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Abstract

All animals and plants are, to some extent, susceptible to disease caused by varying combinations of par-

asites, viruses and bacteria. In this paper, we develop a mathematical model of contact spread infection

to investigate the effect of introducing a parasitoid-vectored infection into a one-host-two-parasitoid com-

petition model. We use a system of ordinary differential equations to investigate the separate influences of

horizontal and vertical pathogen transmission on a model system appropriate for a variety of competitive

situations. Computational simulations and steady-state analysis show that the transient and long-term

dynamics exhibited under contact spread infection are highly complex. Horizontal pathogen transmission

has a stabilizing effect on the system whilst vertical transmission can destabilize it to the point of chaotic

fluctuations in population levels. This has implications when considering the introduction of host pathogens

for the control of insect vectored diseases such as bovine tuberculosis or yellow fever.

Keywords:

Insect-pathogen interactions, population dynamics, infection, horizontal transmission, vertical transmission,

vectored diseases, competition, chaotic dynamics
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Introduction

There is a rapidly accumulating body of evidence demonstrating that many taxa of insects harbour a

considerably greater variety of micro-organisms than had previously been suspected, including relatively

benign symbionts at one end of a continuum, through to manipulative intracellular parasites at the other

(Douglas and Storfer, 2008; Engelstadter et al., 2008; Kenyon and Hunter, 2006). Microbial pathogens

vectored by insects have been mostly well described, as have those infections which kill insects. By contrast,

primary endosymbionts have been much less well studied, and secondary endosymbionts remain extremely

poorly characterised. As the study of ecological diversity within this last group of bacteria develops it

becomes increasingly evident that it is likely that they exercise considerable influence over interspecific

interactions, community structure and species biodiversity in insect multi-trophic assemblages (Blaustein

and Kiesecker, 2002; Murray, 2002; Collins and Storfer, 2003; Hatcher et al., 2006), and that they may

well play significant roles in the dynamics of both competitive and parasitic relations (Anderson, 1995;

Tompkins and Begon, 1999; Bowers and Turner, 1997; Tompkins et al., 2003).

The study of host-pathogen interactions has received a good deal of recent attention (Briggs and Godfray,

1995, 1996; Grenfell and Dobson, 1995; Hudson et al., 2002; Bonsall, 2004; Elderd et al., 2008), but the

theoretical investigation of disease dynamics in host-parasitoid systems has not kept pace with associated

empirical research (Grenfell and Dobson, 1995; Gulland, 1995; Sait et al., 2000). It has been demonstrated

that the inclusion of competitive disease dynamics into a model system can not only promote biodiversity of

the system, but also can have sometimes unexpected effects on its dynamics (Holt and Roy, 2007). Preedy

et al. (2006), for example, examined the consequences of introducing contact spread host infection into a

simple model of a 1-host-2-parasitoid system, and found that the presence of the infection not only promoted

coexistence of the two parasitoid species, but also that it induced complex population dynamics in the

system as a whole, including chaos, and when an explicitly spatial element was introduced into the model,

complex spatio-temporal heterogeneity was observed. Clearly, however, infections may be transmitted

not only through direct contact between susceptible and infected individuals, but also indirectly through

a vector (Bonsall, 2004). In human systems, much has been done on the spread of malaria and yellow

fever via mosquitoes (Aron and May, 1982; Anderson, 1982; Brauer and Castillo-Chavez, 2001), and host-

parasitoid models have often been used as metaphors for the dynamics of such infections (see for example

Barlow (2000)). However, the primary aim of these models has been to investigate the promulgation of
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the infection in the host population, and the consequences of the infection for the vectors themselves are

often not considered. Indeed, vectored diseases are frequently modelled in host populations by a frequency-

dependent process (McCallum et al., 2001) which takes no account of the effect of the pathogen on the

vector population and which, when there are two vector (parasitoid) species involved, does not allow for

indirect interaction between them.

Thus, a model which explicitly examines the dynamics of parasitoid populations may have very different

outcomes from one which considers transmission via parasitoid attack to be a frequency-dependent process.

The biology of host infections vectored by parasitoids is highly diverse. In the case of infection of Drosophila

spp. by the bacterium Wolbachia, the vector for transmission of the bacterium may be a parasitoid which

is itself infected by Wolbachia, from the same or a different strain. Indeed, the parasitoid may act as

an agent for inter- as well as intra-species transmission (Haine et al., 2005). Ascoviruses infecting a host

population of lepidoptera can be vectored by parasitoids with whom they may have a mutualistic, commensal

or pathogenic relationship (Stasiak et al., 2005). A parasitoid may vector an infection between hosts

without being affected itself, as in the case of Cotesia melanoscelus which has been shown to vector nuclear

polyhedrosis virus (NPV) in the gypsy moth Lymantria dispar (Dwyer and Elkinton, 1995; Raimo et al.,

1977), and there are various other NPVs recorded from host-parasitoid systems (Nguyen et al., 2005; Briggs

et al., 1995). In this paper, we concentrate on the latter case, where the host is susceptible to a non-lethal

infection which is carried by the parasitoid. The transmission of disease through parasitoid attack occurs

when a parasitoid attacks an infected host, and its ovipositor becomes contaminated and the infection may

be passed on when the contaminated ovipositor enters a susceptible host - the “dirty needle effect”. We first

describe a model of contact spread infection, then develop it to consider parasitoid vectored infection where

only one parasitoid is present, and where there is no vertical transmission of the disease. We then consider

a model in which there is perfect vertical transmission, and undertake an analysis of the steady-states of

the model and their stability, as well as investigating transient dynamics using computational simulations.

Such models are applicable not only to host-parasitoid systems, but also to an understanding of the role of

infection in the structure of natural communities. The analytical and computational simulation results in

this paper have implications for the effective application of biological control in agro-ecosystems and public

health situations, and the general dynamics of disease processes.

4



Acc
ep

te
d m

an
usc

rip
t 

Models and Methods

Preedy et al. (2006) developed a mathematical model of the disease dynamics of host-parasitoid systems,

modelling the (spatio-temporal) interactions between populations of uninfected hosts, infected hosts and

two parasitoid species. They assumed infection was spread between hosts as a contact process, when

an infected host encountered a susceptible, uninfected, host. The host population increased via density-

dependent logistic growth and was depleted by parasitism by both parasitoid species that was modelled

using an Ivlev functional response, an alternative to the Holling type II response (Sherratt et al., 1995;

Pearce et al., 2006; Edelstein-Keshet, 1988; Petrovskii and Malchow, 1999, 2001). Infected hosts and both

parasitoid species were subject to a linear death term, and infection was bilinear. It was found that in the

absence of infection the weaker parasitoid competitor inevitably went extinct. When infection was included

coexistence occurred for a wide parameter range. In the absence of vertical infection either extinction or

stability was observed. However, when vertical infection was included, a much richer set of dynamics was

observed - depending on the model parameters, the populations tended towards (i) a unique coexistence

fixed point (a stable spiral), with the approach to the fixed point being able to be delayed depending on

the initial conditions; (ii) a stable limit cycle, or (iii) a chaotic attractor.

In this paper we adapt this approach to a three species system - one host and two parasitoids - where

infection is vectored by the parasitoids as a “dirty needle” process, rather than spread as a contact process

between infected and susceptible hosts. We assume logistic growth of host populations and parasitoid search

is modelled using an Ivlev functional response. However, in this paper we assume that infection is vectored

from infected host to uninfected host by parasitoids that have previously parasitised an infected host and

have acquired the infection which they carry on their ovipositors. Therefore, we assume the parasitoid

may be in one of 2 infection states - ‘clean’ or ‘carrier’. We assume that successful parasitism by a carrier

parasitoid always infects the host. However it is possible for a host to be infected but resist parasitism

through encapsulation of the parasitoid egg. We assume that there is vertical transmission of infection from

infected host to its offspring at some rate that can vary between 0-100%. In this paper we present results

for the two cases when there is no vertical transmission and when vertical transmission is 100% efficient

(intermediate cases of vertical transmission would be straightforward to implement, and given the nature of

the results presented in the later sections, we expect these would not introduce any new types of dynamics).
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We assume a simple linear death rate for parasitoids and an increased death rate of infected hosts over

uninfected hosts.

The model therefore consists of six ordinary differential equations, representing the dynamics of Hu and Hi

the uninfected and infected host populations and P1u, P1i, P2u, P2i, the noncarrier and carrier populations

of the two parasitoid species P1 and P2.

Host dynamics

We assume the host population has logistic density-dependent growth with an intrinsic rate of growth ρu

for uninfected hosts and ρi for infected hosts, with a carrying capacity H∗. We assume vertical transmission

is at a rate φ, and correspondingly (1− φ) is the fraction of the growth rate of infected hosts that results

in susceptible offspring. We model the parasitoid searching efficiency using the Ivlev functional response,

(1− e−μH), where H = Hu + Hi and μ is a parameter representing the parasitoid’s ability to detect hosts.

We assume that parasitoid species Pk attacks healthy hosts at a maximal rate of αku with probability of

success βku and infected hosts at rates αki with probability of success βki. We assume successful parasitism

of a host by a carrier parasitoid always leads to infection of the host and that unsuccessful attack of an

uninfected host by an infected parasitoid leads to infection of the host at rates of νk. We also assume

the infection induces an additional mortality at a rate ξi in infected hosts. These assumptions lead to the

following equations for host dynamics:

dHu

dT
= (ρuHu)(1− H

H∗ )︸ ︷︷ ︸
uninfected host

logistic growth

+ (1− φ)ρiHi(1− H

H∗ )︸ ︷︷ ︸
recruitment via

imperfect transmission

−
∑

k

νkαkuPki(1− e−μkiH)
Hu

H
︸ ︷︷ ︸
loss to infection via unsuccessful

parasitism by infected species k

−
∑

k

βkuαkuPku(1− e−μkuH)
Hu

H
−

∑

k

βkuαkuPki(1− e−μkiH)
Hu

H
︸ ︷︷ ︸

loss to successful parasitism by parasitoid species k

,

dHi

dT
=φρiHi(1− H

H∗ )︸ ︷︷ ︸
infected host

logistic growth

+
∑

k

νkαkuPki(1− e−μkiH)
Hu

H
︸ ︷︷ ︸
infected host recruitment from failed

parasitisms by carriers of species k

−
∑

k

βkiαkiPku(1− e−μkuH)
Hi

H
−

∑

k

βkiαkiPki(1− e−μkiH)
Hi

H
︸ ︷︷ ︸

loss to successful parasitism by parasitoid species k

− ξiHi︸︷︷︸
elevated death rate

due to infection

.

(1)
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Parasitoid dynamics

We assume that for each species of parasitoid Pk (k = 1, 2) a parasitised uninfected host gives rise to εku

uninfected parasitoids Pk and each parasitised infected host gives rise to εki uninfected parasitoids Pk. It

is assumed the infection has no effect on parasitoid mortality, and parasitoids Pk die at a rate δk. If the

host dies before parasitoid emergence then the juvenile parasitoids fail to mature. We assume that there

is no recovery from infection but parasitoids emerging from infected host do not acquire the infection on

eclosion. We assume an attack on an infected host by a clean parasitoid Pk leads to the parasitoid becoming

a carrier with probability γk. These assumptions lead to the following equations for parasitoid dynamics:

dPku

dT
= εkuβkuαkuPku(1− e−μkuH)

Hu

H
+ εkiβkiαkiPku(1− e−μkuH)

Hi

H︸ ︷︷ ︸
recruitment from parasitism by nonvirifulous parasitoids

+ εkiβkuαkuPki(1− e−μkiH)
Hu

H
+ εkiβkiαkiPki(1− e−μkiH)

Hi

H︸ ︷︷ ︸
recruitment from parasitisms by virifulous parasitoids

− γkαkiPku(1− e−μkuH)
Hi

H︸ ︷︷ ︸
loss via acquisition of infection

through parasitism of infected hosts

− δkPku︸ ︷︷ ︸
death

, k = 1, 2,

dPki

dT
= γkαkiPku(1− e−μkuH)

Hi

H︸ ︷︷ ︸
recruitment via acquisition of infection

through parasitism of infected hosts

− δkPki︸ ︷︷ ︸
death

, k = 1, 2.

(2)

Non-dimensionalisation

Combining the host equations 1 with the equations 2 for both parasitoid species (k = 1, 2) we obtain a

system of six ODEs. This system is then non-dimensionalized in the usual way using the uninfected host

increase rate ρu to scale time, and using the host carrying capacity H∗ to scale population numbers as

follows:

t = ρuT , hu =
Hu

H∗ , hi =
Hi

H∗ , h =
H

H∗ , pku =
Pku

H∗ , pki =
Pki

H∗ .
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This yields the following non-dimensional system of equations:

dhu

dt
=(hu + r(1− f)hi)(1− h)− s1up1u(1− e−a1uh)

hu

h
− (s1u + v1)p1i(1− e−a1ih)

hu

h

− s2up2u(1− e−a2uh)
hu

h
− (s2u + v2)p2i(1− e−a2ih)

hu

h
,

dhi

dt
=rfhi(1− h)− s1ip1u(1− e−a1uh)

hi

h
− s1ip1i(1− e−a1ih)

hi

h
+ v1p1i(1− e−a1ih)

hu

h

− s2ip2u(1− e−a2uh)
hi

h
− s2ip2i(1− e−a2ih)

hi

h
+ v2p2i(1− e−a2ih)

hu

h
−mihi,

dp1u

dt
=c1up1u(1− e−a1uh)

hu

h
+ c1ip1u(1− e−a1uh)

hi

h
+

c1vp1i(1− e−a1ih)
hu

h
+ c1ip1i(1− e−a1ih)

hi

h
− g1p1u(1− e−a1uh)

hi

h
− d1p1u,

dp1i

dt
=g1p1u(1− e−a1uh)

hi

h
− d1p1i,

dp2u

dt
=c2up2u(1− e−a2uh)

hu

h
+ c2ip2u(1− e−a2uh)

hi

h
+ c2vp2i(1− e−a2ih)

hu

h

+ c2ip2i(1− e−a2ih)
hi

h
− g2p2u(1− e−a2uh)

hi

h
− d2p2u,

dp2i

dt
=g2p2u(1− e−a2uh)

hi

h
− d2p2i,

(3)

where:

r = ρi

ρu
, rate of increase of infected host proportional to uninfected hosts,

f = φ, fidelity of vertical transmission,

vk = νkαku
ρu

, the vector efficiency of parasitoid species k = 1, 2,

mi = ξi

ρu
, the increased host mortality due to infection,

sku = βkuαku
ρu

, parasitism rate of detected uninfected hosts by parasitoid species k = 1, 2,

ski = βkiαki
ρu

, parasitism rate of detected infected host by parasitoid species k = 1, 2,

aku = μkuH∗, efficiency of detection of uninfected host by parasitoid species k = 1, 2,

aki = μkiH
∗, efficiency of detection of infected host by parasitoid species k = 1, 2,

cku = εkuβkuαku
ρu

, conversion rate of uninfected host by clean parasitoids of species k = 1, 2,

cki = εkiβkiαki
ρu

, conversion rate of infected hosts by parasitoids of species k = 1, 2,

ckv = εkiβkuαku
ρu

, conversion rate of initially uninfected hosts by carrier parasitoids of species k = 1, 2,

dk = δk
ρu

, death rate of parasitoids of species k = 1, 2,

gk = γkαki
ρu

, infection aquisition rate by parasitoids of species k = 1, 2.

The system of equations (3) was solved in Matlab using the ode45 routine (Shampine and Reichelt,

1997) for a range of parameter values discussed below.
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Results

Two species system dynamics

Initially we consider a two species model and we note that setting the initial number of the second parasitoid

species p2u(0) = P02 = 0 gives a two species model. Setting f = 0 gives a model with no-vertical trans-

mission. We use the following set of parameter values: s1u = 0.65, s1i = 0.45, i.e. parasitoids successfully

attack infected hosts at a lower rate than uninfected hosts; a1u = a1i = 2.5 i.e. parasitoids detect uninfected

and infected hosts at the same efficiency; mi = 0.001, i.e. there is a small increase in mortality of hosts due

to infection; d1 = 0.2, c1u = 0.4, c1i = 0.35 and c1v = 0.4 i.e. parasitoid larvae are less successful in infected

hosts than uninfected host, and v1 = 0.5, g1 = 0.5.

The system has five biologically realistic fixed points: (0, 0, 0, 0), (1, 0, 0, 0), (h∗i , h
∗
u, 0, 0), (h∗u, 0, p∗1u, 0)

and (h∗u, h∗i , p
∗
1u, p∗1i). There are no fixed points of the form (0, h∗i , p

∗
1u, 0) or (0, h∗i , 0, p∗1i) because there

is no vertical infection of hosts or parasitoids. All the fixed points are (unstable) saddle points in R
4

except the coexistence fixed point (h∗u, h∗i , p
∗
1u, p∗1i) = (0.246, 0.047, 0.533, 0.112). A standard linear stability

anlaysis confirms that this point is a stable spiral and hence the long-term dynamics of the system tend

(asymptotically) to this stable coexistence point.

Three species system dynamics

We now introduce a second parasitoid species p2 which is a less efficient competitor, but survival of whose

larvae in hosts is less affected by the presence of infection. This would mean p2 has a lower conversion rate

than p1 on uninfected hosts, but this rate is less affected by the infection. This may arise as a result of

p1 laying larger clutches of eggs than p2. If this is the case, it is not unreasonable to assume that p1 is a

more efficient vector of the disease than p2 because it is taking longer to inject more material into the host

and therefore giving more opportunity to pass on or acquire infection. Thus, in the examples below we set

parameters v1 ≥ v2 and g1 ≥ g2. We also assume that p1 parasitises healthy hosts at a greater rate than it

does infected hosts, whilst p2 does the reverse.
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No vertical transmission

Once again, initially setting f = 0 we have a model where there is no vertical transmission of infection in

the host population. We use the parameter set: s1u = 0.85, s2u = 0.6, s1i = 0.7, s2i = 0.88, aku = aki = 2.5

for both species k, c1u = 0.9, c1i = 0.2, c1v = 0.3, c2u = 0.4, c2i = 0.35, c2v = 0.39, mi = 0.005, d1 = 0.19,

d2 = 0.11, v1 = 0.63, v2 = 0.51, g1 = 2, g2 = 2. In this case, we obtain 9 biologically realistic fixed points:

(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0) , (h∗u, h∗i , 0, 0, 0, 0), (h∗u, 0, p∗1u, 0, 0, 0), (h∗u, h∗i , p
∗
1u, p∗1i, 0, 0), (h∗u, 0, 0, 0, p∗2u, 0),

(h∗u, h∗i , 0, 0, p∗2u, p∗2i), (h∗u, 0, p∗1u, 0, p∗2u, 0) and a coexistence state (h∗u, h∗i , p
∗
1u, p∗1i, p

∗
2u, p∗2i). We note that

there is no steady state in which all the parasitoids of a given species are carriers of the infection and if

the infection is endemic then, at the steady state, there will be some carriers. All the fixed points are

unstable except the coexistence point (h∗u, h∗i , p
∗
1u, p∗1i, p

∗
2u, p∗2i) which linear analysis shows to be a stable

spiral. From our computational simulations, it is observed that the solution trajectories exhibit initial

transient dynamics. These transient dynamics can be extended by changing the initial conditions as shown

in Figure 1 where computational simulations are shown for 5000 time steps. We note that in this case it

is not the rise in infected hosts but the increase in the carrier parasitoids, p1i, which controls the transient

high frequency large amplitude oscillations. The p2u and p2i population levels take longer to rise.

FIGURE 1 near here

In order for the coexistence stationary point (h∗u, h∗i p
∗
1u, p∗1i, p

∗
2u, p∗2i) to be stable, it is necessary to have

high values of g1 and g2. However, in the original fully dimensional system (1), (2), βki + γk ≤ 1, so to

obtain g1 > 1 and g2 > 1 we require that αki > 1. In effect, this means that the parasitoid has a high

attack rate but a low rate of successful oviposition. If the parasitoid attack rates are lower so that vk < 1

and gk < 1 for all k = 1, 2, we see a situation similar to the case illustrated in Figure 2 where the same s

and a values are the same as above and c1u = 0.9, c1i = 0.2, c1v = 0.5, c2u = 0.45, c2i = 0.3, c2v = 0.44,

mi = 0.01, d1 = 0.2, d2 = 0.13, v1 = 0.9, v2 = 0.9, g1 = 0.8, g2 = 0.9. In this case, the system is bi-

stable with one or other of the parasitoids going extinct. If p1 goes extinct then the system is attracted to

(h∗u, h∗i , 0, 0, p∗2u, p∗2i) (unstable spiral leading to a stable limit cycle) but if p2 goes extinct then the system

is attracted to (h∗u, h∗i p
∗
1u, p∗1i0, 0) (stable spiral). The plots shown in Figure 2 illustrate these two cases.

FIGURE 2 near here
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Perfect vertical transmission

When no vertical infection is included in the model, there are no observed dynamics that might suggest

epizootics of infection. However, now setting f = 1 and modelling perfect vertical transmission from in-

fected hosts to their eggs, we observe very interesting differences in the system behaviour. Using the same

searching parameters, s1u = 0.85, s2u = 0.6, s1i = 0.7, s2i = 0.88, aku = aki = 2.5 for all k = 1, 2, we

examine 3 particular cases:

Case (i): When c1u = 0.9, c1i = 0.2, c1v = 0.3, c2u = 0.4, c2i = 0.35, c2v = 0.39, mi = 0.007, d1 = 0.158,

d2 = 0.125, v1 = 0.7, v2 = 0.3, g1 = 0.4, g2 = 0.2 we obtain 12 biologically realistic fixed points:

(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, h∗i , 0, 0, 0, 0)), (h∗u, h∗i , 0, 0, 0, 0), (h∗u, 0, p∗1u, 0, 0, 0),

(0, h∗i , p
∗
1u, p∗1i, 0, 0), (h∗u, h∗i , p

∗
1u, p∗1i, 0, 0), (h∗u, 0, 0, 0, p∗2u, 0),

(0, h∗i , 0, 0, p∗2u, p∗2i), (h∗u, h∗i , 0, 0, p∗2u, p∗2i), (h∗u, 0, p∗1u, 0, p∗2u, 0), (h∗u, h∗i , p
∗
1u, p∗1i, p

∗
2u, p∗2i),

Linear stability analysis shows that (h∗u, h∗i , p
∗
1u, p∗1i, p

∗
2u, p∗2i) is a stable spiral in R

6 but all the other fixed

points are unstable. The long-term dynamics of the system therefore tend (asymptotically) to this stable

coexistence state and this is illustrated in Figure 3. A short period of transient dynamics is shown in Figure

3(b), and by altering the initial conditions it is possible to create extended periods of transient dynamics

(not shown). Here, as in Figure 1, the rise of infection in the host population does not control the transient

oscillations, but rather the rise in carrier parasitoids. This is reasonable because the carrier parasitoids

are the vectors for horizontal transmission and the results from the previous sections suggest that it is this

which affects the transient dynamics

FIGURE 3 near here

Case (ii): With c1u = 0.9, c1i = 0.2, c1v = 0.3, c2u = 0.45, c2i = 0.3, c2v = 0.44, mi = 0.005, d1 = 0.2,

d2 = 0.2, v1 = 0.63, v2 = 0.51, g1 = 0.1, g2 = 0.1 we see a stable limit cycle as shown in Figure 4. (The

period of the cycle is relatively short so, for clarity, only 1500 time steps are shown.)

FIGURE 4 near here
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These limit cycle dynamics can become quite complex as can be seen from the plots shown in Figure

5 for the parameter set c1u = 0.85, c1i = 0.15, c1v = 0.3, c2u = 0.4, c2i = 0.35, c2v = 0.39, mi = 0.01,

d1 = 0.16, d2 = 0.08, v1 = 0.25, v2 = 0.18, g1 = 0.09, g2 = 0.1. Figure 5a shows the first 15000 time

steps of a typical solution curve, Figure 5b shows the period from t = 45, 000 to t = 50, 000 to illustrate

the complex nature of the limit cycle and Figure 5c shows solution trajectories in a 3d phase-space hu, p1u

and p2i. Although the system dynamics tending to the limit cycle are complex, the Lyapunov exponent

λ = −0.0051 is negative when calculated using the MATDS routine from V. Govorukhin, Moscow Univ.

(http://www.math.rsu.ru/mexmat/kvm/matds/), which does indeed indicate a convergence to the limit

cycle and this is visible from figure 5c.

FIGURE 5 near here

Case (iii): With c1u = 0.9, c1i = 0.2, c1v = 0.3, c2u = 0.46, c2i = 0.35, c2v = 0.44, mi = 0.007,

d1 = 0.158, d2 = 0.1, v1 = 0.7, v2 = 0.3, g1 = 0.4, g2 = 0.2 the fixed point of coexistence is now an unstable

saddle point, and all the other fixed points are also unstable. However, computational simulations show

that the solutions remain bounded and tend to what appears to be a chaotic attractor (as is illustrated

in Figure 6c.). The normal test for chaotic dynamics is to calculate the largest Lyapunov exponent λ of a

system (Gottwald and Melbourne, 2004). If λ > 0 then nearby trajectories diverge exponentially whereas

if λ < 0 then nearby trajectories stay close together. Thus positive λ implies that a system is chaotic

and negative λ that it is not. When the Lyapunov exponent is calculated for our system with the current

parameter set using the MATDS routine (see above), we find λ = 0.0012 > 0 and so demonstrates the

existence of chaotic dynamics as can be seen from Figure 6.

FIGURE 6 near here

The mathematical analysis and computational simulation results presented in this section show that

there is a wide range of dynamic behaviour exhibted by our system (3). The dynamics range from stable

coexistence of all three species through oscillatory behaviour caused by the existence of a stable limit cycle,

to finally full-blown chaotic dynamics. Thus, from these dynamics we see that, like contact spread infection

(cf. Preedy et al. (2006)), vectored infection can cause chaotic behaviour in host-parasitoid systems where

there is also some degree of vertical infection.

12



Acc
ep

te
d m

an
usc

rip
t 

Sensitivity analysis

In this section we undertake a sensitivity analysis of the nondimensionalized system (3) with respect to

the full set of (nondimensionalized) parameters. We compute the normalized local sensitivity indices and

employ the Fourier amplitude sensitivity test (FAST) method for describing the effect of large variations of

all parameters on the dependent variables of the system (Varma et al., 1999). In this context, the global

sensitivity index of a dependent variable x(t) with respect to some parameter φ is defined as the fraction of

the partial variance of x(t) with respect to φ over the total variance of x(t) with respect to all parameters

present in the system. In the following, we use the implementation of the FAST algorithm found in the

Systems Biology Toolbox (Schmidt and Jirstrand, 2006).

FIGURE 7 near here

Figure 7 shows the results of the FAST analysis as applied to the experimental setting of the two-

parasitoid-one-host system with perfect vertical transmission. The figure shows the maximum and minimum

global sensitivity indices of the different components of the solution for each nondimensionalized parameter.

The larger the size of a bar, the greater the sensitivity of the system to that parameter, and similarly, the

smaller the size of a bar, the lesser the sensitivity of the system to that parameter. Interestingly enough

the model predicts that, in the context of the two-parasitoid experiment, the parameters with the least

influence on the global dynamics are (a) the parameter mi representing the increased host mortality due

to infection and (b) the conversion rate c1v of initially uninfected hosts by carrier parasitoids of the first

species. Hence, mi and c1v are of little value in controlling the global dynamics of the system.

FIGURE 8 near here

However, one should be careful not to extrapolate inferences from global sensitivity analysis to local

structures in the parameter space. Indeed, the global analysis in Fig. 7 also suggests that variations in

the parasitism rate of detected uninfected hosts by parasitoids of the second species affect substantially the

global dynamics, and the corresponding parameter s2u is a potentially good target for controlling the global

behaviour of the system. Nonetheless, in the case of the specific instance of the dynamics substantiated by

the oscillatory solution shown on Fig. 4, we find that although s2u is a potentially acceptable target for

perturbing the period of the oscillatory solution, it is a relatively bad choice for controlling the corresponding

amplitude. This is shown on Fig. 8 where the normalized local sensitivity indices for the period and
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amplitude of the oscillatory solution shown on Fig. 4 are plotted. In particular, if T (φ) is the period of an

oscillatory solution depending on parameter φ, then the normalized sensitivity index of T (φ) with respect

to φ is given by

Sφ =
φ

T (φ)
· dT

dφ
(φ),

and a similar definition holds for the normalized sensitivity of the corresponding amplitude (Varma et al.,

1999).

As Figure 7 indicates, the parameter a2u is associated with the maximum global sensitivity index and

has a consistently significant influence on the dynamics of all dependent variables of the system (i.e.,

the minimum index associated with a2u is greater than the mean global sensitivity index). Indeed, all

populations in the three-species host-parasitoid system are sensitive to perturbations in a2u, with the latter

representing the efficiency of detection of an uninfected host by the parasitoid species with the lower

conversion rate (in our model this is also the parasitoid species the conversion rate of which is less affected

by the infection). This observation is consistent with simulation results discussed in this paper, according

to which the introduction of a second, less efficient vector of the disease can destabilize the system, whereas

the more efficient carrier parasitoid has a stabilizing effect. The latter phenomenon is also consistent with

the predicted low sensitivity of all populations on parameter a1u, representing the efficiency of detection of

an uninfected host by the parasitoid with the highest conversion rate, as demonstrated in Figure 7.

FIGURE 9 near here

In addition to the sensitivity analysis described above, we address the question of whether the ω-limit

sets identified for system (3) in the presence of vertical transmission correspond to isolated dynamics in the

parameter space or whether they persist for a range of parameter values. Direct numerical continuation of

the three different types of ω-limit sets analyzed in this paper (co-existence stable equilibria, limit cycles,

chaotic attractors) shows that all three types persist for wide ranges of parameter values. Figure 9 shows

the limit cycle and strange attractor dynamics associated with system (3) for two distinct sets of parameter

values. The plot shows the projection of the corresponding dynamics to the hu-hi-p1u space. Fig. 10 shows

specific instances of the numerical continuation of these dynamics with respect to parameters s1u and c2i.

The figure readily demonstrates that, by smoothly varying these parameters, the strange attractor of Fig.

9 is gradually transformed to a limit cycle, and an extensive numerical continuation analysis has confirmed

that both ω-limit sets persist for wide ranges of parameter values.
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FIGURE 10 near here

Discussion

This paper develops a mathematical model of contact transmitted host infection to consider the effect of

introducing parasitoid-vectored host infection to a one-host-two-parasitoid competition model. Although

the model is more complex than a contact transmission model, this additional complexity is necessary to

track the population of carrier parasitoids which allows us to separate the influences of horizontal and

vertical transmission, and helps to clarify the relative importance of the two transmission routes. The

results show that both the complex transient and long-term dynamics induced by contact transmitted

infection are highly complex. It is possible for the vector transmitted infection to become endemic with

only a single parasitoid vector, but if this happens the fixed point of coexistence is always a stable attractor

(spiral). The introduction of a second parasitoid to the system induces an initial transient phase of high

amplitude, high frequency oscillations, the period of which depends on the initial conditions of the system.

This suggests that the introduction of a second parasitoid can destabilise the system, a conclusion relevant

to the introduction of non-native species for bio-control initiatives. These transient dynamics are not

stabilised by the rise in the infected host population, but rather by the increase in the population of the

more efficient carrier parasitoid. This remains the case when vertical transmission is included in the model,

suggesting that horizontal infection is what stabilises the transient oscillations. Where there is no vertical

transmission of the infection, the system either has a fixed point of coexistence which is a stable spiral, or

we observe a bi-stability where one or other of the parasitoid species goes extinct. When vertical infection

is introduced to the system, the dynamics become more complex with the appearance of a stable limit cycle

and eventually may become chaotic.

Of course, these dynamics were observed using a selected set (or few sets) of parameter values. Therefore,

in order to investigate how widespread or typical this behaviour is for the model, we undertook several

parameter sensitivity analyses of the system. Firstly, using the FAST algorithm (Varma et al., 1999;

Schmidt and Jirstrand, 2006) we showed the influence of each parameter on the global dynamics of the

system. Additionally, using the normalized sensitivity index (Varma et al., 1999) we studied the effect of

variations in each parameter on the local structures of the system i.e. the period and amplitude of the

limit cycle. Finally, an extensive direct numerical continuation revealed that all three types of ω-limit set
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observed in the system (co-existence stable equilibria, limit cycles, chaotic attractors) exist and persist for

wide ranges of parameter values.

It is known that predator-prey systems may exhibit chaotic behaviour under certain initial conditions

when a spatial element is considered (Petrovskii and Malchow, 2001). However, in these models, irregular

spatio-temporal behaviour only occurs under suitably perturbed initial conditions. Highly heterogeneous

spatio-temporal dynamics have also been observed in predator-prey systems with limit cycle kinetics (Sher-

ratt et al., 1995). The model considered here exhibits chaotic behaviour induced by biologically realistic

mechanisms and under the assumption of spatial homogeneity. Although we have not considered a spatial

model here (e.g. with the diffusion of all species), it is possible to anticipate (qualitatively) the spatio-

temporal dynamics of such a spatial model from the three basic underlying types of behaviour shown in the

long-term (asymptotic) behaviour of the trajectories of the system i.e. the system tends to either a single

coexistence fixed point, or a stable limit cycle or a chaotic attractor. These underlying temporal dynamics

imply that a corresponding spatial model would exhibit progressively more complex “waves of invasion”,

mirroring the results of Preedy et al. (2006). The spatio-temporal dynamics of such a system add an extra

layer of complexity to the already complex underlying temporal population dynamics and have implications

for the spatial-spread and treatment of disease.

Therefore, it is possible that the chaotic behaviour shown by the model may be an intrinsic property of

the trophic association which it mimics. The stabilising effects of infection seem mainly to act horizontally

within a generation, whilst the destabilising effects seem primarily to operate vertically. This would suggest

that in considering the introduction of infection for the purposes of bio-control, it may be more appropriate

to consider those which have no vertical transmission. In this respect, the infection would act as a “live”

insecticide, with the parasitoids as the disseminators of the infection. Even if there were no synergy between

parasitism and host infection, which is probably unlikely, the overall effect on the host death rate would be

to increase it within a single generation. If control were seen as inoculative, then this would increase the

impact of a parasitoid species on a target pest population. Similarly, in situations where an endemic infection

has an element of vertical transmission, the consequences of the invasion of a second competing parasitoid

may dramatically destabilise the system. This should caution against the automatic assumption, often

made, that multiple natural enemies will always be more effective in controlling a pest species than a single

parasitoid species. Transient high amplitude high frequency oscillations were seen with the introduction of

a second parasitoid vector and these were controlled by the rise in population of the more efficient vector.
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We have discussed host-parasitoid interactions in general above, but such systems form a good metaphor

for predator-prey and host-pathogen interactions. There are many diseases, such as louping-ill virus (LIV),

bovine tuberculosis, malaria and yellow fever which are transmitted via a vector, and which may have more

than one species or form of vector. The findings of this paper have implications for the strategies used in

control of such infections.
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Figure 1: Plots showing the effect of different initial conditions on the system dynamics (up to t = 5000)
for the model with three species h, p1 & p2 and no vertical transmission of infection in the host population..
The initial transient phase can be extended under different initial conditions. The vertical axis represents
relative population density and the horizontal axis time. The different lines represent: hu (blue), hi (red),
p1u (green), p1i (cyan), p2u (magenta) and p2i (black). Parameter values: r = 1, f = 0, s1u = 0.85,
s2u = 0.6, s1i = 0.7, s2i = 0.88, aku = aki = 2.5 for all k, c1u = 0.9, c1i = 0.2, c1v = 0.3, c2u = 0.4,
c2i = 0.35, c2v = 0.39, mi = 0.005, d1 = 0.19, d2 = 0.11, v1 = 0.63, v2 = 0.51, g1 = 2, g2 = 2. Initial
conditions were (a.) (0.1, 0, 0.1, 0.01, 0.1, 0) and (b.) (0.1, 0, 0.1, 0, 0.1, 0.001).
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Figure 2: Plots showing the different long-term dynamics (up to t = 5000) that occur depending on
which parasitoid species goes extinct (bi-stability) for the model with three species h, p1 & p2 and no
vertical transmission of infection in the host population. The vertical axis represents relative population
density and the horizontal axis time. The different lines represent: hu (blue), hi (red), p1u (green), p1i

(cyan), p2u (magenta) and p2i (black). Parameter values r = 1, f = 0, s1u = 0.85, s2u = 0.6, s1i = 0.7,
s2i = 0.88, aku = aki = 2.5 for all k, c1u = 0.9, c1i = 0.2, c1v = 0.5, c2u = 0.45, c2i = 0.3, c2v = 0.44,
mi = 0.01, d1 = 0.2, d2 = 0.13, v1 = 0.9, v2 = 0.9, g1 = 0.8, g2 = 0.9. Initial conditions were for (a.)
(0.1, 0.25, 0.001, 0.1, 0.1, 0.01) and (b) (0.1, 0.25, 0.01, 0.001, 0.1, 0.01).
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Figure 3: Plots showing the long-term dynamics (up to t = 5000) that occur for the model with three
species h, p1 & p2 and perfect vertical transmission of infection in the host population. The population
dynamics tend to the stable fixed point of coexistence, with the initial length of the transient period capable
of being extended. The vertical axis represents relative population density and the horizontal axis time.
The different lines represent: hu (blue), hi (red), p1u (green), p1i (cyan), p2u (magenta) and p2i (black).
Parameter values r = 1, f = 1, s1u = 0.85, s2u = 0.6, s1i = 0.7, s2i = 0.88, aku = aki = 2.5 for all k,
c1u = 0.9, c1i = 0.2, c1v = 0.3, c2u = 0.4, c2i = 0.35, c2v = 0.39, mi = 0.007, d1 = 0.158, d2 = 0.125,
v1 = 0.7, v2 = 0.3, g1 = 0.4, g2 = 0.2. Initial conditions were for (a) (0.2, 0.5, 0.1, 0, 0, 0.1) and (b)
(0.0001, 0.9, 0, 0.0004, 0, 0.99).
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Figure 4: Plots showing the system dynamics (up to t = 1500) that occur for the model with three species
h, p1 & p2 and perfect vertical transmission of infection in the host population. In this case, stable limit
cycle dynamics are observed. The vertical axis represents relative population density and the horizontal
axis time. The lines represents: hu (blue), hi (red), p1u (green), p1i (cyan), p2u (magenta) and p2i (black).
Parameter values r = 1, f = 1, s1u = 0.85, s2u = 0.6, s1i = 0.7, s2i = 0.88, aku = aki = 2.5 for all k,
c1u = 0.9, c1i = 0.2, c1v = 0.3, c2u = 0.45, c2i = 0.3, c2v = 0.44, mi = 0.005, d1 = 0.2, d2 = 0.2, v1 = 0.63,
v2 = 0.51, g1 = 0.1, g2 = 0.1. Initial conditions were (0.2, 0.005, 0.001, 0, 0, 0.6).
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Figure 5: Plots showing the long-term system dynamics that occur for the model with three species h,
p1 & p2 and perfect vertical transmission of infection in the host population. In this case, more complex
stable limit cycle dynamics are observed. The vertical axis represents relative population density and the
horizontal axis time. The different lines represent: hu (blue), hi (red), p1u (green), p1i (cyan), p2u (magenta)
and p2i (black). Parameter values r = 1, f = 1, s1u = 0.85, s2u = 0.6, s1i = 0.7, s2i = 0.88, aku = aki = 2.5
for all k, c1u = 0.85, c1i = 0.15, c1v = 0.3, c2u = 0.4, c2i = 0.35, c2v = 0.39, mi = 0.01, d1 = 0.16, d2 = 0.08,
v1 = 0.25, v2 = 0.18, g1 = 0.09, g2 = 0.1. (a.) Shows the first 15000 time steps and (b.) shows the last
5000 time steps of a 50000 time step run. (c.) Shows a phase portrait of the solution curve where the axis
running from 0 to 1 represents hu, the axis running from 0 to 0.4 P1u and the vertical axis P2i. Initial
conditions were (0..2, 0.5, 0.1, 0, 0, 0.1)

23



Acc
ep

te
d m

an
usc

rip
t 

a.
0 1000 2000 3000 4000 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

b.
4.5 4.6 4.7 4.8 4.9 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c.
0

0.1
0.2

0.3
0.4

0

0.2

0.4

0.6

0.8
0

0.05

0.1

0.15

0.2

Figure 6: Plots showing the long-term system dynamics that occur for the model with three species h, p1 &
p2 and perfect vertical transmission of infection in the host population. In this case, chaotic dynamics are
observed. The vertical axis represents relative population density and the horizontal axis time. The different
lines represent: hu (blue), hi (red), p1u (green), p1i (cyan), p2u (magenta) and p2i (black). Parameter values
r = 1, f = 1, s1u = 0.85, s2u = 0.6, s1i = 0.7, s2i = 0.88, aku = aki = 2.5 for all k, c1u = 0.9, c1i = 0.2,
c1v = 0.3, c2u = 0.46, c2i = 0..35, c2v = 0.44, mi = 0.007, d1 = 0.158, d2 = 0.1, v1 = 0.7, v2 = 0.3,
g1 = 0.4, g2 = 0.2. (a.) shows the first 5000 time steps and (b.) shows the last 5000 time steps of a 50000
time step run. (c.) Chaotic attractor in the 3d phase space of hu, P1u and P2i. Initial conditions were
(0.2, 0.5, 0.1, 0, 0, 0.1).
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Figure 7: Global sensitivity analysis of the nondimensionalized system (3) in the case of the two-parasitoid-
one-host system with perfect vertical transmission. Every bar in the diagram shows the maximum and
minimum global sensitivity indices of the different components of the solution for each nondimensionalized
parameter.

a. b.

Figure 8: Local sensitivity analysis of (a) the period and (b) the amplitude of the oscillatory solution shown
in Fig. 4. See text for the definition of the normalized local sensitivity index.
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Figure 9: Limit cycle (red) and strange attractor (blue) dynamics associated with system (3) for different
parameter values. The plot shows the projection of the corresponding dynamics to the hu− hi− p1u space.
By smoothly varying specific parameters of the system one can transform the limit cycle to the strange
attractor. Both ω-limit sets persist for a range of parameter values and are not isolated structures in
the parameter space. The strange attractor shown here corresponds to the parameter values of Fig. 6
but c1u = 0.85. The limit cycle corresponds to the parameter values used for the strange attractor but
s1u = 1.05 and c2i = 0.55.
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Figure 10: Sequence of ω-limit sets of system (3) for different parameter values. The attractor dynamics
shown in (a) correspond to the strange attractor of Fig. 9. By smoothly varying parameters s1u and c2i

the strange attractor is transformed to a limit cycle. As discussed in the text with reference to Fig. 9, both
types of ω-limit sets persist for a range of parameter values and are not isolated structures in the parameter
space.
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