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Abstract

The combination of the network theory and the calculation of Topological Indices (TIs) allow 

establishing relationships between the molecular structure of large molecules like the genes and 

proteins and their properties at a biological level. This type of models can be considered Quantitative 

Structure-Activity Relationships (QSAR) for biopolymers. In the present work a QSAR model is 

reported for proteins, related to Human Colorectal Cancer (HCC) and codified by different genes that 

have been identified experimentally by Sjöblom et al.(Science, 314 (2006) 268-274) among more 

than 10000 human genes. The 69 proteins related to Human Colorectal Cancer (HCCp) and a control 

group of 200 proteins not related to HCC (no-HCCp) were represented through a HP Lattice type 

Network. Starting from the generated graphs we calculate a set of descriptors of electrostatic 

potential type ( k) that allow to establish, through a Linear Discriminant Analysis (LDA), a QSAR 

model of relatively high percentage of good classification (higher than 80 %) to differentiate between 

HCCp and no-HCCp proteins. The purpose of this study is helping to predict the possible implication 

of a certain gene and/or protein (biomarker) in the colorectal cancer. Different procedures of 

validation of the obtained model have been carried out in order to corroborate its stability, including 

cross-validation series (CV) and evaluation of an additional series of 200 no-HCCp. This biostatistic 
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methodology could be applied to predict Human Colorectal Cancer biomarkers and to understand 

much better the biological aspects of this disease. 

Keywords: Protein Sequence; Colorectal Cancer; Markov Chains; HP Lattice; Complex Networks; 

Biomarkers; QSAR; Linear Discriminant Analysis; Sequence Alignment; Electrostatic Potential. 
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1. Introduction 

The colorectal cancer consists of uncontrolled growths of abnormal cells in that part of the intestine 

(Boursi and Arber, 2007; Stein and Schlag, 2007). In the cancerous processes, the cells undergo 

transformations or mutations in the DNA and multiply very fast since they are not subject to the 

usual restrictions of cellular proliferation. These cells can invade and destroy the tissue around. If 

they enter the sanguineous or lymphatic system, they can spread to any part of the organism and 

produce damages in other organs. This process of spread is called metastasis.  

Many colorectal cancers are thought to arise from adenomatous polyps in the colon. These cell 

growths are usually benign, but some may develop into cancer over time. More than 95% of the 

cancerous tumors of the colon and the rectum are adenocarcinomas. The majority of the time, the 

diagnosis of localized colon cancer is through colonoscopy. Therapy is usually through surgery, 

which in many cases is followed by chemotherapy. When the colorectal cancer is detected early, it 

can be frequently cured. The rate of mortality caused by this type of cancer has decreased over the 

last 20 years, probably because nowadays there are better treatments and many cases are detected in 

the early stage of the cancer. The colorectal cancer is very common in men and women all over the 

world.  Its real causes are not known. The investigation has shown that people with certain risk 

factors, like age, diet, smoking or certain genetic alterations, have more probability than others to 

develop colorectal cancer (Luchtenborg et al., 2007; Schafmayer et al., 2007; Young, 2007). In this 

sense, the development of tools for search of Colorectal Cancer biomarkers becomes of the major 

importance (Yasui et al., 2003).

The discovery of the human genetic sequence has been helpful for the identification of genetic 

alterations related to the appearance of certain cancers (Lynch et al., 2007; Norrild et al., 2007). This

is the reason why it is important to keep analyzing the information obtained through the knowledge 

of the human genetic code. However, the amount of information to be analyzed is so vast that in 
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many occasions a codification or simplification of the information becomes necessary for its later 

analysis. The development of theoretical 2D graph representations for DNA sequences and proteins 

has been very important for the analysis and comparison between different sequences. These 

techniques provide a useful vision of the local and global characteristics of the variations and 

repetition of nucleotides or amino acids throughout a sequence that is not easily analyzable by other 

methods. The different methods proposed by Gates (Gates, 1986), Nandy (Nandy, 1994), Leong and 

Mogenthaler (Leong and Morgenthaler, 1995) consist of drawing up a point that corresponds to a 

base, moving a positive or negative unit on the ordinate or coordinate axes. Nevertheless, many of 

2D graphical representations imply some loss of information due to the overlapping of some bases. 

Randi et al. (Randi  et al., 2003) carried out a new 2D representation where there is no loss of 

information in the transfer of the data of a DNA sequence to its mathematical representation.  In 

analogy to this type of methodologies, there is a type of transformation for protein sequence in a HP 

Lattice type Complex Networks (Bornberg-Bauer, 1997; Chen and Huang, 2005; Chikenji et al., 

2006; Jiang and Zhu, 2005; Li et al., 2002). We can calculate Topological Indices (TIs) for all these 

classes of networks representations in order to make a numerical description of DNA and protein 

sequences (González-Díaz et al., 2008). These descriptors (also known as connectivity indices) allow 

establishing a relation between the biological properties in small and large molecules 

(QSAR/QSPR), like proteins and genes, and their molecular structure; without to rely upon sequence 

alignment (Caballero et al., 2007; Cai and Chou, 2005; Cruz-Monteagudo et al., 2007; Chou and Cai, 

2003; Chou and Cai, 2005; Chou and Shen, 2008a; Estrada et al., 2006; Estrada et al., 2002; 

Fernandez et al., 2007a; Fernandez et al., 2007b; González-Díaz et al., 2007a; González-Díaz et al., 

2007b; González-Díaz and Uriarte, 2005; Hall et al., 2003; Molina et al., 2004; Prado-Prado et al., 

2007; Shen and Chou, 2009; Vilar et al., 2006; Xiao et al., 2009a). Therefore, these methodologies 

could be an alternative to sequence alignment for the study of proteins and genes (Durand et al., 
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1997; Hansen et al., 1996; Hofacker et al., 2002; Lecompte et al., 2001; Persson, 2000; Standley et 

al., 2001; Zhang and Madden, 1997). QSAR methodology has been applied successfully in different 

situations, with small molecules and proteins, which validate the goodness of the method used in this 

paper. Partial Least Square (PLS) was used to establish a relationship between Heuristic Molecular 

Lipophilicity Potential indices and the bioactivity of pyrazole derivatives (Du et al., 2005). New 

QSAR methods were proposed, such as Multiple Field 3D-QSAR (a combination of classical 2D-

QSAR and 3D-QSAR) and Fragment-Based QSAR applied to neuraminidase inhibitors (Du et al., 

2008a; Du et al., 2009). We also have different examples of QSAR with proteins with good results in 

the literature (Du et al., 2008b). 

In this work we start from the sequence of different proteins codified by genes implied in cancerous 

processes, as the Colorectal Cancer, and we transformed these sequences into representations of HP-

Lattice type Network. Once the networks are generated, we used MARCH-INSIDE software in order 

to calculate a series of electrostatic potentials ( k) of the protein sequences forced to fold in the 2D 

HP Lattice Network. Subsequently, through a Linear Discriminant Analysis (LDA) we found a 

QSAR model that allows us to discriminate with a high percentage of accuracy between HCCp and 

no-HCCp. This methodology could be applied to predict Human Colorectal Cancer biomarkers and 

to understand much better the biological aspects of this disease. 

2. Materials and Methods 

2.1. Database

The used database had been described previously by Sjöblom et al. (Sjöblom et al., 2006). All the 

reported genes related to the Colorectal Cancer (69 genes) with their respective protein sequences 

had been compiled from this database. The group control is formed by 200 proteins non-related to 

the appearance of this type of cancer. These corresponding no-HCCp sequence have been used and 
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filtered in addition as examples of useful human proteins in other QSAR studies by Dobson (Dobson 

and Doig, 2003; Dobson and Doig, 2005). Therefore, 200 non-carcinogenic proteins had been 

evaluated in order to validate the obtained theoretical model (Dobson and Doig, 2003; Dobson and 

Doig, 2005). 

2.2. HP Lattice Network Representation

The different protein sequences of this study were introduced in the software MARCH-INSIDE 2.0 

(González-Díaz et al., 2005a). Every sequence was represented through a HP-Lattice type Network. 

We have been following a recently introduced methodology, analogous to the DNA representations 

of Nandy, but adapted to the protein study (Aguero-Chapin et al., 2006). Depending on the 

characteristics of the amino acids, the method groups the 20 types of amino acids in four groups: 

polar, non-polar, acid or basic amino acids. A HP-Lattice type Network for a determined protein 

sequence can be seen in Table 1. A characteristic of this type of representations is that the number of 

nodes (n) in the HP Lattice Network can be equal or smaller than the number of amino acids in the 

protein. The acid-bases classification prevails over the polar/non-polar and the different groups do 

not overlap each other. Subsequently, each amino acid in the sequence is placed in a 2D Lattice 

defined by a Cartesian space with center at the (0, 0) coordinates. The coordinates of the successive 

bases are calculated to form a Lattice Network with step equal to 1, as follows:

a) Increases in +1 the abscissas axis coordinate for an acid amino acid (rightwards-step) or: 

b) Decreases in -1 the abscissas axis coordinate for a basic amino acid (leftwards-step) or: 

c) Increases in +1 the ordinates axis coordinate for a polar amino acid (upwards-step): 

d) Decreases in -1 the ordinates axis coordinate for a non-polar amino acid (downwards-step). 

Table 1 comes about here 

2.3. Calculation of the Electrostatic Potentials in the 2D-HP Lattice Network
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A series of the Electrostatic Potential ( k) approximations for each 2D-HP Lattice Network had been 

calculated using the previously mentioned software MARCH-INSIDE 2.0. In order to calculate the 

different values of k, the potentials of each amino acid were averaged, considering the values of all 

nearby amino acids, located to a topological distance not greater than k within the HP Lattice 

Network. The Markov Chain theory is used to estimate the first six values of k of every sequence (k 

= 0, 1, 2, 3, 4, and 5) (González-Díaz et al., 2007c; Saiz-Urra et al., 2005).

The method uses essentially three matrix magnitudes: 

a) The matrix
 1

(see Eq. 1). This matrix is built up as a squared matrix (n × n). The 

matrix 
1

 contains the probabilities 
1
pij to reach a node ni with charge qi moving throughout a 

walk of length k = 1 from other node nj with charge qj. We can also speak about the 

probabilities of reaching a node with electrostatic potential i moving from another node:  
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b) The charges vector 
0
Q. The method considers anyhow that a total charge or weight 

(qi) can be assigned to each node. This charge of the node is equal to the sum of the charges of 

all the aminoacids coinciding in the same node. So, in order to retain a more compact matrix 

notation all charges are arranged as a column vector 
0
Q.

c) The zero order electrostatic potential vector 
0

(see Eq. 2). This vector lists the 

absolute initial probabilities 
A
pk(j) with which a node selected at random presents a given 

charge qj.

Thus, the use of Markov Chains theory allows calculating the average Electrostatic Potential ( k) for 

all nodes nj that can be reached in the 2D-HP Lattice Network moving from any node ni using walks 

of length k. Considering that the k are average values associated to a discrete lattice we determine 
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them as the sum of two-terms products using Chapman-Kolmogorov type equations. The readers can 

see previous works explaining in detail the use of this kind of approach in many different situations 

(Cruz-Monteagudo et al., 2007; González-Díaz et al., 2003; Gonzalez-Diaz et al., 2007a; González-

Díaz et al., 2007d; González-Díaz et al., 2007e; Perez-Bello et al., 2009; Ramos de Armas et al., 

2004; Santana et al., 2006). The first term is the probability of arising the node nj moving from any 

node ni throughout walks of length k and the second one the charge of the node qj (see central 

member of Eq. 3 below): 

3010

1

Q
k

j

n

j
k

A
k qjp

Note that the higher-order k depends only on the absolute probabilities 
A
p0(j) of order 0, on the 

charges and on the matrix. In particular, the evaluation of such expansions for k = 0 gives the order 

zero Electrostatic potential ( 0); for k = 1 the short-range Electrostatic potential ( 1), for k = 2 the 

middle-range Electrostatic potential ( 2), and for k > 2 the long-range Electrostatic potentials ( k>2).

This expansion is illustrated for the linear graph n1-n2-n3 characteristic of the sequence (Asp-Glu-

Asp-Lys), please note that the central node contains both Glu and Asp: (Gonzalez-Diaz et al., 2005b) 
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2.4. Statistical Analysis 
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At this level a Linear Discriminant Analysis (Hill and Lewicki, 2006 ; Zhu and Martinez, 2006) has 

been carried out relating the different descriptors previously calculated to the carcinogenic activity of 

the different protein sequences. The Software STATISTICA 6.0 (StatSoft.Inc., 2002) package has 

been used for the statistical analysis and to develop a function of classification that differentiates 

between HCCp and no-HCCp:

4·...·· 01100 abbbscoreHCC kk

The variable HCC-score is the biological property under investigation, in this case the Human 

Colorectal Cancer (HCC), k are electrostatic potential descriptors calculated for the database and bk

and a0 are the coefficients obtained by the Linear Discriminant Analysis (LDA). The function was 

obtained by using the forward-stepwise method for a variable selection. In the development of this 

classification function the values of 1 and 0 were assigned to HCCp and no-HCCp respectively. The 

statistical parameters that define the quality of the model are the Wilks’ statistic (U), Fisher ratio (F)

and the percentage of good classification for the training and CV sets. The a posteriori probability 

calculated from the Mahalanobis distance was used for the classification of cases as active or 

inactive (Hill and Lewicki, 2006 ). 

3. Results and Discussion 

A superposition of all the HP Lattice Network has been done, including the HCCp and no-HCCp 

(see Figure 1). This superposition shows that there is no clear differentiation between HCCp and no-

HCCp networks. This is the reason why the calculation of TIs in combination with the discriminant 

analysis is necessary.

Figure 1 comes about here 
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The linear classification model derived from the STATISTICA package is given below together with 

the statistical parameters:  

5197.2057.37736.39 0302scoreHCC

N = 269 U = 0.528 F (2,266) = 118.926 p<0.05

Here, N is the number of compounds included in the discriminant analysis calculation, U is the 

Wilks’ statistics, F is the Fisher ratio and p is the significance level. The proteins that have been 

introduced in the model and their a posteriori probabilities calculated in the analysis are shown in 

Table 2. The described model presents a good classification percentage of 89.86 % in the positive 

cases (62 of 69 proteins codified by carcinogenic genes are recognized by the model). The negative 

cases are evaluated by an 83.00 % of accuracy (166 of 200 proteins non-implied in the cancerous 

processes are well evaluated).

Table 2 comes about here 

The parameters refer to the model with all the cases in the training. But it is worth noting that to find 

the model we have divided the database into two series:  training and CV (cross-validation) series. In 

order to demonstrate the stability of the model this process has been repeated on different occasions 

randomly interchanging cases in both series. The obtained results are similar to those of the 

previously described model from the quality of the statistical parameters point of view as in the 

percentage of good classification (see Table 3). In statistical prediction, three cross-validation 

methods are often used: subsampling test, independent dataset test, and jackknife test (Chou and 

Zhang, 1995). However, as demonstrated in (Chou and Shen, 2007), the jackknife test has the least 

arbitrariness and therefore has been increasingly and widely used to test various prediction methods 

(see, e.g., (Chen et al., 2008; Chen and Han, 2009; Chou and Shen, 2008a; Chou and Shen, 2008b; 

Chou and Shen, 2009; Ding et al., 2009a; Ding et al., 2009b; Du and Li, 2008; Georgiou et al., 2009; 



Acc
ep

te
d m

an
usc

rip
t 

11

Kannan et al., 2008; Li and Li, 2008; Lin, 2008; Lin et al., 2008; Lin et al., 2009; Munteanu et al., 

2008; Nanni and Lumini, 2009; Rezaei et al., 2008; Shen and Chou, 2009; Shen et al., 2009; Shi et 

al., 2008; Tian et al., 2008; Wang et al., 2008; Xiao et al., 2009b; Zeng et al., 2009; Zhang and Fang, 

2008; Zhang et al., 2008). In the jackknife or leave-one-out test each case in the database is predicted 

for the model constructed using all the cases except the one being predicted. In this paper, we used 

the three methods. As we described above, the model was found dividing the database in training and 

CV series (subsampling test). A jackknife validation procedure was carried out in the Table 2. The 

results in the good classification percentage were maintained when we applied this validation 

method. Another method for validating this model consists of the evaluation of 200 proteins that are 

not related to the Colorectal Cancer and, therefore, must be evaluated by our model as non-active 

(see Table A of the Supporting Information). The percentage of good classification in this series of 

external prediction is 74% (148 of these 20 proteins are classified correctly) 

Table 3 comes about here 

Receiver Operating Characteristic (ROC) curve for the model was also calculated (Diamond, 1987; 

Hanley, 1989; Mann et al., 1992; Metz et al., 1973). The fraction of true positives (Sensitivity) is 

contrasted with the fraction of false positives (1-Specificity) in this type of curves. The area under 

the curve can take values between 1 (perfect classifier) and 0.5 (useless random classifier). In our 

ROC curve the area under the curve is 0.96, which confirms that the used model is not a random 

classifier (see Figure 2).

Figure 2 comes about here 

We have made also a leverage-based analysis of the domain of applicability (DA) of the model (see 

Figure 3) (Hill and Lewicki, 2006 ; Merli, 2005). Through this type of studies we can see the 

applicability limits of our methodology. This way we can avoid making erroneous predictions for 

some cases that would be out of the model DA. A Cartesian double ordinate, where the CV residuals 
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and standard residuals are represented, is shown in the Figure 3. The leverage is represented on the 

abscissas axis. The DA of the model is defined as a squared area within ±2 band for residuals and a 

leverage threshold of h = 0.033.

Figures 3 comes about here 

4. Conclusions 

The combination of the 2D representations of the protein sequence, as the HP Lattice Network, and 

the calculation of TIs constitute a significant tool for designing theoretical models that relate the 

protein structure to its biological properties. This type of methodologies can be complementary to the 

methods of sequence alignment for studying protein databases. The approximation we described in 

this work could represent a method that makes possible the analysis of large protein databases in 

order to identify novel proteins susceptible of the development of colorectal cancer and to understand 

better the biological phenomena related to cancer.   

Supporting Information Available. The external prediction series for the theoretical model with 

200 proteins is shown in Table A of the Supporting Information. 
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Figure and table captions 

Table 1. Description of Nodes, Aminoacid Sequence, Coordinates and Stochastic Matrix for a HP 

Lattice Network. 

Table 2. Proteins Introduced in the Model and their a Posteriori Probabilities (P). 62 of 69 Positive 

Cases are well Evaluated (89.86% of Good Classification). 166 of 200 Negative Cases are well 

Evaluated (83.00% of Good Classification). P (jackknife) is the a Posteriori Probability Extracted 

from the Jackknife Test. 

Table 3. Description of the Models Varying the Cross-validation Series. 

Table A (Supporting Information). External prediction series: 148 of 200 proteins non-related to 

Colorectal Cancer are correctly classified (74.0% of good classification). P represents the a posteriori 

probability of not having a carcinogenic activity. 

Figure 1. Superposition of all HP Lattice Network, including the HCCp (black coloured) and non- 

HCCp (grey coloured). 

Figure 2. Receiver Operating Characteristic (ROC) curve for the model. The area under the curve is 

0.96.

Figure 3. Leverage-based analysis of the domain of applicability of the model: a) Colorectal Cancer 

Proteins, b) No Colorectal Cancer Proteins; model leverage threshold is h = 0.033. 
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Table 1. Description of Nodes, Aminoacid Sequence, Coordinates and Stochastic 

Matrix for a HP Lattice Network.

n Aminoacids X Y HP Lattice Network

a Ser1

Cys9

0

0

0

0

ab

c

de

f g

h
i

jkl

1paa
1pab 0 0 .............0 0

1pba
1pbb

1pbc 0..............0 0
................................................
................................................
................................................
................................................
................................................
0 0 ............................1pkk

1pkl
0 0 ...........................1plk

1pll

b Hys2 -1 0

c Leu3

Glu7

-1

-1

-1

-1

d Val4 -1 -2

e Hys5 -2 -2

f Asn6 -2 -1

g Asp8 0 -1

h Tyr10 0 1

i Glu11 1 1

j Tyr12 1 2

k Hys13 0 2

l Lys14 -1 2

5. Tables
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Table 2. Proteins Introduced in the Model and their a Posteriori Probabilities (P). 62 of 

69 Positive Cases are well Evaluated (89.86% of Good Classification). 166 of 200 

Negative Cases are well Evaluated (83.00% of Good Classification). P (jackknife) is the 

a Posteriori Probability Extracted from the Jackknife Test.

Nº Protein P P(jackknife) Nº Protein P P(jackknife)

HCC related PROTEINS (we give the protein gene name)

1 ABCA1 0.57 0.56 36 MCP 0.71 0.70

2 ACSL5 0.99 0.99 37 MGC33407 0.95 0.95

3 ADAM29 0.91 0.91 38 MKRN3 0.64 0.63

4 ADAMTS15 0.91 0.91 39 MLL3 0.91 0.90

5 ADAMTS18 0.93 0.93 40 MMP2 0.70 0.70

6 ADAMTSL3 0.79 0.78 41 NF1 0.96 0.96

7 APC 0.65 0.65 42 OBSCN 0.95 0.95

8 C6orf29 0.93 0.92 43 P2RX7 0.84 0.84

9 C10orf137 0.27 0.26 44 P2RY14 0.96 0.96

10 C15orf2 0.94 0.94 45 PHIP 0.83 0.82

11 CD109 0.91 0.91 46 PKHD1 0.87 0.86

12 CD248 0.40 0.39 47 PKNOX1 0.94 0.94

13 CHL1 0.78 0.78 48 PRKD1 0.98 0.98

14 CNTN4 0.61 0.60 49 PTPRD 0.81 0.81

15 CSMD3 0.80 0.79 50 PTPRU 0.93 0.93

16 EPHA3 0.62 0.62 51 RET 0.79 0.79

17 EPHB6 0.89 0.89 52 RUNX1T1 0.66 0.66

18 ERCC6 0.24 0.23 53 SCN3B 0.84 0.84

19 EVL 0.96 0.96 54 SDBCAG84 0.84 0.84

5. Tables
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20 EYA4 0.99 0.99 55 SEC8L1 0.91 0.91

21 FBXW7 0.94 0.94 56 SFRS6 0.44 0.43

22 GALNS 0.90 0.90 57 SLC29A1 0.98 0.98

23 GNAS 0.43 0.41 58 SMAD2 0.72 0.71

24 GUCY1A2 0.77 0.77 59 SMAD3 0.86 0.86

25 HAPLN1 0.93 0.93 60 SMAD4 0.73 0.73

26 HIST1H1B 0.99 0.99 61 SYNE1 0.96 0.96

27 K6IRS3 0.88 0.88 62 TBX22 0.92 0.92

28 KCNQ5 1.00 0.99 63 TCF7L2 0.73 0.73

29 KIAA1409 0.81 0.80 64 TGFBR2 0.89 0.89

30 KRAS 0.03 0.02 65 TP53 0.97 0.97

31 LGR6 0.99 0.99 66 TTLL3 0.97 0.97

32 LMO7 0.73 0.73 67 UHRF2 0.95 0.95

33 LOC157697 0.97 0.97 68 UQCRC2 0.89 0.89

34 LRP2 0.84 0.83 69 ZNF442 0.97 0.97

35 MAP2 0.30 0.27

No-HCC related PROTEINS (we give the PDB ID)

70 1A0K 0.02 0.02 170 1PBK 0.03 0.03

71 1A0S P 0.52 0.53 171 1PHR 0.01 0.01

72 1A0S Q 0.52 0.53 172 1PMT 0.64 0.64

73 1A0S R 0.52 0.53 173 1PUD 0.52 0.53

74 1A1X 0.01 0.01 174 1QF7 B 0.03 0.03

75 1A2B 0.23 0.23 175 1QGH A 0.03 0.03

76 1A2J 0.08 0.08 176 1QMG D 0.12 0.12
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77 1A3Z 0.24 0.24 177 1QTO A 0.02 0.02

78 1A8P 0.15 0.16 178 1RCB 0.02 0.02

79 1A44 0.02 0.02 179 1RLW 0.03 0.03

80 1A45 0.05 0.05 180 1SKZ 0.01 0.01

81 1A62 0.01 0.01 181 1SVP A 0.08 0.08

82 1AAZ A 0.00 0.00 182 1TYB E 0.72 0.73

83 1AAZ B  0.00 0.00 183 1UBV 0.60 0.60

84 1ALU 0.31 0.32 184 1UP1 0.06 0.06

85 1AQE 0.00 0.00 185 1VNC 0.67 0.68

86 1AVU 0.16 0.16 186 1WHO 0.00 0.00

87 1B0L A 0.78 0.78 187 1WU3 I 0.14 0.15

88 1B9W A 0.00 0.00 188 1WWB X 0.00 0.00

89 1BAS 0.04 0.04 189 1XAN 0.58 0.60

90 1BD8 0.12 0.12 190 1XIB 0.17 0.18

91 1BKB 0.12 0.13 191 1XJO 0.34 0.34

92 1BV1 0.04 0.04 192 1XSO A 0.00 0.00

93 1BXM 0.01 0.01 193 1XSO B 0.00 0.00

94 1C1L A 0.05 0.05 194 1YGH A 0.10 0.10

95 1C5E A 0.01 0.01 195 1YHB 0.00 0.00

96 1CC7 A 0.00 0.00 196 1YTT A 0.02 0.02

97 1CEN 0.51 0.52 197 1ZIN 0.52 0.52

98 1CL0 A 0.43 0.43 198 1ZRM 0.06 0.06

99 1COT 0.00 0.00 199 2A0B 0.03 0.03

100 1CPM 0.52 0.53 200 2AXE 0.84 0.85

101 1CXA 0.01 0.01 201 2BNH 0.07 0.07
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102 1DIX A 0.71 0.72 202 2CI2 I 0.00 0.00

103 1DK8 A 0.04 0.04 203 2DHN 0.01 0.01

104 1DOT 0.63 0.64 204 2DUB F 0.29 0.32

105 1DT1 A 0.02 0.02 205 2EQL 0.03 0.03

106 1DUC 0.03 0.03 206 2ERK 0.46 0.47

107 1DY3 A 0.08 0.09 207 2FAL 0.06 0.06

108 1E2U A 0.58 0.60 208 2FD2 0.00 0.00

109 1E7L B 0.02 0.02 209 2FHA 0.08 0.08

110 1EAJ B 0.01 0.01 210 2FIT 0.09 0.09

111 1ED1 A 0.03 0.03 211 2FKE 0.00 0.00

112 1EJB E 0.05 0.05 212 2FUA 0.14 0.15

113 1EL5 A 0.23 0.23 213 2GAC A 0.01 0.01

114 1ET6 B 0.25 0.25 214 2GAC B 0.01 0.01

115 1F0M A 0.00 0.00 215 2GAC C 0.01 0.01

116 1F47 B 0.06 0.06 216 2GAC D 0.01 0.01

117 1F83 A 0.23 0.24 217 2GDM 0.17 0.18

118 1FHG A 0.04 0.04 218 2GLT 0.26 0.26

119 1FYH D 0.35 0.36 219 2HPR 0.00 0.00

120 1G0W A 0.31 0.32 220 2IMM 0.00 0.00

121 1G6N B 0.07 0.07 221 2IMN 0.00 0.00

122 1G7C B 0.01 0.01 222 2INT 0.02 0.02

123 1GUP A 0.24 0.24 223 2IZA 0.01 0.01

124 1H4Y B 0.01 0.01 224 2LIV 0.65 0.66

125 1HI3 A 0.05 0.05 225 2MAD L 0.11 0.11

126 1HMY 0.24 0.25 226 2MBR 0.21 0.22
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127 1HQ3 D 0.01 0.01 227 2PF1 0.13 0.13

128 1HUS 0.12 0.12 228 2RSL A 0.08 0.08

129 1HX3 A 0.16 0.17 229 2TCT 0.24 0.24

130 1HX3 B 0.16 0.17 230 2TDT 0.34 0.35

131 1I81 E 0.00 0.00 231 2TGI 0.00 0.00

132 1ILR 1 0.05 0.05 232 2TIR 0.02 0.02

133 1INO 0.44 0.44 233 2TMY 0.02 0.02

134 1IOP 0.12 0.12 234 2TN4 0.06 0.06

135 1IRD A 0.26 0.26 235 2TS1 0.83 0.83

136 1IRD B 0.02 0.02 236 2UBP A 0.00 0.00

137 1IUZ 0.01 0.01 237 2UBP B 0.01 0.01

138 1IXG 0.56 0.56 238 2UBP C 0.48 0.48

139 1JAH 0.02 0.02 239 2UKD 0.73 0.75

140 1JDO 0.11 0.11 240 2WBC 0.81 0.83

141 1JEH A 0.08 0.08 241 2WRP R 0.00 0.00

142 1JEH B 0.08 0.08 242 3BC2 0.10 0.10

143 1JLM 0.21 0.21 243 3BIR 0.02 0.02

144 1JMW A 0.06 0.06 244 3BLM 0.18 0.18

145 1JWO A 0.00 0.00 245 3CLN 0.07 0.07

146 1K89 0.06 0.07 246 3CSC 0.69 0.69

147 1KAA 0.02 0.02 247 3CYR 0.00 0.00

148 1KDJ 0.01 0.01 248 3ENG 0.70 0.70

149 1KLO 0.57 0.59 249 3GBP 0.55 0.56

150 1KMB 1 0.08 0.08 250 3KAR 0.56 0.56

151 1KVA 0.10 0.10 251 3PNP 0.37 0.38
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152 1KVW 0.03 0.03 252 3PYP 0.01 0.01

153 1LAM 0.67 0.68 253 3RHN 0.04 0.04

154 1LE4 0.15 0.15 254 3RUB S 0.00 0.01

155 1LIT 0.29 0.30 255 3SEB 0.11 0.11

156 1LOP A 0.13 0.13 256 3SSI 0.01 0.01

157 1LOU A 0.01 0.01 257 3VUB 0.00 0.00

158 1MAR 0.35 0.36 258 4AIG 0.56 0.57

159 1MHO 0.00 0.00 259 4LVE A 0.01 0.01

160 1MOL A 0.00 0.00 260 4LZM 0.06 0.06

161 1MOL B 0.00 0.00 261 4PAH 0.37 0.37

162 1MRG 0.66 0.67 262 5EAU 0.73 0.74

163 1MUP 0.01 0.01 263 6TAA 0.88 0.89

164 1MZM 0.00 0.00 264 7ACN 0.68 0.68

165 1NCX 0.13 0.13 265 7ATJ A 0.69 0.69

166 1NFO 0.43 0.43 266 7PAZ 0.03 0.03

167 1NNA 0.41 0.42 267 7PCY 0.01 0.01

168 1OHJ 0.38 0.38 268 8CHO 0.02 0.02

169 1OPC 0.01 0.01 269 451C 0.00 0.00
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Table 3. Description of the Models Varying the Cross-validation Series.

CV1 CV2 CV3 CV4

N 202 202 202 202

Wilks’ 0.55 0.51 0.56 0.53

F(Fisher) 80.61 95.38 76.70 87.11

p <0.00 <0.00 <0.00 <0.00

%active training 88.24 90.38 88.00 90.20

%active cross-validation 94.44 88.24 94.74 88.89

%inactive training 84.11 82.00 81.58 84.11

%inactive cross-validation 79.59 86.00 87.50 81.63

%Total 84.76 84.76 84.76 85.13

5. Tables




