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Abstract

The dynamics of vegetation is formulated in terms of the allometric and structural properties of plants. Within
the framework of a general and yet parsimonious approach, we focus on the relationship between the morphology
of individual plants and the spatial organization of vegetation populations. So far, in theoretical as well as in field
studies, this relationship has received only scant attention. The results reported remedy to this shortcoming. They
highlight the importance of the crown/root ratio and demonstrate that the allometric relationship between this ratio
and plant development plays an essential part in all matters regarding ecosystems stability under conditions of limited
soil (water) resources. This allometry determines the coordinates in parameter space of a critical point that controls
the conditions in which the emergence of self-organized biomass distributions is possible. We have quantified this
relationship in terms of parameters that are accessible by measurement of individual plant characteristics. It is further
demonstrated that, close to criticality, the dynamics of plant populations is given by a variational Swift-Hohenberg
equation. The evolution of vegetation in response to increasing aridity, the conditions of gapped pattern formation and
the conditions under which desertification takes place are investigated more specifically. It is shown that desertification
may occur either as a local desertification process that does not affect pattern morphology in the course of its unfolding
or as a gap coarsening process after the emergence of a transitory, deeply gapped pattern regime. Our results amend
the commonly held interpretation associating vegetation patterns with a Turing instability. They provide a more
unified understanding of vegetation self-organization within the broad context of matter order-disorder transitions.

Key words: vegetation gapped patterns, competition, self-organization, diffusion instability in ecosystems, Swift-Hohenberg

equation.

1. Introduction

Many regions exhibit landscapes whose vegetation
cover consists of a regular distribution of densely
vegetated areas and zones of bare soil (see e.g.,
Valentin and Poesen, 1999; Tongway et al., 2001;
Couteron, 2002; Deblauwe et al., 2008). These land-
scapes, of which Fig. 1a is an example, are mainly
found in climates where the potential evapotran-
spiration substantially exceeds the mean annual
precipitation. The natural formation of these large
ecological organizations can be explained by this
hydric stress combined with redistribution and con-
servation mechanisms that allocate more limiting
resources, water in particular, to vegetated patches

than to bare soil (Schlesinger et al., 1990; Wilcox et
al., 2003; Ludwig et al., 2005; Breshears, 2006).
Several mathematical formulations of this ex-
planation have been developed. In general, veg-
etation patterning is interpreted as a process
of self-organization that takes shape via a non-
equilibrium instability. This instability may either
be a symmetry-breaking phenomenon in the strict
sense, likely to take place even if the environment
is isotropic (Lefever and Lejeune, 1997; HilleRis-
Lambers et al., 2001; von Hardenberg et al., 2001;
Shnerb al., 2003; D’Odorico et al., 2006; Kéfi, 2008),
or it may be an advection-induced transition that
requires the pre-existence of some environmental
(usually topographical) anisotropy (Klausmeier,
1999; Okayasu and Aizawa, 2001; Sherratt, 2005;

Preprint submitted to Elsevier 14 July 2009
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a b

Fig. 1. (a) Sub-Sahelian gapped landscape dominated by the shrub species Combretum micranthum G. Don in South-West

Niger. Shrub crown radius and bare spot distances are approximately 1.75 m and 50 m. (b) The rhizospheres of five shrubs

were excavated. The normalized biovolume b of each shrub was computed as the ratio of its biovolume (i.e., crown area times

total height) to that of the largest individual. Values ranged between 0.1 and 1. Roots penetrated down to ca. 40-cm depth but

their spread could exceed the crown radius by one order of magnitude. The best fits of Φc were obtained for an exponential

function with L0
c = 1.27 and p = 1/3. Facilitation consisted of a drastic reduction of direct soil evaporation. Soil water sensors

were used to parameterize Φf like Φc by an exponential. Attempts to fit with other functions did not yield substantially better

fits. A clear optimum was found for L0
f = 0.81 (Barbier et al., 2006, 2008).

Ursino, 2005). Recent campaigns of measurement
in the field, notably in the sub-Sahelian territories
of Niger, strongly support the hypothesis that the
instability underlying the formation of gapped pat-
terns (cf. Fig. 1a) is symmetry-breaking in the strict
sense (Barbier, 2006; Barbier et al., 2006, 2008).
As such, this instability can occur in the absence
of slope-induced water redistribution, a mechanism
that has long been thought to be primordial for veg-
etation pattern formation (Tongway et al., 2001).
Gapped patterns are observed from Burkina Faso
(Couteron and Lejeune, 2001) to Sudan (Deblauwe
et al., 2008). Besides their periodicity, they display
a strong contrast (see Fig. 1a) between the gaps,
where the biomass is close to zero, and the vege-
tated matrix where the vegetation may reach values
of 12t/ha in Southern Niger (Hiernaux and Gérard,
1999).
So far, in theoretical studies as well as in field
studies, the relationship between the elementary
structure of individual plants and the collective or-
ganization of plant populations has received only
scant attention. Our study is intended to clarify
this relationship in light of the results obtained in
recent campaigns of field measurement (Barbier,
2006; Barbier et al., 2008). Using a similar approach
to that adopted in our earlier works (Lefever and

Lejeune, 1997; Lejeune et al., 1999; Lefever et al.,
2000; Couteron and Lejeune, 2001; Lejeune et al.,
2004; Tlidi et al., 2008), we aimed to achieve a gen-
eral and yet parsimonious theoretical formulation
explaining how the structure of individual plants
shapes vegetation dynamics and how, as a con-
sequence, vegetation may either adapt to varying
environments or conversely collapse and become
extinct (desertification).
It is well known that plants adapt their structures,
especially their root structures (rhizosphere), to
combat water scarcity (Schenk and Jackson, 2002;
Barbier, 2006). When confronted with drought, they
strive to increase their water resources by spreading
their roots over a greater territory. Fig. 1b shows
that in a shallow soil context, this lateral spread
may extend beyond the radius of the aerial struc-
ture (crown) by an order of magnitude. In terms
of morphological plasticity, this is an extraordinary
achievement. However, whereas the lateral expan-
sion of the roots allows for greater water uptake,
it significantly increases the degree of competition
between neighboring plants. As a consequence,
it modifies the balance between competition and
the positive feedback called plant-plant facilita-
tion, which favors vegetation development in dry-
lands(e.g. Callaway, 1995; Callaway et al., 2003).
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Understanding how such interactions operate at the
scale of plant crown (for facilitation) and rhizosphere
(for competition) to produce biomass organizations
of landscape size is the main biological question
studied in sections 2 to 4. The results highlight the
role of the crown/root ratio which gives the relative
size of the above-ground and below-ground struc-
tures. Furthermore, our results demonstrate that
the allometric parameter linking plant development
to this ratio plays an essential part in all matters
regarding stability at the community level. Notably,
this allometric parameter determines the coordi-
nates in parameter space of a critical point that
controls the feedback conditions for which an orga-
nization in the biomass distribution may emerge.
We provide evidence for a fundamental link uniting
criticality, vegetation patterning and plant mor-
phology. We further demonstrate that close to their
critical point, the dynamics of ecosystems is varia-
tional and can be described by a Swift-Hohenberg
equation. Our results amend the current interpreta-
tion associating vegetation pattern formation with
a Turing instability by providing a more unified un-
derstanding of vegetation self-organization within
the broad context of matter order-disorder transi-
tions. In section 5, we investigate more specifically
the pathway of vegetation change in response to
increasing aridity. We examine the conditions of
gapped pattern formation and the conditions under
which desertification takes place either as a local
desertification process that does not affect patterns
morphology in the course of its unfolding or as a
gaps coarsening process that follows the emergence
of a transitory deeply gapped pattern regime.

2. Vegetation interactions and crown-roots
allometry

We consider a community within which, as shown in
Fig. 1 and as it is often the case in drylands, a single
species accounts for most of the biomass. Let La be
the crown radial spread of the community’s largest
individual, S = π L2

a be a surface element centered
on a point r and

∂t b(r, t) = b(r, t) [1− b(r, t)] Mf − μ b(r, t)Mc+

δ

∫
ΦD(|r′|) [b(r + r′, t)− b(r, t) ] dr′ (1)

be the logistic equation governing the evolution of
the biomass density b(r, t) supported by this ele-
ment at time t, normalized by the biomass density

of the surface element S centered on the largest in-
dividual. The first two terms of (1) describe the
biomass gains and losses; the third term models seed
production, dispersion and germination; the logistic
factor in the first term,

[
1− b(r, t)

]
, expresses that

b(r, t) ∈ [0, 1]. The time constants μ and δ are nor-
malized with respect to the biomass doubling time
and are thus dimensionless. They refer to individ-
ual (isolated) plants; more precisely, they represent
the biomass loss/gain ratio and the ratio of biomass
gains due to seeds and to growth. In the third term
of (1), integration extends over the entire territory
and space is normalized such that its unit be equal
to La. The kernel of the integral is the Gaussian
function

ΦD(|r′|) =
σ

π
exp

(−σ |r′|2) , with σ =
(

La

Ld

)2

,

(2)
weighting the seed flux decrease with distance ac-
cording to the seed dispersion range Ld.
Mf andMc are state functions that depend on the
distribution of biomass around the surface element
S centered on point r. Their purpose is to model the
facilitative and competitive interactions existing be-
tween plants and the dependence of these interac-
tions upon plant development. Mf models interac-
tions favoring vegetation development (facilitation)
generated by the plant aerial structure. They involve
the accumulation of nutrients in the neighborhood
of the plants, the reciprocal sheltering of neighbor-
ing plants against climatic harshness, and the pro-
vision of shade, which improves the water budget
in the soil (e.g. Callaway, 1995). The range Lf over
which facilitation operates depends on the crown
size. Mc models below-ground interactions involv-
ing rhizospheres. Plants confronted with drought de-
velop large superficial root systems relative to their
crown size in order to extract enough water from the
topsoil (Schenk and Jackson, 2002). The range Lc of
the competition generated by root systems depends
on this extension (Callaway and Walker, 1997; Call-
away et al., 2002, 2003). Clearly, Mf and Mc must
be positive definite functions of b(r, t) taking values
in the interval [1,∞) and must become equal to 1 in
the limit where plants are too sparsely distributed
to interact:

lim
b(r+r′, t)→0

Mı = 1, (ı = f, c). (3)

Hence, we assume that they are exponential func-
tions whose argument is a mean field integral taken
over the biomass distribution (ı = f, c):

3
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Mı = exp
(

χı

∫
Φı (|r′|, Lı) b(r + r′, t) dr′

)
. (4)

Their kernels, given by

Φı (|r′|, Lı) = N−1
ı exp

[
− |r

′|
Lı

]
, (5)

describe how interactions vary with distance and
plant development. To account for these dependen-
cies, we set

Lı = L0
ı b(r + r′, t)p, (6)

and define the norm Nι of (5) as

Nı =
∫

exp
[
− |r|

L0
ı

]
dr. (7)

The exponent p and the constants L0
f and L0

c can be
evaluated by field measurements of the crown and
rhizosphere morphology (Barbier et al., 2008). The
allometric relation (6) allows us to avoid the com-
plication of having to introduce more variables in
order to describe the age classes of the community.
It expresses that fully grown (mature) plants that
produce significant feedback effects are unlikely to
be present on a surface element S, centered on r+r′,
if its biomass density b(r + r′, t) tends to zero. The
contribution of such elements in the integral argu-
ment of (4) is negligible if p is a finite (non-zero) posi-
tive number. A similar relation, with p = 2, has been
used by Gilad et al., (2004), Meron et al. (2007) and
Sheffer et al. (2007). These authors however adopt
another normalization condition and introduce a fi-
nite lower bound below which the range of interac-
tions cannot decrease. We shall not adopt this as-
sumption, which in our view is unnecessary. The pa-
rameters χf , χc model the interaction’s strength;
they depend on conditions such as soil nature and
moisture index (quantified by the ratio of annual
precipitation to potential evapotranspiration). Let
us also define the structural ratio

ε ≡
(

L0
f

L0
c

)2

. (8)

Use of the square power is motivated by the fact
that hereafter only the square of L0

f/L0
c appears in

mathematical expressions. Together with the allo-
metric parameter p, the structural ratio ε plays an
important role in estimating the feedback strengths
χf , χc and in predicting the wavelength of periodic
patterns.
Finally, with respect to the modeling of plant inter-
actions, let us point out that the field data gathered
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Fig. 2. Crown radius histogram: number of plants as a func-

tion of crown size for 750 individuals of C. micranthum above

1.5 m height measured in a plot of 0.4 ha representative of

the Niger site seen in Fig. 1.

so far bear out expressions (5-7). For the ecosystem
shown in Fig. 1, which is our reference example, the
structure and development of the crown and rhi-
zosphere of Combretum micranthum nicely fit with
the assumption that interactions decrease exponen-
tially with distance. The values of the parameters
are (Barbier et al., 2008):

p ≈ 1/3, L0
f ≈ 0.81La, L0

c ≈ 1.27La. (9)

For the structural ratio estimate, this yields:

ε ≈ 0.41. (10)

Fig. 2 reports a histogram of the crown radii estab-
lished on the basis of measurements made for 750
individual plants constitutive of the pattern shown
in Fig. 1a. Note that while the wavelength of this
pattern (mean distance between bare spots) is

λ ≈ 50 m, (11)

the maximum crown radius measured in the sam-
pling for the most developed trees is

La ≈ 3.25 m. (12)

3. Uniform stationary vegetation covers

3.1. Plant development and vegetation critical point

How age classes having different structural and func-
tional potentialities influence the stability of vege-
tation has not been extensively studied. Neverthe-
less, it is generally recognized that plant-plant inter-

4
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actions depend on development and that this rela-
tionship influences the biomass distribution. In our
modeling, the allometric relation (6) and the nor-
malization condition (7) express this relationship. It
is shown in this section that their introduction al-
lows us to predict the existence of a plait point (Ko-
rteweg, 1891) (referred to as a critical point from
here forward). This prediction modifies the usual
(mean field) stability diagrams of vegetation; it sig-
nificantly improves their reliability at low biomass
densities, a situation frequent in drylands.
Putting b(r, t) = b(r + r′, t) = b(t) transforms (1)
into a simple logistic equation:

d b(t)
d t

=eχf b(t)(1+2 p)×[
b(t)(1− b(t))− μ b(t)eΛ b(t)(1+2 p)

]
.

(13)

Its stationary states, representing uniform vegeta-
tion cover, are the bare soil state b0 = 0 and the
curve bs ∈ [0, 1] solution of

(1− bs)− μ exp
[
−Λ b(1+2 p)

s

]
= 0. (14)

The feedback difference

Λ ≡ χf − χc (15)

measures the community cooperativity or anti-
cooperativity according to whether it is positive or
negative. If plants are too sparsely distributed to in-
teract, or if facilitation and competition cancel each
other out, Λ = 0. It is noteworthy that Eq. (13) is
independent from the interaction ranges Lf and Lc.
The normalization condition (7) has been chosen so
that this mean field property can be recovered.
The stationary states of (13) are plotted in terms
of μ for p = 0 in Fig. 3a, and for p = 1/3 in Fig. 3b.
The behavior for p = 1/3 is representative of non-
zero (positive) values of the allometric parameter.
It is noteworthy that whatever Λ and p, all curves
bs cross the bifurcation point (b = 0, μ = 1) where
the bare soil solution b0 changes stability. At this
point, if p = 0, the slope dbs/dμ varies with Λ while
it is independent from Λ if p = 1/3. In fact, for any
p > 0, it is equal to −1, which is the slope of the
(green) straight line bs = 1−μ representing commu-
nities in which interactions are negligible (Λ = 0).
Biologically, this makes sense because as bs tends to
zero, vegetation becomes sparsely distributed, ma-
ture plants are rare and, hence, interactions become
negligible. Cooperativity then can have no effec-
tive influence. It is therefore intuitively clear that
hysteresis, if it appears, would do so via a critical

0 0.5 1 1.5
0

0.2

0.6

1

0 1 1.20.5

-2.5 0 1 2.5 -2.5 0 2.5c

p = 1/3p = 0

b

(a) (b)

Fig. 3. Stationary states vs μ for different values of Λ. The red

circle indicates the conditions for which hysteresis appears.

(a) if p = 0, hysteresis appears at the point of intersection

of the b0 and bs branches of solutions (i.e., at zero biomass

density); (b) if p = 1/3, it appears on the vegetated branch

of solutions bs at the critical point (16) i.e., at a non-zero

biomass density bc. Dashed curves correspond to unstable

states.

point whose coordinate bc lies above the abscissa
axis b = 0. In the 3-dimensional (b, Λ, μ)-space, the
coordinates of this critical point are:

bc =
2p

1 + 2p
, (Λ−1)c = b2p

c , μc =
ebc

1 + 2 p
. (16)

Remarkably, the sole knowledge of the allometric
parameter p suffices to evaluate these coordinates.
For the field value p = 1/3, they are:

bc =
2
5
, (Λ−1)c =

(
2
5

) 2
3

≈ 0.543,

μc =
3
5

exp(2/5) ≈ 0.895.

(17)

For p = 0, the slope of the curve bs at its intersection
with b = 0 (bare soil) is negative when Λ < 1, infi-
nite for Λ = 1 and positive for Λ > 1. In other words,
when p = 0, hysteresis appears on the abscissa axis
under conditions where the biomass density is zero,
where, as mentioned, interactions are nonexistent
and where edaphic factors should not influence dy-
namics. One can only conclude from this that set-
ting p = 0 is a crude approximation that should be
avoided. This is certainly so in the modeling of veg-
etation at low biomass density and/or undergoing a
desertification process.

3.2. Stability diagrams

Let fp [b(t)] be the expression between brackets on
the right hand side of Eq. (13). The function

F0,p [b(t)] = −
∫

fp [b(t)] db(t) (18)

5



Acc
ep

te
d m

an
usc

rip
t 

Acc
ep

te
d m

an
usc

rip
t 

Acc
ep

te
d m

an
usc

rip
t 

is a potential that completely determines the sta-
bility of the stationary states b0 and bs with respect
to uniform perturbations that, in Fourier space,
correspond to the mode k = 0. These states are the
extrema of (18). They are linearly (locally) stable or
unstable according to whether they are a minimum
or maximum. The locus of stationary states where
the second derivative of F0,p changes sign is by def-
inition called the spinodal curve (Korteweg, 1891).
Its expression is given by Eq. (A.6) in appendix A.
When, for given values of Λ−1 and μ, the poten-
tial F0,p exhibits more than one minimum, the one
that confers the smallest value to F0,p is said to be
stable (more precisely, globally stable). The others
are called metastable. The locus of points where,

p = 1/3 (b)

stable

unstable

0.8

0.95

1

2

c

0 1b

m
et

as
ta

bl
e m

etastable

0

0.2

0.4

0.6

0.8

1

b

p = 0 (a)

stable

unstable

0 1
m

etastable

0.81

2

Fig. 4. Stability domains in (Λ−1, b) space: in (a) for p = 0,

in (b) for p = 1/3. The arrows indicate the direction of bs’s

pathway of change when competition increases faster with

aridity than facilitation.The red circle indicates the position

of the critical point. The green circles joined by a dashed line

represent two locally stable stationary states corresponding

to the same values of μ and Λ (bistability), which are in

equilibrium, i.e., whose potential value F0,p as given by

(A.7) (p = 0) or by (A.8) (p = 1/3) is the same.

for given Λ−1 and μ, two locally stable stationary
states are in equilibrium, i.e., have equal values of
F0,p, is by definition called the connodal curve (also
often called the binodal curve). In the absence of a
general analytical expression for it, the connodal
curve can easily be calculated numerically (cf. green
curves in Fig. 4).
The explicit expressions of the potential functions
F0,p for p = 0 and p = 1/3 are given in appendix A.2
(cf. (A.7), (A.8)). Fig. 4 reports the stability di-
agrams based on these expressions. The (Λ−1, b)-

space consists of three domains where bs is globally
stable (above the green connodal curve), metastable
(between the red spinodal and green connodal
curves) or unstable (in the spinodal domain situ-
ated under the red spinodal curve). Quantitatively,
as well as qualitatively, Fig. 4a and Fig. 4b are very
different. They further illustrate the shortcomings
that arise when approximations completely erase
the existence of a gradient of plant development: for
p = 1/3, as for any p �= 0, the spinodal curve crosses
the abscissa at b = 0 and b = 1. In between, at the
critical point (17), it passes through a maximum.
In comparison, for p = 0, i.e., when the influence
of plant development is neglected, the spinodal
abruptly becomes a straight line joining the points
(0,1) and (1,0). As a result, the shape and size of the
unstable, metastable and stable domains undergo a
drastic singular transformation; simultaneously, the
critical point (cf. red circle) becomes a transcritical
saddle-node point of bifurcation situated on the
ordinate axis at Λ−1 = 1. Given these pathologies,
we focus in the following sections on the case p �= 0,
and more specifically on the case p = 1/3 relevant
for Fig. 1.

3.3. Influence of aridity on interactions and bs

pathway of change in (Λ−1, b)-space

All evidence indicates that climatic aridity due to
water scarcity decreases the productivity of plant
ecosystems. As most models assume, this decrease
can be attributed, at least to some extent, to an
increase of the loss/gain ratio μ. It is also known
that water scarcity may give rise to pattern forma-
tion and ultimately, at unendurable levels of arid-
ity, to vegetation death and desertification (Lefever
and Lejeune, 1997; HilleRisLambers et al., 2001; von
Hardenberg et al., 2001).
Before investigating the dynamics underlying these
phenomena, it is useful to sort out vegetation ki-
netic responses to climatic variability and to exam-
ine the pathway of stationary curves bs in (Λ−1, b)-
space. We therefore consider the combined effects
of climate on the loss/gain ratio μ and on the feed-
back strengths χf , χc. Besides the fact that aridity
increases μ, it also influences the synergies on which
the functioning of ecosystems depends. It enhances
or attenuates the interactions between neighboring
plants. Shading and increased soil permeability that
produce facilitation (embodied by χf ) and competi-
tion for soil water resources (embodied by χc) have

6



Acc
ep

te
d m

an
usc

rip
t 

Acc
ep

te
d m

an
usc

rip
t 

Acc
ep

te
d m

an
usc

rip
t 

different, probably weaker, effects in wet regions
compared to arid regions. Furthermore, given that
χf and χc correlate with different structures (crown
and rhizosphere), functions (e.g., shading and water
uptake) and edaphic factors (Barbier et al., 2008), it
is likely that the variation of these parameters with
aridity is different. This can result into significant
variations in cooperativity Λ = χf − χc, or equiv-
alently of Λ−1. Increasing values of Λ−1 thus mean
that competition increases more rapidly than facil-
itation.
Writing the stationary state equation (14) as

Λ−1 =
b
(1+2 p)
s

ln
(

μ

1− bs

) , (19)

the dotted curves calculated with (19) and plotted in
Fig. 4 show how bs evolve in the (Λ−1,b)-stability di-
agram for given μ. Considering these curves, one sees
how the transition from uniform vegetation cover,
to patterned organization and to desert may take
place. Assuming that μ increases monotonously with
the deficit of precipitation against potential evap-
otranspiration (referred to as ”aridity”) while Λ−1

behaves in a less regular manner, theoretical predic-
tions in regard to increasing levels of climatic aridity
can be schematized as follows:
Wet climate: The loss/gain ratio is small and allows
for maximum biomass growth (0 � μ� 1). If water
supply is abundant, competition for water is negligi-
ble (χc ≈ 0). Whether facilitation is large or small is
a matter of secondary importance: the biomass dis-
tribution is uniform, its density is high (bs ≈ 1) and,
most likely, corresponds to a system situated in the
stable domain on a stationary state curve that re-
mains in this domain, regardless of Λ−1 (cf. e.g., the
curve labeled 0.8 in Fig. 4b). The potential F0,1/3

has two extrema: the first one for b = b0 is always
a maximum and thus unstable, the second one is a
minimum whose position evolves along the unival-
ued stationary curve bs.
Dry climate: The ratio of precipitation against po-
tential evapotranspiration (humidity index) is suffi-
ciently low to causes an increase of μ, which reaches
values close to μc, but is still less than one. Fa-
cilitation is now more important because shading
by crowns and/or organic material accumulation,
which favors water infiltration and conservation, be-
comes a crucial element that compensates, at least
partially, for the increases of μ and of χc. As a re-
sult, bs belongs to a curve passing through or close
to the critical point (16) (cf. e.g., the curves labeled

0.1 0.3 0.5 0.7

F 0
x 

10
4

2

0

2

4

b

 0.517

0.513

0.5097

0.508
0.485

p = 1/3

 = 0.92

0.526

Fig. 5. Behavior of the potential function F0 under dry

climatic conditions for the values of Λ−1 indicated.

μc or 0.95 in Fig. 4b). Fig. 5 reports the behavior
of the potential F0,1/3 for μ = 0.92, i.e., slightly
above the critical value μc. The ecosystem exhibits
a hysteresis loop when 0.485 � Λ−1 � 0.517. Ac-
cordingly, F0,1/3 exhibits two minima. When Λ−1 ≈
0.5097, the values of F0,1/3 at these minima are
equal (cf. the green circles joined by a horizontal,
dotted tie line). In that case, the minima represent
equilibrium states of quite different density. Facili-
tation stabilizes the highly vegetated state (cf. e.g.,
the curve for Λ−1 = 0.508). Increased competition,
on the contrary, makes it metastable (cf. e.g., the
curve for Λ−1 = 0.513) and ultimately suppresses
it for 0.517 � Λ−1. The low density state is then
the only (globally stable) uniform solution possible.
The bare soil state b0 is always unstable and, hence,
cannot be reached.
Semiarid to arid climate: Potential evapotranspira-
tion is now very large compared to rainfall and μ is
greater than one. The vegetation is confronted with
rising levels of competition χc. Facilitation is unable
to compensate for this so that Λ−1 increases, which
drives the community into the metastable and un-
stable spinodal domains following curves like those
labeled 1 or 2 in Fig. 4b. Hysteresis becomes a more
complex phenomenon since now it may also involve
the bare soil state b0, which may be metastable or
stable.

4. Variational dynamics in dry climate, i.e.,
for μ ≈ μc but inferior to 1

Variational behaviors are exceptional in spatially
extended non-equilibrium systems. Up to now,
they have only been reported in fields distant from
ecology like hydrodynamics (Swift and Hohenberg,
1977; Pomeau and Manneville, 1980), chemistry
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(see e.g., Hilali et al., 1996) or non-linear optics (see
e.g., Tlidi et al., 1998). It is remarkable that such
behavior can be demonstrated in the modeling of
vegetation communities, at least, when they func-
tion in the vicinity of the critical point (16). This
happens under the conditions classified as dry cli-
mate in section 3.3. The demonstration is given in
appendix B. For the sake of the discussion below,
we outline here its main idea and outcome.
The demonstration stems from the observation that
at the critical point, by definition, the following two
conditions are satisfied:

ω0 = 0 and
(

∂ωk

∂k

)
k=0

= 0. (20)

The first condition states that the rate of regression
of uniform perturbations, given by ω0 and corre-
sponding in Fourier space to the zero-mode (k = 0),
is equal to zero. It expresses that the critical point is
a state of marginal stability. This is easily verified by
setting k = 0 and by replacing bs and Λ with their
critical values (16) in the eigenvalue equation (A.2)
describing the time-evolution of Fourier modes. The
second condition always holds for k = 0. Indeed, be-
cause the environment is isotropic, (A.2) can only
depend on even powers of the modulus k, in fact on
k2. Thus, given (20), if

(∂2ωk/∂k2)k=0 > 0,

then there exists a finite band of non-zero Fourier
modes for which the uniform vegetation cover bc,
corresponding to the critical point, is unstable. This
inequality is interesting. Before we carry on with the
investigation of dry climate environments, it merits
some general comments. Its explicit expression is of
the form:

ε =
(

Lf

Lc

)2

<

(
χc

χf

)
1

1 +
(

δ
σ

)
F (b)

, (21)

where F (b) is a positive definite function and

d ≡ δ/σ (22)

is the vegetation transport (dispersion) coefficient.
Inequality (21) shows that vegetation patterning
is a phenomenon fundamentally due to plant-plant
interactions. Vegetation propagation may suppress
it, but it does not create it: pattern formation can
only take place if the influence of interactions is not
overwhelmed by the efficiency of vegetation propa-
gation. If seed production (δ) and/or the dispersion
range (LD =

√
La/σ) increase while ε and χc/χf

remain constant, then in the strong propagation

limit, d → ∞, inequality (21) reduces to the con-
dition ε < 0. Clearly, it is then an unphysical
condition that can never be satisfied. In fact, the
most favorable conditions for patterning correspond
to the weak propagation limit d → 0. From a prac-
tical point of view, in regard to the system shown
in Fig. 1, the field value ε ≈ 0.41 is a given, mea-
sured constant. As such, it sets a lower bound below
which the interaction ratio χc/χf may not decrease
for a symmetry breaking instability to be possible.
In brief, inequality (21) supports the interpretation
that vegetation patterns displaying characteristic
lengths much larger than the size of individual
plants originate from plant-plant interactions that
affect biomass development through short range ac-
tivation (Lf ) and long range inhibition (Lc) effects
(Lefever and Lejeune, 1997; Lejeune et al., 1999). If
the efficiency of seed production and/or propaga-
tion increases, this can only lead to the suppression
of such large-scale structures and the restoration of
a uniform vegetation cover.
Suppose now that the system is close to the critical
point (16), that inequality (21) is satisfied and thus
that there exists a finite band of unstable Fourier
modes. Let kf be the fastest growing mode of this
band. Owing to the proximity of the critical point,
kf can be expanded in terms of a smallness param-
eter 0 < η � 1 measuring the deviation from
criticality. Furthermore, kf evolves on a (slow) time
scale t∗ ∝ η2. Redefining the units of space and
time by the transformation

r→ r
kf

, t→ t

η2 t∗
, (23)

one can then expand Eq. (1) in terms of η and show
that the excess biomass density β(r, t), defined by
the change of variable

b(r, t) = bc [1 + η β(r, t)] , (24)

obeys to the fourth order partial differential equa-
tion (PDE) of Swift-Hohenberg form

∂tβ(r, t) =−M + K β(r, t)− β(r, t)3

+ Γ
(
∇2 +

1
2
∇4

)
β(r, t).

(25)

It is well-known that this type of Swift-Hohenberg
equation describes a variational dynamics. Eq. (25)
thus predicts that over the course of time, the
community will strive to reach a stationary state,
whether it is uniform or not, conferring the smallest
possible value compatible with the imposed climatic
constraints to the potential functionF [β(r, t)] given

8
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by (A.9). F [β(r, t)] is therefore called the generator
of the system evolution. It can be interpreted as
a ”spatio-temporal kinetic potential” that governs
the global stability of the spatially extended non-
equilibrium system considered; it is a generalization
of the standard potential (18), which always exists
for uniform systems and was used in section 3 to
determine their global stability properties.
The dependence of the new loss/gain ratio M, co-
operativity K and constant Γ upon the structural
parameters p, ε and reproduction parameters δ, σ
is given in appendix B. The essential property to
keep in mind for the following is that the constant
Γ, which as explained in section 4.2, plays both the
role of a diffusion coefficient and of a line tension
coefficient, is always negative.
An great advantage of the Swift-Hohenberg equa-
tion lies in the fact that it permits to obtain ana-
lytical expressions for the instability conditions of
the density field that are easy to interpret. Notably,
the dominant unstable mode kf can be evaluated in
terms of the structural parameters (La, p, ε), the in-
teraction strengths (χf , χc), the kinetic parameter
(μ) and the transport coefficient (δ/σ) (see Eq. (36)
in section 4.3 and Eqs (B.11-B.15) in appendix B).
These analytical expressions are studied and com-
pared to field data in sections 4.1-4.3 below. They
clarify the kinetic mechanism underlying vegetation
patterns, its properties in relation to plant structure
and exogenous factors, the similarities between self-
organization in plant ecology and other domains.

4.1. Local stability with respect to fluctuations in
the PDE approximation

We have shown in Fig. 4 that the stationary states
b0 and bs are locally unstable with respect to uni-
form perturbations when these states fall into the
spinodal domain of stability diagrams. Let us now
study the local stability of uniform vegetated cov-
ers with respect to arbitrary, non-uniform fluctua-
tions. Using (25), the treatment of this problem is
quite straightforward. The coordinates of the criti-
cal point are now

{βsc, Kc, Mc} = {0, 0, 0}. (26)

Let βs be a uniform stationary solution of (25). One
easily finds that a Fourier mode k is stable or unsta-
ble depending upon whether its eigenvalue

ωk = K− 3 β2
s − Γ k2

(
1− k2

2

)
, (27)

calculated with (25), is negative or positive. Given
the rescaling of space (23), one sees that kf = ±1.
Putting k = kf in (27), one immediately obtains

-0.4 0 0.4

-0.8

0

0.8

s

0

5.4 -0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5

32

3 62

k

k

(a) (b)

s

s

Fig. 6. (a) Excess stationary density βs as a function of M

for Γ = −0.8849, K = 0 (in red: stationary curve when co-

operativity equals its critical value) and K = 5.4 (in black:

a stationary curve displaying hysteresis). The intersections

(green dots for βs = β±) with the green line are the bifur-

cation points of the symmetry-breaking instability. (b) Lin-

ear stability of the excess stationary densities βs. The black

curve displays a finite band of unstable modes; the black

dots are its lower and upper cut-offs k� and ku.

that for
β+ ≥ βs ≥ β−, (28)

where

β± = ±
√

1
3
(K− Γ

2
), (29)

there exists a band of unstable modes if

K ≥ Γ/2. (30)

In Fig. 6a, the domain where uniform vegetation
covers are unstable (cf. (28)) is the part of the sta-
tionary state curves βs found between the green
dots. One notes that such a domain already exists
for the critical stationary state curve, i.e., the curve
for K = 0, passing through the critical point. For
K = 5.4 (black curve), one notes that the instabil-
ity occurs on part of the upper and lower branches
of the hysteresis loop, which are stable with respect
to uniform perturbations. The behavior of the band
of unstable modes when βs varies is represented in
Fig. 6b. The lower and upper cut-offs of this band
are, respectively, k� = k− and ku = k+, where

k± = 1 ±
√

1− 2
Γ

(K− 3 β2
s ). (31)

Remembering that Γ is negative, one notes that con-
dition (30) may even hold for some negative values

9
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〈b(r, 0)〉 = 0.415 〈b(r, 0)〉 = 0.412 〈b(r, 0)〉 = 0.4 〈b(r, 0)〉 = 0.388 〈b(r, 0)〉 = 0.385

Fig. 7. Stationary patterns in the vicinity of the critical point for K = 0. Parameters have been determined so that the

wavelength is approximately equal to 50 meters: p = 1/3, Γ = −0.8849, χf ≈ 3.408, ε = 0.4096 ≈ χc/χf , La ≈ 1.080 m and

δ = 0. The average initial conditions 〈b(r, 0)〉 = bc [1 + η 〈β(r, 0)〉] indicated are calculated for η = 0.1 and bc = 2/5.

of the (excess) cooperativity K. Thus, some modes
may already be unstable before the cooperativity Λ
is larger than its critical value (16). In that case, the
uniform states that are unstable belong to station-
ary state curves situated outside of the spinodal do-
main (i.e., above the red spinodal curve in Fig. 4b).
In the following, we shall denote by k∗ the non-zero
fastest mode kf when it satisfies the marginality
conditions: i.e., we shall set kf = k∗ when

ωkf
= 0 and

(
∂ωk

∂k

)
k=kf

= 0. (32)

For the climatic conditions studied in this section,
this happens when βs = β± (cf. (29) and the green
curve in Fig. 6b). The red curve in Fig. 6b corre-
sponds to the saddle-node points of the hysteresis
loop that exists when K > 0, or to the critical point
if K = Ksc = 0 and βs = βsc = 0. The black curve
in Fig. 6b is typical of systems undergoing an insta-
bility that could lead to pattern formation.
Fig. 7 shows examples of patterns predicted for fixed
K = 0 and Γ = −0.8849. The snapshots are obtained
by integrating (34) numerically with zero flux (Neu-
mann) boundary conditions and the average initial
densities 〈b(r, 0)〉 indicated. The same noise (less
than 1% of 〈β(r, 0)〉 and zero mean value) has been
added to all initial conditions. As βs decreases (or
equivalently, as the loss/gain ratio increases), the
sequence of morphologies displayed by the patterns
obtained is similar to that found by previous studies
(cf. e.g., Lefever and Lejeune (1997); von Harden-
berg et al. (2001)): high, intermediate or low initial
average biomass densities respectively evolve into
a pattern formed of holes distributed throughout
a uniform vegetation cover (gapped pattern), into
more or less randomly oriented bands (labyrinthine

tiger bush), or into a regular distribution of vege-
tation patches on bare soil (spotted patterns). We
shall report on the situations arising when K > 0
elsewhere since this discussion would take us too
far away from gapped patterns and desertification,
which are our main subjects of interest here.

4.2. Diffusional nature of the instability

Eqs (25,A.9) demonstrate that the instability under-
lying vegetation patterns is a diffusional instability:
it is caused by the negative ”diffusion coefficient” Γ
multiplying the laplacian term in (25). This unusual
sign for a diffusion coefficient confirms, as pointed
out in the discussion of (21), that vegetation pat-
terning is fundamentally caused by plant-to-plant
interactions and that vegetation propagation is a
process of subordinate importance in this respect.
Inspecting the explicit expression of Γ in terms of the
system parameters (cf. (B.15), in which the constant
Δ represents the biomass gains due to seeds), one
notes that the limited influence of propagation does
not take the simple, trivial form of dispersion terms
to be negligible in comparison with those due to in-
teractions. More subtly, dispersion manifests itself
through the factor (1−Δ)2. Obviously, whatever the
magnitude of Δ, this factor cannot change the sign
of Γ and, in doing so, exert a control upon the origin
of vegetation self-organization, i.e., upon the exis-
tence of a negative diffusion coefficient. However, in
agreement with our comments at the beginning of
this section one sees that, through conditions (30)
and (21), dispersion (Δ) may control the existence
of a band of unstable modes. For example, with the
field values p ≈ 1/3 and ε ≈ 0.41, (B.15) predicts
that

10
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Γ ≈ −0.883 (1−Δ)2,

and thus that there exists a band of unstable modes
if Δ ≈ 0, K > −0.441 and the competition strength
χc is big enough for inequality (21) to be satisfied
with ε = 0.41. If all other parameters stay constant
while dispersion increases, this band is suppressed
when Δ = 1 at the latest, or possibly before that
if inequality (21) no longer holds for ε = 0.41. On
the other hand, for Δ > 1, the expression of the
marginal mode k∗ becomes unphysical (see, (36) be-
low), which, besides the violation of condition (21),
is a further reason that the reappearance of a band
of unstable modes for values Δ � 1 becomes im-
possible. The situation Γ = 0 met when Δ = 1 is
not generic and cannot be studied in the framework
of the Swift-Hohenberg PDE approximation; its dis-
cussion is therefore beyond the scope of this paper.
To conclude our examination of Γ properties, it is
worth commenting that the finding that Γ cannot
change sign is fortunate. If Γ could could change
sign, the status of the Swift-Hohenberg PDE (25),
as a consistent approximation of (1) would be com-
promised. Indeed in (25), Γ is not only a diffusion
coefficient but also the line-tension coefficient that
multiplies the bilaplacian term. When Γ is negative
this higher order derivative term is stabilizing, pre-
vents the unbounded growth of unstable modes and,
in this manner, insures the establishment of a stable
pattern. This property would be lost if Γ could be
positive and this loss would jeopardize the expan-
sion procedure that permits to obtain (25).
Let us comment now on the similarities between the
mechanism producing vegetation patterns and the
better known mechanisms of phase separation in flu-
ids. The following situation clarifies this aspect. Tak-
ing the critical point (26) as unperturbed state, one
sets M = 0, K = 0 in Eqs (25,A.9) which become

∂tβ(r, t) = −β(r, t)3 + Γ
(
∇2 +

1
2
∇4

)
β(r, t)

(33)
and (A.10). Small deviations u(r, t) from the critical
density βsc = 0 obey the linear continuity equation

∂tu(r, t) = Γ
(
∇2 +

1
2
∇4

)
u(r, t), (34)

which gives the short-time dynamics of (33). Since
Γ is negative, the diffusion process (34) takes on an
unusual complexion. To see what is happening, one
inspects its eigenvalues

ωk = −Γ k2 (1− k2). (35)

One notes that (35) is formally identical to the eigen-
value equation associated with generalized diffusion
equations encountered in classical first order phase
transition theory (see e.g., Langer, 1991). It reflects
the competition between clustering forces, which at
the level of the factor (1−k2) favor phase separation
(spinodal decomposition) at small k, and the dif-
fusion limitation expressed by the factor k2, which
tends to slow this separation. The fastest mode kf =
1, as a result, dominates in the system evolution.
In fact, it grows exponentially and determines the
wavelength of emerging patterns. However, as the
snapshots in Fig. 7 show, in the case of vegetation,
little coarsening takes place in the subsequent non-
linear regime: remarkably, in spite of the positive
definite term −Γ

[(∇2 + 1
)
β(r, t)

]2, which repre-
sents in (A.10) the extra energy associated with de-
parture from uniformity and which the variational
property of the dynamics necessarily strives to mini-
mize, the characteristic length of the stationary pat-
tern finally obtained is in general still strongly dom-
inated by the mode kf .
In conclusion, on a short time scale dominated by
diffusional instability, vegetation patterning evolves
like a phase separation process in a binary mixture
composed of bare soil and vegetation. On a long
time scale, however, because the dynamics does not
conserve the total number of particles (plants), the
non-linear scalar term −β(r, t)3 of (33) comes into
play and prevents the complete separation into two
”macroscopic phases”, i.e., two uniform regions, a
vegetated region and a bare soil region separated by
a minimal interfacial region.

4.3. Comparison of predictions for dry climate with
field data

In physical units, at the dominant order of expansion
(B.8), the wavelength of the marginal mode k∗ reads:

λ =
πLa

√
η
[

8
5

(
1+4 p
1+6 p

)
(1− ε)(1−Δ)

]1/2
. (36)

In agreement with intuition, (B.12) shows that Δ
is always positive. Furthermore, biomass gains due
to seeds are generally negligible in comparison to
those due to growth. The approximation Δ ≈ 0
should often apply; it certainly does for the sys-
tem of Fig. 1. Hence, the wavelength λ only involves
the plant structural parameters La, p, ε, which are
directly accessible by field measurements, and the
smallness parameter η, which, by definition for dry
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climate, is smaller than 1. In fact, from the knowl-
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Fig. 8. Plot of the critical wavelength in meters predicted by

Eq. (36) vs η for p = 1/3, K = 0, ε = 0.4096, δ = 0 and the

values of La indicated.

edge of these parameters, all critical properties can
be predicted: we have already seen that the coor-
dinates of the critical point (16) only depend on p;
putting Λ = Λc in (15) and χ0 = χc in (B.10) one
obtains a very simple system of two equations,

Λc = χf − χc, χc = Λc

(
ε

1− ε

)
,

whose solutions χfc and χcc are the feedback values
for which the marginal stability conditions (B.6) are
satisfied at the critical point. For the field values
p ≈ 1/3 and ε ≈ 0.41, this yields:

χfc ≈ 3.12, χcc ≈ 1.28. (37)

The behavior of the wavelength predicted by (36)
for these values is shown in Fig. 8 as a function of η
for three values of La:

λ ≈ 3.66
La√

η
. (38)

When η < 0.1 and La > 1, the values obtained for
λ are very large, in fact they are much larger than
the 50 meters found in the field (represented by the
red dashed line). Taking into account the histogram
of Fig. 2, which indicates that the field values of La

are close to 3 m, we conclude that for the system of
Fig. 1, the predictions of the model are incompatible
with the assumption of a system functioning close
to the critical point (16).

5. Dynamics in arid climate for μ ≥ 1

Patterns displaying large variations between a
densely vegetated state and bare soil as depicted

in Fig. 1 only happen in arid climate where μ ≥ 1.
Typically, such conditions correspond to large de-
viations from criticality that are not covered by the
PDE approximation used in section 4. To study
arid systems, one must go back to the full integro-
differential version of the model, i.e., Eq. (1). It
is not possible through a linear stability analysis
of this equation to obtain explicit expressions like
(29,31). But fortunately, in practice, as shown in
section 5.1, this difficulty can in many cases easily
be bypassed thanks to the a priori knowledge of
the pattern wavelength. When this essential infor-
mation, accessible by field measurements, is known,
calculation of explicit symmetry breaking condi-
tions is straightforward. General results in this
respect are established in section 5.1. They are used
in the following sections to study the case μ ≥ 1 of
particular interest here.

5.1. Stability diagrams of non-zero modes

To avoid cumbersome expressions, we set p = 1/3
and suppose that the approximation δ = 0 is justi-
fied. The eigenvalue equation (A.2) then reads

ωk

eχf b
5
3
s

= −bs + [χf Ωf (k)− χc Ωc(k)] (1− bs) b
5
3
s .

(39)

The expressions of Ωf (k) and Ωc(k) are given in ap-
pendix A. For the following, one only needs to keep
in mind that they are positive, which makes sense
given the assumptions made in the modeling of the
feedback functions Mf and Mc. Inspection of (39)
shows that bs is always stable in the absence of facil-
itation. In order to determine instability conditions
with respect to symmetry breaking fluctuations, one
proceeds as in section 3.2: in the state space (Λ−1, b),
one determines the spinodal domain in which the
mode

k∗ ≈ 2 π
La

λ
(40)

is unstable. In writing (40) one identifies λ (ex-
pressed in meters) with the wavelength of the fastest
mode kf satisfying the marginality conditions (32)
and one supposes that this wavelength is given,
approximately, by the wavelength measured in the
field. This is often a good assumption. Replacing
(40) in (32) yields a system of two equations, the
solution of which

12
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Fig. 9. (a) Spinodal curves in (Λ−1, b)-phase space for

p = 1/3, ε = 0.4096, λ = 50 m and the values of La in-

dicated. Each curve divides the phase space into a domain

(above the curve) where uniform biomass distributions are

stable and a domain (under the curve) in which vegetation

clustering can take place. (b) Spinodal curves in (μ, b)-phase

space. The same values of parameters as in (a) are used.

Above the curves, uniform biomass distributions are unsta-

ble.

χ∗f = − Ωc(k∗)′

b
2/3
s (1− bs) Ω(k∗)

χ∗c =
Ωf (k∗)′

b
2/3
s (1− bs) Ω(k∗)

, where ′ ≡ ∂

∂k
(41)

and

Ω(k∗) = Ωf (k∗) Ωc(k∗)′ − Ωf (k∗)′ Ωc(k∗), (42)

gives the feedback levels χ∗f and χ∗c corresponding
to marginal stability for the wavelength λ measured
in the field. The expression of the spinodal curve of
this wavelength in (Λ−1, b)-space is then given by

(Λ−1)∗ = 1/(χ∗f − χ∗c). (43)

It is represented in Fig. 9a for different values of the
crown size La. The expression of the spinodal curve
in (μ, b)-phase space is given by

μ∗ = (1− bs) exp
(
b5/3
s Λ∗

)
. (44)

It is represented in Fig. 9b. The spinodal domains in
which vegetation patterns spontaneously form (un-
der (above)the green curves in Fig. 9a (Fig. 9b))
always exceeds the spinodal domain of the mode
k = 0 (under or above the red curve); these do-
mains rapidly increase with La.
The coordinates of the critical point for the symme-
try breaking mode k∗,

b = b∗c , Λ∗c = Λ∗(b∗c), μ∗c = μ∗(b∗c), (45)

La k∗ b∗c μ∗c χ∗f (b∗c) χ∗c(b∗c) Λ∗c 1/Λ∗c

0 0 0.400 0.895 3.12 1.28 1.84 0.543

3 0.377 0.470 0.871 4.14 2.39 1.75 0.573

3.25 0.408 0.507 0.856 4.49 2.78 1.71 0.584

4 0.503 0.780 0.667 10.2 8.53 1.68 0.596

Table 1

Symmetry breaking critical point values for p = 1/3, ε =

0.4096, λ = 50 m and the values of La indicated; La = 0

corresponds to the classical mean field idealization; La ≈
3.25 m corresponds to the largest crown size measured on

the field for Combretum micranthum.

are obtained by replacing the solution, b∗c , of the
equation ∂μ∗/∂b = 0 in (43) and (44); μ∗ is the
smallest value of μ for which k∗ becomes unstable.
The critical coordinates (45) are reported in Table 1
for different values of the crown size. The case La =
0 corresponds to the mean field idealization (plants
are points, densities refer to points and the wave-
length of the critical mode is infinite (cf. (40)). In-
creasing La shifts b∗c towards higher densities; simul-
taneously, the critical loss/gain ratio μ∗c decreases,
both χ∗f and χ∗c undergo a large increase, but with-
out that the feedback difference Λ∗c varies greatly.
In Fig. 10, the values of Table 1 for La = 0 and

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1b

c

1

c

( )-1

1

Fig. 10. Spinodal curves corresponding to k∗ = 0 (mean field

case, in red, La = 0) and k∗ = 0.503 (symmetry breaking

case, in green, La = 4 m, λ = 50 m, ε = 0.4096). The uniform

stationary curves are plotted for μ∗ = 0.667, μc = 0.895

and μ = 1. The position of the mean field and symmetry

breaking critical points are indicated by the red and green

circles, respectively.

La = 4 have been used to represent the mean field
(in red, La = 0) and symmetry breaking spinodal (in
green, La = 4) together with the critical stationary
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state curves tangent at their critical point and the
stationary curve for μ = 1. These curves divide the
(Λ−1, b)-space into three domains to which we shall
refer as wet (above μ∗), dry (between μ = 1 and μ∗,
and containing μc) and arid (below μ = 1) climate.

5.2. Deeply gapped patterns

In the case of deeply gapped patterns, the density
switches periodically in space between a highly veg-
etated state and bare soil. Sufficient conditions for
this to be possible are:
(i) Bare soil must be locally stable so that it can
be reached in the course of the ecosystem evolution;
this implies that the inequality μ � 1 holds.
(ii) Bare soil must be metastable with respect to
some vegetated state bs that is stable globally and
situated beyond μ = 1. Conditions (i-ii) are only met
in arid climate allowing for the existence of a large
hysteresis loop such as shown in Fig. 11. Further-
more, we show below that for b0 to be metastable
with respect to the vegetated state bs, the crown La

must be larger than some lower bound L̂a.
(iii) The upper states of the hysteresis must exhibit
a symmetry breaking instability whose bifurcation
point is at μ � 1.
Hence, μ = 1 is the smallest loss/gain ratio at which
deep gapped patterns may appear when competi-

La (m) b∗ χ∗f (b∗) χ∗c(b∗) Λ∗ 1/Λ∗

1 0.6130 3.774 1.628 2.146 0.4660

1.5 0.6160 3.967 1.821 2.146 0.4659

2 0.6246 4.284 2.137 2.147 0.4658

2.75 0.6610 5.225 3.068 2.157 0.4637

3 0.6848 5.817 3.647 2.170 0.4608

3.173 0.7068 6.408 4.220 2.188 0.4571

3.5 0.7654 8.405 6.141 2.264 0.4417

Table 2

Influence of La on marginality conditions (41,42) for p =

1/3, ε = 0.4096, λ=50 m and other parameters determined

so that the symmetry breaking instability appears at μ = 1.

tion χc increases. For this to happen, the symme-
try breaking instability must appear in its vicinity.
Table 2 reports for increasing values of La the val-
ues of the other parameters calculated in imposing
the condition that μ = 1 is the bifurcation point of
the symmetry breaking instability. This insures that
conditions (i) and (iii) above are satisfied.
Condition (ii) requiring b0 to be metastable with

0.92 0.96 1 1.04
0

0.2

0.4

0.6

0.8 6.141

6.2
6.26

b

Fig. 11. Stationary curves bs for p = 1/3, ε = 0.4096,

La = 3.5 m, χf = 8.405 (cf. Table 2) and χc as indicated.

For χc = 6.141 (red curve), the symmetry breaking insta-

bility appears at μ = 1 (green circle) with λ ≈ 50 m. For

χc = 6.15, the ecosystem develops a deeply gapped pattern.

At higher levels of competition (red circles at χc = 6.20 and

6.26), the organization transforms into bare bands and spots

inside a uniform cover, and into vegetated bands and spots

on bare soil (see Fig. 13).

respect to the vegetated state bs corresponding to
μ = 1 is more difficult to satisfy. For the theory
presented, it constitutes a real test of its predictive
value and capacity to quantitatively interpret the
field data corresponding to the pattern shown in
Fig. 1. There is indeed no free adjustable parameter
left. The test thus consists of determining whether
or not condition (ii) can be satisfied when one com-
bines the results of Table 2 with the data of the his-
togram in Fig. 2. To investigate this question, one
has to compare the value F0(b0) of the potential
function (A.8) for bare soil with its value F0(b∗) for
the vegetated state b∗ and the parameters calculated
in Table 2. One easily finds that

F0(b0) = 0, ∀μ and ∀La.

In Fig. 12, on the other hand, the behavior of F0(b∗)
as a function of La is plotted for the three values
of μ indicated. Let L̂a be the value of La such that
F0(b∗) = 0. Accordingly, b∗ is stable and b0 is
metastable if

La > L̂a. (46)

One notes that for μ = 1 and 1 ≤ La ≤ 3.173, bare
soil is stable and, thus, that the vegetated state b∗

at which the symmetry breaking instability sets in
is metastable. On the contrary, for La > 3.173, b∗ is
stable and bare soil is metastable. Table 3 gives the
values of L̂a and the parameters at which F0(b∗)

14
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0.95F
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0(b*)

F0(b  )0

Fig. 12. Potential F0(b∗) vs La for p = 1/3, ε = 0.4096,

λ = 50 m and μ as indicated. For μ = 1, F0(b∗) = 0 when

La = L̂a ≈ 3.173.

μ L̂a (m) b∗ χ∗f (b∗) χ∗c(b∗) Λ∗ 1/Λ∗

1 3.173 0.7068 6.408 4.220 2.188 0.4571

1.5 3.302 0.8194 10.11 7.163 2.950 0.3389

2 3.304 0.8491 11.95 8.551 3.394 0.2946

2.5 3.300 0.8648 13.23 9.509 3.716 0.2691

3 3.296 0.8749 14.22 10.25 3.960 0.2519

3.5 3.293 0.8821 15.03 10.85 4.179 0.2393

Table 3

Minimal size L̂a the crown of mature plants should exceed to

satisfy condition (ii) vs μ for p = 1/3, ε = 0.4096, λ = 50 m.

changes sign for values of μ corresponding to arid
climate. One sees that a variation of μ over a large
interval from 1 up to 3.5 has little effect on the value
of L̂a, which remains approximately equal to 3.3 m.
These results show that the allometric and struc-
tural parameters p, ε and La not only control the
characteristics of vegetation patterns such as the
distance between vegetated bands or patches, but
also, through inequality (46), they control the very
existence of the pattern itself. The other morpho-
logical parameters p and ε being given, L̂a can
be viewed as a bench mark dividing plant species
into two categories according to whether or not the
crown La of their mature individuals is larger or
smaller than L̂a. In the first case, the upper state
bs of the hysteresis is more stable than bare soil.
Therefore, the instability, when it appears, cannot
trigger desertification but instead induces the for-
mation of deeply gapped patterns. On the contrary,

when La is somewhat smaller than L̂a, desertifica-
tion occurs abruptly, as soon as the stationary curve
(19) reaches the symmetry-breaking spinodal (43).

0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75

χc = 6.15 χc = 6.200 χc = 6.259

< b >= 0.5481 < b >= 0.5086 < b >= 0.440

Fig. 13. Stationary patterns for the conditions depicted in

Fig. 11 (green and red circles), i.e., La = 3.5 m, χf = 8.405

and increasing competition levels.

With regard to the question raised earlier concern-
ing the predictive merits of the present theory, the
discussion of Fig 12, and of the results of Tables 2
and 3 is satisfying. We find that the field data of
Barbier et al. (2008), which fix the maximal crown
size of mature plants at La ≈ 3.25 m (cf. Fig. 2),
validate the prediction reached here that, in order
to exhibit deep gapped patterns, the maximal La

for mature Combretum micranthum plants should
exceed ≈ 3.17 m. A more complete investigation of
the case La < L̂a is planned.
Fig. 13 shows the stationary patterns obtained by
numerical simulation of Eq. (1) for μ = 1, La = 3.5
and the green and red circles in Fig. 11 as initial
conditions. For χc = 6.15 (slightly inside the spin-
odal domain of the symmetry-breaking mode), as
expected, the system evolves towards a deep gapped
pattern: the vegetation cover exhibits a more or
less regular distribution of bare soil spots. When
competition increases, for χc = 6.2, neighboring
spots start to coalesce, giving rise to a labyrinthine
morphology. Simultaneously, the average pattern
density decreases while the maximal density of
vegetated domains stays approximately constant,
or slightly increases. At the saddle-node point
(χc = 6.26) a stable pattern still forms, indicating
that this structured branch extends further, i.e.,
to competition levels for which uniform solutions
bs do not exist: bare soil is then the only uniform
solution possible. Under those conditions, develop-
ment of a labyrinthine pattern of bands or spots
distributed over bare soil (not shown) constitutes
an adaptive behavior through which a significant
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0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75

χc = 4.230 χc = 4.261 χc = 4.300

< b >= 0.4539 < b >= 0.4090 < b >= 0.3517

Fig. 14. Stationary patterns obtained for the value

La = 3.173 m, at which b0 and bs exchange stability and

metastability, for χf = 6.408 and increasing competition

levels χc.

average biomass density can still be maintained and
extinction can be avoided.
Fig. 14 shows stationary patterns obtained for La =
L̂a = 3.173 m, which is the value at which the ex-
change of stability and metastability between bare
soil and bs takes place. For χc = 4.230, conditions
correspond to the neighborhood of the symmetry-
breaking spinodal curve while for χc = 4.261, they
corresponds to the saddle-node point of the mean-
field spinodal. When χc = 0.43, though this value
exceeds the hysteresis domain, a stable (subcritical)
pattern still exists that exhibits essentially the same
morphology as it does for χc = 4.261, but with a
lower average biomass.

5.3. Two mechanisms of desertification: local
desertification or gap coarsening

Fig.15 illustrates the process of desertification from
which the ecosystem can no longer escape if χc in-
creases somewhat further. Taking the third pattern
shown in Fig. 14 as the initial condition and setting
χc = 4.5, one sees a rapid decrease over time of the
biomass density of the vegetated bands, as well as
of the pattern’s average biomass. One also notes
that the evolution of vegetation towards extinction
takes place more or less uniformly. It is a local
process of desertification during which the biomass
density decreases inside vegetated areas but with-
out much effect on the morphological distribution
of vegetated and bare soil areas.
In contrast, desertification may take place much
more abruptly when the maximum crown size La

is smaller than the threshold value L̂a at which
F0 changes sign (The difference L̂a − La needs to

0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75

t = 50 t = 150 t = 300

< b >= 0.2318 < b >= 0.1252 < b >= 0.06122

Fig. 15. Desertification: transition from stable pattern to

bare soil when La = L̂a = 3.173 m and Λ−1 significantly ex-

ceeds the saddle-node value of the mean field spinodal. The

sequence of snapshots is taken after increasing the competi-

tion level from χc = 0.43 to χc = 0.45. The level of facilita-

tion χf = 6.408 is constant (see initial condition in Fig. 14).

be slightly positive). Fig. 16 illustrates this second
mechanism. Considering that the loss/gain ratio
has the value μ = 1 as in Fig. 14 and 15, we sup-
pose that the crown size La is equal to 2.75 m,
i.e., approximately 13% below the threshold value
L̂a = 3.173. As a result, the highly vegetated states
bs of the hysteresis are now metastable with respect
to bare soil. The sequence of snapshots reported in
the figure shows the evolution of an initial condi-
tion chosen very close (relative distance: ≈ 0.073%)
to the bifurcation point at which the symmetry-
breaking instability appears. The gapped pattern
organization that appears on a short time scale is
now a transitory regime. It is followed by a coars-
ening process that corresponds to the expansion
of bare soil domains that coalesce and invade the
entire territory. In the course of this evolution, the
pattern progressively undergoes profound morpho-
logical modifications. In contrast to what happens
in the case of Fig. 15 where vegetation bands tend
to disappear by ”local desertification”, here the
area occupied by vegetated bands in the territory
progressively decreases but their biomass density
stays approximately constant during most of the
evolution (it may even increase at some spots); only
when the biomass distribution is reduced to a small
finite number of isolated spots does the maximum
vegetation density finally decrease and rapidly tend
to zero everywhere. The numerical integrations
carried out suggest that coarse graining desertifica-
tion starts as soon as the bifurcation point of the
symmetry-breaking instability is crossed.
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0.50.25 0.25 0.5 0.125 0.5

t = 300 t = 500 t = 700

< b >= 0.5800 < b >= 0.3934 < b >= 0.2981

bM = 0.7507 bM = 0.7868 bM = 0.7876

0.125 0.5 0.125 0.5 0.125 0.5

t = 1200 t = 1500 t = 2500

< b >= 0.1969 < b >= 0.1095 < b >= 0.0508

bM = 0.7835 bM = 0.7737 bM = 0.7818

Fig. 16. Metastability of uniform vegetation cover: snapshots

at different times showing the formation of a gapped pat-

terns triggered by the symmetry-breaking instability and the

subsequent transformation of this pattern via the gap coars-

ening process into uniform bare soil (desert) state. Values of

parameters: p = 1/3, ε = 0.4096, La = 2.75 m, λ = 50 m,

μ = 1, χf = 5.224, χc = 3.070

6. Discussion

To capture the self-organization mechanisms of veg-
etation under isotropic environmental conditions,
two kinds of approach have been developed in the
literature. They differ in that they focus either
on the vegetation patch level and the processes of
water transport by above-ground run off and below-
ground diffusion (HilleRisLambers et al., 2001; von
Hardenberg et al., 2001) or on the individual plant
level and the properties differentiating above- and
below-ground plant structures as mediators of fa-
cilitation and competition (Lefever and Lejeune,
1997).
It is established (Barbier, 2006; Barbier et al., 2008)
that the hypotheses made within the framework of
approaches dealing with water redistribution mech-
anisms do not apply to the site shown in Fig. 1.
This site is representative in terms of constitutive

species, soil substratum, pattern characteristics and
climatic conditions of the vegetation patterns of
South West Niger and was therefore used as a ref-
erence system in this paper. Gapped patterns with
large standing vegetation have also been studied in
Burkina Faso (Couteron and Lejeune, 2001). On
the other hand, in the case of the second kind of
approach which emphasizes the characteristics of
plant structures, the original modeling, proposed
more than ten years ago, needs an upgrade in order
to account for the more recent field observations.
The appropriate revisions made here are summa-
rized as follows:
(i) In accordance with field results, facilitation and
competition are now decoupled structurally and
functionally in the modeling. These opposed forms
of feedback operate independently and are me-
diated by plant’s clearly separated above-ground
and below-ground structures. Functionally, these
feedback mechanisms contribute to opposed scale
pans of the balance weighting biomass gains against
biomass losses. Consistent with this fact, facilita-
tion and competition have been remodeled through
the feedback functions Mf and Mc, and have been
associated in Eq. (1) with the growth and loss
terms respectively. It is noteworthy that since the
approach is set up in terms of the characteristics
of individual plants and not of vegetation patches,
the biomass density b(r, t) refers to the surface
element S occupied by a mature plant. This intro-
duces the structural length La into the description,
which is then shown to be a determining parameter
controlling the stability of the vegetation cover. In
this modeling procedure, the notion of feedback is
spatialized; it strictly refers to interactions between
plants. Processes through which a plant sustains
its own biomass evolution, e.g., the development
of its own crown or of its own rhizosphere, do not
qualify as feedback effects: self-facilitation or self-
competition effects do not make sense here and are
not postulated.
(ii) In order to take into account the influence of
plant development on the range over which feed-
back operates, the educated guess (ansatz) consist-
ing to let the facilitation and competition ranges
Lf and Lc depend upon the biomass density has
been introduced. From the modeling point of view,
this has the advantage that it avoids the complica-
tion of increasing the number of variables that the
consideration of several classes of age would oth-
erwise impose. From a quantitative point of view,
this guess can straightforwardly be calibrated to
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fit the specificity of a particular plant by using the
measured values of the allometric parameter p and
structural ratio ε. So far, field values for these pa-
rameters are only known in the case of the reference
site of Fig. 1. Hence, for the purposes of quantita-
tively illustrating our modeling predictions and of
comparing their outcome with a concrete, well de-
fined system, we have used the values p = 1/3 and
ε ≈ 0.41 corresponding to the shrub species Com-
bretum micranthum G. Don, which predominates
at this site. Whether similar values apply to other
species is an open, fundamental and motivating
question. It is hoped that the approach we report
will stimulate further field work yielding progress
and clarifications in this respect.
(iii) In the original modeling, both processes of
biomass growth and biomass propagation (by seeds
or vegetative) are lumped together in the gain term.
Hence, the denomination of the propagator-inhibitor
model as it has been called (Lejeune et al., 1999;
Couteron and Lejeune, 2001). These processes are
now modeled separately. To describe propagation
an integro-differential representation more appro-
priate and general than the usual laplacian approx-
imation has been introduced. This has allowed us
to qualitatively as well as quantitatively assess the
influence of vegetation propagation on pattern for-
mation. With regard to the pattern of reference, we
conclude that there is no reason to interpret seed
dispersal as a cause of deeply gapped pattern orga-
nization. Furthermore, the results clearly establish
that when the range of seed dispersion LD increases
beyond some limit, pattern formation becomes im-
possible. Intuitively, one expects this prediction to
be general, at least within the framework of a time
continuous and space continuous approach like the
one we adopted. It is however interesting to note
that approaches describing biological invasions by
processes that are discrete in time and discrete in
space (cellular automata) predict the occurrence of
fractal fronts when propagation is governed by long
range power laws (see e.g., Cannas et al., 2006). We
shall not venture here into the dangerous territory
of comparing continuous and discrete modeling ap-
proaches. This is a difficult, non-trivial mathemati-
cal problem that is not our subject and lies beyond
our biological objectives.
On the practical, empirical side, testable expres-
sions have been obtained predicting the conditions
of appearance of patterns and their characteristics
in terms of a restricted set of parameters. This
set is summarized as follows: (i) three structural

parameters, La, p, ε, can be determined with preci-
sion by measurements carried out on the individual
plants found in the field; (ii) two kinetic parame-
ters, μ, δ/σ (the effective dispersion coefficient),
describing biomass growth and propagation can be
estimated for some species on the basis of existing
literature; (iii) two feedback parameters, χf , χc,
describe the strength of interactions between plants
and the influence of edaphic or climatic factors on
these interactions. The instability and desertifica-
tion conditions of χf and χc are predicted by the
theory (cf. expressions (41) and Tables 1-3). Using
the data established by direct field measurements
of the pattern wavelength and plant structural pa-
rameters, these expressions have permitted an in
depth analysis of the ecosystem shown in Fig. 1.
A striking outcome of this analysis concerns the
structural requisite regarding crown size, La > L̂a,
which insures that stable, deeply gapped patterns
(that is bare patches within a vegetation matrix of
rather high biomass density) can form under the
arid climatic conditions as defined in section 3.3
and studied in section 5.2. This result demonstrates
remarkable agreement between theoretical predic-
tions and field observations. Given the measured
field values p = 1/3 and ε ≈ 0.41, the calculated
value of L̂a for μ = 1 (the smallest value of μ for
which deeply gapped patterns are possible) is L̂a =
3.173. On the other hand, independently from this
theoretical calculation, field measurements yield
La ≈ 3.25 (cf. Fig. 2). Comparing these two values
shows that the above inequality is satisfied for the
ecosystem of Fig. 1. In other words, the theory pre-
dicts that deeply gapped patterns are indeed the
organization that one should expect in the case of
this system. One also sees in Table 3 that for μ > 1,
the values of L̂a rapidly increase with μ and thus
become rapidly much greater than the field value
of La estimated from Fig. 2. Considering that the
reference pattern is a stationary, stable organiza-
tion as multi-temporal remote sensing data indicate
(Barbier et al., 2006), this suggests that in reality
this ecosystem functions under loss/gain conditions
corresponding to μ close (superior or equal) to one.
Another original outcome of the modeling, which
the simulations in Figs. 15 and 16 illustrate, is the
prediction that vegetation extinction (desertifica-
tion) can take place following the gap coarsening
pathway which so far had not yet been described.
Strikingly, this mechanism of extinction is met for
smaller values of the loss/gain ratio μ than the lo-
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cal desertification pathway, which takes place when
the loss/gain ratio exceeds the (upper) turning
point of the hysteresis loop. So far, it is this kind
of situation that has been predicted as potentially
catastrophic because it implies an abrupt transition
of the ecosystem from a vegetated state (typically
a more or less periodic distribution of vegetated
spots) towards the bare soil state (von Hardenberg
et al., 2001; Rietkerk et al., 2004). An even more
catastrophic alternative is put into evidence here,
namely, that the symmetry-breaking instability
may trigger a transition that short-cuts the pattern
organization stage. This causes the ecosystem to
switch abruptly, without stable pattern formation,
from a uniform, highly vegetated cover directly
to the bare soil (desert) state. This mechanism is
likely to take place much sooner, i.e., well before
the saddle-node point of the hysteresis is reached. It
is the fate which, as aridity increases, awaits those
species whose crown size La is significantly below
L̂a.
On the conceptual side, the prediction that the or-
ganization of vegetation communities is ruled by
a critical point is all the more remarkable since
the coordinates (16) of this point in {b, Λ, μ}-space
depend on the sole knowledge of the allometric pa-
rameter 1 . This prediction clarifies the nature of
the instability underlying vegetation patterns. It
also remedies a shortcoming displayed by all earlier
self-organization models of vegetation patterns. To
conclude, let us comment on these two aspects.
First, we note that (16) is a true ecological analogue
of the physico-chemical conditions that govern the
onset of immiscibility in regular solutions where
unmixing is associated with the minimization of the
energy rather than with the maximization of the
entropy in the free energy. Self-organized landscape
patterning obeys a mechanism that, phenomenolog-
ically speaking, has much in common with a phase
transition in which vegetation and bare soil ”phase
separate” e.g., like some polymer mixtures (Leibler,
1980; Bates, 1985) that display 3d-organizations
whose morphology in 2-dimensions recalls those of
2d-vegetation patterns. Given the fact that close to
the critical point vegetation patterning dynamics
can be captured by a variational principle, gener-
ating a Swift-Hohenberg equation whose ”diffusion

1 It is also interesting to note that species for which the

inequality p � 1 would hold, reach criticality and thus pat-

terning conditions for average biomass densities very close

to one.

coefficient” Γ is negative is the demonstration of
this phase transition type of phenomenology. Seed
dispersion is not a basic factor in this respect. Vege-
tation self-organizations originate from a diffusional
instability due to interactions between plants. It
would be appropriate to classify these organizations
as such, rather than as the result of a Turing type
of instability. The latter instability is a ”chemical”
phenomenon in the description of which interac-
tions other than chemical reactions, e.g., physical
forces like the Van der Waals intermolecular interac-
tions, play no role and can in general be completely
neglected. A similar non-Turing interpretation also
applies to the non-periodic (so called glassy) vegeta-
tion patterns of frozen disordered plant spots found
in some arid regions (Shnerb al., 2003; Maruvka
and Shnerb, 2006).
From a theoretical modeling point of view, the in-
troduction of the allometric parameter p not only
crucially influences the order-disorder transitions
involved in patterning and desertification, it also
improves a weak point of previous self-organization
models. In general, they either do not take into ac-
count the variation of interaction range with plant
development, or they underestimate its influence
(Lefever and Lejeune, 1997; HilleRisLambers et al.,
2001; von Hardenberg et al., 2001; Zeng al., 2004;
Kéfi et al., 2007). As Fig. 4 illustrates, setting p = 0
is a convenient approximation but quite unrealistic
because it suggests that hysteresis, a phenomenon
that requires large feedback effects, remains pos-
sible even when the biomass tends to zero, i.e.,
under conditions where plants are so sparsely dis-
tributed that they cannot interact. This problem
is automatically avoided when the allometric con-
stant p is different from zero (positive) and by the
modeling of Mf and Mc, which insures that these
functions tend to one (cf. (3)) when the biomass
density tends to zero. Biologically speaking, our ap-
proach provides a reliable quantitative description
of phytosocietal interactions for ground-limiting
resources in terms of plant size and development
at low and high biomass densities. It highlights the
importance of the crown/root ratio, which reflects
the plasticity of plant structures in the face of water
stress and demonstrates that vegetation patterning
is conceptually an order-disorder transition whose
dynamics has properties similar to those of some
phase separation processes.
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Appendix A. Stability of uniform states

A.1. Linear stability of uniform stationary states

Let

δb(r, t) =
1
2π

∫
dkA(k, 0) exp (ωkt + ik · r) (A.1)

be the decomposition into Fourier modes of an ar-
bitrary infinitesimal fluctuation perturbing a uni-
form stationary state solution b of Eq. (1); A(k, 0) is
the initial amplitude of the wave vector of modulus
k ≡ |k|. We replace b(r, t) = b + δb(r, t), (2), (4-6)
and (A.1) in Eq. (1), only retain the terms linear in
A(k, 0). Hence, we obtain that the Fourier mode k
is unstable if its eigenvalue

ωk =
[
1− 2b + χfΩf (k)(1− b)b(1+2p)

]
eχf b(1+2p)−

μ
[
1 + χcΩc(k) b(1+2p)

]
eχcb(1+2p)−

δ
(
1− e−

k2
4σ

)
(A.2)

is positive. Inspection of (A.2) and of the expressions

Ωf (k) =
(1 + 2p)

(1 + k2b2p)
5
2

[
1 +

k2(1− p)
1 + 2p

b2p

]
,

Ωc(k) =
(1 + 2p)ε

3
2

(ε + k2b2 p)
5
2

[
ε +

k2(1− p)
1 + 2p

b2p

]
,

(A.3)

shows that:
(i) For p < 1, both Ωf (k) and Ωc(k) are positive
whatever the biomass density b or the structural ra-
tio ε may be. It is interesting to note that facilita-
tion rather than competition is likely to destabilize
uniform states.
(ii) The third term of ωk, contributed by plant prop-
agation, is negative and thus always stabilizing. Fur-
thermore, close to the critical point, this term is neg-
ligible for Fourier modes whose wave number is close
to zero.
(iii) For k →∞, ω∞ < 0. Hence, the Fourier modes
k � 1 are always stable. This is consistent with
the requirement that the biomass distribution of the
surface element S with respect to which the density
b(r, t) is defined must be uniform.
(iv) For bare soil, the eigenvalue ω0 is simply:

ω0 = 1− μ. (A.4)

Thus, b0 is linearly unstable with respect to uniform
perturbations for 0 ≤ μ < 1 and linearly stable oth-
erwise. On the other hand, using (14) to eliminate
μ in (A.2) shows that for vegetated states

ω0 = bs

[−1 + Λ(1 + 2 p) (1− bs) b2 p
s

]
eχf b(1+2 p)

s .
(A.5)

Accordingly, the spinodal curve (see Fig. 4)

Λ−1 = (1 + 2 p) (1− bs) b2 p
s (A.6)

separates the (Λ−1, b)-space into two domains where
vegetated states are either stable (above the spin-
odal) or unstable (below the spinodal).

A.2. Potential functions

The potentials governing the global stability of uni-
form states when p = 0 and p = 1/3 read:

F0,0 [b(t)] = −b(t)2

2
+

b(t)3

3
+

μ

Λ
e−Λ b(t)

[
b(t)− 1

Λ

]
,

(A.7)

F0, 1
3

[b(t)] =− b(t)2

2
+

b(t)3

3
+

μ

2

b(t)
1
6 e−

Λ
2 b(t)

5
3 WM

(
1
10 , 3

5 , Λ b(t)
5
3

)
Λ10/11

.

(A.8)
WM

(
1
10 , 3

5 , Λ b(t)
5
3

)
is the Whittaker M function.

The potential from which the Swift-Hohenberg PDE
derives reads (p = 1/3):

F [β(r, t)] =
∫

dr
{

Mβ(r, t)

+
(

Γ
4
− K

2

)
β(r, t)2 +

1
4

β(r, t)4

− Γ
4
[(∇2 + 1

)
β(r, t)

]2 }
.

(A.9)

At the critical point, it reduces to:

F [β(r, t)] =
1
4

∫
dr

{
Γβ(r, t)2 + β(r, t)4

− Γ
[(∇2 + 1

)
β(r, t)

]2 }
.

(A.10)

Appendix B. PDE approximation of
vegetation spatio-temporal dynamics

B.1. Approximation of uniform stationary states in
the vicinity of the critical point

Let 0 < η � 1 be a smallness parameter that fixes
the deviation of Λ from its critical value Λc given by
(16). We set
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χc = χ0 + η,

χf = χc + Λc(1 + η2 κ),

μ = μc

(
1 +

∑
i

ηiμi

)
,

bs = bc (1 + η βs) ,

(B.1)

replace these expressions in (14) and solve the equa-
tion obtained at each order in η. This yields:
Order η:

μ1 = 0. (B.2)

Order η2:

μ2 =
2 p

1 + 2 p
κ. (B.3)

Order η3:
M = βs(K− β2

s ), (B.4)

with

M =
3
2

μ3

p2 (1 + 2 p)
and K = 3

κ

p (1 + 2 p)
. (B.5)

Eq. (B.4) is the equation of state for the excess sta-
tionary biomass density βs.

B.2. Swift-Hohenberg equation of vegetation

To find a PDE approximation of Eq. (1), we expand
this integro-differential logistic equation in terms of
η as follows.
To begin with, let k∗ be a finite (non-zero) Fourier
mode that satisfies the conditions of marginal sta-
bility

ωk∗ = 0 and
(

∂ωk

∂k

)
k=k∗

= 0. (B.6)

For k∗ to exist, the biomass ”diffusion coefficient”
must be small (in fact of order η or smaller). Hence,
we put

δ

σ
= ηD (B.7)

and since, close to the critical point, the wavelength
of a mode that satisfies (B.6) is much greater than
La, we expand k∗2 in terms of η:

k∗2 = η k0(1 +
∑

i

ηi ki). (B.8)

We set
b(r, t) = bc (1 + η β(r, t)) , (B.9)

replace the expressions (B.1-B.5) and (B.7-B.9) in
(B.6). Up to O(η2) the solution of the system of two

equations obtained in this manner reads:
Order η:

χ0 = Λc

(
ε

1− ε

)
, (B.10)

k0 =
2
5

(
1 + 4 p

1 + 6 p

)
(1− ε)(1−Δ) (B.11)

with

Δ =
1
3
D p

(
ε

1− ε

)(
Λc

bc

)2
e(−

bc
1−ε )

(1 + 4 p)
. (B.12)

Order η2:

βs = ±
√

1
3

(
K− Γ

2

)
, (B.13)

k1 = C1 + C2 β + C3 κ, (B.14)

with

Γ =− 9
5

(1− ε)2

p εΛ2
c

[
1 + 4 p

1 + 2 p

]2 (1−Δ)2

(1 + 6 p)
,

C1 =
bc

Λc

[
Δ

1−Δ
− (1 + 2 p)(1− ε2)

2 p ε

]
+

Δ
10

(1− ε)(1 + 4 p)
σ (1 + 6 p)

,

C2 =− 2 p +
Δ

1−Δ

[
1 + 2 p

(
2− ε

1− ε

)]
C3 =− Λc ε

(1− ε)(1−Δ)
.

(B.15)

Next, before expanding Eq. (1) in terms of η, we ap-
ply the transformation (23) to rescale its space and
time units, we put kf = k∗ and take expansion (B.8)
into account. We then replace in (1) the expressions
(B.1-B.5), (B.9-B.15) and the explicit expressions of
Mf ,Mc and of the seed dispersion term. As a re-
sult, we find that up to terms of order η2, Eq. (1) is
automatically satisfied. At the order η3,we find that

t∗ =
2
3

p2 exp
(
− bc

1− ε

)
, (B.16)

and the Swift-Hohenberg equation (25), which is the
functional derivative,

∂τβ(r, t) = −δF [β(r, t)]
δβ(r, t)

, (B.17)

of the potential function (A.9). Thus, since

dF [β(r̃, t)]
dt

= −
(

δF [β(r̃, t)]
δβ(r̃, t)

)2

� 0, (B.18)

the dynamics is variational. F [β(r, t)] can only de-
creases in time till it reaches some minimum value
compatible with the constraints. For K > 0, the
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stable and metastable states of the hysteresis loop
correspond to the minima of the potential function.
Their condition of coexistence reads

βs = ±
√

K.

Acknowledgments
We thank John Wm Turner, Mustapha Tlidi and
Vincent Deblauwe for helpful discussions. This work
has benefited from a support granted by the Euro-
pean project ECOPAS.

References

Barbier, N., Couteron, P., Lejoly, J., Deblauwe, V.,
Lejeune, O., 2006. Self-organised vegetation pat-
terning as fingerprint of climate and human im-
pact on semiarid ecosystems. J. Ecology 94, 537-
547.

Barbier, N., 2006. Interactions spatiales et auto-
organisation des végétations semi-arides. PhD
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