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Sexual reproduction may be divided into two main categories; hermaphroditism and dioecy (Botany)/gonochorism (Zoology). Simultaneous hermaphrodites can function in both male and female roles whereas a dioecious/gonochorist population consists of distinct male and female individuals. Mean-field calculations, which ignore spatial aspects, suggest that self-incompatible hermaphrodites should have a twofold advantage over dioecious population when reproduction is limited by mating encounters. By use of stochastic spatial simulations we demonstrate that hermaphroditism has an even greater advantage when local interactions are considered. This result provides further support for the observation that hermaphroditism is associated with sedentary species, such as plants and animals with poor mate search efficiency. We also investigate the finite size effects associated with the well-known quadratic contact process.

A c c e p t e d m a n u s c r i p t 1. Introduction

Dioecy describes sexually reproducing plant species in which there are two distinct sexes, male and female. One individual of each sex is required for reproduction. The equivalent mating system in animal species is referred to as gonochorism. For simplicity, we will use the botanical term dioecy in this article. In contrast to dioecy, simultaneous hermaphrodites have the ability to reproduce in both female and male roles simultaneously.

The Allee effect describes a positive relationship between individual fitness and the density of conspecifics [START_REF] Odum | A note on the stable point of populations[END_REF]. The most typical single-sex (hermaphrodite) model of the Allee effect [START_REF] Lewis | Allee dynamics and the spread of invading organisms[END_REF] is represented by,

dh dt = ah(h -b)(c -h), (1) 
where h is the population density, and a, b and c are positive constants (b < c). Equation (1) has three equilibria; h = 0 and h = c are stable, h = b is unstable. Below the threshold h = b the population converges to h = 0, so becomes extinct. Above the threshold h = b the population converges to the stable equilibrium, h = c. The most cited cause of the Allee effect is the difficulty of finding mates in sexually reproducing species [START_REF] Boukal | Single-species models of the allee effect: Extinction boundaries, sex ratios and mate encounters[END_REF].

It may be argued that hermaphroditism, as a mating strategy, is more advantageous than dioecy when reproduction is limited by mating encounters.

Consider a female in a dioecious population with a one to one ratio of females to males, for each encounter with another individual, the female encounters a male with probability 1/2. In a hermaphrodite population, every encounter
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of a hermaphrodite would be with a compatible mating partner. All else being equal (encounter rate, number of off-spring produced per mating pair), the hermaphrodite population can reproduce at twice the rate of the dioecious population. This reasoning provides support for the observation that hermaphroditism is often associated with sedentary species, such as plants and animals with poor mate search efficiency [START_REF] Eppley | Moving to mate: the evolution of separate and combined sexes in multicellular organisms[END_REF].

However this mean-field argument neglects spatial detail, which becomes important in systems with short range interactions between constituents and limited mixing caused by poor locomotion.

Stochastic spatial simulations have been extensively applied in chemical, ecological and sociological systems [START_REF] Durrett | Stochastic spatial models[END_REF][START_REF] Durrett | Stochastic spatial models a users guide to ecological applications[END_REF].

The Standard Contact Process (SCP) can be used to model populations that reproduce asexually. In the SCP lattice sites can be either occupied or vacant.

Individuals die at a rate λ and give birth at a rate r. Offspring are placed on a neighbouring site with a probability given by some displacement kernel.

In the Quadratic Contact Process (QCP) [START_REF] Durrett | Stochastic spatial models[END_REF], an occupied site becomes vacant at a rate λ, the same as in the SCP. However, in the QCP it takes two particles to create a new one. For this reason the QCP is often referred to as the "sexual reproduction process". A vacant site becomes occupied at a rate j/4, where j is the number of diagonally adjacent pairs of occupied neighbours.

The SCP and QCP are often identified as Schlögl's 1st and 2nd models for autocatalytic kinetics, respectively (Schlogl, 1972). For the 1st model, One artifact of the QCP is that if a population is contained inside a rectangle, it can never spread outside [START_REF] Durrett | Stochastic spatial models[END_REF]. This is due to the fact that an empty site needs at least two diagonally adjacent neighbours to become occupied. For lattices of finite size, this feature also implies that complete columns or rows of empty sites in the lattice cannot become occupied.

X
To assess the impact of these finite size effects, another spatial model similar to the QCP described above is introduced here and will be referred to as the Modified Quadratic Contact Process (MQCP). For the MQCP a hermaphrodite (female) produces offspring with rate proportional to the number of occupied (male) neighbouring sites. An offspring is placed on a randomly chosen neighbouring site. If the site is empty, the offspring takes residence. If the site is occupied the offspring is deleted. This approach is based on the sexual reproduction model of Stewart-Cox et al. (2005) and has the advantage that a population can grow outside a rectangle to which it is confined. A similar model, which also overcomes this finite size effect specific to the QCP, has been presented by Windus and Jensen (2007).

In the following section, the QCP is extended to accommodate a dioecious population and the MQCP is explained in more detail for both hermaphrodite and dioecious mating systems. Then, in section 3, mean-field analyses are presented for each model and section 4 presents results of our lattice simulations.
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Models

For the stochastic spatial simulations, all populations reside on a twodimensional square lattice of side length L, with periodic boundary conditions. For a hermaphrodite population, each lattice site can be occupied by a hermaphrodite (H) or be empty ( ). For a dioecious population each lattice site can be occupied by a male (M ), a female (F ) or be empty ( ). For both mating systems, an occupied state becomes vacant at a rate λ (deathrate).

In the hermaphrodite QCP [START_REF] Durrett | Stochastic spatial models[END_REF], a vacant site becomes occupied at rate equal to j 1 r 1 /4, where j 1 is the number of diagonally adjacent pairs of occupied neighbours and r 1 is the birth rate. Thus, j 1 = 0,0,2 and 4 for 0, 1, 3 and 4 occupied nearest neighbour sites respectively. j 1 = 1 (0) for two occupied nearest neighbours which are diagonally adjacent (on opposite sides of the vacant site).

In the dioecious QCP, a vacant site becomes occupied at rate equal to j 2 r 2 /4, where j 2 is the number of compatible diagonally adjacent pairs of occupied neighbours and r 2 is the birthrate. Thus, an (M, M ) or (F, F ) diagonally adjacent pair does not increment j 2 . The gender of the offspring is set to male with probability α and female with probability (1α).

In the hermaphrodite MQCP, an occupied site produces an offspring at a rate equal to k 1 r 3 /4, where k 1 is the number of occupied nearest neighbours and r 3 is the birth rate. A nearest neighbour site is chosen randomly to place the offspring on. If the chosen site is empty the offspring is placed on the site. If the site is occupied the offspring is deleted.

In the dioecious MQCP, a female site produces an offspring at a rate equal to k 2 r 4 /4, where k 2 is the number of male nearest neighbours and r 4
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is the birth rate. A nearest neighbour site is chosen randomly to place the offspring on. If the chosen site is empty the offspring is placed on the site.

If the site is occupied the offspring is deleted. The gender of the offspring is set to male with with probability α and female with probability (1α).

There exists a subtle difference between the MQCP and QCP. If

r 1 = r 2
in the QCP, a hermaphrodite pair of diagonally adjacent neighbours are capable of producing offspring at the same rate as a male-female pair of diagonally adjacent neighbours. If r 3 = r 4 in the MQCP, a hermaphrodite pair of nearest neighbours can produce offspring at twice the rate of a malefemale pair of nearest neighbours. For example, consider an isolated pair of nearest neighbours, both members of a hermaphrodite pair can produce offspring at a rate r 3 /4 where as only the female can produce offspring in a dioecious pair, she does this at a rate r 4 /4. Thus, when the probability of encountering a compatible mate is included, the MQCP proposes a fourfold advantage of hermaphrodite over dioecious populations. With r 3 = r 4 , the MQCP proposes that a female and a hermaphrodite can produce offspring at equal rates provided a mating partner is in the vicinity. Depending on the species in question, either assumption may be valid. Fortunately, scaling the reproductive values appropriately can overcome this difference. For example, setting r 1 = 2r 2 in the QCP, proposes that females and hermaphrodites produce offspring at the same rate provided a mating partner is available.

Setting r 4 = 2r 3 , proposes that a hermaphrodite pair produce offspring at a rate equal to that of a male-female pair in the MQCP.
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3. Mean-field analysis

Hermaphrodite population

The mean-field kinetics for the hermaphrodite QCP population is given by

dh dt = -λh + r 1 h 2 (1 -h), ( 2 
)
where h is the density of hermaphrodites residing on the lattice. Equilibrium points for equation ( 2) are plotted in figure 1 as a function of r 1 /λ. By appropriate scaling of time (τ = λt), the number of parameters in equation ( 2)

can be reduced to one (r 1 /λ) . Thus, figure 1 is unique for a given value of r 1 /λ. Two non-trivial equilibria (one node, one repellor) exist for r 1 /λ > 4.

We will refer to this as the survival/extinction phase. If the initial population density is below the unstable equilibrium, growth is negative and the population converges on the trivial equilibrium, h = 0. If the initial population density is above the unstable equilibrium the population converges on the stable non-trivial equilibrium. Only the trivial equilibrium exists for r 1 /λ < 4, thus extinction of the population always occurs.

Dioecious population

The mean-field kinetics of the dioecious QCP are given by,

dm dt = -λm + 2r 2 mf (1 -m -f )α (3) df dt = -λf + 2r 2 mf (1 -m -f )(1 -α) ( 4 ) 
where m and f are the densities of males and females respectively. Substituting r 2 = 3r 4 /8 into equations ( 3) and ( 4 
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Results of lattice simulation

Previous simulations [START_REF] Liu | Quadratic contact process: Phase separation with interface-orientation-dependent equistability[END_REF][START_REF] Guo | Generic two-phase coexistence, relaxation kinetics, and interface propagation in the quadratic contact process: Simulation studies[END_REF] have shown that the QCP exhibits a discontinuous phase transition between an active state (finite population) and an absorbing state (extinction). It was also shown that coexistence of stable active and absorbing phases occurs over a finite parameter space. For any parameter set (λ, r) in this coexistence region, "droplets" of the absorbing state embedded in the active cannot grow indefinitely but rather die out, even though the the absorbing state is stable.

Similarly, "droplets" of the active state embedded in the absorbing state are short lived.

Figure 3 plots population density in the hermaphrodite QCP and MQCP models as a function of r/λ. For each point in the plot, the population was initialised with a full lattice and evolved for 10 3 generations. The densities plotted are averaged over the last 10 3 Monte Carlo Steps (MCSs) of the simulation, where 1 MCS = L 2 site selections. A transition from a stable active phase to a stable absorbing phase occurs at r 1 /λ ≈ 11. The location of the QCP transition is in agreement with previous simulations [START_REF] Liu | Quadratic contact process: Phase separation with interface-orientation-dependent equistability[END_REF][START_REF] Guo | Generic two-phase coexistence, relaxation kinetics, and interface propagation in the quadratic contact process: Simulation studies[END_REF] that have shown the coexistence region between r 1 /λ ≈ 10.5 and r 1 /λ ≈ 11.5 for the QCP. As all simulations in figure 3 were initialised with a fully populated lattice only the stable active state of the coexistence region was observed.

For the MQCP a transition from a stable active phase to a stable absorbing phase occurs at r 3 /λ ≈ 6 (figure 3) . This is in contrast to the mean-field approximation, which predicts that the transition in the MQCP model should occur at a larger value of r/λ larger than in the QCP (see
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figure 1). These results demonstrate that the finite size effects specific to the QCP do have a significant impact on stability.

Investigations of the dynamics of the interface between active and absorbing phases in the QCP [START_REF] Liu | Quadratic contact process: Phase separation with interface-orientation-dependent equistability[END_REF][START_REF] Guo | Generic two-phase coexistence, relaxation kinetics, and interface propagation in the quadratic contact process: Simulation studies[END_REF] showed that the active phase grows fastest (recedes slowest) for an interface orientation of 45

•
to the rows of the square lattice. This rate of growth (reduction) decreases (increases) as the angle of orientation is changed from 45 • . For an interface orientation of 0 • or 90 • to the lattice rows, the active phase cannot invade the absorbing phase. This is due to the fact that an empty site requires at least two diagonally adjacent nearest neighbours to become occupied. This results in the feature that if a population is contained inside a rectangle it can never give birth outside the rectangle [START_REF] Durrett | Stochastic spatial models[END_REF] and for lattices of finite size, complete columns or rows of empty sites cannot become occupied [START_REF] Liu | Quadratic contact process: Phase separation with interface-orientation-dependent equistability[END_REF]. For an interface orientation of 0 • or 90 • , in the MQCP, the active state can invade the absorbing state. This is expected to be the reason for the contrast between simulation and mean-field behaviour in the QCP and MQCP.

Due to finite size effects, analysis of size dependent behaviour is required to accurately determine the stability regions [START_REF] Liu | Quadratic contact process: Phase separation with interface-orientation-dependent equistability[END_REF][START_REF] Guo | Generic two-phase coexistence, relaxation kinetics, and interface propagation in the quadratic contact process: Simulation studies[END_REF]. The exact values of these parameters are not calculated here but the stability of the two phases is clarified by plotting waiting time to extinction of the population as a function of lattice size L (figures 4 and 5). Each point in figures 4 and 5 is the mean waiting time to extinction from 100 simulation runs; each run was initialised with a fully occupied lattice and lattice sites were set to male with probability 0.5 for dioecious populations. Figure 4 A c c e p t e d m a n u s c r i p t

shows that in the stable active phase extinction time increases exponentially with L. The solid lines in figure 4 are least squares fits for the data, their equations are given by;

τ = exp[2.98 + 0.471L],
for QCP hermaphrodite, (5)

τ = exp[2.02 + 0.263L],
for QCP dioecious, ( 6)

τ = exp[-192 + 1.00L],
for MQCP hermaphrodite, ( 7)

τ = exp[0.802 + 0.450L], for MQCP dioecious, (8) 
where τ = λt is referred to as the time in generations (t is in MCSs).

In the stable absorbing phase, figure 5 shows that the extinction time increases logarithmically with L. The solid lines in figure 4 are least squares fits for the data, their equations are given by; 2006) and may be due to a metastable region, similar to the one observed for the QCP [START_REF] Liu | Quadratic contact process: Phase separation with interface-orientation-dependent equistability[END_REF][START_REF] Guo | Generic two-phase coexistence, relaxation kinetics, and interface propagation in the quadratic contact process: Simulation studies[END_REF]. Again, the stability of the two phases were clarified by plotting waiting time to These results demonstrate that, as expected, finite size effects specific to the QCP do have a significant impact on the stability of dioecious populations on a lattice.

τ = 11.2 + 18.4 ln (L) , for QCP hermaphrodite, (9) τ 
The transition from the active to absorbing phase in the QCP occurs at a value of r/λ 30 times larger in the dioecious population than the hermaphrodite population (figures (3) and ( 6)). The transition from the active to absorbing phase in the MQCP occurs at a value of r/λ 15 times larger in the dioecious population than the hermaphrodite population (figures

(3) and ( 6)). These results demonstrate more drastic differences between the hermaphrodite and dioecious mating systems than predicted by mean-field analysis (see figure 1). If birth rates were scaled such that a hermaphrodite pair produce offspring at an equal rate to a male-female pair (r 4 = 2r 3 ), all else being equal, this would correspond to a transition from absorbing to active state at a value of r/λ ≈ 7.5 times larger in the dioecious MQCP model than the hermaphrodite MQCP.

Though the models predict different values for the advantage of single sex over dioecious populations on a lattice, both models suggest that a hermaphrodite population is stable over a large range of low birth rates for which a dioecious population is not sustainable. The relatively large birth rates required to sustain a dioecious population are likely to be due to local variation in the concentration of (M -M ) or (F -F ) pairs of cells, which hinder the birth process. As offspring are placed on nearest neighbour sites, areas with an optimum sex ratio (1/2) cannot compensate for areas with a poor sex ratio (close to 0 or 1). This can aid the propagation of the A c c e p t e d m a n u s c r i p t absorbing state. The observed advantage of hermaphroditism at low birth rates could contribute to the success of the hermaphrodite mating system in sedentary species. This provides additional support for the observations that hermaphroditism should be associated with sedentary species, such as plants and animals with poor mate search efficiency [START_REF] Eppley | Moving to mate: the evolution of separate and combined sexes in multicellular organisms[END_REF].

Conclusions

By means of stochastic spatial simulations we have shown hermaphrodite populations can be sustainable at birth rates much smaller than the birth rates required for a sustainable dioecious population. This implies that a hermaphrodite population has a much greater reproductive advantage over a dioecious population than the the twofold difference predicted by mean-field analysis. This result provides even greater theoretical support for the observations that hermaphroditism should be associated with sedentary species, such as plants and animals with poor mate search efficiency.

Our simulation results also show that finite size effects specific to the QCP introduce significant artifacts which can be overcome by simple modifications with the MQCP.
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  2X and X → ; for the 2nd model, 2X → 3X and X → , where X → denotes the annihilation of a particle. The mean-field kinetics are ) for the 1st (2nd) model suggesting a continuous (discontinuous) transition to the absorbing state, . The mean-field kinetics of the QCP can lead to equation (1).

  figure 1 overlap for the QCP. It was also explained in section 2 that the hermaphrodite population can grow at four times the rate of the dioecious population in the MQCP model. If we let r 4 = 4r 3 , hermaphrodite and dioecious curves in figure 1 overlap for the MQCP. As shown by figure 2, deviations away from the optimum sex ratio of 1/2 can hinder the growth of the population. This can have a great effect when considering discrete spatial populations with local interactions.
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 6 Figure6plots the population density (m + f ) as a function of r/λ for the dioecious population. A discontinuous phase transition between the active and absorbing states is observed at r 2 /λ ≈ 300 for the QCP and r 4 /λ ≈ 100 for the MQCP. Given more time, the two QCP points at densities close to 0.3 fall to zero. These slow relaxations close to the transition were also observed byTainaka et al. (2006) and may be due to a metastable region, similar to

  population as a function of lattice size L (figures 4 and 5).
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 1 Figure1: Mean-field approximation equilibrium densities for; QCP hermaphrodite ( ), QCP dioecious ( ), MQCP hermaphrodite (×) and MQCP dioecious (+). The gender ratio of new born offspring α = 1/2 for the dioecious populations. Solid (dashed) lines represent stable (unstable) equilibria.
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 2 Figure 2: Mean-field approximation for QCP: typical dynamics for a population of males and females. Plot shown for r 2 = 1.0, λ = 0.1, α = 0.5. Showing the stable equilibrium (filled circle) and unstable equilibrium (empty circle). The dashed lines are a projection of the stable (m + f ≈ 0.85) and unstable (m + f ≈ 0.1) equilibria for the hermaphrodite population with the same birth and death rates.
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 345 Figure 3: Hermaphrodite population density after 10 3 generations for lattice simulation of QCP ( ) and MQCP (×). L = 100.

  Figure 6: Sum of male and female densities, m + f , versus r/λ after 10 3 generations for