

Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach

Elodie Briefer, Tomasz S. Osiejuk, Fanny Rybak, Thierry Aubin

► To cite this version:

Elodie Briefer, Tomasz S. Osiejuk, Fanny Rybak, Thierry Aubin. Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach. Journal of Theoretical Biology, 2009, 262 (1), pp.151. 10.1016/j.jtbi.2009.09.020. hal-00559159

HAL Id: hal-00559159 https://hal.science/hal-00559159

Submitted on 25 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Author's Accepted Manuscript

Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach

Elodie Briefer, Tomasz S. Osiejuk, Fanny Rybak, Thierry Aubin

PII:S0022-5193(09)00440-8DOI:doi:10.1016/j.jtbi.2009.09.020Reference:YJTBI 5711

To appear in: Journal of Theoretical Biology

Received date:6 November 2008Revised date:5 September 2009Accepted date:11 September 2009

www.elsevier.com/locate/yjtbi

Cite this article as: Elodie Briefer, Tomasz S. Osiejuk, Fanny Rybak and Thierry Aubin, Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach, *Journal of Theoretical Biology*, doi:10.1016/j.jtbi.2009.09.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Are bird song complexity and song sharing shaped by habitat
2	structure? An information theory and statistical approach
3	
4	
5	
6	
7	Elodie Briefer ^{a,1,*} , Tomasz S. Osiejuk ^b , Fanny Rybak ^a , Thierry Aubin ^a
8	
9	^a University Paris 11, NAMC, CNRS-UMR8620, Orsay, France
10	^b Department of Behavioural Ecology, Institute of Environmental Biology, Faculty of
11	Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
12	¹ Present address: Queen Mary University of London, School of Biological and Chemical
13	Sciences, Mile End Road, London E1 4NS, UK
14	*Corresponding author: E. Briefer (e.briefer@qmul.ac.uk)
15	

15 Abstract

16

17 In songbirds, song complexity and song sharing are features of prime importance 18 for territorial defence and mate attraction. These aspects of song may be strongly 19 influenced by changes in social environment caused by habitat fragmentation. We tested 20 the hypothesis that habitat fragmentation induced by human activities influences song 21 complexity and song sharing in the skylark, a songbird with a very large repertoire and 22 whose population recently underwent a large decline. We applied powerful mathematical 23 and statistical tools to assess and compare song complexity and song sharing patterns of 24 syllables and sequences of syllables in two populations: a declining population in a 25 fragmented habitat, in which breeding areas are separated from each other by unsuitable surroundings, and a stable population in a continuous habitat. Our results show that the 26 structure of the habitat influences song sharing, but not song complexity. Neighbouring 27 28 birds shared more syllables and sequences of syllables in the fragmented habitat than in 29 the continuous one. Habitat fragmentation could thus have an effect on the composition 30 of elements in songs, but not on the number and the complexity of these elements, which may be a fixed feature of song peculiar to skylarks. 31

- 32
- 33

34 *Keywords: entropy*, *Zipf's law, habitat fragmentation, bird song, skylark*

1. Introduction

37	Bird songs are among the most complex sounds produced by animals. These
38	elaborate signals of oscine birds (songbirds) are thought to have evolved largely through
39	sexual selection. The functions of songs are territorial defence and mate attraction.
40	Between species, songs show great variation: 1) at the level of song duration, from short
41	and discrete song types to long and continuous ones; 2) at the level of repertoire size,
42	from one element produced repeatedly to hundred of elements produced with immense
43	variety; 3) or even at the level of song sharing, from one song type shared by all
44	individuals of a given area to different sets of song types produced by each individual
45	(Catchpole and Slater, 1995).
46	The repertoire size of a bird is assessed as the number of different elements it can
47	produce. What constitutes an element is not always the same between species. As many
48	songbird species produce short and discrete songs (discontinuous singers), repertoire size
49	is usually measured as the number of different song types produced. However, it can also
50	be measured as the number of different syllables produced, especially for species
51	producing continuous songs (continuous singers, Catchpole and Slater, 1995). Despite the
52	fact that approximately 80% of all songbird species have small or moderate song
53	repertoire sizes (1-25 different song types per individual), most of them produce more
54	than one song type (reviewed by Lambrechts and Dhondt, 1995; Stoddard, 1996).
55	Various modes of repertoire acquisition exist: repertoire size appears to be partially under
56	genetic control, at least in some species (Marler and Sherman, 1985), and may depend on
57	condition during development of young males (Nowicki et al., 2000; Buchanan et al.,

58 2003) or on adult body condition (Lampe and Espmark, 1994; Kipper et al., 2006).

59 Repertoire appears to vary with age (Nottebohm and Nottebohm, 1978; Loffredo and 60 Borgia, 1986), geography (Mulligan, 1966; Kroodsma, 1981), and population size or 61 density (Bitterbaum and Baptista, 1979; Laiolo et al., 2008). Furthermore, the 62 composition of a repertoire is based on songs of multiple tutors and is influenced by 63 social interactions (Nordby et al., 1999).

64 The phenomenon of song sharing occurs when songs of neighbouring males are 65 more similar to one another than to those of non-neighbouring males. Variation in song 66 composition resulting from song sharing and occurring between close groups of birds is 67 called local dialect or microdialect and is often expressed in the syntactic organization of 68 songs (Mundinger, 1982). Whole songs (e.g. Griessmann and Naguib, 2002), individual 69 syllables within songs (e.g. Isaac and Marler, 1963; Kreutzer, 1974) or groups of linked syllables (e.g. Becker, 1974) are shared by individuals from the same population. Song 70 71 sharing is thought to be a consequence of the cultural transmission of song through learning (Trainer, 1983; Kroodsma, 1996). Spatial patterns of song sharing can be 72 73 influenced by the social structure (nest distribution), affiliative interactions and 74 population density (Hausberger, 1997), the specific learning strategy, the timing of 75 learning, the learning environment, migration and dispersal patterns (Nottebohm, 1969; 76 Goodfellow and Slater, 1986; Slater, 1989; Koetz et al., 2007). 77 Repertoire size, or more broadly song complexity, and song sharing are both 78 known to play important roles in territory acquisition, territory defence and mate 79 attraction (Beecher and Brenowitz, 2005), and may result from complex interactions

80 between genes and environment (Catchpole and Slater, 1995).

81 One of the effects of human activities on environment is the fragmentation of 82 animal species' habitat in patches separated by relatively inhospitable terrain. There is 83 considerable evidence that habitat fragmentation can cause declines in avian populations 84 (Bender et al., 1998; Schmiegelow and Monkkonen, 2002). The main reasons of these 85 species' declines are a reduction of habitat areas (area effect) and an increase in distance 86 between remaining habitat patches that influences therefore dispersal ability (isolation 87 effect, Andrén, 1994; Opdam et al., 1994; reviewed in Saunders et al., 1991; Debinski 88 and Holt, 2000). Habitat fragmentation has been suggested to condition song variation in 89 some bird species (white crowned sparrow Zonotrichia leucophrys nuttalli, Trainer, 1983; corn bunting Miliaria calandra, Holland et al., 1996), but direct evidence has only 90 91 been shown in the Dupont's lark Chersophilius duponti (Laiolo and Tella, 2005, 2007). 92 In this species, song diversity has been shown to be an indicator of the viability of 93 fragmented bird populations. Song diversity could thus be used as a warning signal of population decline (Laiolo et al., 2008). 94 To study the effect of habitat fragmentation on both song complexity and patterns 95 96 of song element sharing, we analysed the songs of skylarks, an ideal model species because males produce highly complex songs. The skylark is a territorial songbird of 97 98 open landscape. During the breeding season, from February to the end of July, pairs settle 99 in adjacent territories (Delius, 1963). During the entire breeding season, males fiercely 100 defend territories (Donald, 2004). To deter intruders, they produce a flight song (Delius, 101 1963; Hedenström, 1995) that reveals species identity via encoding of temporal 102 parameters (Aubin and Brémond, 1983). Unlike songs of many songbirds which are 103 relatively short and discontinuous (Catchpole and Slater, 1995) and which can be

104	categorized in discrete song types, the skylark song is long and continuous. It consists of
105	series of song units, named syllables, produced between 2 and 6 kHz. With an estimated
106	repertoire of more than 300 different syllables per individual, this song is one of the most
107	complex songs among songbirds, giving rise to a huge potential for variation at the
108	syntactic level (Aubin, 1981, 1982). Neighbouring males in a given breeding area share
109	numerous syllables and sequences of syllables that constitute a microdialect (Briefer et
110	al., 2008). Since the mid-1970s, the European skylark population underwent strong
111	declines. The major changes which have been implicated in the decline of skylarks are
112	agricultural intensification, increasing monoculture inducing a loss of structural diversity
113	of vegetation, elimination of lands not used for cultivation, use of pesticides and
114	fertilisers, and increasing mechanisation of cultivation (Busche, 1989; Odderskaer et al.
115	1997; Chamberlain and Gregory, 1999; Tryjanowski, 2000).
116	We compared two skylark populations: one living in a fragmented habitat with a
117	low population density in decline and one living in a continuous habitat with a high and
118	stable population density. In the fragmented habitat, territories of males were
119	concentrated in particular breeding areas and individuals were thus gathered in distinct
120	small groups of 'neighbours' because of the heterogeneity of the landscape (presence of
121	woods, villages and roads). In the continuous habitat, the whole area was suitable for
122	breeding and territories were thus unbrokenly distributed in the studied area.
123	We developed a method for assessing song diversity. We measured song
124	complexity and assessed patterns of syllables and sequences of syllables shared by
125	individuals within each habitat. Song complexity was assessed by measuring repertoire
126	size and song versatility, and by using information theory concepts (Shannon and

Weaver, 1949). Patterns of syllable and sequence sharing were assessed using various statistical tools. We then compared results obtained in the two kinds of habitat. We expected the continuity of the habitat associated with a high population density to result in songs being more varied and complex compared to the fragmented habitat, as a consequence of more tutor songs available to young birds during song learning and of stronger male-male competition.

scilpi

133

134 **Theory**

135

136 Information Theory

Information theory was first developed by Shannon (1948; Shannon and Weaver, 137 138 1949) to encode signals that could efficiently transmit information across a variety of 139 noisy communication channels. The information theory method examines the amount of 140 information, defined as a measure of one's freedom of choice when selecting a message, 141 at increasingly complex levels of signalling organisation of a communication system. The 142 amount of information in a communication system is measured using entropy, also called 143 uncertainty, and represents the degree of randomness in the system. According to the 144 level of signalling organisation, several values of entropy can be measured. Maximum 145 entropy or zero-order entropy assesses repertoire diversity. First-order entropy represents 146 the simple repertoire internal organisation. Higher-order entropies assess the 147 communication system complexity.

148

149 Markov chain process

150	Markov chain analyses are used to determine if events occurring in a sequence are
151	independent of one another. However, a Markov process cannot depict the sequential
152	organisation of these events. The alternative is to use transition matrices (e.g. Isaac and
153	Marler, 1963; Lemon and Chatfield, 1971, 1973), or kinematic graphs (e.g. Ficken et al.,
154	1994) to study sequential organisation of syllables in bird songs. Yet, the skylark
155	repertoire is so large that these methods are not useful to describe songs of this species.
156	Instead, we investigated Markov chain analyses using an information graph. According
157	to this method, the amount of information contained in a sequence of elements is at
158	maximum if each element's probability in the sequence is completely independent of the
159	preceding element. Thus, by plotting the average amount of information (entropy) of
160	element sequences against sequence size, we obtain an information graph. If the
161	probability of any element is dependent on the element or elements immediately
162	preceding it, the amount of information will decrease as sequence size increases. Lemon
163	and Chatfield (1973) suggested that the portion of the information graph where
164	information declined most sharply (where there is a higher negative slope, called
165	'Shannon's slope') indicates the degree of Markov chaining.

166

167 Zipf-Mandelbrot

168 'Zipf's law' was first proposed by Zipf (1949) to describe human language. One
169 of his proposed linguistic generalizations was called 'principle of least effort'. According
170 to this law, if elements are ranked according to their probability of occurrence, from the
171 commonest to the rarest, there must be an inverse monotonic relationship between rank of
172 use and probability of occurrence. When plotted logarithmically, the function obtained

173 should be linear. This function gives an indication of the non-randomness and the 174 potential capacity for information transfer in a system. A regression coefficient (slope) of 175 -1 indicates that there is a balance between diversity and redundancy in the system and 176 thus, that the system has a high potential capacity for transferring information. However, 177 if the slope ranges between -1 and 0, there is more diversity than redundancy. If the slope 178 is smaller than -1, there is more redundancy than diversity in the system and thus, less 179 potential capacity for transferring information. Mandelbrot (1953) found a rationale for 180 Zipf's empirical generalization and developed a formula that could fit data from a greater variety of languages. This formula is: $P_i = i (r + k)^{-s}$, with P_i the probability of 181 occurrence of elements, r their rank of use, i the intercept, k the curvature factor and s the 182 183 asymptotic slope. The resulting curve is more hyperbolic than Zipf's law at the upper data 184 (lowest rank elements) of Zipf's plot and has been shown to describe bird communication system well (Hailman et al., 1985). Furthermore, Mandelbrot's curve gives an indication 185 186 about whether the system possesses generative properties, that is, whether the number of 187 different elements in the system is unlimited. To show openness of a communication 188 system, the plotted curve should reach a non-zero asymptotic slope (Hailman et al., 1985; 189 Ficken et al., 1994). Indeed, a non-zero asymptotic slope indicates that, as larger samples 190 of songs are recorded, new element types will be encountered in the population. 191

192 **2. Methods**

193

194 2.1. Study Areas, Subjects and Song Recordings

196	We studied two skylark populations, one in France (fragmented habitat) and one
197	in Poland (continuous habitat). Skylark breeding population is still declining in France
198	(about 12% of population reduction between 1994 to 2000, with a more important
199	reduction in the northern part where our study was conducted, Eraud and Boutin, 2001),
200	but it remains stable in Poland (BirdLife International, 2008; Donald, 2004).
201	In France, songs were recorded during the breeding season in 2005 in the fields
202	surrounding the University of Paris 11, Orsay, Essone. The study plot covered 81 km ²
203	and consisted of arable fields, most of them being cereals crops, surrounded by habitats
204	unsuitable for skylarks, like anthropogenic barriers (roads and houses) and few
205	woodlands that covered about 50% of the area (assessed using aerial pictures, Fig. 1).
206	Due to the heterogeneity of the landscape, this population was distributed in distinct
207	small groups separated by few kilometres. We studied 7 groups established in locations
208	of 0.44 \pm 0.07 km ² (mean \pm SE), containing 9.6 \pm 0.7 individuals each, and separated by
209	unsuitable areas (Fig. 1; 2). Within these locations, the bird density was of 24.2
210	pairs/km ² . One to 3 individuals per groups were recorded, making a total of 14
211	individuals.
212	In Poland, songs were recorded during the breeding season in 2006 in the fields
213	around Odolanów, Wielkopolska. Large scale monitoring data for the whole country
214	indicate that skylark has a continuous distribution across Poland (Stawarczyk, 2004;

215 Tryjanowski, 2007). The study plot covered 24 km² and consisted of arable and pastoral

216 fields. Groups of tree and shrubs covered about 2% of the area and anthropogenic barriers

about 8% (assessed using aerial pictures, Fig. 1). Birds of this population were dispersed

218 in the habitat without unsuitable areas between them. The bird density within this study

area exceeded two times the bird density in the fragmented habitat (48.8 pairs/km²). To
allow comparison at similar distances with the French population, we recorded 20
individuals established in two sets that covered 3.1 km² and 2.7 km² respectively and that
were situated 2 km apart (Fig. 1; 2). The populations of France and Poland were situated
1100 km apart.

224 During the breeding season, site fidelity is very strong (Jenny, 1990; Delius, 225 1963). Once territories are established, boundaries between adjoining territories are stable 226 and males remain inside these boundaries (Aubin, 1981). We recorded songs at the 227 middle of the breeding season, in May, when territories are stable. To avoid individual 228 misidentification, birds established in neighbouring territories were recorded during a 229 single visit. For each recorded bird, we took GPS coordinates (Garmin GPSMAP 76S) at the place where we had seen the bird singing. We then used these GPS coordinates to 230 calculate, in each kind of habitat, geographical distances between territories of all pairs of 231 232 recorded individuals. We calculated distances between 2 GPS coordinates in meters with a calculator using a spherical earth assumption. 233

We recorded several songs per individual between 0700 and 1200 hours Eastern

235 Daylight Time using a Marantz PMD 690 digital recorder (sampling rate: 48000 Hz)

236 connected to a Sennheiser ME 64 K6 omni-directional microphone (frequency response:

30 Hz to $20 \text{ kHz} \pm 1 \text{ dB}$) mounted on a Telinga Universal parabola (diameter: 50 cm). We

then transferred songs files to a computer and high-pass filtered them (cut-off frequency:

1600 Hz) to remove the background noise. We used the Avisoft SASLab pro version 4.31

240 (Specht, 2004) for subsequent analyses.

241

242 <u>2.2. Analysis of songs</u>

243

244	We selected for the analysis 100.33 ± 0.21 s (mean \pm SE, $N = 34$ individuals) of
245	continuous song per individual of one good signal to noise ratio song (i.e. a song with a
246	low level of background noise). Such selection allowed us to standardize the analysed
247	song duration per individual. We visualized songs on a spectrogram (FFT-Length: 1024;
248	Frame: 100%; Bandwidth: 61 Hz; Resolution: 46 Hz, Hamming window).
249	A syllable was defined as a continuous trace on the sound spectrogram or a group
250	of continuous traces spaced out by less than 25 ms. As described elsewhere (Briefer et al.,
251	2008), we labelled syllables on the sound spectrogram with a number according to their
252	overall frequency modulation shapes. The same syllable found at several places in the
253	song of one individual or in songs of different individuals was labelled with the same
254	number. Then, we examined the sequential organization of syllables using a custom
255	Matlab program (The MathWorks, Natick, MA, USA; see Lehongre et al., 2008). The
256	numbers corresponding to the syllable labelling were inputted into the Matlab program in
257	the order of production of the corresponding syllables in the songs. For each individual,
258	the program classified sequences of numbers according to their length and the number of
259	times they were repeated. We thus obtained, for each individual, the repertoire of all
260	syllables and sequences of 2 to 10 syllables with the number of times they were repeated.
261	
262	2.3. Song complexity

264	To assess the effect of the kind of habitat (continuous versus fragmented) on the
265	complexity of songs, we used the repertoires of syllables and of sequences of 2 to 10
266	syllables produced by each individual to calculate complexity and versatility of songs.
267	We then applied information theory concepts (Shannon and Weaver, 1949) to calculate
268	entropy. As skylarks do not sing discontinuous songs that can be classified like most
269	other passerine birds, syllable types and not song types were the basic units for our
270	measures.
271	
272	Versatility: variety of syllables and complexity of sequences within songs
273	To assess versatility of songs, we used the following four measures (e.g.
274	Kroodsma, 1978; Ince and Slater, 1985):
275	
276	(a) Repertoire size: syllable composition of songs
277	We measured the <i>observed repertoire size</i> (ObsR) of each individual as the total
278	number of different syllables produced. As skylark repertoire size is huge (Briefer et al.,
279	2008), the <i>total repertoire size</i> (\mathbf{R}) of each individual was estimated following the method
280	developed by Wildenthal (1965) and Howard (1974). This method assumes that the curve
281	of the number of new encountered syllable types plotted against the number of analysed
282	syllables rises to meet an asymptote (\mathbf{R}) following an exponential equation. This method
283	is applied under the following assumptions: the probability of a new syllable type
284	appearing is proportional to the number of unused syllable types remaining in the
285	repertoire; the repertoire size is constant and fixed; and syllables are produced in random
286	sequences. When 300 s of skylark song were analysed, the obtained repertoire curves

287	indeed reached an asymptote (Briefer et al., 2008). We derived the more approximate
288	exponential equation fitting skylark repertoire curves from Wildenthal (1965) equation as
289	follows: $n = R (1 - e^{-(T/\alpha)/R})$, with $n =$ the number of new encountered syllable types,
290	T = the total number of analysed syllables, R = the total repertoire size, and α = 1.86.
291	The latter value was estimated from the curves of 9 individuals used in our previous study
292	for which the total repertoire size (\mathbf{R}) was studied by analysing more than 300 s of song.
293	
294	(b) Syllable type versatility: variety of syllables within sequences
295	We calculated syllable type versatility (SylVer) for each individual as the mean
296	number of different syllables in sequences of 10 syllables. SylVer ranges from 0 to 10,
297	with 10 being the maximum versatility.
298	
299	(c) Transition versatility: repetition of syllables within sequences
300	We calculated <i>transition versatility</i> (<i>TrVer</i>) for each individual, as the mean
301	number of transitions between two different syllables in sequences of 10 syllables. TrVer
302	ranges from 0 to 9, with 9 being the maximum versatility.
303	
304	(d) Total versatility: variety and repetitions of syllables within sequences
305	We calculated the <i>total versatility</i> (<i>TotVer</i>) for each individual as the mean value
306	of <i>SylVer</i> * <i>TrVer</i> in sequences of 10 syllables. Total versatility ranges from 0 to 90, with
307	90 being the maximum versatility.
308	
309	Information analysis: amount of information in sequences within songs

310	We applied the information theory concepts to skylark song by calculating the
311	following entropy measures for each individual. Entropy values are measured in bits
312	('binary digit') per syllable type.
313	
314	(a) Zero-order entropy: syllable song diversity
315	We calculated <i>zero-order entropy</i> (E_{θ}) as follows: $E_{\theta} = \log_2(k)$, with k being the
316	observed repertoire size (ObsR). Additionally, we calculated the estimated zero-order
317	entropy $(EstE_{\theta})$ by using the following equation: $E_{\theta} = \log_2(k')$, with k' being the
318	estimated repertoire size (\mathbf{R}) . These entropy values estimate song diversity.
319	5
320	(b) First-order entropy: simple internal organisation of songs
321	First-order entropy (E_I) takes into account the probability of occurrence of each
322	syllable type in a given song (<i>Pi</i>), which is equal to the number of times that syllable type
323	is observed divided by the total number of syllables in the song. We calculated E_1 as
324	follows: $E_I = -\sum P_i \log_2(P_i)$. Such entropy value assesses the simple internal organisation
325	of a song.
326	
327	(c) Higher-order entropies: complex internal organisation of songs
328	We then measured entropy values associated with each size of sequences
329	composed of 2 to 10 syllables, by calculating second- (E_2) to tenth-order (E_{10}) entropy
330	respectively. These higher-order entropies measure song complexity by assigning to each
331	sequence of a given size a joint probability of occurrence and a conditional probability of
332	occurrence in the song. The joint probability (P_{ijkl}) of a sequence type of 4 syllables (i-j-

333	k-l), for example, is equal to the number of times this sequence type is observed divided
334	by the total number of sequences of 4 syllables in the song. The conditional probability
335	$(P_{l/ijk})$ of this sequence type is the probability that (i-j-k-l) occurs in the song given that
336	the sequence type of 3 syllables (i-j-k) just occurred. $P_{l/ijk}$ is calculated as the joint
337	probability of the sequence type of 4 syllables (i-j-k-l) divided by the joint probability of
338	the sequence type of 3 syllables (i-j-k). E_2 to E_{10} were calculated as follows: $En = -\sum P_{ij}$
339	$\log_2(P_{ij})$, where P_{ij} is the joint probability, P_{ji} is the conditional probability, and n is the
340	order of entropy. These entropy values measure the amount of information (freedom of
341	choice) contained at increasing levels of song organisation.
342	5
343	(d) Relative entropy and redundancy: proportion of free choice in building
344	sequences
345	Additionally, we calculated the relative entropy (RE) of songs, which is the ratio
346	of the actual to the zero-order entropy: $REn = En / E_0$, with <i>n</i> being the order of entropy
347	(1 to 10). RE is a measure of the proportion of free choice of syllables the sender has to
348	build a sequence.
349	We then calculated the redundancy (RD) , which is calculated as $RDn = 1 - REn$,
350	with n being the order of entropy (1 to 10). RD is a measure of the fraction of the syllable
351	sequence structure, which is determined not by free choice of the sender but rather by
352	statistical rules governing the use of syllables.
353	

354 Markov chain analysis: order of transition between syllables within sequences

355	We carried out a Markov chain analysis of songs by using an <i>information graph</i> .
356	We drew such graph by plotting the mean values of entropy (E_{θ} to $E_{I\theta}$) obtained in each
357	habitat against sequence size (Entropy orders: 0 to 10 respectively).
358	
359	Zipf-Mandelbrot: openness of the communication system
360	To assess openness of the skylark communication system, we drew a Zipf-
361	Mandelbrot plot in each kind of habitat by plotting the logarithm of the probability of
362	occurrence of each syllable type against the logarithm if its rank of use in the population.
363	
364	Statistical analyses
365	We compared all values of song complexity measured in the fragmented and
366	continuous habitat with independent samples t-tests by using Statistica version 6
367	(StatSoft, 2001).
368	
369	2.4. Song sharing
370	
371	To assess the effect of habitat type (continuous versus fragmented) on
372	geographical patterns of song sharing, we calculated syllable and sequence sharing
373	between pairs of individuals.
374	
375	Syllables and sequences shared by individuals: coefficients of repertoire similarity
376	We measured syllable and sequence sharing between each pair of individuals
377	within each habitat using coefficients of repertoire similarity (RS). Coefficient of syllable

378	repertoire similarity and coefficients of similarity between repertoires of each sequence
379	size (2 to 10 syllables) were calculated as follows:
380	RS = Z / ((X + Y) - Z), with X and Y being the total number of syllables or
381	sequences produced by males x and y, and Z being the number of syllables or sequences
382	shared by males x and y (Hultsch and Todt, 1981). RS values range from 0 to 1, with 1
383	being maximum sharing.
384 385 386	Statistical analyses
387	(a) Analysis in principal coordinates
388	We carried out an analysis in principal coordinates (PCO) for each habitat on the
389	matrix of geographical distances calculated between pairs of individuals.
390	
391	(b) <i>Hierarchical cluster analysis</i>
392	We carried out a hierarchical cluster analysis (HCA) using the average
393	agglomeration method. Before performing the HCA, RS values were converted to
394	distances by calculating 1- <i>RS</i> . Then, we made a HCA on each of the matrices of 1- <i>RS</i>
395	values calculated between repertoires of syllables and sequences of pairs of individuals.
396	
397	(c) Comparisons between syllables and sequences shared by close and distant
398	individuals in the two habitats
399	Conventional parametric and non-parametric tests are not suitable for analyses in
400	which each individual is included several times in the different pair-wise comparisons

401	(Sokal and Rohlf, 1995; Mundry, 1999). Thus, we compared RS values calculated
402	between pairs of individuals situated at comparable geographic distances in the two kinds
403	of habitat with two-tailed exact permutation tests using Monte Carlo method. We
404	separated pairs of individuals in two classes according to the distances separating them:
405	pairs of birds situated at close geographical distance, corresponding to the within group
406	distance in the fragmented habitat, were referred to as 'close individuals'; pairs of birds
407	situated at a greater distance were referred to as 'distant individuals'. First, we made
408	comparisons within each habitat between RS values calculated for pairs of close and
409	distant individuals. Then, we made a comparison between RS values calculated for pairs
410	of close individuals in the fragmented habitat and in the continuous one. The same
411	comparison was made between RS values calculated for pairs of distant individuals.
412	
413	(d) Correlations between syllable and sequence sharing and geographical
414	distances
415	We tested correlations between RS values and geographical distances within each
416	habitat for close and distant individuals separately. As values of RS or geographical
417	distances are not independent of each other (each individual is included several times),
418	we used a permuted correlation test (1000 permutations) for vectors of numeric values
419	containing distances or similarities. This test corresponds to a Mantel test, which is a
420	statistical test of the correlation between two distance matrices dealing with the problem
421	of dependance between values by using a randomization test (Mantel, 1967; see also
422	Sokal and Rohlf, 1995; Rossi, 1996).
423	

424 (e) ANCOVA: effect of the habitat and of the proximity between birds on syllable
425 and sequence sharing

426	Additionally, we carried out analyses of covariance (ANCOVA) to assess the
427	effect of the habitat (continuous vs. fragmented) and of the proximity between birds
428	(close vs. distant) on syllable and sequence sharing by controlling for geographic distance
429	effects. First, we performed two-way ANCOVAs on each habitat, with RS values as a
430	dependant variable, the proximity between birds (close vs. distant) as a categorical
431	predictor (fixed effect), and the distance between birds as a continuous predictor
432	(covariate). Then, we performed a two-way ANCOVA including both habitats, with RS
433	values as a dependant variable, the proximity between birds (close vs. distant) and the
434	habitat (continuous vs. fragmented) as categorical predictors (fixed effects), and the
435	distance between birds as a continuous predictor (covariate).
436	
437	We carried out statistical analysis using R (R development core team, 2007) (PCO
438	and HCA, package ade4 version 1.4-5, Chessel et al., 2004; Permuted correlation test,
439	package simba version 0.2-5, Jurasinski, 2007), StatXact version 3.1 (Permutation tests,
440	Cytel, 1997), and Statistica version 6 (ANCOVAs, StatSoft, 2001).
441	
442	3. Results
443	

444 Abbreviations for measured parameters are listed in Table 1.

445

446 <u>3.1. Song complexity</u>

447

448	Versatility:	variety of	svllables a	nd complexity of	of sequences	within songs
	~	~ ./	~			

- 449 In both habitats, the mean estimated repertoire size per individual was larger than
- 450 340 different syllables (Table 2). Mean values of *SylVer* and *TrVer* for each habitat were
- 451 close to the maximum versatility (10 and 9 respectively), inducing high mean values of
- 452 *TotVer* (Table 2). Mean *TrVer* values (*TrVer* = 7.3 for each habitat) indicate that more

453 than 81% (7.3/9) of transitions were between different syllables. There was a high

454 correlation between observed and estimated syllable repertoire curves: mean \pm SE =

455 0.992 ± 0.002 (range: 0.949 - 0.999, N = 34 individuals, Fig. 3).

456 Comparisons between versatility values measured in the fragmented habitat and 457 those values measured in the continuous one did not show any difference (independent 458 samples t-test, df = 32: *ObsR*, t = -0.96, P = 0.35; **R**, t = 0.15, P = 0.88; *SylVer*, t = -0.82, 459 P = 0.42; *TrVer* t = -0.12, P = 0.91; *TotVer* t = -0.67, P = 0.51).

460

461 Information analysis: amount of information of sequences within songs

462 The mean $EstE_{\theta}$ value per individual for the 2 habitats was of 8.4 (Table 3). The mean RE_1 value for the 2 habitats was of 0.94 (Table 3), indicating that males had 94% of 463 464 free choice of syllables to build a sequence. The remaining fraction of the structure of the 465 syllable sequence, which is determined not by the free choice of the bird (RD_1) , was thus 466 very low (mean RD_1 values < 0.07, Table 3). The fraction of free choice dropped at the 467 level of sequences of two syllables (mean RE_2 value for the 2 habitats = 0.13, Table 3). 468 Entropy values did not differ between the fragmented and continuous habitat 469 (independent samples t-test, df = 32: $P \ge 0.099$ for all values).

471	Markov chain analysis: order of transition between syllables within sequences
472	Entropy values decreased as a function of orders (Fig. 4), indicating that the
473	amount of information contained in sequences of syllables decreased as their size
474	increased. Information declined most sharply, <i>i.e.</i> there was a higher negative slope,
475	between first- (E_1) and second-order (E_2) entropy values. This indicates that the skylark
476	song follows a first order Markov chain, with each syllable especially dependent on the
477	syllable immediately preceding it. There was no subsequent drop between higher-order
478	entropy values, indicating that each syllable was highly dependent on the syllable
479	immediately preceding it, but not on previous ones.
480	
481	Zipf-Mandelbrot: openness of the communication system
482	The Zipf-Mandelbrot plot showed that skylark song does not fit the 'principle of
483	least effort' (Zipf's law), but is closer to Mandelbrot's modification with a hyperbolic
484	curve at the lowest rank syllables (Fig. 5). Both curves obtained for the fragmented and
485	continuous habitats seemed to reach a zero asymptotic slope.
486	
487	3.2. Song sharing
488	
489	As the information graph revealed a first order Markov chain, with most song
490	information contained in the syllables and sequences of 2 syllables and little information
491	contained in higher order sequences (3 to 10 syllables), we chose to group repertoires of 3
492	to 10 syllables and to carry out all subsequent analyses on the coefficient of syllable

493repertoire similarity (RS_1), the coefficient of similarity between repertoires of sequences494of 2 syllables (RS_2), and the coefficient of similarity between repertoires of sequences of4953 to 10 syllables (RS_{3-10}). We calculated RS_{3-10} by first grouping for each individual the496repertoires of 3 to 10 syllables and then calculating coefficients of similarities between497pairs of individuals.498Geographical distances between territories of individuals

500 Geographical distances between territories of pairs of individuals ranged from 501 16.3 to 10195.8 m in the fragmented, and from 15.0 to 5766.8 m in the continuous habitat (Fig. 2). In the fragmented habitat, within group distances ranged from 16.3 to 355.4 m, 502 503 and between group distances ranged from 579.2 to 10195.8 m. 'Close individuals' were 504 defined as birds separated by distances corresponding to the within group distances in the fragmented habitat. We thus considered as 'close individuals' birds that were separated 505 506 by distances shorter than 355.4 m, and as 'distant individuals' birds that were separated 507 by greater distances.

508

509 Syllables and sequences shared by individuals: coefficients of repertoire similarity

510 (a) Comparisons between syllables and sequences shared by close and distant
511 individuals in the two habitats

In both habitats, pairs of close individuals shared many sequences of 2 to 10 syllables, whereas distant individuals shared almost no sequence (Table 4). To compare habitats, *RS* calculated for pairs of distant individuals situated between 585.0 and 5445.4m in the continuous habitat and between 579.21 and 5401.86m in the fragmented

516 habitat were included in the permutation tests. All **RS** calculated between close 517 individuals were included in the permutation tests. In both kinds of habitat, pairs of close 518 individuals shared more syllables and sequences than pairs of distant individuals. 519 However, two pairs of close individuals in the fragmented habitat shared more syllables 520 and more sequences than two pairs of close individuals in the continuous habitat, 521 although these individuals were situated at comparable distances from each other in the 522 two kinds of habitat. Indeed, for both habitats, RS between close individuals were greater than RS 523 524 between distant individuals (Permutation tests using Monte Carlo method: Fragmented habitat, N = 10 pairs of close individuals and 37 pairs of distant individuals, P < 0.0001525 526 for RS_1 , RS_2 and RS_{3-10} ; Continuous habitat, N = 24 pairs of close individuals and 145 527 pairs of distant individuals, P < 0.0001 for RS_1 , RS_2 and RS_{3-10}). RS_1 , RS_2 and RS_{3-10} 528 between close individuals were greater in the fragmented habitat compared to the 529 continuous habitat (Permutation tests using Monte Carlo method, N = 34 pairs: RS_I , P < 1000.05; RS_2 , P < 0.01; RS_{3-10} , P < 0.001). On the other hand, there was no differences 530 531 between **RS** values calculated for pairs of distant individuals in the two kinds of habitat (Permutation tests using Monte Carlo method, N = 182 pairs: RS_1 , P = 0.09; RS_2 , P =532 0.12; RS_{3-10} , P = 0.51). 533 534 535 (b) Correlations between syllable and sequence sharing and geographical

536 distances

537 In the continuous habitat, the amount of syllables and sequences shared by distant538 individuals decreased as the distance between their territories increased. In the

539	fragmented habitat, only the amount of syllables shared by distant individuals depended
540	on the distance separating them. At the opposite, the amount of sequences shared by
541	distant individuals in this habitat and the amount of syllables and sequences shared by
542	close individuals in both habitats did not depend on the distance (Fig. 6).
543	At more than 2000 m of distance, in both habitats, individuals shared almost no
544	sequences of 3 to 10 syllables (RS_{3-10}), whereas some syllables (RS_1 around 0.1) and few
545	sequences of 2 syllables (RS_2 around 0.03) were still shared at more than 10000 m.
546	Results of permuted correlation tests showed that, in the continuous habitat, RS_1 , RS_2 and
547	RS_{3-10} calculated between pairs of distant individuals were negatively correlated with
548	geographical distances. In the fragmented habitat, RS_1 calculated between pairs of distant
549	individuals was negatively correlated with the distance, but this was not the case for RS_2
550	and RS_{3-10} (weak correlations, Pearson correlation coefficients between -0.5 and 0). In
551	both habitats, RS_1 , RS_2 and RS_{3-10} calculated for pairs of close individuals were not
552	significantly correlated with geographical distances (Fig. 6).
553	
554	(c) Spacing patterns of syllable and sequence sharing
555	In both habitats, dendrograms of hierarchial cluster analyses showed differences
556	between syllable and sequence sharing patterns (Fig. 7). The pattern of shared sequences
557	of 2 syllables (dendrogram 1 - RS_2) seemed to be intermediate between sharing patterns of
558	syllables (dendrogram 1 - <i>RS</i> _{<i>I</i>}) and of sequences of 3 to 10 syllables (dendrogram 1 - <i>RS</i> ₃ .
559	$_{10}$), with some clusters of individuals being identical to the syllable sharing pattern (1-
560	RS_{I}) and other clusters being identical to the sharing pattern of sequence of 3 to 10
561	syllables (1- <i>RS</i> ₃₋₁₀).

562 Fragmented habitat

563	In the fragmented habitat, syllable sharing pattern reflected geographical
564	distances, whereas sequence sharing patterns reflected the proximity between birds (close
565	vs. distant individuals). Thus, the studied groups corresponded to discrete patches of
566	acoustic variability at the level of sequences.

567 In each of the dendrograms of $1-RS_1$, $1-RS_2$ and $1-RS_{3-10}$, individuals were 568 clustered in groups reflecting geographical distances, except for two groups (7f - 8f - 9f 569 and 10f - 11f) that were different in 1-RS₂ (cf. Fig. 2). RS distance between groups was 570 greater in the dendrogram of $1-RS_{3-10}$ than in the dendrogram of $1-RS_2$ and than in the 571 dendrogram of 1- RS_I . In the dendrogram of 1- RS_I , individuals for which no other birds 572 of their group had been recorded (12f, 13f and 14f) were clustered with the group that 573 was at closest geographical distance (12f and 13f with the group 1f - 2f - 3f; 14f with the 574 group 4f - 5f - 6f). In the dendrograms of $1-RS_2$ and $1-RS_{3-10}$, they were excluded from 575 these clusters (Fig. 7).

576 *Continuous habitat*

577 No discrete patches of acoustic variability at the level of syllables or sequences 578 were found in the continuous habitat, with high song sharing between birds situated at 579 short distances and random variation among birds situated at longer distances. It seems 580 that acoustic dissimilarities increase with geographical distance.

In each of the dendrograms of $1-RS_1$, $1-RS_2$ and $1-RS_{3-10}$, individuals were clustered in two sets of individuals, reflecting geographical distances (cf. Fig. 2), except two individuals (1c and 2c) that were isolated in the dendrograms of $1-RS_2$ and $1-RS_{3-10}$. These two individuals were situated, within their set of individuals, at short geographical

585	distances from the other set. In each of these dendrograms, individuals were often
586	clustered two by two. Within these clusters, individuals were clustered with another
587	individual situated at short geographical distance, but not always with the closest
588	individual (e.g. 5c - 9c and 14c - 15c in 1- RS_2 ; 9c - 10c and 19c - 17c in 1- RS_{3-10}).
589	Furthermore, these clusters of two individuals were not always identical in dendrograms
590	1- <i>RS</i> ₁ , 1- <i>RS</i> ₂ and 1- <i>RS</i> ₃₋₁₀ , except four of them (1c - 2c, 3c - 4c, 11c - 12c and 7c - 8c)
591	that were identical in all dendrograms and three of them (5c - 9c, 14c - 15c and 18c - 19c)
592	that were identical in two dendrograms. However, neither of the dendrograms of 1 - RS ₁ ,
593	1- RS ₂ and 1- RS ₃₋₁₀ allowed us to distinguish a discrete cluster of more than two
594	individuals (Fig. 7).
595	
596	(d) ANCOVA: effect of the habitat and of the proximity between birds on syllable
597	and sequence sharing
598	Results of two-way ANCOVAs corroborated with the cluster dendrograms of RS
599	in showing that there was a continuous increase in acoustic dissimilarities with increasing
600	geographical distances in the continuous habitat, and discrete patches of acoustic
601	variability at the level of sequences (corresponding to the groups) in the fragmented
602	habitat (Table 5). In this kind of habitat, sequence sharing depended on the proximity
603	between birds (same group: close individuals; different group: distant individuals), more
604	than on the distance between them. Habitat fragmentation affected both syllable and
605	sequence sharing.
606	In both habitats, the proximity between birds (close vs. distant) had a significant

607 effect on RS_1 , RS_2 and RS_{3-10} , which indicates that syllable and sequence sharing differed

608	between pairs of close individuals and pairs of distant individuals, as shown by the
609	permutation tests. The distance had a significant effect on RS_1 and RS_2 for both kinds of
610	habitats, indicating that sharing of syllables and of sequences of 2 syllables by a pair of
611	birds depended on the distance between them. The distance had also a significant effect
612	on RS_{3-10} in the continuous, but not in the fragmented habitat. Sharing of sequences of 3
613	to 10 syllables thus depended on the distance between birds in the continuous, but not in
614	the fragmented habitat. Furthermore, the ANCOVA carried out on RS_1 , RS_2 and RS_{3-10} in
615	both kinds of habitats showed that the kind of habitat had an effect on each of these
616	values. The significant interaction effect between the kind of habitat and the proximity
617	between birds on each RS value indicates that the amount of syllables and sequences
618	shared by close or distant individuals differed between two kinds of habitats (Table 5).
619	
620	(e) Syllable sharing between the two populations
621	RS_I calculated between repertoires of all syllables encountered in the fragmented
622	habitat (French population) and in the continuous one (Polish population) was 0.32, RS_2
623	0.01 and RS_{3-10} 0. RS calculated between two individuals taken at random in each
624	population were 0.15 for RS_1 , 0.001 for RS_2 (one sequence of 2 syllables shared) and 0
625	for RS_{3-10} . Thus, the RS_1 value of 0.1 observed at more than 10000 m in Fig. 6 seemed to
626	persist over hundreds of kilometres.
627	
628	4. Discussion

630	Mathematical tools like measures of versatility, information theory concepts,
631	Markov chain analyses and Zipf'law allowed us to describe the complexity of skylark
632	song according to the spatial distribution of individuals. Then, calculation of coefficients
633	of repertoire similarity associated with various statistical tools (hierarchical cluster
634	analyses, exact permutation tests, permuted correlation tests and ANCOVAs) enabled us
635	to assess the influence of habitat structure on song sharing, a key feature in social
636	interactions in birds.
637	
638	4.1. Song complexity
639	5
640	Our results show that skylark songs are among the most complex acoustic signals
641	compared to other songbird species. Indeed, the repertoire size of more than 300 different
642	syllables is huge compared to species with a large repertoire that has been estimated in
643	number of different syllables, like the thrush nightingales (49 basic song components,
644	Griessmann and Naguib, 2002), the sedge warbler Acrocephalus schoenobaenus (37-54
645	syllables, Catchpole, 1980), the canary Serinus canaria (81 syllables, Leitner et al.,
646	2001), the rock wren Salpinctes obsoletus (69-119 syllables, Kroodsma, 1975) or even
647	the mockingbird Mimus polyglottos (66-244 syllables, Wildenthal, 1965).
648	We found a substantial immediate variety in the emission of syllables, as 81% of
649	transitions (mean <i>TrVer</i> for the 2 habitats) are between different syllables. The potential
650	amount of information of songs is thus particularly important at the level of syllables,
651	with 94% (mean RE_1 for the 2 habitats) of free choice of syllable types. Skylark song can
652	also be considered as highly versatile with a total average versatility of 55, exceeding the

653	value of 50 suggested as a criterion for characterising songs as highly versatile by Ince
654	and Slater (1985). Furthermore, information measures showed that syllable repertoire
655	diversity (zero-order entropy: 7.4) and the amount of information contained at the level of
656	syllables within songs (fist-order entropy: 7.0) were comparable to or higher than values
657	measured for the rufous-bellied thrush Turdus rufiventris (first order: 3.19, Da Silva et
658	al., 2000), the veery H. fuscescens (first order: 2), the hermit thrush H. guttata (first
659	order: 3.4), the wood thrush <i>Catharus mustelina</i> (first order: 3.5 - 4.5), the robin <i>T</i> .
660	migratorius (first order: 3.5 - 4) (Dobson and Lemon, 1978) or the European starling
661	Sturnus vulgaris (zero-order: 7 and first-order: 6, Gentner and Hulse, 1998). First-order
662	entropy values obtained for skylark songs are also higher than values found in non-bird
663	species vocalizations, like male bullfrog Rana castebeiana advertisement calls (first
664	order: 1.31, Suggs and Simmons, 2005), bottlenose dolphin Tursiops truncatus whistles
665	(first order: 1.92), squirrel monkey Saimiri sciureus chucks (first order: 2.21) (McCowan
666	et al., 2002), humpback whale Megaptera novaeangliae songs (Suzuki et al., 2005), or
667	even Russian, English or Arabic letters (first order: 4.03 – 4.35, McCowan et al., 2002).
668	The amount of information of skylark song drops at the level of sequences of two
669	syllables (13% of free choice of sequence types, mean RE_2 for the 2 habitats), indicating a
670	first order Markov chain, with each syllable being highly dependent on the syllable
671	immediately preceding, but not on other ones. Thus, it seems that the use of sequences of
672	two syllables is determined by more restrictive mechanical and/or biological constraints,
673	whereas the use of syllables and chaining of more than two syllables is determined by the
674	free choice of the bird.

675 Zipf-Mandelbrot plots showed that skylark communication system resembles a 676 'closed' system more than an 'open' system with generative properties: Mandelbrot 677 curves reached a zero asymptotic slope, indicating that the syllable repertoire of skylark 678 populations seems to be fixed in time. As the likelihood of genetic determination of a 679 whole syllable repertoire is unlikely in oscines, the existence of such a fixed repertoire 680 could be explained by a learning strategy based on strict imitation of tutors by young 681 birds, without improvisation. Indeed, in songbirds, individuals develop their songs by 682 imitating tutors' songs, by improvising on tutors' songs or by inventing songs with 683 minimal reference to external models (Beecher and Brenowitz, 2005). The song learning 684 mechanism of the skylark has not been studied yet, and this would be a productive 685 avenue for future research.

Our results do not seem support the prediction that song complexity may be 686 influenced by habitat structure. Indeed, comparisons between songs produced by males 687 688 living in either a continuous or a fragmented habitat revealed no differences in song complexity. The estimated breeding population density differed between the two habitats, 689 with a lower density in the fragmented habitat (24.2 pairs/km²) than in the continuous one 690 691 (43-47 pairs/km²). In some other bird species, repertoire size was shown to be correlated 692 with population density (e.g. Bitterbaum and Baptista, 1979), and most of the time, a 693 noticeable simplicity of songs was found in populations living on islands or isolated by 694 unsuitable habitat (e.g. Naugler and Smith, 1991; Laiolo and Tella, 2007; review in Baker 695 et al., 2006). Baker and Jenkins (1987) and Baker et al. (2006) proposed that such 696 reduction of song complexity could be the consequence of a founder effect. This effect 697 arises when a few colonists to an isolated area carry a small fraction of the mainland

698	vocal diversity and establish an impoverished vocal tradition. In some other bird species,
699	the opposite has been found, with the overall diversity of songs being larger in isolated
700	populations (Schottler, 1995; Osiejuk et al., 2003). However, in the skylark, habitat
701	fragmentation or density does not seem to have an effect on repertoire size or song
702	complexity.
703	
704	4.2. Song sharing
705	
706	As predicted, our results show distinct patterns of song sharing depending on the
707	kind of element considered and on the kind of habitat. First, at the level of syllables, we
708	observed a gradual decline in syllable sharing as a function of geographical distances in
709	both habitats. Birds situated at close geographical range ('close individuals') shared a lot
710	more syllables than individuals situated at more than 500m apart ('distant individuals').
711	At comparable distances, close individuals in the fragmented habitat shared more
712	syllables than close individuals in the continuous one. We could notice that identical
713	syllables were produced by individuals separated by large distances - until more than
714	10km of distance - and even by individuals of the French and Polish populations situated
715	1100km apart. Such syllable types could be determined by genetic limitations or song
716	learning 'predispositions' of the species. Second, the geographical variations were more
717	obvious at the sequence level than at the syllable level. Like for syllables, close
718	individuals in the fragmented habitat shared more sequences than close individuals in the
719	continuous habitat, and in addition, the profile of the plot of sequence sharing as a
720	function of geographical distances differed between the two kinds of habitats. In the

continuous habitat, there was a rapid decline in sequence sharing over short distances. In
the fragmented habitat, we could observe two distinct categories of sequence sharing
values without intermediate values. Indeed, there was a high sequence sharing at close
distance and a very low sequence sharing at long distance.

725 The dendrograms that illustrated spatial patterns of sequence sharing showed 726 distinct clusters corresponding to groups of close individuals in the fragmented habitat 727 but not in the continuous one. These discrete patches of sequence variability found in the 728 fragmented habitat indicate that sequence sharing is not related to the distance separating 729 individuals but to the fact that individuals belong to the same group or not. In a previous 730 study carried out in a fragmented habitat, we found that these sequences shared by close individuals established in the same group, referred to as 'neighbours', were used by birds 731 732 to discriminate a neighbour from another individual coming from a distant group, referred 733 to as a 'stranger' (Briefer et al., 2008). These sequences thus serve as a basis for group 734 recognition that underlies the dear-enemy effect (i.e. reduced aggression toward familiar 735 individuals compared to unfamiliar ones).

736 Groups of neighbours are particular communication networks within which males hold adjacent territories and sing within signalling range of each other. Within such 737 738 neighbourhoods, as within a continuous habitat in which males hold adjacent territories 739 too, a stable spacing pattern between territories is essential to reduce the energetic costs 740 of territorial defence (Naguib, 2005). In both habitats, song sharing could help to 741 maintain a stable spacing pattern between territories by reducing aggressive interactions 742 between neighbours (Baker et al., 1981). Indeed, in some species, territory tenure has 743 been shown to be related to song sharing with neighbours (e.g. Beecher et al., 2000;

Wilson et al., 2000). Selection pressure acting upon song structure may thus lead to anincrease in song sharing between close birds.

746 As we do not have a replication of populations for each kind of habitat, and as our 747 study compares two samples of individuals of limited size from different skylark 748 populations (France and Poland), we cannot assert with certainty that the observed song 749 differences between the two kinds of habitat are not the result of population or location 750 differences (pseudo-replication, Hurlbert, 1984). However, although further studies using several populations could be useful to lend support to our results, the habitat 751 752 fragmentation seemed here to induce on the one hand more sharing of syllables and 753 sequences by close birds and on the other hand clear boundaries between sequence 754 microdialects. Such enhanced song sharing between neighbouring males has been 755 described in populations of birds living in isolated island sites (e.g. Morton, 1987; Lachlan and Slater, 2003) and in fragmented habitats (Laiolo and Tella, 2005). It has 756 757 been hypothesized to be the result of a harsher competition for limited resources. 758 However, in our study, population density was lower in the fragmented habitat than in the 759 continuous one, and male-male competition can thus not explain our results. 760 The increases in song sharing between neighbouring skylarks may more likely be 761 a side-effect of isolation associated with low population density and low levels of 762 dispersal that reduce the number of song models available at hearing range from 763 juveniles. Habitat fragmentation has been shown to block dispersal, and thus to induce a 764 limited turnover during breeding and post-breeding seasons (Laiolo and Tella, 2005, 765 2008). Thus, as site fidelity is very high within and between breeding seasons (Jenny, 766 1990; Delius, 1963) and as males are strongly confined inside their territories (Aubin,

1981), the number of models to imitate when juveniles learn their songs may be reduced
by habitat fragmentation. A reduction in population size and density, as suggested by
Baker and Jenkins (1987) and Lynch (1996), may shape song sharing patterns and induce
a kind of "cultural consanguinity".

771 Analyses of spatial patterns of syllable and of sequence sharing using 772 dendrograms showed that these patterns differed. Indeed, dendrograms of syllables and of 773 sequences clustered individuals in a different way. This could indicate that syllables and 774 sequences do not result from the same learning process. The pattern of geographical 775 variation is strongly influenced by dispersal and by the timing of learning. High level of 776 sharing among immediate neighbours combined with a rapid decline in song sharing over 777 short distances, as found for sequences in our study, may be the result of juvenile learning 778 their song by imitation from their neighbours after dispersing. On the other hand, a gradual decline in sharing with distance, as found for syllables, occurs when juveniles 779 780 learn their song before dispersal and move short distances to find a territory and settle 781 preferentially near their tutors (Sokal and Neal, 1978; Goodfellow and Slater, 1986; 782 Wilson et al., 2000; Diniz-Filho and Telles, 2002; Koetz et al., 2007). The timing of song 783 learning could thus differ between syllables and sequences, with syllables learned by 784 juvenile in their birthplace before dispersal (which should occur at short distances), and 785 phrases learned later by imitation of their neighbours. One year old male skylarks have 786 indeed been shown to display regional philopatry (Delius, 1963).

787

To conclude, we found that the structure of the habitat influenced song sharing
but not song complexity. Therefore, the environment could have an effect on songs at the

790	level of sharing of elements (syllables and sequences of syllables), but not on the number
791	and the complexity of these elements that seems to be a fixed characteristic of skylark
792	songs. Thus, habitat fragmentation caused by anthropogenic barriers seems to induce an
793	increase in the amount of song sharing to the detriment of variety among individuals.
794	
795	Acknowledgments
796	
797	This study was supported by the CNRS and the University of Paris 11. EB was funded by
798	a grant from the French Minister of Research and Technology during data collection. We
799	thank Katia Lehongre for running the custom Matlab program and Selvino de Kort for
800	valuable comments on earlier version of the manuscript and linguistic correction. We are
801	very grateful to F. Stephen Dobson and Paola Laiolo for revision comments and helpful
802	suggestions.
803	
804	References
805	
806	Andrén, H., 1994. Effects of habitat fragmentation on birds and mammals in landscapes
807	with different proportions of suitable habitat: a review. Oikos 71, 355-366.
808	Aubin, T., 1981. Etude Expérimentale du Chant Territorial de l'Alouette des Champs
809	(Alauda arvensis L.). Caractéristiques physiques, valeur sémantique et spécificité. Ph.D.
810	thesis, University of Besançon, Nancy 1, Strasbourg.
811	Aubin, T., 1982. Habituation au chant territorial chez l'alouette des champs (Alauda
812	arvensis L.); rôle de la diversité et de la monotonie. Biol. Behav. 7, 353-362.

- 813 Aubin, T., Brémond, J.-C., 1983. The process of species-specific song recognition in the
- 814 skylark *Alauda arvensis*. An experimental study by means of synthesis. Z. *Tierpsychol*.

815 61, 141-152.

- 816 Baker, A. J., Jenkins, P. F., 1987. Founder effect and cultural evolution of songs in an
- 817 isolated population of chaffinches, *Fringilla coelebs*, in the Chatham Islands. *Anim*.
- 818 Behav. 35, 1793-1803.
- 819 Baker, M. C., Thompson, D. B., Sherman, G. L., Cunningham, M. A., 1981. The role of
- 820 male interactions in maintaining population dialect structure. *Behav. Ecol. Socibiol.* 8,
- 821 65-69.
- 822 Baker, M. C., Baker, M. S. A., Tilghman, L. M., 2006. Differing effects of isolation on
- 823 evolution of bird songs: examples from an island-mainland comparison of three species.
- 824 Biol. J. Lin. Soc. 89, 331-342.
- 825 Becker, P. H., 1974. Der Gesang von Winter und Sommergoldhähnchen (Regulus
- regulus, Regulus ignicapillus) am westlichen. Bodensee. Vogelwarte 27, 233-243.
- 827 Beecher, M. D. Campbell, S. E., Nordby, J. C., 2000. Territory tenure in song sparrows is
- related to song sharing with neighbors, but not to repertoire size. Anim. Behav. 59, 29-37.
- 829 Beecher, M. D., Brenowitz, E. A., 2005. Functional aspects of song learning in songbirds.
- 830 Trends Ecol. Evol. 20, 143-149.
- 831 Bender, D. J., Contreras, T. A., Fahrig, L., 1998. Habitat loss and population decline: a
- meta-analysis of the patch size effect. *Ecology* 79, 517-533.
- 833 BirdLife International 2008. Species factsheet: *Alauda arvensis*. Downloaded from
- http://www.birdlife.org on 18/6/2008.

- 835 Bitterbaum, E., Baptista, L. F., 1979. Geographical variation in songs of Carolina House
- 836 Finches (Carpodacus mexicanus). Auk 96, 462-474.
- 837 Briefer, E., Aubin, T., Lehongre, K., Rybak, F., 2008. How to identify dear-enemies: the
- group signature in the complex song of the skylark *Alauda arvensis*. J. Exp. Biol. 211,
- 839 317-326.
- 840 Buchanan, K. L., Spencer, K. A., Goldsmith, A. R., Catchpole, C. K., 2003. Song is an
- 841 honest signal of past developmental stress in the European starling (*Sturnus vulgaris*).
- 842 Proc. R. Soc. B 270, 1149-1156.
- 843 Busche, G., 1989. Drastische Bestandseinbussen des Feldlerche Alauda arvensis auf
- 844 Grünlandflachen in Schleswig-Holstein. Vogelwelt 110, 51-59.
- 845 Catchpole, C. K., 1980. Sexual selection and the evolution of complex songs among
- European warblers of the genus Acrocephalus. Behaviour 74, 149-166.
- 847 Catchpole, C. K., Slater, P. J., (Eds.) 1995. Bird Song: Biological themes and variations.
- 848 Cambridge University Press, Cambridge, pp. 45-69; 131-137; 196-218.
- 849 Chamberlain, D. E., Gregory, R. D., 1999. Coarse and fine scale habitat associations of
- breeding skylarks *Alauda arvensis* in the UK. *Bird Study* 46, 34-47.
- 851 Chessel, D., Dufour, A.-B., Thioulouse, J., 2004. The ade4 package-I- One-table
- 852 methods. *R News.* 4, 5-10.
- 853 Cytel Software Corp., 1997. StatXact v3.1. Cytel Software Corporation, Cambridge.
- Da Silva, M. L., Piqueira, J. R. C., Vielliard, J. M. E., 2000. Using Shannon entropy on
- 855 measuring the individual variability in the rufous-bellied thrush *Turdus rufiventris* vocal
- 856 communication. J. Theor. Biol. 207, 57-64.

- 857 Debinski, D. M., Holt, R. D., 2000. A survey and overview of habitat fragmentation
- 858 experiments. Conser. Biol. 14, 342-355.
- B59 Delius, J. D., 1963. Das Verhalten der Feldlerche. Z. Tierpsychol. 20, 297-348.
- 860 Diniz-Filho, J. A. F., Tellez, M. P., 2002. Spatial autocorrelation analysis and the
- 861 identification of operational units for conservation in continuous populations. *Cons. Biol.*
- 862 16, 924-935.
- 863 Dobson, C. W., Lemon, R. E., 1978. Markov sequences in songs of American thrushes.
- 864 *Behaviour* 68, 86-104.
- 865 Donald, P. F., 2004. Song and song flight. In *The skylark*, pp. 72-88. London: T and AD
- 866 Poyser.
- 867 Eraud, C., Boutin, J.-M., 2001. Ecologie de l'alouette des champs (Alauda arvensis) et
- 868 perspectives de conservation des populations. In : Office National de la Chasse et de la
- 869 Faune Sauvage (Ed.), Rapport scientifique 2000. Office National de la Chasse et de la
- 870 Faune Sauvage, Paris, pp. 51-53.
- 871 Ficken, M. S., Hailman, E. D., Hailman, J. P., 1994. The chick-a-dee call system of the
- 872 Mexican chickadee. Condor 96, 70-82.
- 873 Gentner, T. Q., Hulse, S. H., 1998. Perceptual mechanisms for individual vocal
- 874 recognition in European starlings, *Sturnus vulgaris. Anim. Behav.* 56, 579-594.
- Goodfellow, D. J., Slater, P. J. B., 1986. A model of bird song dialects. *Anim. Behav.* 34,
 1579-1580.
- 877 Griessmann, B., Naguib, M., 2002. Song sharing in neighboring and non-neighboring
- 878 thrush nightingales (Luscina luscina) and its implications for communication. Ethology
- 879 108, 377-387.

- Hailman, J. P., Ficken, J. P., Ficken, R. W., 1985. The 'chick-a-dee' calls of Parus
- articapillus: A recombinant system of animal communication compared with written
- 882 English. Semiotica 56, 191-224.
- Hausberger, M., 1997. Social influences on song acquisition and sharing in the European
- 884 starling (Sturnus vulgaris). In: Snowdon, C. T., Hausberger, M. (Eds.) Social Influences
- on Vocal Development. Cambridge University Press, Cambridge, pp. 128-156.
- 886 Hedenström, A., 1995. Song flight performance in the skylark Alauda arvensis. J. Avian
- 887 Biol. 26, 337-342.
- 888 Holland, J., McGregor, P. K., Rowe, C. L., 1996. Changes in microgeographic song
- variation of the corn bunting *Miliaria calandra*. J. Avian Biol. 27, 1059-1061.
- 890 Howard, R. D., 1974. The influence of a sexual selection and interspecific competition on
- 891 mokingbirds song (*Mimus polyglottos*). Evolution 28, 428-438.
- Hultsch, H., Todt, D., 1981. Repertoire sharing and song post distance in nightingales.
- 893 Behav. Ecol. Sociobiol. 8, 182-188.
- Hurlbert, S. H., 1984. Pseudoreplication and the design of ecological field experiments.
- 895 Ecol. Mono. 54, 187-211.
- 896 Ince, S. A., Slater, P. J. B., 1985. Versatility and continuity in the songs of thrushes
- 897 Turdus spp. Ibis 127, 355-364.
- 898 Isaac, D., Marler, P., 1963. Ordering of sequences of singing behaviour of mistle thrushes
- in relationship to timing. *Anim. Behav.* 11, 179-188.
- 900 Jenny, M., 1990. Populationsdynamik der Feldlerche Alauda arvensis in einer intensive
- 901 genutzten Agrarlandschaft des schweizerischen Mittellandes. Orn. Beob. 87, 153-163.

- 902 Jurasinski, G., 2007. simba: A Collection of functions for similarity calculation of binary
- 903 data. R package version 0.2-5.
- 904 Kipper, S., Mundry, R., Sommer, C., Hultsch, H., Todt, D., 2006. Song repertoire size is
- 905 correlated with body measures and arrival date in common nightingales, Luscinia
- 906 megarhynchos. Anim. Behav. 71, 211-217.
- 907 Koetz, A. H., Westcott, D. A., Congdon, B. C., 2007. Spatial pattern of song element
- 908 sharing and its implications for song learning in the chowchilla, *Orthonyx spaldingii*.
- 909 Anim. Behav. 74, 1019-1028.
- 910 Kreutzer, M., 1974. Stéréotypies et variations dans les chants de proclamation territoriale
- 911 chez le Troglodyte (Troglodytes troglodytes). Rev. Comp. Animal 8, 270-286.
- 912 Kroodsma, D. E., 1975. Song patterning in the rock wren. *Condor* 77, 294-303.
- 913 Kroodsma, D. E., 1978. Continuity and versatility in bird song: support for the
- 914 monotony-threshold hypothesis. *Nature* 274, 681-683.
- 915 Kroodsma, D. E., 1981. Winter Wren singing behavior: a pinnacle of song complexity.
- 916 *Condor* 82, 357-365.
- 917 Kroodsma, D. E., 1996. Kroodsma, D. E., Miller, E. H. (Eds) Ecology and Evolution of
- 918 Acoustic Communication in Birds. Cornell University Press, Ithaca, New York. pp. 3-19;
 919 125-147.
- 920 Lachlan, R. F., Slater, P. J. B., 2003. Song learning by chaffinches: how accurately and
- 921 from where? A simulation analysis of patterns of geographical variation. *Anim. Behav.*
- 922 65, 957-969.
- 923 Laiolo, P., Tella, J. L., 2005. Habitat fragmentation affects culture transmission: patterns
- of song matching in Dupont's lark. J. Appl. Ecol. 42, 1183-1193.

- 925 Laiolo, P., Tella, J. L., 2007. Erosion of animal cultures in fragmented landscapes. Front.
- 926 Ecol. Env. 5, 68-72.
- 927 Laiolo, P., Vögeli M., Serrano D., Tella J. L., 2008. Song diversity predicts the viability
- 928 of fragmented bird populations. Plos-One 3, e1822
- 229 Lambrechts, M. M., Dhondt, A. A., 1995. Individual voice discrimination in birds. Curr.
- 930 Ornithol. 12, 115-139.
- 231 Lampe, H. M., Espmark, Y. E., 1994. Song structure reflects male quality in pied
- 932 flycatchers (*Ficedula hypoleuca*). Anim. Behav. 47, 869-876.
- 933 Lehongre, K., Aubin, T., Robin, S., Del Negro, C., 2008. Individual signature in canary
- songs: contribution of multiple levels of song structure. *Ethology* 114, 425-435.
- 935 Leitner, S., Voigt, C., Gahr, M., 2001. Seasonal changes in the song pattern of the non-
- domesticated island canary (Serinus canaria), a field study. Behaviour 138, 885-904.
- Behav. 19, 117.
- 939 Lemon, R. E., Chatfield, C., 1973. Organization of song of Rose-breasted Grosbeaks.
- 940 Anim. Behav. 21, 28-44.
- 941 Lynch, A., 1996. The population memetics of birdsong. In: Kroodsma, D. E, Miller, E. H.
- 942 (Eds.), Ecology and Evolution of Acoustic Communication in Birds. Cornell University
- 943 Press, Ithaca, New York, pp. 181-197.
- 944 Loffredo, C. A., Borgia, G., 1986. Male courtship vocalization as cues for mate choice in
- 945 the satin bowerbird, *Ptilonorhynchus violaceaus*. Auk 103, 189-195.
- 946 Mandelbrot, B., 1953. Contribution à la théorie mathématique des jeux de
- 947 communication. Publ. L'inst. Stat. L'Univ. Paris 2, 5-50.

- 948 Mantel, N., 1967. The detection of disease clustering and a generalized regression
- 949 approach. Cancer Res. 27, 209-220.
- 950 Marler, P., Sherman, V., 1985. Innate differences in singing behavior of sparrows reared
- in isolation from adult conspecific song. Anim. Behav. 33, 57-71.
- 952 McCowan, B., Doyle, L. R., Hanser, S. F., 2002. Using information theory to assess the
- diversity, complexity, and development of communication repertoires. J. Comp. Psychol.
- 954 116, 166-172.
- Morton, E. S., 1987. The effect of distance and isolation on song-type sharing in the
- 956 Carolina wren. Wilson Bull. 99, 601-610.
- 957 Mulligan, J. A., 1966. Singing behavior and its development in the song sparrow,
- 958 Melospiza melodia. Univ. Calif. Publ. Zool. 81, 1-76.
- 959 Mundinger, P. C., 1982. Microgeographic and macrogeographic variation in the acquired
- 960 vocalizations of birds. In: Kroodsma, D. E, Miller, E. H. (Eds.), Acoustic communication
- 961 in birds II. Academic Press, New York, pp. 147-208.
- 962 Mundry, R., 1999. Testing related samples with missing values: a permutation approach.
- 963 Anim. Behav. 58, 1143-1153.
- 964 Naguib, M., 2005. Singing interactions in songbirds: implications for social relations and
- 965 territorial settlement. In: McGregor, P. (Ed.), Animal Communication Networks.
- 966 Cambridge University Press, Cambridge, pp. 300-319.
- 967 Naugler, C. T., Smith, P. C., 1991. Song similarity in an isolated population of fox
- 968 sparrow (*Passerella iliaca*). Condor 93, 1001-1003.
- Nordby, J. C., Campbell, S. E., Beecher, M. D., 1999. Ecological correlates of song
- 970 learning in song sparrows. *Behav. Ecol.* 10, 287-297.

- 971 Nottebohm, F., 1969. The song of the chingolo (Zonotrichia capensi) in Argentina:
- 972 description and evaluation of a system of dialects. *Condor* 71, 299-315.
- 973 Nottebohm, F., Nottebohm, M. E., 1978. Relationship between song repertoire and age in
- the canary, *Serinus canarius*. Z. Tierpsychol., 46, 298-305.
- 975 Nowicki, S., Hasselquist, D., Bensch, S., Peters, S., 2000. Nestling growth and song
- 976 repertoire size in great reed warblers: evidence for song learning as an indicator
- 977 mechanism in mate choice. Proc. R. Soc. Lond. B. 267, 2419-2424.
- 978 Odderskaer, P., Prang, A., Poulsen, J. G., Andersen, P. N., Elmegaard, N., 1997. Skylarks
- 979 (Alauda arvensis) utilisation of micro-habitats in spring barley fields. Agric. Ecos. Env.
- 980 62, 21-29.
- 981 Opdam, P., Foppen, R., Reijnen R., Schotman, A., 1994. The landscape ecological
- 982 approach in bird conservation: integrating the metapopulation concept into spatial
- 983 planning. Ibis 137, 139-146.
- 984 Osiejuk, T. S., Ratynska, K., Cygan, J. P., Dale, S., 2003. Song structure and repertoire
- 985 variation in Ortolan Bunting (*Emberiza hortulana L.*) from isolated Norwegian
- 986 population. An. Zool. Fen.40, 3-16.
- 987 R Development Core Team, 2007. R: A language and environment for statistical
- 988 computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-
- 989 0, URL http://www.R-project.org.
- 990 Rossi, J. P., 1996. Statistical tool for soil biology .11. Autocorrelogram and Mantel test.
- 991 Europ. J. Soil Biol. 32, 195-203.
- 992 Saunders, D. A., Hobbs, R. J., Margules, C. R., 1991. Biological consequences of
- 993 ecosystem fragmentation: a review. *Conser. Biol.* 5, 18-32.

- 994 Schmiegelow, F. K. A., Monkkonen, M., 2003. Habitat loss and fragmentation in
- 995 dynamic landscapes: avian perspectives from the boreal forest. *Ecol. Appl.* 12, 375-389.
- 996 Schottler, B., 1995. Songs of blue tits Parus caeruleus palmensis from las Palmas
- 997 (Canary. islands) a test of hypotheses. *Bioacoustics* 6, 135-152.
- 998 Shannon, C., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-
- 999 423, 623-656.
- 1000 Shannon, C., Weaver, W., 1949. The Mathematical Theory of Communication.
- 1001 University of Illinois Press, Chicago.
- 1002 Slater, P. J. B., 1989.Bird song learning: causes and consequences. Ethol. Ecol. Evol. 1,
- 1003 19-43.
- 1004 Sokal, R. R., Neal, O., 1978. Spatial autocorrelation in biology. II. Some implications and
- 1005 four applications of evolutionary interest. *Biol. J. Lin. Soc.* 10, 229-249.
- 1006 Sokal, R. R., Rohlf, F. J., 1995. Freeman, W. H. (Ed.), Biometry III, New York.
- 1007 Specht, R., 2004. Avisoft-SASLab pro v4.31. Avisoft, Berlin.
- 1008 StatSoft, Inc., 2001. Statistica v6.0, for Windows (Computer program manual). StatSoft,
- 1009 Inc., Tulsa: Oklahoma.
- 1010 Stawarczyk, T., 2004. Barycz valley. In: Sidło, P. O., Błaszkowska, B., Chylarecki, P.
- 1011 (Eds.), Important Bird Areas of European Union importance in Poland. Polish Society for
- 1012 the Protection of Birds, BirdLife partner in Poland. Warszawa, pp. 432-434.
- 1013 Stoddard, P. K., 1996. Vocal recognition of neighbors by territorial Passerines. In:
- 1014 Kroodsma, D. E, Miller, E. H. (Eds.), Ecology and Evolution of Acoustic
- 1015 Communication in Birds. Cornell University Press, Ithaca, New York, pp. 356-374.

- 1016 Suggs, D. N., Simmons, A. M., 2005. Information theory analysis of patterns of
- 1017 modulation in the advertisement call of the male bullfrog, Rana castebeiana. J. Acoust.
- 1018 Soc. Am. 117, 2330-2337.
- 1019 Suzuki, R., Buck, J. R., Tyack, P. L., 2005. Information entropy of humpback whale
- 1020 songs. J. Acoust. Soc. Am. 119, 1849-1866.
- 1021 Trainer, J. M., 1983. Changes in song dialect distributions and microgeographic variation
- 1022 in song of white-crowned sparrows (Zonotrichia leucophrys nuttalli). Auk 100, 568-582.
- 1023 Tryjanowski, P., 2000. Changes in breeding populations of some farmland birds in W
- 1024 Poland in relation to changes in crop structure, weather conditions and number of
- 1025 predators. Folia Zool. 49, 305-315.
- 1026 Tryjanowski, P., 2007. Skylark Alauda arvensis. In: Sikora, A., Rohde, Z., Gromadzki,
- 1027 M., Neubauer, G., Chylarecki, P. (Eds.), The atlas of breeding birds in Poland 1985-
- 1028 2004. Bogucki Wydawnictwo Naukowe, Poznań, pp. 318-319.
- 1029 Wildenthal, J. L., 1965. Structure in primary song of the Mockingbird (Mimus
- 1030 *polyglottos*). Auk 82 161-189.
- 1031 Wilson, P. L., Towner, M. C., Vehrencamp, S. L., 2000. Survival and song-type sharing
- 1032 in a sedentary subspecies of the song sparrow. *Condor* 102, 355-363.
- 1033 Zipf, G. K., 1949. Human Behavior and the Principle of Least Effort. Mass. : Addison-
- 1034 Wesley Press, Cambridge.
- 1035

1035 Tables

1036

- 1037 Table 1
- 1038 List of abbreviations and their corresponding parameters.

1039 Table 2

- 1040 Versatility. Mean \pm SE values of versatility obtained in the two kinds of habitat for each
- 1041 individual: Total number of syllables analysed (*Nb Syl analysed*), Observed repertoire
- 1042 size (*ObsR*), Estimated repertoire size (*R*), Total number of sequences of 10 syllables
- 1043 analysed (*Nb Seq analysed*), Syllables versatility (*SylVer*), Transition versatility (*TrVer*)
- 1044 and Total versatility (*TotVer*).
- 1045

Habitat	Nb Syl analysed	ObsR	R	Nb Seq analysed	SylVer	TrVer	TotVer
Fragmented	498.5 ±	172.4 ±	348.6±	49.5 ±	7.0 ±	7.3 ±	54.6 ±
(N = 14)	8.2	8.6	23.0	0.8	0.2	0.2	2.6
Continuous	$492.5 \pm$	$181.7 \pm$	$344.0 \pm$	$48.8 \pm$	7.2 ±	$7.3 \pm$	$56.3 \pm$
(N = 20)	7.5	5.4	20.2	0.8	0.1	0.1	1.1
	CCG		20				

1046 Table 3

- 1047 Information analysis. Mean \pm SE values of entropy obtained in the two kinds of habitat
- 1048 for each individual: Entropy (E) (in bits/syllable-type), Relative entropy (RE) and
- 1049 Redundancy (*RD*). Only first- (E_1), second- (E_2) and third- (E_3) order entropy values are
- 1050 presented here. Higher-order entropy values are presented in the information graph (Fig.
- 1051 4).
- 1052

Habitat	E_{θ}	EstE ₀	E_1	E_2	E_3	RE_1	RE_2	RE ₃	RD ₁	RD_2	RD_3
F (1	7.402	8.398	6.941	0.952	0.326	0.937	0.129	0.045	0.063	0.871	0.956
(N-14)	±	±	±	±	±	±	±	±	±	±	±
(N - 14)	0.081	0.108	0.102	0.031	0.024	0.004	0.004	0.003	0.004	0.004	0.004
Continuous	7.492	8.373	7.047	1.004	0.286	0.941	0.134	0.038	0.059	0.866	0.962
(N-20)	±	±	±	±	±	±	±	±	±	±	±
(N - 20)	0.044	0.093	0.051	0.024	0.011	0.002	0.003	0.002	0.002	0.003	0.002
Accepted mar											

- 1053 Table 4
- 1054 Repertoire similarity. Mean \pm SE, within each kind of habitat (fragmented and
- 1055 continuous), number of syllables (*Nb Syl*), number of sequences of 2 syllables (*Nb Seq 2*)
- 1056 and number of sequences of 3 to 10 syllables (*Nb Seq 3-10*) shared between pairs of close
- 1057 individuals (C) and between pairs of distant individuals (D), with the associated
- 1058 coefficients of repertoire similarity (RS_1 , RS_2 and RS_{3-10} respectively).
- 1059

Habitat	C or D	Nb Syl	Nb Seq 2	Nb Seq 3-	RS_1	RS_2	RS_{3-10}
		·	•	10			
	С		117110	01 () 0.0	0.300 ±	0.231 ±	$0.239 \pm$
Fragmented	(<i>N</i> =10)	80.4 ± 6.0	11.7 ± 1.2	21.6 ± 3.2	0.016	0.024	0.029
(N = 91 pairs)	D	20.0 + 1.4	1.4 ± 0.1	0.4 ± 0.1	0.125 ±	$0.025 \pm$	$0.003 \pm$
	(<i>N</i> =81)	38.8 ± 1.4			0.004	0.003	0.001
	С	7(0+2)	11.0 ± 1.1	14.2 ± 1.8	$0.257 \pm$	$0.153 \pm$	$0.126 \pm$
Continuous	(<i>N</i> =24)	76.0 ± 3.2			0.011	0.015	0.018
(N = 190 pairs)	D	49.6 ± 1.0	2.8 ± 0.3	1.6 ± 0.3	0.159 ±	$0.035 \pm$	0.013 ±
	(<i>N</i> =166)				0.003	0.003	0.003
	CC ^Q	Re	ò				

1060 Table 5

- 1061 Effect of the kind of habitat on syllable and sequence sharing. Results, within each
- 1062 habitat (fragmented and continuous) separately and in both kinds of habitats, of two-way
- analyses of covariance (ANCOVAs) on coefficients of repertoire similarity (RS_1 , RS_2 and
- 1064 RS_{3-10} , with RS as a dependent variable, the distance between birds as a covariate, the
- 1065 proximity between birds (close vs. distant) as a fixed effect, and, for the ANCOVA
- 1066 carried out on both habitat, the kind of habitat as another fixed effect. For this ANCOVA,
- 1067 the interaction between the 2 fixed effects (the proximity between birds and the kind of
- 1068 habitat) is stated.

Habitat	RS	Effect	Df	F	Р
	DC	Distance		28.56	***
	N 31	Proximity		121.93	***
Fragmonted	חכ	Distance	- 00	7.44	**
Flagmenteu	\mathbf{KS}_2	Proximity	00	224.77	***
	DC	Distance		0.23	NS
	NS 3-10	Proximity		360.66	***
	DC	Distance		66.92	***
	л 3 ₁	Proximity		41.78	***
Continuous	DC	Distance	187	29.29	***
	NS ₂	Proximity	_	70.73	***
	DC	Distance	-	14.78	***
	КЗ 3-10	Proximity		58.04	***
Both habitats		Distance		75.07	***
	RS ₁	Proximity		142.90	***
		Habitat		10.59	**
		Interaction	_	13.04	***
		Distance		25.61	***
	RS.	Proximity	276	224.41	***
	N3 ₂	Habitat		39.36	***
		Interaction	_	21.23	***
		Distance		6.27	*
	RS ₃₋₁₀	Proximity		222.16	***
		Habitat		44.72	***
		Interaction		40.00	***

1070 Abbreviations for P values: * P < 0.05, ** P < 0.01, *** P < 0.001, NS = Non Significant.

1071 Figure Legends

1072

1073 Fig 1. Aerial photographs of the 2 studied areas: (A) Fragmented habitat (Orsay, Essone,

1074 France); (B) Continuous habitat (Odolanów, Wielkopolska, Poland). The locations of the

- 1075 7 studied groups in the fragmented habitat and of the 2 studied sets of individuals in the
- 1076 continuous habitat are indicated (Google Earth version 4.3., Google, 2008).

1077

1078 Fig. 2. Geographical distances between individuals. Plot, for the fragmented habitat (A)

1079 and continuous habitat (B), of the first principal component (PC1) against the second

- 1080 principal component (PC2) extracted from the analysis in principal coordinates.
- 1081 Individuals are identified with a number followed by 'f' in the fragmented habitat and
- 1082 followed by 'c' in the continuous one. For the fragmented habitat, dotted rectangles

1083 delimit the 7 studied groups of individuals (1 to 3 individuals recorded per group). For

1084 the continuous habitat, dotted rectangles delimit the 2 studied sets of individuals.

1085 Scales were estimated by comparing distances separating pairs of individuals on the plots to real

1086 geographical distances between them. These scales are \pm 10 m accurate.

1087

1088 Fig. 3. Repertoire size. Example of observed (grey) and estimated (black) repertoire

1089 curves obtained for one individual in the continuous habitat. This individual has an

1090 observed repertoire size of 207 syllables and an estimated repertoire size of 480 syllables.

1091

1092 Fig. 4. Information graph. Mean \pm SE entropy values obtained in the fragmented habitat

1093 (grey, N = 14 individuals) and in the continuous habitat (black, N = 20 individuals)

1094 plotted as a function of Entropy orders (size of syllable sequences).

1095

1096	Fig. 5. Zipf plot. Logarithm of the probability of occurrence of each syllable type
1097	encountered in the fragmented habitat (grey curve, $N = 952$ syllable types) and in the
1098	continuous habitat (black curve, $N = 1109$ syllable types) plotted against the logarithm of
1099	syllable type rank of use. The dotted line represents Zipf's law (regression coefficient = -
1100	1.00) that fits human language. The skylark song is more close to Mandelbrot's
1101	modification than Zipf's law, with a hyperbolic curve at the upper data (lowest rank
1102	elements).
1103	
1104	Fig. 6. Correlation between syllables and sequences shared by close and distant
1105	individuals and geographical distances separating these individuals. RS_1 (A graph), RS_2
1106	(B graph) and RS_{3-10} (C graph) calculated between pairs of close individuals (cF) and
1107	distant individuals (dF) in the fragmented habitat (in grey) and between pairs of close
1108	individuals (\mathbf{cC}) and distant individuals (\mathbf{dC}) in the continuous habitat (in black) plotted
1109	as a function of geographical distances between individuals. Pearson correlation
1110	coefficients calculated for close and distant individuals with a permuted correlation test
1111	between RS values and distances are indicated above the regression lines for the
1112	fragmented habitat (grey) and continuous habitat (black).
1113	When correlations were significant, <i>P</i> values are indicated as follows: * $P < 0.05$, *** $P < 0.001$.
1114	
1115	Fig. 7. Patterns of syllable and sequence sharing. Cluster dendrograms, for the
1116	fragmented habitat (A) and continuous habitat (B), obtained from hierarchical cluster
1117	analysis using the average agglomeration method on each matrix of $1-RS_1$, $1-RS_2$ and $1-RS_2$
1118	RS_{3-10} calculated between pairs of individuals. For the fragmented habitat, when clusters
1119	reflect geographical distances, dotted rectangles delimit the 7 studied groups (1 to 3

- 1120 individuals recorded per group) separated by unsuitable area. For the continuous habitat,
- 1121 dotted rectangles delimit the 2 sets of individuals (cf. Fig. 2).

Accepted manuscrip

4. Figure