = 0.6989) on MT. Practical equivalence
tests with a threshold of 20 ms (less than 3% of the grand
mean) give positive results (p ≤ 0.02), confirming there is
no difference in MT between None and Ghost.

Regarding error, a nominal logistic ANOVA for the model
FB × DZ ∼ Error (on the data set where 125 ≤ DZ ≤ 500)
shows a significant effect of FB (χ2

= 6.12, p = 0.0134) but no
effect of DZ (χ2

= 2.79, p = 0.2477) and no interaction FB ×
DZ (χ2

= 1.99, p = 0.3697). Figure 5c shows that Ghost is less
error-prone than None.

For DZOverShoot, the percentage of trials with accidental cur-
sor wrapping is significantly higher without a dead zone
(24.37% for DZ = 0 and less than 7% for DZ > 0). We no-
ticed small differences between Ghost and None – Ghost always
yielding less overshoots – but these are not significant.

Regarding UseDistDZ, i.e., the distance covered in the dead
zone, we observed that the 90% quantile is close to half the
dead zone size for all DZ < inf. It is close to 600 pixels for
DZ = inf, a result consistent with previous studies [1].

Qualitative Results. After the experiment, participants
were asked to tell (i) whether the Ghost feedback helped them
select the target and (ii) whether they found the feedback
distracting. Six participants out of eight agreed or strongly
agreed that the feedback helped (one was neutral and one
disagreed). However, half the participants agreed or strongly
agreed that the feedback was also distracting.

Summary. Back to our first question Q1, this study con-
firms that when cursor wrapping is enabled, users are more
efficient at selecting targets on the screen edges if a dead
zone is provided. Not only a dead zone expands these targets

(W = 40+DZ), but it also prevents accidental cursor wrap-
ping that can be time-costly to recover from. The high cost
of accidental wrapping is confirmed by participants’ conser-
vative use of dead zones when doing edge pointing. As Fig-
ure 5b does not exhibit an asymptote for DZ < inf, the study
does not suggest an optimal dead zone size. It however re-
veals that a small deadzone (125 pixels) is enough to reduce
movement time by 20%.

Regarding Q2, we observe that the Ghost feedback does not
impair performance but does not improve it either. How-
ever, it significantly reduces errors, suggesting that feedback
makes users more accurate. Since in real systems pointing
errors can have a high cost in terms of time and user frus-
tration, this further confirms that Ghost feedback should be
provided. Some users might however find the feedback dis-
tracting, as suggested by answers to our questionnaire.

COMPARING DIRECT POINTING & TORUSDESKTOP

In the two previous experiments, we validated and refined
the design of TORUSDESKTOP by confirming the benefits
of a wrapping dead zone and by identifying the best wrap-
ping feedback technique. The goal of this third experiment
is to evaluate TORUSDESKTOP by comparing it with con-
ventional pointing (i.e., is it worth opening the backdoor?).

To this end, we presented subjects with various pointing
tasks and had them either use direct pointing only (condition
Direct) or use the backdoor only (condition Wrapping). The
goal was to assess if TORUSDESKTOP can help, and when.
But since in real settings deciding whether or not to use cur-
sor wrapping may take time and/or yield suboptimal choices,
we added a more realistic condition where it was up to the
subject to go through the backdoor or not (condition Torus).

Figure 6b qualitatively illustrates our initial expectations.
Using Direct, the further apart the start and the goal targets
are, the higher the movement time. Wrapping is likely to
show the opposite trend since the further apart the targets
are, the closer they are on a torus topology (but note that
Fitts’ law cannot account for possible distracting effects of
cursor wrapping). We hypothesized that performance under
the Torus condition would roughly follow the minimum of
Direct and Wrapping, plus a possible penalty due to choice.

Apparatus & Participants

The apparatus was the same as in the previous experiments.
We recruited a total of 18 participants (5 female), all right-
handed and experienced mouse users, with ages ranging
from 23 to 35 (median 27.8). 14 of them participated in at
least one of the previous experiments or pilot studies.
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Stimuli & Design

Given the results of previous experiments, we used the Ghost

feedback and a dead zone of 125 pixels for Wrapping and Torus.
Recall this dead zone size yields a reasonable trade-off that
meets the demands of both edge pointing and Torus pointing
(i.e., neither of them is strongly penalized). As before, sub-
jects had to click on a start target and acquire a goal target as
fast as possible. Both targets were located on the horizontal
centerline of the screen and were 40-pixel large3.

At the beginning of a trial, all potential goal targets were
shown. When the subject acquired the start target, the actual
goal target appeared with a solid color and non-targets dis-
appeared (see Figure 6a). This design was motivated by the
inclusion of the Torus condition. In real settings, users might
or might not know exactly where to click when they initi-
ate a pointing movement. Our design is a trade-off between
these two situations, since it reminds users of the possible
target locations, but does not give them complete informa-
tion about the task to prevent them from carefully deciding
whether or not use the backdoor before the timing starts.

In addition to the pointing conditions TECH, the experiment
included the factor DB1, the distance from the start target
to the closest screen edge; and DB2, the distance from the
goal target to the opposite edge. These two factors fully
define the pointing tasks, whose direct pointing distance is
DD = 2560 − (DB1+DB2), where 2560 is the screen width;
and whose torus pointing distance is DT = DB1+DB2+125,
where 125 is the size of the dead zone (Figure 6a). Both DB1

and DB2 values were {50, 125, 250, 500, 750}. We chose
these values according to an extensive pilot study suggest-
ing that among all possible pointing tasks defined by these
DB1×DB2 pairs, 7 clearly favor Wrapping, 7 clearly favor Di-

rect and the remaining 11 yield comparable performances.

The presentation order of the techniques was counterbal-
anced. Prior to the experiment, the Direct and Wrapping tech-
niques were introduced to the participants with two short
practice sessions. Then, the experiment was divided in two
parts. First, participants performed 4 series of 25 trials per
technique. A series of trials included all the possible com-
binations of DB1 and DB2 and was fully randomized. This
part was exclusively a training session. Then, participants

3Pilots studies did not show any effect of target size when compar-
ing TORUSDESKTOP and direct pointing.

performed 1 series of practice trials followed by 5 series of
measured trials per technique. Thus, for each participant, we
collected a total of 3 (TECH) × 5 (repetition) × 5 (DB1) × 5
(DB2) = 375 trials for analysis.

We collected movement time (MT) and errors (Error) defined
as in previous experiments. The experiment lasted about 45
minutes after which participants were given a short question-
naire and were interviewed about the strategies they devel-
oped in the Torus condition.

Quantitative Results

We removed 0.76% outliers defined as in previous ex-
periments and performed a full factorial analysis with
the model TECH×DD×Random(PARTICIPANT) and the finer
model TECH×DB1×DB2×Random(PARTICIPANT). We found
no learning effect and no significant difference in perfor-
mance between the 14 subjects who were involved in pre-
liminary experiments and the 4 new subjects.

Average Performance. The ANOVA reveals no effect of
TECH on MT (F2,34 = 0.245, p = 0.7836 for the DD model and
F2,34 = 0.612, p = 0.5481 for the DB1×DB2 model). Mean MT

are close for Direct (1091ms), Wrapping (1094ms) and Torus

(1108ms). These similarities confirm that we chose well-
balanced pairs of DB1×DB2 for Wrapping and Direct, but also
suggest that the improvement promised by Torus may have
been outweighted by the cost of choice. This will be dis-
cussed later.

We found a significant effect of TECH on ErrorRate (F2,34 =

7.74, p = 0.0017 for the DD model and F2,34 = 7.40, p = 0.0021

for the DB1×DB2 model). A post-hoc Tukey test shows that
Wrapping and Torus are significantly less error-prone than Di-

rect, with an error rate of about 6.6% for Wrapping and Torus

versus 9.2% for Direct. A possible explanation is that partici-
pants were more careful with Wrapping and Torus, as they were
less familiar with these techniques than with Direct.

Effect of Direct Distance. The ANOVA reveals a significant
effect of DD (F13,221 = 14.0, p < 0.0001) and a significant
interaction TECH×DD on MT (F26,442 = 12.5, p < 0.0001). We
found no significant effect or interaction on ErrorRate.

Figure 7 shows MT as a function of DD for the three tech-
niques. In accordance with our first intuitions, Direct gets
slower as DD increases and Wrapping gets faster, although the
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Figure 8. MT as a function of DB1 (left) and DB2 (right) per TECH.

curve exhibits some irregularities (which will be explained
when analyzing DB1 and DB2). The two techniques are com-
parable where the two curves cross, i.e., between DD=1810
and 2010 pixels. This corresponds to a Torus travel dis-
tance of only DT=675 to 875 pixels, suggesting that Wrap-

ping is slower than what Fitts’ law would have predicted.
Taking trials where DD∼DT, we estimate this penalty to
about 200ms 4. This penalty is likely due to the difficulty
in reacquiring the mouse cursor, but far from invalidating
the whole approach, it merely increases the target distance
above which Wrapping starts to be beneficial. Indeed, post-
hoc tests show clear benefits for Wrapping above DD=2010
pixels, i.e., 80% the screen size in our experimental setup.

Figure 7 shows that the behavior of Torus is similar to Wrap-

ping for DD>2010 pixels, where it exhibits a choice penalty
of about 50ms but still clearly outperforms Direct. For
DD=1810 to 2010 the 3 conditions exhibit similar perfor-
mance. The left part of the curve is however less consistent
with our initial expectations: for DD<1810, the performance
with Torus is close to Wrapping instead of being close to Direct

as in Figure 6b. One explanation is that participants failed to
choose direct pointing when it was more efficient (our later
experimental data confirms this). However, Torus also gets
closer to Direct as DD decreases, which suggests that subjects
might still favor Direct when it is clearly beneficial.

Effects of DB1 and DB2. We found significant effects of
both DB1 (F4,68 = 68.9, p < 0.0001) and DB2 (F4,68 = 3.68,

p < 0.0090) on MT. We also found significant interactions
DB1×DB2 (F16,272 = 6.29, p < 0.0001), DB1×TECH (F8,136 =

28.5, p < 0.0001) and DB2×TECH (F8,136 = 6.67, p < 0.0001).
We found no significant effect or interaction on ErrorRate.

4This value is consistent with a Fitts’ law analysis we conducted
on an extensive pilot study comparing Wrapping with Direct.
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The interaction DB1×TECH can be observed in Figure 8 left.
As DB1 increases, MT decreases for Direct (because DD de-
creases) and increases for Wrapping (because DT increases).
For Torus, MT behaves like Wrapping up to DB1=750, suggest-
ing Direct was preferred when the start target was very far
from the edge. Ideally, MT should have followed Direct’s trend
starting from DB1=500, but both the cost of the choice and
the overuse of the backdoor seem to have prevented this.

Surprisingly, the interaction DB2×TECH is quite different
(see Figure 8 right). For the same reasons as above, MT de-
creases with DB2 for Direct. But for Wrapping, MT follows a
catenary curve with a minimum at DB2=250. Since Wrap-

ping should normally increase with DB2, this suggests an is-
sue with goal targets being very close to the edge. This is-
sue also impacts the Torus condition, which exhibits the same
minimum at DB2=250.

The asymmetric effects of DB1 and DB2 are further detailed
in Figure 9, which shows MT by TECH for each DB1-DB2

pair that yields a DD value of 1760, 1810, 2010 or 2060.
These values correspond to the irregularities we previously
observed in Figure 7. Figure 9 confirms that Wrapping does
poorly when DB2 is small. For example, Wrapping does much
worse with the pair 750-50 than the pair 50-750, despite
these pairs yielding the same DD=1760. This is the cause
for the peak in Figure 7. This peak is followed by a sharp
decline at DD=1810 which involves the more balanced pairs
500-250 and 250-500. Torus exhibits the same irregularities.

This asymmetry can be explained in the light of the opti-
mized dual sub-movement model [22] and by considering
when in the pointing movement cursor warping occurs. Us-
ing Wrapping, the mouse cursor first travels the distance DB1

+ DZ, then warps and re-appears on the opposite side, after
which it travels a distance DB2 before reaching the target. If
DB2 is small compared to DB1 + DZ, the warping occurs at
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the end of the movement – i.e., the corrective phase where
visual feedback is the most crucial. Cursor warping requires
attention shift, which likely disrupts the corrective process
and slows users down. Conversely, if DB2 is large compared
to DB1 + DZ, the warping happens during the initial ballistic
phase of the movement where visual feedback is not used,
thus its impact on performance is less severe.

Note that we could have ran a post-hoc analysis, but doing so
with such a large number of data points is subject to method-
ological issues (high risks of type I or type II errors) and a
correct analysis would have required a fair amount of space
to justify and report. Since the significant interactions we
found and the Figures 7, 8 and 9 are already quite informa-
tive we chose not to perform theses analyses.

Choice Strategies

So far, our results show that using the backdoor was ben-
eficial when more than 80% of the screen had to be trav-
eled. However, we observed mixed results when subjects
had to make a choice, especially when direct pointing was
the best choice. Therefore, we further analyze the choices
made in the Torus condition. We consider the measure pTC,
i.e., the % of the time where subjects chose wrapping,
the model DD×Random(PARTICIPANT) and the finer model
DB1×DB2×Random(PARTICIPANT) for this condition.

Unsurprisingly, DD has an effect on pTC (F13,221 = 25.2, p <

0.0001) and pTC increases with DD: the larger the distance to
travel, the more often the backdoor was used.

DB1 and DB2 also have an effect on pTC (F4,68 = 28.0,

p < 0.0001 and F4,68 = 9.61, p < 0.0001 respectively), with
no DB1×DB2 interaction. As can be seen in Figure 10, the
closer to the edges the targets were, the more often cursor
wrapping was used. The dissimilar slopes further suggest
that subjects gave more weight to the distance of the start
target when they had to make a choice. This might be due to
the fact that this information was available before DB2.

During the post-experiment interviews, participants reported
using different strategies that can be summarized as:

• START: only wrap when the start target is close to the edge.

• GOAL: only wrap when the goal target is close to the edge.

• WRAP: always wrap the mouse cursor.

• DIRECT: always use direct pointing.

• NOCLUTCH: take the path that minimizes mouse clutching.

• RANDOM: choose more or less randomly.

10 participants reported relying mostly on START and 3 re-
ported using it as a secondary strategy. 5 participants re-
ported using WRAP as their primary strategy and 1 mentioned
it as a secondary strategy. All the other strategies have been
mentioned as a main strategy only once. GOAL was men-
tioned as a secondary strategy 3 times. Reported strategies
were consistent with mean pTC per participant and with our
analyses of the effects of DB1 and DB2 on pTC, except for
two participants who reported using START and DIRECT but
actually chose wrapping 93% and 76% of the time.

Overall, participants overused the backdoor: the global
mean of pTC is 75% (std dev. 15%, median 74%). Even
in the worst case scenario (DB1=DB2=750, DD=1060 and
DT=1625), wrapping was used about 30% of the time. This
trend could be partly due to a “good user” effect. It is also
likely that participants were not accurate enough at estimat-
ing when cursor wrapping would beat direct pointing. It
could be that with more training, users would develop a habit
of the technique and start making close-to-optimal choices.
But since we used an extensive training session and did not
find a learning effect – even for subjects who were not in-
volved in preliminary experiments – TORUSDESKTOP could
probably benefit from visual clues that help users make op-
timal choices and develop more rational strategies.

Another question concerns the cognitive load associated
with the choice. Although we did not measure cognitive load
formally, we gave a post-experiment questionnaire where we
asked subjects if they found it difficult to choose between di-
rect pointing and wrapping. Out of 18, 4 strongly disagreed
and 9 disagreed, suggesting cognitive load is moderate.

CONCLUSION AND FUTURE DIRECTIONS

Despite being an old idea, cursor wrapping is a simple and
target-agnostic way of reducing target distance in pointing
tasks. We discussed how such a technique should be de-
signed and proposed the TORUSDESKTOP technique: it in-
cludes a dead zone that prevents accidental cursor warp-
ing and facilitates edge pointing, and a visual feedback that
helps keeping track of the cursor inside the dead zone.

We tested several variations over this design and found that
our Ghost off-screen feedback reduces overshoots during
both edge pointing and cursor wrapping and is well-received
by end-users, and that a 125-pixel dead zone (5% the screen
size5) yields good performance for edge pointing while not
sacrificing cursor wrapping performance. Recall the optimal
dead zone size is infinite for edge pointing and is zero for
cursor wrapping. However, a 125-pixel dead zone size is a
reasonable trade-off where neither task is strongly penalized.

We also compared TORUSDESKTOP with direct pointing and
uncovered the following potential sources of difficulties with
the cursor wrapping approach:

• Cursor teleportation adds a time penalty of ∼200ms,

• Targets very close to the edges are harder to acquire,

• Chosing whether or not to use the backdoor has some cost.

5All figures are given according to our experimental setup that in-
volves a 30" 2560x1600 display.



In our study, the cost of choice took the form of a small time
penality (∼50ms) when cursor wrapping was the most ben-
eficial, and of suboptimal choices (overuse of the backdoor)
when direct pointing was the best option.

However, rather than invalidating the whole approach, these
difficulties merely increase the travel distance above which
TORUSDESKTOP starts being beneficial. Indeed, our study
shows that cursor wrapping outperforms direct pointing
above a travel distance of 2010 pixels (80% the screen size),
and these benefits are preserved when users have to choose
between direct pointing and cursor wrapping. These benefits
can translate to much higher gains when one needs to regu-
larly acquire targets close to an edge (e.g., toolbar buttons),
or when going back-and-forth between two very distant tar-
gets (e.g., toolbars placed at opposite sides of the screen).
However, despite extensive training, our study participants
were not very accurate at estimating which technique will be
the most efficient under a given condition. We are investigat-
ing how to augment TORUSDESKTOP with visual clues and
feedforward techniques to help users make optimal choices
and develop better strategies in the long run.

Further design is also required to support TORUSDESKTOP

in multi-display environments. Several strategies can be
considered such as disabling cursor wrapping on adjacent
screen edges, restricting wrapping to the active screen or
supporting on-demand wrapping/screen jump.

Finally, a field study of TORUSDESKTOP is clearly needed to
validate the approach and ensure that cursor wrapping can be
adopted and effectively used by end users in their everyday
desktop usage. As a first step towards this goal, we imple-
mented an application that enables TORUSDESKTOP at the
system-level on Mac OS X and that is freely available at
http://insitu.lri.fr/TorusDesktop.
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