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A simultaneous model for analysis of net energy intake and growth curves is presented, viewing the 

animal’s responses as a two-dimensional outcome. The model is derived from four assumptions: 1) 

the intake is a quadratic function of metabolic weight; 2) the rate of body energy accretion 

represents the difference between intake and maintenance; 3) the relationship between body weight 

and body energy is allometric and 4) animal intrinsic variability affects the outcomes so the intake 

and growth trajectories are realizations of a stochastic process. Data on cumulated net energy intake 

and body weight measurements registered from weaning to maturity were available for 13 pigs. The 

model was fitted separately to 13 datasets. Furthermore, slaughter data obtained from 170 

littermates was available for validation of the model. The parameters of the model were estimated 

by maximum likelihood within a stochastic state space model framework where a transform-both-

sides approach was adopted to obtain constant variance. A suitable autocorrelation structure was 

generated by the stochastic process formulation. The pigs’ capacity for intake and growth were 

quantified by eight parameters: body weight at maximum rate of intake (149 - 281 kg); maximum 

rate of intake (25.7 – 35.7 MJ/day); metabolic body size exponent (fixed: 0.75); the daily 

maintenance requirement per kg metabolic body size (0.232 – 0.303 MJ/(day×kg
0.75

)); reciprocal 

scaled energy density (0.192 – 0.641 kg/MJ 6θ
); a dimensional exponent, �6 (0.730 – 0.867); 

coefficient for animal intrinsic variability in intake (0.120 – 0.248 MJ
0.5

) and coefficient for animal 

intrinsic variability in growth (0.029 – 0.065 kg
0.5

). Model parameter values for maintenance 

requirements and body energy gains were in good agreement with those obtained from slaughter 

data. In conclusion, the model provides biologically relevant parameter values, which cannot be 

derived by traditional analysis of growth and energy intake data. 

Keywords: Growth, Energy intake, Pigs, Stochastic differential equations 
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1. Introduction 

Growth in animals has been studied for centuries both from a biological and a 

mathematical view point and many growth functions are available (France and Thornley, 1984). 

These functions are especially valuable if growth and energy intake are studied for long periods of 

time where nonlinearities are visually detectable in data, i.e. sigmoid shapes and diminishing return 

behaviours. Analysis of intake and growth data is usual done separately by fitting nonlinear 

functions of time (Kanis and Koop, 1990; Lopez et al., 2000). Another approach for modelling 

growth and intake curves in animals is to describe the body weight (BW) as function of the 

cumulated intake (Andersen and Pedersen, 1996). This has an advantage because the efficiency of 
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utilizing nutrients for growth follows directly as the derivative with respect to intake (Andersen and 

Pedersen, 1996). Growth and intake processes are interrelated because it can be assumed that the 

animal grows as a consequence of the nutrients and energy consumed (push effect) or it eats to meet 

the demands of its growth potential (pull effect) (Emmans, 1997). Simultaneous modelling of 

growth and energy intake offers the possibility to formulate a mathematical model where the 

equations are linked so that more detailed information is extracted, e.g. maximum intake rate, 

maintenance requirements, body energy (BE) accretion. If complete records of growth and energy 

intake trajectories from individual animals are available, estimation of model parameters could be 

possible. In the following, we define dietary energy as net energy because net energy systems are 

currently the recommended energy evaluation system for formulating diets for growing mammals 

(Just, 1982; Noblet et al., 1994a; NRC, 2000).  

Models in animal biology have usually been defined in terms of ordinary differential 

equations (ODEs) (France and Thornley, 1984). Another option is to use stochastic differential 

equations (SDEs). The main attraction of the SDEs and the primary difference to the corresponding 

ODEs is the inclusion of a diffusion term which accounts for model uncertainty. Model uncertainty 

is biological meaningful because there are many factors affecting intrinsic growth processes which 

cannot be explicitly modelled. Modelling growth and intake processes using SDE models provides 

the possibility of quantifying both the trend and variation in the processes. Furthermore, using SDE 

models instead of ODE models is a powerful approach to deal with serially correlated residuals that 

are likely to occur when analysing growth data (Sandland and McGilchrist, 1979; Garcia, 1983).  

The objective of the present study is to develop a mathematical model for 

simultaneous analysis of serial net energy intake and BW measurements. From these easily 

obtainable data, the model should quantify the dynamics of growth and yield information on energy 

intake capacity, maintenance requirements and body energy gain.   

 

2. Material and methods 
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2.1 Animals and diets 

The data used in this analysis is part of a serial slaughter experiment set up to determine growth 

capacity, energy and nutrient utilization in growing pigs (Danfær and Fernandez, in preparation). A 

total of 183 pigs participated in the experiment. Data on intake and growth from 13 of these pigs 

were used in the present paper to estimate the parameters of the proposed model. The experiment 

was set up as a fully randomized block design with three blocks and six different treatment groups. 

Each experimental group referred to a combination of two factors, i.e. gender (male, female and 

castrate) and a genetic sub-index for feed efficiency (high and medium level). The experimental 

pigs used in this study were crosses of YL sows (Landrace and Yorksire) and Duroc boars. The pigs 

were fed seven highly nutritious diets in the corresponding intervals: 4-7 weeks, 7 weeks-25 kg, 25-

45 kg, 45-65 kg, 65-100 kg, 100-150 kg and 150 kg to maturity. The chemical composition of the 

seven diets is presented in Table 1. The pigs were housed individually under thermoneutral 

conditions and given ad libitum access to feed during the entire growth period to maximize growth. 

All pigs were weighed at birth, weaning, weekly until approximately 150 kg BW and then every 

second week until the time of slaughter. The cumulated feed intake was record twice weekly from 

feed dispensers and is summarized to the corresponding dates of BW measurement. The total net 

energy intake is calculated as the net energy content of the diets (Table 1) multiplied by the 

cumulated feed intake in the corresponding periods of use. For the present analysis, we assume that 

the methods for prediction of net energy contents of the seven diets (Just, 1982; Boisen and 

Fernandez, 1997) are valid in the entire growth period from 7 - 450 kg BW. This is somewhat 

simplistic, but is nevertheless supported by the findings of Noblet et al. (1994b). After slaughter, the 

chemical composition and energy content of the body was determined (Danfær and Fernandez, in 

preparation).  

Insert Table 1. 

2.2 Mathematical derivation of the growth model 
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In the following, we assume that animal growth and feed intake are driven by the state of the 

animal, which is described by the state variable BW (France and Thornley, 1984). Furthermore, it is 

assumed that allometry ( aXY ∝ ) can describe the differential growth of BW and BE. Note that the 

augmented allometric function may for some traits or data sets provide at better description 

(Schinckel and de Lange, 1996); however, parameter identifiability is a key issue in statistical 

modelling and therefore the simpler allometric function is adopted. Suppose that rate of total net 

energy intake (NE) is a quadratic function of the metabolic body weight 

33 2

21

θθ θθ ××−×= BWBW
dt

dNE
     (1) 

where �1, �2, �3 are parameters. This functional relationship (1) has previously been used to describe 

protein accretion curves in boars of different breed (Tauson et al., 1998). The assumption that 

ingestion rate is a function of metabolic body size has also been used in dynamic energy budget 

models in animal ecology (Nisbet et al., 2000). Using the above function (1) implies that the rate of 

intake is symmetric in BW, but it does not imply that the rate of intake is symmetric in time because 

the growth rate is not constant over time. Using a quadratic function of metabolic size for modelling 

the rate of intake allows to parameterize the model in terms of the maximum rate of intake (�2
*
) and 

the BW at which the maximum rate (�1
*
) occurs. There are several advantages to reparameterize the 

model because the new parameters can be assigned biological meaning and reduce the intra-

correlation between the two parameter estimates. The new parameters can be derived by 

differentiation of (1) with respect to BW  

BW
BW

BW
BW

dBW
dtdNE 3
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33 2/ θθθθ θθ

−=     (2) 

and setting (2) equal to zero and solving (2) with respect to BW.  This yields the BW at which intake 

is maximized and corresponding rate of intake, i.e.,     
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In order to reparameterize the model we need to express the parameters �1 and �2 as functions of �1
*
 

and �2
*

, i.e. to solve (3) with respect to �1 and �2 :  

( )
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1
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2

*

1

*

2
1

2

θ

θ

θ
θθ

θ
θθ

=

=

      (4) 

which can be inserted into (1). 

The increment in BE represents the difference between net energy intake and net 

energy for maintenance, and the rate of BE accretion can be written as follows: 

( ) 333 2

2414

θθθθ ××−×−=×−= BW�BW��BW
dt

dNE
dt

dBE
  (5) 

where �4 is the maintenance energy requirement scaled to metabolic body size. The growth function 

derived here is without any assumption of an upper limit for the size of the animal. Since the mature 

size of an animal is an important biological growth parameter, the proposed growth model should 

accommodate calculation of such a trait. The basic idea built into the model is that the rate of intake 

approaches maintenance levels as the animal matures and thus the retention of BE should approach 

zero. Setting equation (5) equal to zero and solving with respect to BW yields the following 

equation, which can be used to calculate the mature BW of an animal based on the estimated 

parameters of the model 
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41
max /logexp θ

θ
θθ -BW     (6)     

A link function is needed in order to convert the state variable BE into BW and by 

assuming that the allometric relationship between BW and BE is valid: 

6
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/�
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BW BE BE�BW ��

�
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��
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�
=⇔×=      (7) 

From this expression body energy density can be quantified throughout the entire growth period as 

Mt = BEt/BWt , which is an indirect measure of the fatness of the animal. Different animals at the 
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same BW can have different BE contents, which would reflect variation in the ratio of lean to 

adipose tissue mass. 

We differentiate (7) with respect to BE 

6

1

5
6 θθ θ ××= −BE

dBE
dBW

      (8) 

and apply the chain rule to get  

( ) ( )( )336 2

2416

1

5

θθθ θθθθθ ×− ×−×−×××=×= BWBWBE
dt

dBE
dBE
dBW

dt
dBW

  (9) 

However, BE is a latent state variable because the energy content of the animal was measured only 

once, i.e. after slaughter. Therefore further manipulations of (9) are needed for parameter 

estimation, which can be done by substituting (7) into (9). The manipulations produce two 

differential equations:  
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 (10) 

The parameter vector � = (�*
1, �*

2, �3, �4, �5, �6)T
 is to be estimated from data and the initial values 

y0 = (NE0, BW0) are obtained by using the measurements at t = 0 as starting values for the filtering 

and estimation procedures. We investigate if the parameter (�3) can be fixed at 0.75 because this is 

the traditional scaling factor applied in energy metabolism studies. This in turn makes it easier to 

compare the estimated maintenance requirement with published values. A complete list of all the 

parameters, their physical interpretation as well as dimensions is presented in Table 2. 

Insert Table 2.  

2.3 The stochastic growth model   

Two sources of variation are considered in the model: 1) a dynamic noise term, which is part of the 

system (the animal) such that the value of the process at time t depends on this noise up to the time 

t, and 2) a measurement noise term, which does not affect the process itself, but only its 

observations. Separation of intra animal variation into two noise components requires additional 
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explanation. The system noise can be thought of as animal intrinsic variability due to the following; 

1) animal growth is always embedded in a randomly varying environment (no matter how well the 

experimental conditions are controlled), 2) growth processes are subjected to external and internal 

influences that change over time (e.g. shifting diets, sub-clinical diseases, ambient temperatures, 

hormonal influences, emotional stress etc.) which may randomly affect the growth. Modelling all of 

these aspects that disturb the system would produce a very large and complicated model that 

renders model identifiability and parameter estimation given data. In the foregoing section, we 

derived an ODE model based on biological assumptions regarding intake and growth. It is now 

translated into a stochastic state space model. Thus, the equations governing the growth and intake 

processes can be written as the following continuous-discrete time state-space model where the two 

system equations are:  
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The first term on the right hand side of (11) is commonly called the drift term and the second is 

commonly called the diffusion term in which �NE and �BW are diffusion coefficients and wt is a two 

dimensional Wiener process with independent increments. The two measurement equations can be 

written as: 
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      (12) 

The observation equations describe what is actually measured at discrete time points 

( )NNk ttttt <<<<= −110 ... and [ ]Tkk yy ,2,1 ; are functions of the states [ ]Ttt kk
BWNE ; contaminated 

with Gaussian white noise [ ]Tkk ee ,2,1 ;  with variances SNE and SBW. The system wt and observation 

noise ke are assumed to be mutually independent. 
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 Model diagnostics (residual and autocorrelation plots) are employed and visual 

inspection of the innovations plotted as a function of time is used to pinpoint if variance 

stabilization is required. It turned out that on the original scale variance was increasing with 

expected value and it was decided to work with transformed responses (square root or logarithmic) 

instead. For linear models it is possible to use the Box-Cox transformation approach, i.e. find the 

optimal (in a likelihood sense) transformation among the power and logarithmic transformations. A 

similar theory is not available for SDE models. Instead, we used a “transform both-sides” (TBS) 

approach, i.e. both responses and expected values in the model are transformed using the same 

transformation. The appealing feature about the TBS approach is that the parameter interpretations 

are unchanged. More specifically, the ODE system is transformed and then system noise is added to 

the transformed ODE system. Hence, system noise is assumed to have a constant intensity on the 

transformed scale. This approach can be generalized to accommodate any type of transformation.  

We may introduce zt = h(xt) where xt denotes the model states (NE and BW). If the original ODE 

(10) is written as dttxfdx tt ),,( θ= then the ODE for the transformed response tt zxh =)( is obtained 

by the chain rule:    

( )( ) ( )dttzhfzhhdz ttt θ,),(11 −− ×′=     (13) 

where h(xt) is the transforming vector function, h´(xt) is the derivative with respect to the states xt, h-

1
(zt) is the inverse of h(·), and f(·) is the functional expression for the original ODE system (10). For 

instance, if ),()( BWNExh t =  then ),()( 221 BWNEzh t =− and )2/1 ,2/1()( BWNExh t =′ . 

Using (13) and adding system noise yields the following SDE system 
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  (14) 
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The transformed measurements are obtained as the square root of the original and then the additive 

measurement noise is added on the transformed scale. Visual inspection of the innovations plotted 

as function of time is used to choose between the two transformations (logarithmic or square root). 

2.3 Parameter estimation 

Given the model structure (11) and (12) approximate maximum likelihood (ML) estimates of the 

unknown parameters can be determined by finding the parameters � that maximize the approximate 

likelihood function of a given sequence of measurements ( )NNN yyyyY ,,...,, 110 −= . The likelihood 

function can be expressed as the following by conditioning on the observations at time t0 

i.e., ( )0,20,10 ; yyy = , 

( ) ( ) ( )��
�

�
��
�

�== ∏
=

−

N

k
kkNN YypYpYL

1

1,| θθθ       (15) 

where p denotes the probability density function conditional on the parameters and the previous 

observations. 

Since the SDE in (12) are driven by a Wiener process and since increments of a Wiener process are 

Gaussian, it is assumed that the conditional densities can be approximated by Gaussian densities, 

which means that a method based on the so-called extended Kalman filter (EKF) can be applied 

(Kristensen and Madsen, 2003). The EKF filter is a recursive algorithm. This means that only the 

estimated state from the previous time step and the current measurement are used to compute the 

estimate for the current state because the previous state contains all the information up to that time 

point. The EKF has two distinct phases: predict and update. The predict phase uses the state 

estimate from the previous time step to produce an estimate of the state at the current time step. In 

the update phase, measurement information at the current time step is used to refine this prediction 

to arrive at a new, more accurate state estimate, again for the current time step (see appendix for full 

details regarding the EKF algorithm).    

Assuming a Gaussian density, which is completely characterized by its first and 

second order moments, the EKF is used because EKF describes the evolution of the first and second 
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order moments of the conditional probability densities in terms of ODEs and algebraic equations. In 

order to formally introduce the assumption of Gaussianity, the following notation is defined 

{ }θ,|ˆ
11| −− = kkkk YyEy       (16) 

{ }θ,| 1|1| −− = kkkkk YyVR       (17) 

1|
ˆˆ −−= kkkk yye      (18)    

and the likelihood function is rewritten in the following way: 

( ) ( )
�
�
�
�

�

�

�
�
�
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�

×

�
�
�

�
�
�−

= ∏
= −

−
−N

k kk

kkk
T
k

N R

eRe
YL

1 1|

1

1|

det2

ˆˆ
2

1
exp

|
π

θ      (19) 

The parameter estimates can now be determined by solving the following nonlinear optimisation 

problem:  

( )( ){ }NYL |logminargˆ θθ
θ

−=
Θ∈

     (20) 

where, for each value of � in the optimization, kê  and 1| −kkR , are computed recursively by the EKF. 

 The estimation scheme has been implemented in the parameter estimation software 

Continues Time Stochastic Modelling (CTSM). More details of the parameter estimation, filtering 

and smoothing are giving in the CTSM User and Mathematics guides (Kristensen and Madsen, 

2003).  

The growth and energy intake trajectories obtained from the 13 pigs are analysed 

separately. Population parameter estimates and their standard deviations are then calculated as the 

average and standard deviation of the 13 individual estimates. This procedure is called a two stage 

approach (Davidian and Giltinan, 1995). 

 

3. Results and discussion 

At a preliminary stage initial parameter estimates and their effect on convergence and 

final parameters estimates were monitored. In general, for all 13 animals in the data set the 
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convergence properties of the estimation procedure were good because all estimations converged in 

less than 150 object function evaluations. The two transforming functions were applied and 

diagnostic plots were inspected for all 13 animals, which showed that the best variance stabilizing 

function was the square root. Therefore, the parameter values and likelihood tests presented in the 

following is based on the square root transformation. The parameters were all estimated by 

maximizing the likelihood, and the improvement of fit when �3 was allowed to vary freely 

compared to being fixed at 0.75 was measured by the likelihood value at convergence. This is 

presented in Table 3. In ten of the thirteen analysed data sets, the value of �3 did not deviate 

significantly from 0.75 (p > 0.05).  As a consequence, �3 was fixed at 0.75 for all animals in the 

subsequent analyses. Parameter values for each animal obtained by fitting the model to data is 

presented in Table 4 together with population averages and coefficient of variation (CV) for the 

drift part of the model.  

Insert Table 3. 

Population based methods (mixed models) have been more widely applied in analysis 

of pig growth (Criag and Schinckel, 2001; Kebreab et al., 2007). It is assumed that all animals 

follow the same functional form with parameters varying according to multivariate normal 

distribution. Thirteen animals as available in this data set are too few for application of a population 

based approach and thus the data from the 13 pigs were analysed separately. Population based 

methods are especially useful if the population values are of main interest. In the present study, the 

animal specific values are of primary interest (e.g. comparison with slaughter data), so the data was 

analysed pig by pig, but a population based analysis would be of interest, too. Such an approach 

would yield a complete description of the dynamics with animal-to-animal variation described by 

key structural parameters and the within-animal variation described by a stochastic process. An 

algorithm for non-linear mixed effects in combination with SDE-models has recently been 

developed (Mortensen et al., 2007; Mortensen and Klim, 2008), but needs further investigation. 

Moreover, note that the current model has a two-dimensional response. None of the standard 
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software packages, which are usually applied for nonlinear mixed modelling, will fit multivariate 

response models because these are developed for the univariate case (Pinheiro and Bates, 2000; 

Littell et al., 2006).    

Measures made on the individual animal are likely to be more correlated than 

measures made on different individuals, and serial autocorrelation is present since measurements 

made closely in time tend to be highly correlated compared to measures made further distant in time 

(Sandland and McGilchrist, 1979). An autocorrelation structure is generated “automatically” due to 

the stochastic process formulation. Moreover, unequally spaced observations do not create a 

problem because the model is formulated in continuous time. This is an additional advantage 

compared to application of ARIMA models for modelling correlated residuals.     

Insert Table 4. 

3.1. Modelling growth and energy intake patterns  

Growth curves and feed intake curves are often represented as a function of age 

because age can be recorded more easily and more precisely than for instance weight. The 

parameters �1
* (BW at maximum rate of intake) and �2

*
 (maximum rate of intake) are estimated in 

the range of 149 – 281 kg BW and 25.7 – 35.7 MJ NE/day. Our results indicate that the maximum 

intake was reached at a much later stage in life than usually reported in studies quantifying feed 

intake (Andersen and Pedersen, 1996; Lorenzo et al., 2003). This is probably caused be the fact that 

measurements were conducted outside the normal BW range (20-120 kg). According to the 

knowledge of the authors there is no information available on patterns of feed intake of pigs beyond 

150 kg BW, which excludes the possibility for comparison. However, our results agree very well 

with the theory proposed by Emmans (1997), which suggests that intake is maximised at about half 

of the mature size. A prerequisite for the validity of model is of course that the framework is able to 

describe the observed patterns of intake and growth. Those are presented in Figure 1, for the drift 

part of the model and the one-step-ahead predictions generated by the EKF together with observed 

data from two representative pigs in the dataset. In Figure 1 we have plotted NE, BW, intake, and 
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growth rate against time to show that the model described data well. Taylor (1985) suggested that 

intake of animals with a large appetite might decline after having reached a maximum. Fowler 

(1980) found that the daily intake reached a peak at about 120 kg BW and then declined to very 

fluctuating values. The feed intake data presented by Thompson et al. (1996) suggested that the feed 

intake did not stabilize at 200 days of age. Moreover, large fluctuations in the feed intake during the 

course of time were observed as well, which corresponds well with the observations reported in this 

study. A feature of the model is that the rate of intake increases quickly in the early part of the 

growth period and then plateaus as the pig matures, which is a consequence of the energy being 

diverted towards maintenance. Moreover, it has the flexibility to identify that rate of intake has a 

peak and then decreases towards a plateau level, which corresponds to maintenance of body 

functions at maturity.  

Insert Figure 1. 

Modelling BW as a function of age requires a four parameter function like the Bridges, 

generalized Michalis-Menten or Richards functions for adequately describing the growth trajectory 

of pigs from birth to maturity (Kreab et al., 2007; Strathe et al., submitted). Lorenzo et al., (2003) 

presented an analysis of linear and nonlinear models and reported that a three parameter logistic 

function was appropriate for characterizing the pattern of feed intake in pigs. Thus, a total of seven 

structural parameters are needed when the responses are modelled separately. The proposed bi-

variate model uses six parameters in its complete form. However, the dimensionless exponent �3 

was fixed 0.75 during parameter estimation and thus restricting the number of free parameters to 

only five plus optional two initial state parameters. In terms of the number of structural parameters 

that has to be estimated the bi-variate approach is not much different than modelling the responses 

separately. However, the proposed framework offers other quantities (maintenance requirement, 

energy gain) to be derived compared to the traditional analysis of growth and intake, which are 

usually confined to estimate initial value, maximum value and inflexion points. The modelled 
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growth curves presented in Figure 1 have clear sigmoid shapes and their derivatives with respect to 

time increase in the early part of life towards a maximum and then decrease towards zero.  

Figure 2 presents goodness of fit plots. The observed rates of energy intake and BW 

gain are plotted against the corresponding one-step-ahead predictions generated by the EKF for the 

13 animals and the line Y = X is also included. The model fits well to the observed data because the 

model dynamically tracks the fluctuations in the observations. A comprehensive review of 

Whittemore et al. (2001) concluded that prediction of short time fluctuations in feed intake was 

difficult, although the information is essential for the practical purposes of pig’s day to day 

nutrition. Thus, application of SDE models may be a way to obtain precise predictions of short time 

fluctuations in intake and growth rates. 

Insert Figure 2. 

 

3.2 The biological implications of stochasticity 

In Table 5 parameter estimates related to the stochastic part of the model, e.g. 

diffusion and measurement error terms are presented. First, it should be noted that the estimated 

system noise was significant at the 5% level (t-score around 10) for all modelled animals. The 

magnitude of difference between the system and measurement noise indicates that the measurement 

error is negligible compared to the system error for most of the pigs. Note however that it is very 

difficult to distinguish between the two sources of variation, in particular for equidistant 

observations. For the bodyweight, the total variance of the difference between two consecutive 

measurements 1,1y  and 2,1y  is approximately BWBW St 22 +Δσ . If �t is the same for all pairs of 

consecutive measurements, then only the sum, not the two distinct terms is identifiable. The 

irregular sampling scheme with weekly and bi-weekly sampling improves identification somewhat, 

but simulations have indicated that there are still problems for this sampling scheme. Still we can 

conclude that the animal intrinsic variability is more pronounced than the measurement noise, and 

fitting a model without measurement errors gives very similar results for the fixed effects. This 
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suggests that the incorporation of model uncertainty through a diffusion process is successful from 

both a biological and a statistical point of view. 

Insert Table 5. 

Previous attempts to model growth and intake processes are based on models, which 

are solutions to ODEs (France and Thornley, 1984; Lopez et al., 2000). SDE models provide a 

much more realistic representation of reality than their deterministic counterparts because system 

noise reflects that we do not have a full understanding of the complex processes, which regulate 

intake and growth. For this reason, the aim of the current model formulation has been focussed on 

modelling both the trend of the growth processes and the random fluctuations by means of SDEs. It 

further implies that an individual animal does not have a fixed growth curve from birth as growth is 

subjected to disturbances during life time. This can be demonstrated by a simulation study where 

the mean parameter values for the modelled growth and intake trajectories are used. The mean 

parameter vector is given as � = (�1
* =221, �2

*=31.5, �3=0.75, �4=0.27, �5=0.32, �6=0.81, 

�NE=0.17, �BW=0.07)T
. An Euler-Maruyama scheme was used with an integration step of 0.5 day 

(Kloeden and Platen, 1992).  The results of the simulation analysis are shown in Figure 3. The 

figure is organized as follows: plots A and B show the simulated paths of the stochastic growth 

model along with the mean curves for the stochastic process; plots C and D show the derivatives 

with respect to time in order to display the hypothesis build into the model. In contrast to previously 

published deterministic approaches (e.g. Lopez et al., 2000) to model growth and intake, the 

trajectories are not smooth. In fact, a deterministic model assumes that: 1) the mathematical 

processes generating the observed intake and growth trajectories are smooth (continuous and 

continuously differentiable) within the considered time frame; 2) the variability of the actual 

measurements is due to observation error. The present approach results from the hypothesis that the 

underlying mathematical process is not smooth, but is subjected to random intrinsic perturbations. 

This system noise represents the complexed effect of many factors, each with a small individual 

effect, which are not explicitly represented in the deterministic part of the model (the drift term of 
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the model). Figure 3 also clearly illustrates the consequence of assuming that the system noise is 

additive on a square root scale (NE and BW) because once the simulated trajectories are transformed 

back to the original scale, it can be seen that the fluctuations in the intake process increase as the 

animal matures. This phenomenon has previously been described for intake (Fowler 1980; 

Thompson et al., 1996). 

Insert Figure 3.    

3.3 Estimation of maintenance requirement 

Although the functional relationship might look complicated, the model was derived 

from basic biological ideas and thus biologically relevant results can be extracted from the analysis. 

A maintenance component is estimated and expressed on a net energy basis. The maintenance 

component �4 in the model was estimated to be in the range of 232 – 303 kJ/(day×kg
0.75

) with a 

mean of 268 kJ/(day×kg
0.75

) and a CV of 8.6%. In net energy systems the maintenance component 

is usually estimated by regressing the daily energy retention or heat production on daily ME intake, 

then the intercept represents the maintenance requirement (Just, 1982; Noblet et al., 1994). 

Schiemann et al. (1972) estimated the maintenance requirement as 280 kJ/(day×kg
0.75

) for barrows 

at approximately 95-185 kg BW, whereas Just (1982) estimated 326 kJ/(day×kg
0.75

) for growing 

pigs weighing from 20 to 90 kg BW. The maintenance estimates produced by the present model are 

on average slightly underestimated compared to those values (Table 4). There are several 

explanations to this fact: 1) the maintenance requirement was represented by one parameter in the 

model and it is likely that this representation is to simplistic because the chemical composition of 

the body, organ size etc. changes during the course of growth (Tess et al., 1984); 2) fasting heat 

production measurements are usually conducted in the BW range of 20-110 kg and thus little 

information is available beyond this point; 3) the net energy contents of the seven diets used in the 

present study were calculated from dietary characteristics using the method proposed by Just (1982) 

and Boisen and Fernandez (1997). We will direct focus towards estimating a maintenance 
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requirement based on slaughter data because these can be used for validation. According to the 

definition of NE we may write the following equation: 

dtBWqBENEMBENE
t

t� ×+Δ=+Δ= 1

0

75.0                             (21) 

Where q represents the maintenance requirement and �BE is the measured increment BE from 

weaning (t0) to the time of slaughter (t1). The integral in (21) can be approximated be the trapezium 

rule, i.e. 

( ) ( )	
=

−− +××−≈
N

k
kkkk BWBWqttNEM

2

75.075.0

11 2/     (22) 

The relationship between NE and �BE + NEM is shown in Figure 4.  When a q value 

of 326 kJ/(day×kg
0.75

) (Just, 1982) was used in the left plot, NE was overestimated in relation to 

measured NE intake. In the right plot, a q value was estimated from data by minimizing the 

weighted least sum of squares so that estimated NE would be in accordance with the measured NE 

intake. This procedure converged at 261 kJ/(day×kg
0.75

) and the results including the line Y=X is 

shown in the right plot in Figure 4. The derived maintenance requirement can be regarded as a 

population requirement because each point in the graphs corresponds to one animal. This can be 

compared to the mean maintenance value of 268 kJ/(day×kg0.75
) obtained with the model (Table 4), 

which indicates that the model predicted a realistic value. Rather than interpreting this as an 

absolute maintenance value (i.e. fasting heat production), the maintenance parameter should be 

considered as an apparent maintenance value because it depends upon the net energy system that 

has been used to calculate the dietary values. 

Insert Figure 4. 

3.4. Modelling relation between body energy retention and body weight 

An allometric relationship was chosen to represent the relation between BE and BW 

due to its biological interpretation. The reciprocal scaled energy density �5 differed the most 
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between animals (0.192 – 0.641 kg/MJ 6θ
). All parameter estimates of �6 (0.730 – 0.864) in the 

model were less than unity, which means that the derivative with respect to BE is continuously 

decreasing. This corresponds to increasing energy density of the pig, which is an obvious 

consequence of the BE gain changing towards lipid accretion as the animal matures. The BE state 

variable is a latent variable in the model and is therefore eliminated from the differential equations 

due to the functional relationship between BE and BW. However, growth curves were modelled 

accurately, which means that the model should be able to predict energy retention at various stages 

of growth. We evaluated the proposed relationship (7) between BE and BW by comparing it with 

data from the 170 pigs in the serial slaughter experiment. The results are presented in Figure 5 on 

log-log scales where line ( )log()log()log( 65 BEBW θθ += ) is added to the plot. The average of the 

13 estimates of �5 and �6 is used to construct the population relation. In general, the line agrees well 

with the observed data, which indicates that the pattern of energy gain is reflected in the NE and BW 

measurements. However, close inspection of Figure 5 also reveals that BW is underestimated for 

low BE values and overestimated for high BE values. Furthermore, considering that the estimated 

maintenance level corresponds closely to the data obtained from serial slaughter experiments 

suggests that the rules for partitioning of net energy for maintenance and energy gain are adequate. 

Insert Figure 5.    

Other functional relationships, like the augmented allometric, have been proposed for 

relating different body components, and for some datasets they may yield a better fit than the 

allometric (Schinckel and de Lange, 1996). The estimated standard errors for �5 were large relative 

to the estimates for many of the animals, and the correlation between the estimators of �5 and �6 

was generally large, around 0.8. This indicates that the estimation procedure has difficulties in 

identifying and distinguishing these two parameters. An even more flexible function would enhance 

this problem. The statistical procedure presented here is suited for multi-response modelling 

(Kristensen and Madsen, 2003) and thus serial measurements of body composition, e.g. ultra sound 

or computed tomography scans can be directly integrated as well. Adopting multivariate response 
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modelling techniques provides the possibility to formulate structural equations that are fitted 

simultaneously to data. Analysis of energy balance data has also been approached by multivariate 

techniques and more information can be extracted from such data (van Milgen and Noblet, 1999). 

 

4. Conclusion 

The focus in the present investigation was to develop a mathematical model for 

energy intake, body energy accretion and body weight gain. The model is derived from simple 

biological assumptions and it can be used to study the interplay between net energy intake and body 

weight gain. The model is based on two coupled differential equations that describe the evolution in 

energy intake and body weight gain during the life time of animals. Animal intrinsic variability 

affects intake and growth and is build into the model through a stochastic differential equation 

approach. Experimental data obtained on growing pigs is used for parameter estimation and 

verification of the biological significance of the parameter values. We showed that eight parameters 

quantifies the time trend and variation in the two dimensional outcome, i.e. body weight at 

maximum rate of intake (149 - 281 kg); maximum rate of intake (25.7 – 35.7 MJ/day); metabolic 

body size exponent (fixed: 0.75); the daily maintenance requirement per kg metabolic body size 

(0.232 – 0.303 MJ/(day×kg0.75
)); reciprocal scaled energy density (0.192 – 0.641 kg/MJ 6θ

); a 

dimensional exponent, �6 (0.730 – 0.867); coefficient for animal intrinsic variability in intake 

(0.120 – 0.248 MJ
0.5

) and coefficient for animal intrinsic variability in growth (0.029 – 0.065 kg
0.5

). 

In conclusion, the new mathematical model provides an important alternative to traditional analysis 

of energy intake and growth curves by treating the animal’s response as two dimensional.    
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The approximate maximum likelihood (ML) estimation of parameters in SDEs involves the use of 

state filtering. Consider the general SDE model with the following system and measurement 

equation: 

( ) ( ) ttt dwtdttxfdx θσθ ,,, +=     (A.1) 

( ) ( )SNeetxhy kkkkk ,0~ ,,, += θ     (A.2) 

The extended kalman filter (EKF) is a set of equations that provides an efficient recursive approach 

to approximate the conditional distributions with Gaussian distributions of a sequence of 

measurements ( )NNN yyyyY ,,...,, 110 −= . The conditional densities are thus completely characterized 

by the one-step prediction error ek and the associated one step prediction covariance matrix Rk|k-1 

which are then used to construct the likelihood function.  

 Given the parameters �, initial states { }00|1
ˆ xEx = , and initial state covariance 

{ }0| 0

ˆ xVP tt = , the first step of the EKF involves the output predictions equation:  

 ( )θ,,ˆ
1|1| kkkkk txhy −− =      (A.3) 

SCCPR T
kkkk += −− 1|1|      (A.4) 

which predict the mean and covariance of the output at time tk given all past information available 

at time tk-1. Here S is the variance of the measurement error and C is the linearization of the 

measurement equation, i.e. 

1|ˆ −=∂
∂=

kkxxx
hC      

 (A.5) 

The second step of the recursions involves the innovation equation:  

1|
ˆ −−= kkkk yye      (A.6) 

which determines the one-step-ahead prediction residual at time tk. The third step of the recursions 

involves the Kalman gain equation: 

1

1|1|

−
−−= kk

T
kkk RCPK      (A.7) 
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This is basically a matrix of weights that determines the degree of updating in the fourth step 

because updating is based on a compromise between the observation and current model state. In a 

situation where the model is good, but the observations are dominated by measurement error, the 

state estimate should rely more on the model as opposed to fitting the observations. On other the 

hand, if the model is incomplete the states should rely more on the observations than the model. The 

updating equations are given by: 

kkkkkk eKxx += −1||
ˆˆ      (A.8) 

T
kkkkkkkkk KRKPP 1|1|1|| −−− −=     (A.9) 

where the predicted mean and covariance of the states at time tk are updated based on the observed 

value via the innovation and the Kalman gain. The fifth and final step of the EKF algorithm 

involves the state prediction equations: 

( )θ,,ˆ
ˆ

1|

1| txf
dt
xd

kt
kt

−
− =      (A.10) 

TT
ktkt

kt APAP
dt

dP
σσ++= −−

−
1|1|

1|
    (A.11) 

which are solved for t∈[tk, tk+1] in order to predict the state ktx |
ˆ  and the associated state 

covariance ktP| . Since )(⋅f  is a nonlinear function, a local first-order Taylor expansion of )(⋅f at 

each sampling time tk is needed to approximate the matrix A i.e. 

1|ˆ −=∂
∂=

ktxxx
fA      (A.12) 

The new predicted mean and covariance of the states are then used to predict new values for the 

next observation and thus steps from A.3 to A.12 are repeated.   

 

 

 

 

 



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure legends 

Fig. 1. The relationship between total net energy intake, body weight, net energy intake, growth rate 

and age of two representative pigs (top: 6206 and bottom: 5374) in the dataset. The circle symbols 

present the actual measurements where the observational rates were calculated as the mean rates 

within a given sub-period i.e. (NE2-NE1) / (t2-t1) or (BW2-BW1) / (t2-t1). The solid line represents 

the one-step-ahead prediction generated by the Extented Kalman Filter and the dotted line 

represents the solutions to the drift term of the model, respectively.   
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Fig. 2. Goodness of fit graphs for the 13 pigs. The rates of energy intake and BW gain are plotted 

against the corresponding one-step-ahead predictions generated by the extended Kalman filter. The 

solid line represents Y = X. 

 

Fig. 3. Simulation results of the proposed model. Plots A and B presents three simulated paths and 

the mean curve for the total net energy intake and body weight for the selected parameters, 

respectively. Plots C and D present the derivative with respect to time for the process and drift term 

in the model.    

  

Fig. 4. Plot of total net energy intake taken as the sum of body energy and integrated maintenance 

requirement against measured total net energy intake. The maintenance requirement (left) is 326 

kJ/(day×kg
0.75

)
 
and (right) 261 kJ/(day×kg

0.75
). The solid lines is Y = X whereas the dotted (left) is 

the regression equation Y = -310 + 1.18X. 

  

 

Fig. 5. Validation of the proposed relationship between body weight and body energy  

(log(BW) = log(�5) + �6 log(BE)). Measurements of body weight are plotted as a function of body 

energy contents for 170 pigs with the mean estimated relationship (mean of the 13 parameter 

estimates).  
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Table 2.  

Definitions of model parameters. 

Parameters Unit Parameter interpretation 

�1
* kg  Body weight at maximum rate of intake 

�2
* MJ/day  Maximum rate of intake 

�3  Metabolic body size exponent  

�4 MJ/(day×kg 3θ
)
 
  The daily maintenance requirement per kg metabolic body size 

�5 kg/MJ 6θ
 Reciprocal scaled energy density 

�6  Dimensionless exponent 

�NE MJ  Diffusion coefficient related to animal intrinsic variability in intake 

�BW kg Diffusion coefficient related to animal intrinsic variability in 

growth 

SNE MJ
2
  Measurement noise 

SBW kg
2 

Measurement noise 
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Table 3. 

Fit statistics for models M0 (varying �3) and M1 (fixed �3).  

Pig Logl0
a 

Logl1
a 

LR
b 

p-value
c 

5365 16.35 16.39 0.080 0.777 

5374 28.77 29.16 0.780 0.377 

5711 58.80 62.30 7.000 0.008 

5713 53.79 54.28 0.980 0.322 

5720 38.73 38.97 0.480 0.488 

6053 45.80 51.80 12.00 0.001 

6056 25.89 32.14 12.50 0.000 

6205 10.69 11.97 2.560 0.110 

6206 -7.178 -7.155 1.250 0.264 

6211 20.60 20.83 0.460 0.498 

6710 -0.270 0.815 2.170 0.141 

6713 22.57 23.27 1.400 0.237 

6716 18.86 19.76 1.800 0.180 

a
Log-likelihood value at final convergence for the models. 

b
Likelihood ratio for comparison of the two models M0 and M1. 

c
The corresponding p-value in the chi-squared distribution with one degree of freedom. 
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Table 5.  

Parameter estimates related to the stochastic part of the model.   

Pig �NE �BW SNE SBW 

5365 0.152 0.048 0.000 0.000 

5374 0.124 0.036 0.014 0.015 

5711 0.248 0.060 0.098 0.000 

5713 0.206 0.060 0.025 0.003 

5720 0.157 0.053 0.000 0.008 

6053 0.239 0.065 0.000 0.000 

6056 0.143 0.035 0.003 0.016 

6205 0.120 0.052 0.000 0.000 

6206 0.132 0.029 0.023 0.001 

6211 0.190 0.057 0.009 0.000 

6710 0.131 0.041 0.000 0.001 

6713 0.173 0.050 0.000 0.000 

6716 0.165 0.054 0.000 0.000 

Mean 0.168 0.049 0.013 0.003 

CV (%) 25.1 22.4 205 170 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 

 

 

 

 

 

 

 




