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Abstract

The Equi-Energy Sampler (EES) introduced by Kou et al. [2006] is based on a population
of chains which are updated by local moves and equi-energy jumps. This algorithm has
been developed to facilitate global moves between the different chains, resulting in a good
exploration of the states space by the target chain. This method seems to be more efficient
than the classical Parallel Tempering (PT) algorithm. However it necessitates increased
storage and the convergence of the original EES is not guaranteed (see Andrieu et al. [2008])).
In this paper we propose an adaptation of the EES that combines PT with the principle of
jumping between chains with same levels of energy. This adaptation, that we shall call
Parallel Tempering with Equi-Energy Moves (PTEEM), keeps the original idea of the EES
method and ensures convergence. Performances of the PTEEM algorithm are compared with
those of the EES and of the standard PT algorithm in the context of mixture models.

Keywords: Algorithm convergence, equi-energy sampler, mixture models, parallel tempering,
population-based MCMC.

1 Introduction

A common problem in Bayesian statistics is that of generating random variables from a target
density π. Many solutions have been proposed in the last two decades, deriving essentially from
the Monte Carlo Markov Chains (MCMC) approach introduced by Metropolis et al. [1953] and
Hastings [1970]. In classical MCMC methods, a Markov process is built to sample the target
probability distribution. But in practice, the Markov process can be easily trapped into a local
maximum from where it cannot escape in reasonable time (see for instance Liang and Wong
[2001]). Many techniques have been proposed to address this waiting time problem, including
among others Parallel Tempering (PT) (see Geyer and Thompson [1995]), and more recently
Equi-Energy Sampler (EES) (Kou et al. [2006]). In this paper we focus on these two methods
and we propose an adaptation that can be seen as a combined version of PT and EES algorithms,
and that we called the Parallel Tempering with Equi-Energy Moves (PTEEM) algorithm. Before
developing this method, PT and EES algorithms are briefly recalled.

On some state space X with associated σ-algebra B(X ), the target density is proportional
to

π(x) ∝ exp{−h(x)},
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where h(x) denotes the energy function. In a classical Metropolis-Hasting algorithm a new state
y is generated from a current state x of the Markov process by drawing y from a proposal
transition function q(x; y). The new state y is accepted with the probability min(1, r), where r
is the Metropolis-Hastings ratio:

r =
π(y)q(y;x)

π(x)q(x; y)
.

The Markov process converges to the target distribution π using any positive transition function
q(x; y) and starting from any initial configuration. Nevertheless, in practice, the Markov process
can be trapped into a deep local minimum of energy. To avoid this problem the principle of
PT is to choose N temperatures T1 = 1 < T2 < · · · < TN , and to run in parallel N associated
MCMC chains having different stationary distributions, π1, · · · , πN , where

πi ∝ π1/Ti .

Since the tempered distribution becomes flatter as the temperature increases, the chains at
high temperatures can move more freely between modes. The PT algorithm consists of two
steps at each iteration: a parallel step updating every chain by using their respective MCMC
algorithm, and a swapping step consisting in choosing randomly two chains and in proposing a
swap between those. The probability of accepting the swap between two chains, say i and j, is

min

{

1,
πi(xj)πj(xi)

πi(xi)πj(xj)

}

,

where xi stands for the state of the ith chain. An advantage of the PT algorithm is its ability to
use information from different chains through the swapping step. Therefore the swapping step
allows the chain associated with the posterior distribution to escape from its local modes, thereby
improving mixing. Some improvements of PT have been proposed as the delayed rejection (see
Green and Mira [2001]) which permits to propose a new chain candidate when the first swap did
not occur. However PT algorithm does not retain information of where chains have been and
it does not take into account all chains to choose one of the best swap. This is what is done by
the EES proposed by Kou et al. [2006]. Note that the method of Atchadé and Liu [2006], called
multicanonical sampling, is in the same spirit.

In EES a sequence of K +1 energy levels and a sequence of K temperatures are introduced:

H1 < H2 < · · · < HK+1 = ∞, and T1 = 1 < T2 < · · · < TK ,

such that H1 ≤ min(h(x)). The EES considers a population of K distributions, each indexed by
a temperature and an energy truncation. The probability density function of the ith distribution
is

π̃i(x) ∝ exp{−hi(x)},

where

hi(x) =
max(h(x),Hi)

Ti
.
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The method begins by sampling theKth chain from a Metropolis-Hastings kernel with stationary
distribution π̃K . Once convergence is reached, samples are stored and the next chain targeting
π̃K−1 starts. At each step all chains are updated by either (with a fixed probability pee) using
a Metropolis-Hastings kernel or (with probability 1− pee) by proposing to exchange the current
state of the chain with a value from the past of the previous chain. This exchange between
chains is called the equi-energy jump: two successive chains are considered, say chains i and
i − 1, and a state y is chosen from the chain i such that h(y) and h(xi−1) belong to the same
energy ring Dk = [Hk,Hk+1) for some k ∈ {1, · · · ,K}. Then y is accepted to be the next state
of the (i− 1)th chain with probability

min

{

1,
π̃i−1(y)π̃i(xi−1)

π̃i−1(xi−1)π̃i(y)

}

,

The EES continues the construction of the others chains in much the same way, until it targets
π̃1 = π, which is the target density of interest.

The advantage of the EES is that it retains information of all chains and it is able to make
large moves between separated modes within energy rings. Moreover, it seems to be very efficient
compared to classical MCMC methods as PT (see Kou et al. [2006]). But a possible weakness
of the EES is the cost of increased storage, all the past being taken into account in energy
rings. In addition some difficulties are encountered to combine EES with a Gibbs sampler.
Indeed, it does not seem obvious to sample from the truncated joint posterior distribution.
Some algorithms could be used to sample from it, like accept-reject or Approximate Bayesian
Computation algorithms, but the computationnal cost would then be too high in practice. Note
that the proof of the convergence of the EES was an active research area during last years, see
Kou et al. [2006], Atchadé and Liu [2006], Andrieu et al. [2007a, 2008, 2007b]. Recently, Hua
and Kou [2010] completed the proof of the convergence of the EES in the case of a countable
state space, and in a technical report Fort et al. [2010] proposed a proof of the convergence in a
non-countable state space. Atchadé et al. [2010] recently showed that the asymptotic variance
of the EES can be substantially different than that suggested by Kou et al. [2006].

We propose to address some drawbacks of EES by adapting the concept of equi-energy jump
in a schema of PT, with rings of energy depending only on the currents chains, not on all the
past. Then the jump between chains still depends on their energies, and the candidate chains
for swapping are chosen randomly and uniformly. This combination of EES and PT yields to
the new algorithm PTEEM for which convergence is ensured (see Propositions 2.1 and 2.2).
The possible loss or gain of this algorithm compared to EES and PT are evaluated through
simulations and real data.

The paper is organized as follows: In Section 2 the new PTEEM algorithm and some the-
oretical properties are presented. In Sections 3 and 4 comparisons between PTEEM, EES and
PT are presented in the case of Metropolis-Hastings and Gibbs sampler algorithms. Two cases
of mixture models are studied through simulations and real data.
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2 PTEEM algorithm

2.1 Description of the algorithm

We fix d+1 energy levels H1 < H2 < · · · < Hd+1 = ∞ and N temperatures T1 < T2 < · · · < TN ,
with T1 = 1 and H1 ≤ min(h(x)). The algorithm considers a population of N chains associated
with probability measures πi(x) ∝ π(x)1/Ti , each πi being defined on some state space X with
associated σ-algebra B(X ). Clearly π1 = π. We also denote by πi for i = 1, . . . , N the associated
densities with respect to λ on (X ,B(X )). The state space X is supposed to be the support of
the probability measures πi.

Remark 2.1 Kou et al. [2006] used π̃, a truncation of the energy function, which leads to
intractable simulations in the case of Gibbs sampling. In PTEEM we use π and not π̃, allowing
us to apply the algorithm within a Gibbs sampler framework (see Section 4).

The energy rings are constructed as in Kou et al. [2006], except for the first one. The state
space X is partitioned according to the energy levels: X =

⋃d
j=1Dj , where

Dj = {x ∈ X ;h(x) ∈ [Hj,Hj+1)}, j = 2, · · · , d
D1 = {x ∈ X ;h(x) ∈ (−∞,H2)}.

Each step of the PTEEM algorithm is decomposed into two types of moves: local moves via
a classical MCMC algorithm and global moves allowing an exchange between two chains with
similar energy.

Local moves At each step a new state yi is proposed to the ith chain, for all i = 1, · · · , N ,
using MCMC algorithm. When using a Gibbs sampler, the ith chain takes the value yi. When
using Metropolis-Hasting algorithm, the current value xi of the ith chain is replaced by yi with
probability

α = min

(

1,
f(yi)q(yi;xi)

f(xi)q(xi; yi)

)

,

with π(x) = f(x)/K, where the normalizing constant K may not be known. Assuming that
the proposal distribution is symmetric, i.e., q(x; y) = q(y;x), the local move is accepted with

probability α = min(1, f(yi)
f(xi)

).

Global moves At each step, an energy ring Dj containing at least two chains is chosen
randomly. Two chains are then chosen uniformly in Dj , say the ith and the kth ones (with
i < k), and an exchange move is proposed between the actual two states of these chains. The
move is from s = (x1, · · · , xi, · · · , xk, · · · , xN ) to s′ = (x1, · · · , xk, · · · , xi, · · · , xN ).
The product σ-algebra is written B(X )N , and the product measure is denoted by λN . The
probability measure π∗ is defined as follows:

π∗(dx1, dx2, . . . , dxN ) =

N
∏

i=1

πi(xi)λ(dxi) on (XN ,B(X )N )
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The probability acceptance for the global move is then given by:

ρ(s; s′) = min

{

1,
π∗(s′)

π∗(s)

}

= min

{

1,
πi(xk)πk(xi)

πi(xi)πk(xk)

}

. (1)

Note that if the denominator is null, then the numerator is also null and by convention ρ(s; s′)
is null. The chains are not Markov by themselves, it is the whole stochastic process made of the
N chains together that forms a Markov chain on (XN ,B(X )N ).

Remark 2.2 It is of interest to compare the total number of local and global moves required
in PTEEM and EES algorithms. Let us denote by B the size of the burn-in period, by R the
number of iterations necessary to initialize energy rings within EES, and by M the sample size
of the chains (after the burn-in period). We have:

• For EES, the total number of local moves is equal to

K(B +R) +M + (1− pee)

(

(K − 1)K

2
(B +R) + (K − 1)M

)

,

and the total number of global moves is equal to

pee

(

(K − 1)K

2
(B +R) + (K − 1)M

)

,

where K denotes the number of chains in EES.

• For PTEEM, the total number of local moves is NM +NB,
and the total number of global moves is M +B,
where N stands for the number of chains in PTEEM.

Then in terms of simulations number, PTEEM necessitates more moves than EES when M is
large since usually N is larger than K. In terms of storage, to obtain the (i + 1)th iteration

of the target chain, EES uses KR+ i+ (1− pee)

(

(K − 1)KR

2
+ (K − 1)i

)

, values in memory

to choose an element in an energy ring, whereas PTEEM necessitates only N values. From
our experience, CPU time to compute one iteration increases within EES as the simulations go
along. In opposition CPU time for one iteration is constant within PTEEM algorithm.

2.2 Some theoretical results

Denote by S the Markov chain on (XN ,B(X )N ) obtained by the PTEEM algorithm, a state of
S is written s. The transition kernel associated with an iteration of PTEEM is written P , and
P k is the k-step transition kernel. They are defined on XN × B(X )N . The transition kernel
associated with the local move of the ith chain is written PLi, and is defined on X ×B(X ). The
transition kernel associated with the N local moves of an iteration of PTEEM is written PL,
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and is defined on XN × B(X )N . The transition kernel associated with the equi-energy move is
written PE, and is defined on XN × B(X )N . Writing

s = (x1, . . . , xi, . . . , xk, . . . , xN )

s′ = (x′1, . . . , x
′
i, . . . , x

′
k, . . . , x

′
N ),

we have

PL(s, s′) =

N
∏

i=1

PLi(xi, x
′
i)

P (s, s′) = (PE ∗ PL)(s, s′) =

∫

XN

PE(s̃, s′)PL(s, s̃)ds̃

Write q(s, s′) the auxiliary distribution to propose s′ from s in an equi-energy move. The total
variation norm for a measure µ on (XN ,B(X )N ) is defined by:

‖µ‖TV = sup
A∈B(X )N

|µ(A)|.

Proposition 2.1 If the transition kernels associated with the local moves are reversible with
stationary distributions πi, i = 1, · · · , N , aperiodic and strongly λ-irreducible, then the chain S
is strongly λN -irreducible and we have for π∗-almost all s ∈ XN

lim
n→∞

‖Pn(s, .)− π∗‖TV = 0.

Therefore π∗ is the stationary distribution of S and the chain associated with T1 = 1 provides
samples corresponding to π1 = π, which is the target distribution.

Proof : in appendix B.1.

This Proposition 2.1 has minimal assumptions, which are usually not hard to verify. For in-
stance, if the local MCMC algorithm used is a Gibbs sampler, the strong-irreducibility is verified
under condition of positivity of the target density on X , or under condition of absolute conti-
nuity of the associated transition kernel with respect to the dominating measure λ. If the local
MCMC algorithm used is a Metropolis-Hastings algorithm, the strong-irreducibility is verified
under condition of positivity of the associated proposal distribution on X .
The assumption of reversibility for each of the local MCMC algorithms could be relaxed. In-
deed, the reversibility is sufficient but non necessary to have π∗ as the stationnary distribution
of the chain S. Concerning the assumption of strong irreducibility, we can note that simple
irreducibility would be sufficient, and that quite general conditions can be supposed to assure
this irreducibility. For example, if the local MCMC algorithm used is a Metropolis-Hastings
algorithm, it is sufficient that the target density is bounded and positive on every compact set
of its support, and that there exists numbers ǫ and δ such that qi(x, x

′) > ǫ if |x− x′| < δ (with
qi the associated proposal distribution, see lemma 7.6 of Robert and Casella [2004]). We can
note that under some assumptions S can be irreducible even if XN the support of π∗ is not con-
nected (see for instance lemma 10.11 of Robert and Casella [2004]). Concerning the assumption
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of aperiodicity of each local transition kernel, it can be relaxed because it is sufficient to have
only one of the N local transition kernel which is aperiodic to have P aperiodic.

The proposition 2.1 states that under quite general and usually verified conditions, the chain
S converges to its stationnay distribution for π∗-almost all starting point. However, it is possible
to have a null set of states from which convergence does not occur. The following lemma and
proposition have stronger assumptions that ensure convergence from all starting points.

Lemma 2.1 Assume that the transition kernels associated with the local moves are reversible
with stationary distributions πi, i = 1, · · · , N , aperiodic and strongly λ-irreducible, and assume
the positivity of the density π∗ on XN (∀s ∈ XN , π∗(s) > 0). Then the chain S is strongly
λN -irreducible, positive and Harris-recurrent.

Proof : in appendix B.2.

The following proposition is a consequence of 2.1.

Proposition 2.2 Assume that the transition kernels associated with the local moves are re-
versible with stationary distributions πi, i = 1, · · · , N , aperiodic and strongly λ-irreducible, and
assume the positivity of the density π∗ on XN (∀s ∈ XN , π∗(s) > 0). Then we have for all
s ∈ XN

lim
n→∞

‖Pn(s, .)− π∗‖TV = 0.

Proof :
Using Lemma 2.1 and Proposition 2.1, S is a Markov chain π∗-irreducible, aperiodic, with
stationnary distribution π∗ and Harris-recurrent. The result follows from Theorem 1 of Tierney
[1994].

Obviously, the remarks previously done on the assumptions of 2.1 can be applied on the
assumptions of 2.1 and 2.2. Note that under assumptions of 2.1 and 2.2, the ergodic theorem
which is an equivalent of the law of large numbers for Markov chains can be applied.

2.3 Choice of energy ladder and temperatures

Following our experience we propose some choices of energy ladder and temperatures.

Energy ladder The levels H1,H2, . . . ,Hd are associated with d energy rings, the first one
including states having an energy value lower than H2 and including only few states having an
energy value lower than H1, and the last one including states having an energy value higher
than Hd. Once the values H1 and Hd are chosen, the other energy levels can be set to be evenly
spaced on a logarithmic scale

ln(Hi) = ln(H1) + i
ln(Hd)− ln(H1)

d− 1
.
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To choose H1 and Hd we use one or few runs of a classical MCMC algorithm with target density
π. We take for Hd the energy associated with a state with high enough finite energy compared to
other states. ConcerningH1, we take the energy corresponding to an observed mode. In practice,
we can take for Hd the energy associated with a state after few iterations of the algorithm, and
for H1 the energy associated with a state after a burn-in period.

Remark 2.3 Concerning H1, if the modes of the distribution of interest are known, we just
have to take H1 slightly lower than the energy of the highest mode.

Temperatures The distribution associated with the highest temperature should be suffi-
ciently flattened so that the associated chain can move freely from one mode to another. After
choosing a TN value we just have to check that the associated chain moves easily. T1 is obviously
equal to 1, and is associated with the chain of interest. Once T1 and TN are fixed, the other
temperatures can be chosen by evenly spacing them on a logarithmic scale, or by evenly spacing
the inverse temperatures geometrically (see for instance Kou et al. [2006] or Neal [1996]).

Checking that the choices of temperatures and energy ladder are relevant It is
necessary to check on a run of PTEEM that the choices of temperatures and energy ladder
are relevant. The chain 1 should have almost all its states in the first energy ring, the last
chain should have almost all its states in the last energy ring, and between them the states of
the different chains should be well distributed in the rings. The distribution in the rings can
be considered as correct if there is no ”energy gap” between adjacent chains, and if for each
chain equi-energy moves are performed with several other chains. If poor mixing is observed
between chains then it is necessary to adjust the temperatures or the energy levels, adding new
temperatures for instance or proposing a new calibration. We illustrate such a problem in Table
1 and in an example of Section 4.1.

3 Comparisons in the case of local Metropolis-Hastings moves

To compare the three algorithms (PT, EES and PTEEM) when the local move is a Metropolis-
Hastings algorithm, we consider sampling from a two-dimensional normal mixture model taken
from Liang and Wong [2001] and used as an illustration by Kou et al. [2006]. Let

f(x) =

20
∑

i=1

wi

σi
√
2π

exp
(

− 1

2σ2
i

(x− µi)
′(x− µi)

)

,

where σ1 = . . . = σ20 = 0.1, w1 = . . . = w20 = 0.05, and the 20 mean vectors

(µ1, . . . , µ20) =

(

2.18 8.67 4.24 8.41 3.93 3.25 1.70 4.59 6.91 6.87
5.76 9.59 8.48 1.68 8.82 3.47 0.50 5.60 5.81 5.40

5.41 2.70 4.98 1.14 8.33 4.93 1.83 2.26 5.54 1.69
2.65 7.88 3.70 2.39 9.50 1.50 0.09 0.31 6.86 8.11

)

.

The different local modes are quite far from each other (most of them are more than 15 stan-
dard deviations from the nearest ones), hence this mixture distribution is quite challenging for
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sampling. In addition, the initial states of the different chains were drawn from a uniform dis-
tribution on [0, 1]2, a region far from the local modes.
Each algorithm was run 100 times. For each run, the PT and PTEEM algorithms were run for
2500 iterations after a burn-in period of 2500 iterations. Similarly, for each chain of the EES the
burn-in period was of 2500 iterations, and for the first chain (the target chain) 2500 iterations
were simulated after this burn-in period and the period to construct the rings, which was of 500
iterations. As in Kou et al. [2006], the Metropolis-Hastings proposal was a bivariate Gaussian

X
(i)
n+1 ∼ N2(X

(i)
n , τ2i I2), with τi = 0.25

√
Ti. Unlike them, the step size τi was not tuned later in

the algorithms such that the acceptance ratio is in the range (0.22,0.32). Indeed, we would like
to compare algorithms as simple as possible.
For the EES, we took the same number of chains, the same energy levels, the same tem-
peratures and the same equi-energy jump probability than Kou et al. [2006] (K = 5, H =
(0.2, 2, 6.3, 20, 63.2), T = (1, 2.8, 7.7, 21.6, 60), pee = 0.1). For the PT and PTEEM algorithms,
N = 20 chains were taken, with temperatures between 1 and 60 evenly spaced on a logarithmic
scale. As in Kou et al. [2006], the PT algorithm used a swap between neighboring temperature
chains for the exchange operation, but only one swap was proposed at each iteration, to make it
comparable with the PTEEM. For the PTEEM, the same 5 groups of energy than for the EES
were taken.

The mean acceptances rates for the local Metropolis-Hastings moves and for the exchange
moves between chains for the three algorithms are given in Table 2. In comparison Kou et al.
[2006] obtained results slightly different probably because the step size τi was tuned in their
EES.

To compare the ability of each algorithm to explore the distribution space, we considered for
each run of each algorithm the number and frequency of visited modes by the target chain,
as well as the estimations of the mean vector (E(X1), E(X2)) and of the second moments
(E(X2

1 ), E(X2
2 )) using the samples generated from the target chain. Table 3 contains these

estimations. Concerning the estimations of the mean vector and of the second moments, the
EES and PTEEM estimates were more accurate than those of the PT, with smaller mean squared
errors. Moreover, it appeared that the PTEEM estimates were slightly more accurate than those
of the EES. Concerning the number of visited modes, good results were obtained by the EES and
PTEEM algorithms compared to the PT. The results are reported in Table 4. The mean number
of visited modes by the PT on the 100 runs was 14.31, compared to 19.92 for the EES and 19.98
for the PTEEM. Then, as in Kou et al. [2006], we counted in each of the 100 runs for the three
algorithms how many times the target chain visited each mode in the last 2500 iterations. The
absolute frequency error is given by erri = |f̂i − 0.05|, where f̂i is the sample frequency of the
ith mode being visited (i = 1, . . . , 20). The median and the maximum of erri over the 100 runs
was calculated. To compare the three algorithms the ratios of these values between PT and
EES, between PT and PTEEM and between EES and PTEEM were calculated for each mode.
All these ratios are presented in Table 5. As denoted in Kou et al. [2006], EES seemed to be
more efficient than PT (the mean of the ratios Rmed(PT/EES) over the 20 modes was 2.42, and
the mean of the ratios Rmax(PT/EES) over the 20 modes was 2.92). As expected, PTEEM gave
better results than PT (the mean of the ratios Rmed(PT/PTEEM) over the 20 modes was 2.52,
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and the mean of the ratios Rmax(PT/PTEEM) over the 20 modes was 3.07). Besides, we noticed
a slight improvement of PTEEM compared to EES (the mean of the ratios Rmed(EES/PTEEM)

over the 20 modes was 1.05, and the mean of the ratios Rmax(EES/PTEEM) over the 20 modes
was 1.13).

Figures 1 and 2 show the last 2500 iterations after burn-in for the chains 1, 7, 14 and 20
obtained by one run of the PT algorithm, and by one run of the PTEEM algorithm. Figure 3
shows the simulations after a burn-in period for chains 1 to 5 obtained by a run of EES. The
first chains of the PTEEM and EES visited all the modes of the target density whereas the
first chain of PT did not visit all of them. Notice that chains with the highest temperatures of
the PT algorithm visited all the modes, and these chains for the EES kept in memory lots of
iterations.

Table 6 presents the repartition of accepted equi-energy moves for chains 1,10 and 20, with
other possible chains within a run of the PTEEM algorithm. As expected, the closer the temper-
atures of chains were, the more often the equi-energy moves were accepted. Note that equi-energy
moves had been proposed and accepted for all possible pairs of chains, including for pairs of
chains with very different temperatures.

As in Kou et al. [2006], it appeared that the EES algorithm gave better results than the
classical PT. Besides the PTEEM algorithm gave results comparable to those of the EES, and
even slightly better.

4 Comparisons in the case of local Gibbs samplers moves

Some difficulties are encountered to combine EES with a Gibbs sampler. Indeed, it does not
seem obvious to sample from the truncated joint posterior distribution. Hence in the case where
the chains are locally updated by a Gibbs sampler we compared only results of PT and PTEEM
algorithms. Two illustrations of Gaussian mixtures are treated: an example with simulated
data, and the well-known example of the Galaxy dataset.
For both illustrations we consider independent observations y1, · · · , yn from k mixture compo-
nents

yi ∼
k
∑

j=1

wjf(.|µj , σ
2
j ), i = 1, . . . , n,

with k fixed and known and where f(.|µj, σ
2
j ) denotes the density of the Gaussian distribution

N (µj, σ
2
j ). The sizes of the k groups are proportional to w1, w2, . . . , wk, which are the weights

of the components. The parameters to be estimated are the means µj, the variances σ2
j , and

the weights wj , for j = 1, . . . , k.
The label of the component from which each observation is drawn is unknown, and a label vector
c which is a latent allocation vector is introduced as follows: ci = j if the observation yi is drawn
from the jth component. The variables ci are supposed independent with distributions

p(ci = j) = wj, j = 1, . . . , k.

Write y = (yi)i=1,...,n, µ = (µj)j=1,...,k, σ
2 = (σ2

j )j=1,...,k, w = (wj)j=1,...,k and c = (ci)i=1,...,n.
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The µj and σ−2
j are supposed to be independent with the following priors:

µj ∼ N (ξ, κ−1), σ−2
j ∼ Γ(α, β) and β ∼ Γ(g, h), (2)

where β and h are rate parameters. The prior on w is taken as a symmetric Dirichlet distribution

w ∼ D(δ, δ, . . . , δ).

The parameters δ, ξ, κ, α, g and h are supposed to be fixed. Let us denote by mj =
∑n

i=1 1ci=j

the number of observations labeled by j.

The joint posterior density, the full conditional distributions and the formula of the accep-
tance rate for the equi-energy move are given in appendix A.

On the following examples, the estimates of the parameters obtained after labeling were
quite good and similar for the PT and PTEEM algorithms. They were even comparable to those
obtained with a classical Gibbs sampler. The major difference between these three algorithms
was the ability to explore the parameter space: the Gibbs sampler found one mode of the mixture
posterior and usually was staying only on this mode, while the PT and PTEEM algorithms
succeeded to jump from one mode to another. Consequently, on the examples we focused on
the label-switching phenomenon (see Jasra et al. [2005]), and not on the estimation of the
parameters.

4.1 Simulated data

Following Jasra et al. [2005], a vector y of length 100 was simulated from a mixture of four
Gaussian distributions:

1

4

(

N (−3, 0.552) +N (0, 0.552) +N (3, 0.552) +N (6, 0.552)
)

.

The number of components is k = 4, and we chose for the fixed parameters in (2): α = 2, ξ = ȳ,
δ = 1, κ = 1/R2, g = 0.2 and h = 10/R2, where R = max(y) − min(y). The algorithms PT
and PTEEM were run 100 times, each run consisting of 4000 iterations after a burn-in period
of 1000 iterations. We used 20 chains and 5 energy rings. As in the previous example, the PT
algorithm used a swap between neighboring temperature chains for the exchange operation, and
only one swap was proposed at each iteration.
Concerning the energy ladder, after a run of a classical Gibbs sampler with target density π, we
chose H1 = 105 and H5 = 285. Four energy rings were chosen with levels evenly spaced between
105 and 285 on a logarithmic scale, the fifth ring including states having an energy value higher
than 285. The levels were then 105, 134.8, 173, 222 and 285.
Concerning the temperatures, after few runs of PT and PTEEM we noted that there was an
energy gap between chains of temperatures lower than 1.18 and chains of temperatures higher
than 1.28. Indeed, chains of temperatures lower than 1.18 had almost all their states in the first
ring, while chains of temperatures higher than 1.28 had almost all their states in the last two
rings. To overcome this problem, several temperatures were introduced between 1.18 and 1.28.

11



The temperatures were then set by the following way: 4 temperatures between 1 and 1.17, 10
temperatures between 1.18 and 1.28 and 6 temperatures between 1.30 and 10, the temperatures
being evenly spaced on a logarithmic scale, so we obtained 1, 1.05, 1.11, 1.17, 1.18, 1.19, 1.2,
1.21, 1.22, 1.23, 1.25, 1.26, 1.27, 1.28, 1.3, 1.96, 2.94, 4.42, 6.65 and 10.
Table 7 shows for several chains the distributions of states in the energy rings.

Clearly, the mixture posterior has k! = 24 symmetric modes and, in theory, for a very high
number of iterations, the chain of interest should have visited all modes, with equal frequen-
cies. When the chain goes from one mode to another, there is the so-called label-switching
phenomenon (see Jasra et al. [2005]). Such a phenomenon is a useful convergence diagnostic to
check if the chain of interest has explored all possible labelings of the parameters. To compare
PT and PTEEM algorithms we considered for each run of each algorithm both the number and
the frequency of visited modes by the target chain. Table 8 shows that on 100 runs of PTEEM
the target chain visited more modes than on 100 runs of PT. Hence the label-switching phe-
nomenon seems to occur more often during a run of PTEEM than during a run of PT. We also
counted in each of the 100 runs for the two algorithms how many times the target chain visited
each mode in the last 4000 iterations. The absolute frequency error is given by erri = |f̂i−1/4!|,
where f̂i is the sample frequency of the ith mode being visited (i = 1, . . . , 4!). We then calcu-
lated the mean and median of this absolute frequency error over the 100 runs and the 4! modes.
Absolute frequency errors were slightly lower for PTEEM with a mean (resp. a median) of 3,9%
(reps. 3.8%), compared to 4.9% (resp. 4.2%) for PT.

We studied further the equi-energy moves of the algorithm PTEEM. In Table 9 it appears
that exchange moves were more frequent between chains with similar temperatures. The mean
acceptance rates of equi-energy moves for PTEEM and of exchange moves for PT were 53% and
61%, respectively. Note that we could code the PT algorithm so that exchange moves can be
proposed between any two chains and not only between adjacent chains. But in this case the
mean acceptance rate of an exchange move would be much lower. In comparison the PTEEM
algorithm has the advantage to propose exchanges moves between chains not necessarily adja-
cent, but always having states of similar energy values.

4.2 Galaxy dataset

We used the well-known Galaxy dataset (see for instance Richardson and Green [1997]). The
data consist of the velocities of 82 distant galaxies diverging from our own.
The number of components is k = 6, and we took for the fixed parameters in (2): α = 3, ξ = 20,
δ = 1, κ = 1/R2, g = 0.2 and h = 10/R2, where R = 10. The algorithms PT and PTEEM were
run 100 times, each run consisting of 10000 iterations after a burn-in period of 2000 iterations.
We used 20 chains and 5 energy rings. As in the previous example, the PT algorithm used a
swap between neighboring temperature chains for the exchange operation, and only one swap
was proposed at each iteration.
Concerning the energy ladder, after a run of a classical Gibbs sampler with target density π,
we chose H1 = 180 and H5 = 260. Four energy rings were obtained with levels evenly spaced
between H1 and H5 on a logarithmic scale, the fifth ring containing all states having an energy
value higher than H5. The levels obtained were 180, 197.3, 216.3, 237.2 and 260.
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We chose N = 20 temperatures between 1 and 4, with their inverses evenly spaced. We get 1.00,
1.04, 1.09, 1.13, 1.19, 1.25, 1.31, 1.38, 1.46, 1.55, 1.65, 1.77, 1.90, 2.05, 2.24, 2.45, 2.71, 3.04,
3.45 and 4.00.
Table 10 presents for several chains the distributions of states in the energy rings.

As in the previous example on simulated data, Table 11 shows that on 100 runs of PTEEM the
target chain visited more modes than on 100 runs of PT. Hence the label-switching phenomenon
occured more often with PTEEM than with PT.

We also counted in each of the 100 runs for the two algorithms how many times the target
chain visited each mode in the last 10000 iterations. As in the simulated data set example, the
absolute frequency errors were calculated for each mode: absolute frequency errors were slightly
lower for PTEEM with a mean (resp. a median) of 0.119% (resp. 0.099%), compared to 0.126%
(resp. 0.099%) for PT.

As in the previous example, Table 12 shows that equi-energy moves were more frequent
between chains with similar temperatures.

The mean acceptance rates of the equi-energy moves for PTEEM and of the exchange moves
for PT were of 49% and 61% respectively. In conclusion, both datasets illustrated that the
PTEEM algorithm performs a better exploration of the parameter space than the PT algo-
rithm, while in mean less exchanges between chains were performed for the PTEEM algorithm,
compared to the PT algorithm.

5 Discussion

In this paper a new algorithm combining PT and EES was proposed. Thanks to a relevant equi-
energy move, the proposed PTEEM algorithm allows a better exploration of the parameter space
than the PT algorithm, while ensuring the reversibility of the exchange moves. Therefore the
generated Markov process theoretically converges to π∗, and the first chain generates samples
corresponding to the distribution of interest π. From a practical point of view, a drawback
of the PTEEM algorithm compared to the PT algorithm is that an energy ladder is needed,
but we explained a simple and practical way to obtain a relevant ladder, which proved to be
efficient. Compared to EES, less storage is needed since iterations from the past are not all kept
in memory.

When using a Metropolis-Hastings algorithm, on the same example as Kou et al. [2006]
the PTEEM algorithm gave better results than the PT algorithm, and results comparable to
those of the EES, even slightly better. When using a Gibbs sampler, a major inconvenience
of the EES algorithm is its difficulty to be applied, since it would necessitate to sample from
a posterior distribution with an energy truncation. Hence only PT and PTEEM algorithms
were compared on a simulated dataset and on the Galaxy dataset. It was observed that the
PTEEM algorithm had a better ability to explore the parameter space since the label-switching
phenomenon occurred more often.
A direction for future research is to investigate further the theoritical propoerties of the PTEEM
algorithm, by comparing convergence rates of PTEEM and PT algorithms for instance. An
adaptif PTEEM algorithm to finely tune the temperatures and/or the energy levels during a
run would also be interesting.
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A Formula used for the comparisons in case of a Gibbs sampler

A.1 Joint posterior densities

Write x = (µ, σ−2, w, c, β). The joint posterior density from which the parameters should be
drawn is:

π(x) = p(µ, σ−2, w, c, β | y) ∝ p(y | µ, σ−2, c, β, w)p(µ, σ−2, c, β, w),

∝ p(y | µ, σ−2, c)p(µ, σ−2, c, β, w).

Hence the ith chain should be drawn from

πi(x) ∝ π(x)
1

Ti ∝ p(y | µ, σ−2, c)
1

Ti p(µ, σ−2, w, c, β)
1

Ti .

However, as noted by Jasra et al. [2007] and Behrens et al. [2009], tempering the whole posterior
is problematic as there is no guarantee that the tempered posterior will remain proper. As a
consequence, only the likelihood contribution is tempered and the priors are left untempered.
The ith chain is then drawn from

π′
i(x) ∝ p(y | x)

1

Ti p(x),

∝ p(y | µ, σ−2, c)
1

Ti p(µ | ξ, κ−1)p(σ−2 | α, β)p(c | w)p(w | δ)p(β | g, h).
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we have

π′
i(x) ∝ p(y | µ, σ−2, c)

1

Ti p(µ | ξ, κ−1)p(σ−2 | α, β)p(c | w)p(w | δ)p(β | g, h)

∝
[

k
∏

p=1

(σp
√

(2π))−mpexp
(

−
n
∑

l=1

(yl − µcl)
2

2σ2
cl

)]
1

Ti

[

k
∏

p=1

κ
1

2√
2π

exp
(

− 1

2
(µp − ξ)2κ

)]

×
[

k
∏

p=1

βα

Γ(α)
σ−2(α−1)
p exp(−βσ−2

p )
][ n!
∏k

p=1mp!

k
∏

p=1

w
mp
p

]

×
[ 1

B(δ, . . . , δ)

k
∏

p=1

wδ−1
p

][

βg−1exp(−hβ)
hg

Γ(g)

]

,

where

B(δ, . . . , δ) =

∏k
p=1 Γ(δ)

Γ(
∑k

p=1 δ)
=

Γ(δ)k

Γ(kδ)
.

A.2 Full conditional distributions

Concerning the ith chain, the full conditional distributions to be used in the Gibbs sampler of
the algorithms are easily obtained through conjugacy. We use the following notations:

xi = (µi, σ
−2
i , wi, ci, βi),

µi = (µi1, µi2, . . . , µik),

σ−2
i = (σ−2

i1 , σ−2
i2 , . . . , σ−2

ik ),

wi = (wi1, wi2, . . . , wik),

ci = (ci1, ci2, . . . , cin),

mi = (mi1,mi2, . . . ,mik)

p = 1, . . . , k index of component

l = 1, . . . , n index of observation

For µi, σ
−2
i and wi the full conditional distributions are the following

µip | σ−2
ip , y, ci, ξ, κ

−1 ∼ N
(

(mipσ
−2
ip

Ti
+ κ
)−1(σ−2

ip

Ti

∑

l:cil=p

yl + ξκ
)

,
(mipσ

−2
ip

Ti
+ κ
)−1

)

,

σ−2
ip | µip, y, ci, α, βi ∼ Γ

(

α+
mip

2Ti
, βi +

∑

l:cil=p

(yl − µip)
2

2Ti

)

,

wi | ci, δ ∼ D(δ +mi1, δ +mi2, . . . , δ +mik).
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For the allocation vector c, the full conditional distribution is multinomial with the following
probabilities:

pi(cil = p | y, µi, σ
−2
i , wi) ∝

1

σ
1

Ti

ip

exp
(

− (yl − µip)
2

2σ2
ipTi

)

wip.

Eventually the βi parameter has the following full conditional distribution:

βi | σ−2
i , α, g, h ∼ Γ

(

g + kα, h +

k
∑

p=1

σ−2
ip

)

.

A.3 Acceptance rate of an equi-energy move

Assuming that two chains i and j are selected from an energy ring to be swapped, the acceptance
probability of an equi-energy move proposed between two chains is given by

min

(

1,
π′
i(xj)π

′
j(xi)

π′
i(xi)π

′
j(xj)

)

= min

(

1,
( p(y|xi)
p(y|xj)

)(1/Tj−1/Ti)
)

,

with

π′
i(xj)π

′
j(xi)

π′
i(xi)π

′
j(xj)

=

[

∏k
p=1 σ

−mjp

jp
∏k

p=1 σ
−mip

ip

]
1

Ti
− 1

Tj

exp

[

− 1

2

( 1

Ti
− 1

Tj

)(

n
∑

l=1

(yl − µjcjl)
2σ−2

jcjl
−

n
∑

l=1

(yl − µicil)
2σ−2

icil

)

]

B Proofs of Proposition 2.1 and Lemma 2.1

B.1 Proof of Proposition 2.1

During an iteration of the PTEEM algorithm all chains are locally updated by a MCMC algo-
rithm and an exchange move is proposed.
By assumption, each PLi(., .) is reversible with stationary distribution πi.
It is then clear that PL =

∏N
i=1 PLi is also reversible. Let A ∈ B(X )N , it can be written as

A1 ×A2 × . . .×AN , with Ai ∈ X , we have

π∗(A) =

N
∏

i=1

πi(Ai)

=
N
∏

i=1

∫

X
PLi(xi, Ai)πi(dxi)

=

∫

X
. . .

∫

X
PL1(x1, A1) . . . PLN (xN , AN )π1(dx1) . . . πN (dxN )

=

∫

XN

PL(s,A)π∗(ds),
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which implies that π∗ is the stationary distribution of PL(., .).

With q(s, s′) the auxiliary distribution to propose s′ from s in the equi-energy move, the
transition kernel PE can be written as

PE(s, s′) = q(s, s′)ρ(s, s′) +

∫

X
q(s, s′′)(1− ρ(s, ds′′))1{s′}(s). (3)

The detailed balance condition is

∀A,B ∈ XN 2
,

∫

A

∫

B
PE(s, ds′)π∗(ds) =

∫

B

∫

A
PE(s′, ds)π∗(ds′). (4)

From (3) we have

∀B ∈ XN , PE(s,B) =

∫

B
q(s, ds′)ρ(s, s′) +

∫

X
q(s, ds′′)(1 − ρ(s, s′′))1B(s),

hence
∫

A
π∗(ds)

∫

B
q(s, ds′)ρ(s, s′) +

∫

A∩B
π∗(ds)

∫

X
q(s, ds′′)(1− ρ(s, s′′)) =

∫

B
π∗(ds′)

∫

A
q(s′, ds)ρ(s′, s) +

∫

B∩A
π∗(ds′)

∫

X
q(s′, ds′′)(1− ρ(s′, s′′)).

Then (4) is satisfied if

∫

A

∫

B
π∗(ds)q(s, ds′)ρ(s, s′) =

∫

B

∫

A
π∗(ds′)q(s′, ds)ρ(s′, s),

which is established if the integrands are equal, that is if

q(s, ds′)ρ(s, s′)π∗(ds) = q(s′, ds)ρ(s′, s)π∗(ds′). (5)

In PTEEM algorithm, the two candidate chains to exchange their actual states are chosen uni-
formly among all chains in the same energy ring. Hence we have q(s, s′) = q(s′, s). Using (1), it
follows that (5) is satisfied, and the detailed balance condition (4) holds. Therefore the transi-
tion kernel PE for the equi-energy move is reversible, with stationary distribution π∗.

The transition kernels PE and PL are reversible with stationary distribution π∗. It is then
clear that P is also reversible. Moreover, we have ∀A ∈ B(X )N

∫

XN

P (s,A)π∗(ds) =

∫

XN

∫

XN

PE(s̃, A)PL(s, s̃)π∗(s)dsds̃

=

∫

XN

PE(s̃, A)
[

∫

XN

PL(s, s̃)π∗(s)ds
]

ds̃

=

∫

XN

PE(s̃, A)π∗(s̃)ds̃

= π∗(A).
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It follows that π∗ is the stationary distribution of P .

In addition, each PLi is supposed to be strongly λ-irreducible and aperiodic, hence PL is
aperiodic and strongly λN -irreducible. Since PE is just an exchange kernel between two actual
states it is clear that P = PE ∗ PL is also strongly λN -irreducible and aperiodic. Indeed, we
can show that ∀s, s′ ∈ XN × XN , we have P (s, s′) > 0.
Either π∗(s) = 0, or π∗(s) > 0. If π∗(s) > 0, let s′′ corresponding to s′ for which the actual states
of two chains with similar energy levels are switched. It is possible to have such a s′′ if N > d.
As the PLi are strongly λ-irreducible, we have PL(s, s′′) =

∏N
i=1 PLi(xi, x

′′
i ) > 0. Hence the

state s′′ can be reached from s by the local moves.Then there is a non null probability to propose
s′ from s′′ during the equi-energy move, and the associated acceptance probability is strictly
positive since π∗(s) > 0. Therefore, we have P (s, s′) > 0. If π∗(s) = 0, using the assumptions
we have PL(s, s′) > 0, hence s′ can be reached from s by the local moves. There is a non null
probability to propose an other state from s′ during the equi-energy move. However, there is a
null probability that this move is accepted, since π∗(s) = 0. Then we still have P (s, s′) > 0, and
we can conclude that P is strongly λN -irreducible.

As P is π∗-irreducible and aperiodic with stationary distribution π∗, following Theorem 1
of Tierney Tierney [1994], S converges to its stationary distribution π∗ according to the total
variation distance, for π∗-almost all s ∈ XN . Finally, as the marginal density of the first chain
is π1 = π, it provides samples corresponding to the target distribution.

2

B.2 Proof of Lemma 2.1

From Proposition 2.1, S is reversible with stationary distribution π∗, and strongly λN -irreducible.
It follows that S is positive.

Note that a state s′ reached from a starting point s after an iteration of PTEEM can not be
part of a set A ∈ XN such that π∗(A) = 0. Indeed, at each iteration either a move is perfomed
by the sampler, or the sampler stays in the same state. The kernel P can be written, ∀A ∈ XN

P (s,A) = r(s)M(s,A) + (1− r(s))1s(A), (6)

with r(s) the probability to move from s during an iteration. M is the kernel conditional on
moving. The probability measure M(s, .) is absolutely continuous with respect to λN (.) for all
s ∈ XN . Let A such that π∗(A) = 1 and π∗(AC) = 0. From the positivity of π∗, we have
λN (AC) = 0. By absolute continuity, we have M(s,AC) = 0 and M(s,A) = 1. Hence if the
sampler moves from any starting state s, it will necessarily move into A (proof inspired from
Roberts and Rosenthal [2006], thoerem 8).

To show that S is Harris-recurrent we use Theorem 2 of Tierney [1994] that characterizes
Harris-recurrent chains as follows: a Markov chain is Harris-recurrent if and only if the only
bounded functions h satisfying

E(h(S(n))|s0) = E(h(S(1))|s0) = h(s0), ∀n ∈ N, (7)
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are the constant functions, eith S(n) the variable giving the state of S at iteration n. Functions
h satisfying (7) are called harmonic.
We will also use the theorem 6.80 of Robert and Casella [2004], inspired from Athreya et al.
[1996]:
If the transition kernel P satisfies: ∃B ∈ B(X )N such that

(i) ∀s0,
∑∞

n=1

∫

B Pn(s0, s)dµ(s) > 0, with µ the initial distribution of the chain, S0 ∼ µ.

(ii) infs,s′∈B P (s, s′) > 0

Then, for π∗-almost all s0,

lim
n→∞

sup
A∈B(X )N

∣

∣

∣

∫

A
Pn(s0, s)ds −

∫

A
π∗(s)ds

∣

∣ = 0

The larger the set B, the easier it is to verify (i) and the harder it is to verify (ii). These two
assumptions (i) et (ii) imply that the chain is irreducible and aperiodic.

To apply this theorem, we verify the assumptions (i) and (ii) for B = XN .
Indeed, S is strongly λN -irreducible, hence ∀(s, s′) ∈ XN ×XN , P (s, s′) > 0, and (ii) is satisfied
on XN . Similarly, XN is accessible from any initial state s0, and (i) is satisfied.
We then have for π∗-almost all s0,

lim
n→∞

sup
A∈B(X )N

∣

∣

∣

∫

A
Pn(s0, s)ds −

∫

A
π∗(s)ds

∣

∣ = 0

and using

‖µ‖TV = sup
A∈B(X )N

|µ(A)| = 1

2
sup
|h|<1

|
∫

h(x)µ(dx)|

we can write

sup
A∈B(X )N

∣

∣

∣

∫

A
Pn(s0, s)ds−

∫

A
π∗(s)ds

∣

∣ = sup
A∈B(X )N

∣

∣

∣

∫

A

(

Pn(s0, s)ds − π∗(s)
)

ds
∣

∣

=
1

2
sup
|h|<1

∣

∣

∣

∫

h(s)
(

Pn(s0, s)ds− π∗(s)
)

ds
∣

∣

∣

=
1

2
sup
|h|<1

∣

∣

∣

∫

h(s)Pn(s0, s)ds−
∫

h(s)π∗(s)ds
∣

∣

∣

=
1

2
sup
|h|<1

∣

∣

∣
E[h(Sn)|s0]− Eπ∗ [h(s)]

∣

∣

∣

Hence the result of the theorem 6.80 of Robert and Casella can be written as:

lim
n→∞

sup
|h|<1

∣

∣

∣
E[h(Sn)|s0]− Eπ∗ [h(s)]

∣

∣

∣
= 0
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We can extend this result for all bounded function h,

lim
n→∞

sup
∣

∣

∣
E[h(Sn)|s0]− Eπ∗ [h(s)]

∣

∣

∣
= 0

Moreover, if h bounded satisfies (7), then E[h(Sn)|s0] = h(s0).
We then have h(s0) = Eπ∗ [h(s)] for π∗-almost all s0, and h is π∗-almost everywhere constant
and equal to Eπ∗(h(S)).
It remains to show that h is everywhere constant and equal to Eπ∗(h(S)).

For any starting point s0 ∈ XN , we have (see 6),

E(h(S1)|s0) =

∫

XN

P (s0, s1)h(s1)ds1

=

∫

XN

r(s0)M(s0, s1)h(s1)ds1 + (1− r(s0))h(s0)

The first integral is associated with a move from s0 to s1 6= s0. As shown previously, s1 reached
after an iteration of PTEEM can not be part of a set A ∈ XN such that π∗(A) = 0. Hence,
as h is π∗-almost everywhere constant and equal to Eπ∗(h(S)), we can substitute h(s1) in the
integral by Eπ∗(h(S)). We then have:

E(h(S1)|s0) =

∫

XN

r(s0)M(s0, s1)Eπ∗(h(S))ds1 + (1− r(s0))h(s0)

= Eπ∗(h(S))

∫

XN

r(s0)M(s0, s1)ds1 + (1− r(s0))h(s0)

= Eπ∗(h(S))r(s0)

∫

XN

M(s0, s1)ds1 + (1− r(s0))h(s0)

= Eπ∗(h(S))r(s0) + (1− r(s0))h(s0)

And E(h(S1)|s0) = h(s0), because h is harmonic, hence

h(s0) = Eπ∗(h(S))r(s0) + (1− r(s0))h(s0)

and
(

h(s0)− Eπ∗(h(S))
)

r(s0) = 0

As S is λN -irreducible, we have ∀s0, r(s0) > 0. Then ∀s0, h(s0) = Eπ∗(h(S)), and h is everywhere
constant and equal to Eπ∗(h(S)). The Harris-recurrence follows.
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Bad repartition Good repartition

Energy ring 1 2 3 4 5 1 2 3 4 5

chain i− 2 990 10 0 0 0 990 10 0 0 0
chain i− 1 950 50 0 0 0 701 202 97 0 0
chain i 900 100 0 0 0 387 408 205 0 0

chain i+ 1 0 2 237 511 250 45 312 355 288 0
chain i+ 2 0 0 105 610 285 0 64 517 353 66

Table 1: Illustration for bad and good repartitions of the states in the energy rings. There is an
energy gap between chains i and i+ 1 in the bad repartition case.

Local moves Exchange moves

EES 0.387 0.799
PT 0.337 0.905

PTEEM 0.333 0.822

Table 2: Mean acceptance rates for local moves and exchange moves on 100 runs, for EES, PT
and PTEEM algorithms.

E(X1) E(X2) E(X1)
2 E(X2)

2

True value 4.478 4.905 25.605 33.920
EES 4.448 (0.301) 4.953 (0.458) 25.229 (3.112) 34.226 (4.507)
PT 3.971 (0.809) 4.137 (1.114) 21.510 (7.741) 27.510 (10.407)

PTEEM 4.483 (0.324) 4.912 (0.454) 25.556 (3.366) 33.889 (4.406)

Table 3: Estimations of the mean vector (E(X1), E(X2)) and of the second moments
(E(X2

1 ), E(X2
2 )) using the samples generated from the target chain, obtained on 100 runs for

EES, PT and PTEEM algorithms. The standard deviations are given between parentheses.

PT EES PTEEM

2 to 10 missed. 1 missed for 4 runs. 1 missed for 2 runs.
A mean of 5.69 missed. 2 missed for 2 runs.

Table 4: Number of missed modes by the 100 runs for EES, PT and PTEEM algorithms.
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µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

Rmed PT/EES 2.16 2.80 2.92 2.22 1.98 2.21 3.10 2.07 2.07 2.69
Rmax PT/EES 3.59 2.61 2.81 2.10 1.55 2.43 2.54 1.53 2.93 4.50

Rmed PT/PTEEM 2.60 3.72 2.63 2.19 1.79 2.97 2.77 2.55 2.32 2.64
Rmax PT/PTEEM 3.44 1.76 2.27 2.30 2.44 3.06 5.23 2.92 2.83 5.23
Rmed EES/PTEEM 1.21 1.33 0.90 0.99 0.91 1.35 0.89 1.23 1.12 0.98
Rmax EES/PTEEM 0.96 0.67 0.81 1.09 1.58 1.26 2.06 1.91 0.96 1.16

µ11 µ12 µ13 µ14 µ15 µ16 µ17 µ18 µ19 µ20

Rmed PT/EES 2.51 2.46 2.77 2.63 2.39 1.76 3.06 2.22 2.10 2.37
Rmax PT/EES 4.58 1.60 3.23 4.61 3.26 2.10 2.83 4.77 3.50 1.36

Rmed PT/PTEEM 2.14 1.98 1.79 2.84 2.75 2.18 2.72 2.78 2.43 2.60
Rmax PT/PTEEM 3.05 2.02 2.35 4.16 3.44 1.79 3.72 3.78 3.50 2.16
Rmed EES/PTEEM 0.85 0.81 0.65 1.08 1.15 1.24 0.89 1.25 1.16 1.10
Rmax EES/PTEEM 0.67 1.26 0.73 0.90 1.06 0.85 1.32 0.79 1.00 1.58

Table 5: For each mode, ratios of median (Rmed) and ratios of maximum (Rmax) are for PT
over EES, PT over PTEEM, and EES over PTEEM. Each ratio is obtained on 100 runs.

Figure 1: Simulations for chains 1, 7, 14 and 20 obtained by one run of the PT algorithm.
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Figure 2: Simulations for chains 1, 7, 14 and 20 obtained by one run of the PTEEM algorithm.
The colors correspond to the five energy levels.
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Figure 3: Simulations for chains 1 to 5 obtained by one run of the EES. The colors correspond
to the five energy levels.
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chain 1 chain 10 chain 20

chain 1 0.00 4.63 0.50
chain 2 16.32 4.33 0.62
chain 3 14.34 4.29 0.64
chain 4 11.98 4.64 0.70
chain 5 9.96 4.89 0.76
chain 6 8.26 5.46 1.03
chain 7 6.57 5.76 1.17
chain 8 6.01 6.26 1.50
chain 9 4.96 6.74 2.03
chain 10 4.32 0.00 2.30
chain 11 3.25 7.11 3.13
chain 12 2.85 6.67 4.33
chain 13 2.42 6.65 5.61
chain 14 1.98 6.11 7.38
chain 15 1.61 5.76 8.75
chain 16 1.44 5.13 10.64
chain 17 1.15 4.64 13.72
chain 18 1.08 4.32 16.09
chain 19 0.87 3.63 19.10
chain 20 0.62 2.99 0.00

Table 6: Repartition (in %) of accepted equi-energy moves between chain 1 and other possible
chains (mean on 100 runs of PTEEM). Idem for chains 10 and 20.

(−∞, 134.8) [134.8, 173) [173, 222) [222, 285) [285,+∞)

chaine 1 3994 6 0 0 0
chaine 4 3661 253 84 2 0
chaine 8 1223 332 1336 1046 63
chaine 10 408 324 1534 1618 116
chaine 12 36 92 756 2694 422
chaine 16 0 0 0 1205 2795
chaine 20 0 0 0 34 3966

Table 7: Distribution in the energy rings of states from 4000 iterations, for one run of PTEEM
and for chains 1, 4, 8, 10 12, 16 and 20.

mean standard deviation min max

PT 12.42 1.77 8 16
PTEEM 17.18 2.05 13 22

Table 8: Means, standard deviations, minimal and maximal values of the number of visited
modes, on 100 runs of PT and PTEEM.

26



chain 1 chain 10 chain 20

chain 1 0.00 1.00 0.00
chain 2 23.29 1.14 0.00
chain 3 20.07 1.48 0.00
chain 4 14.41 3.12 0.00
chain5 12.45 4.24 0.00
chain 6 10.52 5.36 0.00
chain 7 8.02 7.97 0.01
chain 8 5.44 11.06 0.01
chain 9 3.17 13.91 0.01
chain 10 1.49 0.00 0.08
chain 11 0.75 14.00 0.13
chain 12 0.28 11.79 0.14
chain 13 0.08 9.81 0.18
chain 14 0.04 8.21 0.41
chain 15 0.00 5.80 0.43
chain 16 0.00 0.58 4.62
chain 17 0.00 0.23 13.43
chain 18 0.00 0.15 29.55
chain 19 0.00 0.10 51.01
chain 20 0.00 0.03 0.00

Table 9: Proportions (%) of accepted equi-energy moves between chain 1 and other possible
chains (mean on 100 runs of PTEEM). Idem for chains 10 and 20.

(−∞, 197.3) [197.3, 216.3) [216.3, 237.2) [237.2, 260) [260,+∞)

chain 1 9602 396 2 0 0
chain 4 4487 5343 170 0 0
chain 8 225 6123 2863 768 21
chain 10 5 990 3528 5017 460
chain 12 0 50 1047 6662 2241
chain 16 0 0 5 2266 7729
chain 20 0 0 0 312 9688

Table 10: Distribution in the energy rings of states from 10000 iterations, for one run of PTEEM
and for chains 1, 4, 8, 10 12, 16 and 20.
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mean standard deviation min max

PT 645.04 13.52 610 683
PTEEM 666.52 9.23 641 692

Table 11: Means, standard deviations, minimal and maximal values of the number of visited
modes, on 100 runs of PT and PTEEM.

.

chain 1 chain 10 chain 20

chain 1 0.00 0.02 0.00
chain 2 63.65 0.10 0.00
chain 3 23.90 0.32 0.00
chain 4 7.75 0.87 0.00
chain 5 2.78 1.77 0.00
chain 6 1.12 3.30 0.00
chain 7 0.47 6.45 0.00
chain 8 0.23 12.65 0.01
chain 9 0.07 22.44 0.05
chain 10 0.02 0.00 0.23
chain 11 0.00 21.39 0.67
chain 12 0.00 13.92 1.52
chain 13 0.00 7.99 3.12
chain 14 0.00 4.29 5.46
chain 15 0.00 2.12 8.56
chain 16 0.00 1.11 12.18
chain 17 0.00 0.61 16.58
chain 18 0.00 0.34 22.37
chain 19 0.00 0.19 29.26
chain 20 0.00 0.13 0.00

Table 12: Proportions (%) of accepted equi-energy moves between chain 1 and other possible
chains (mean on 100 runs of PTEEM). Idem for chains 10 and 20.
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