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Why are cellular switches Boolean?

General conditions for multistable genetic circuits

Javier Maćıa a,1, Stefanie Widder a,∗,1, Ricard Soléa,b

aComplex System Lab (ICREA-UPF), Barcelona Biomedical Research Park
(PRBB-GRIB), Dr. Aiguader 88, 08003 Barcelona, Spain

bSanta Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA

Abstract

The logic of cellular decision making is largely controlled by regulatory cir-

cuits defining molecular switches. Such switching elements allow to turn a

graded input signal into an all-or-nothing output. Traditional studies have

focused on this bistable picture of regulation, but higher-order scenarios in-

volving tristable and tetrastable states are possible too. Are these multi-

switches allowed in simple gene regulatory networks? Are they likely to be

observed? If not, why not? In this paper we present the examination of this

question by means of a simple but powerful geometric approach. We exam-

ine the relation between multistability, the degree of multimerization of the

regulators and the role of autoloops within a deterministic setting, finding

that N -stable circuits are possible, although their likelihood to occur rapidly

decays with the order of the switch. Our work indicates that, despite two-

component circuits are able to implement multistability, they are optimal for

Boolean switches. The evolutionary implications are outlined.
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analysis

PACS: APS/123-QED

1. Introduction

Bistability is a dynamical phenomenon related to the core processes in

biological systems. During the last decade numerous experimental and the-

oretical studies were devoted to analyze its formal properties and its natural

occurrence (Hasty et al. (2001); Cherry and Adler (2000); Laurent and Keller-

shohn (1999); Novak and Tyson (2003); Widder et al. (2007)). Although it

pervades many different biological processes, it is reasonable to assume that

cellular decision-making is not only based on binary solutions. Actually,

the complex nature of gene regulatory circuits allows them to display multi-

ple alternative steady status (Boyer et al. (2005); Niwa et al. (2005); Zhou

et al. (2007); Cinquin and Demongeot (2005); Cantor and Orkin (2001); Li

(2002); Delbrück (1949)). In this context, bistability would be a limit case

of bifurcations in low-dimensional dynamical systems. If N is the num-

ber of possible attractors of a given system, N = 2 would perhaps be

likely to occur in low-dimensional networks. Examples of multiple stable

solutions can be found in development, such as embryonic stem cell mas-

ter regulators (Boyer et al. (2005); Niwa et al. (2005); Zhou et al. (2007)),

hematopoietic lineage specification (Cinquin and Demongeot (2005); Cantor

and Orkin (2001)) or epigenetic processes resulting in phenotypic differences

(Li (2002); Delbrück (1949)). These processes account for multiple valid

alternatives, for example in response to external conditions, crucially impor-

tant for adaptive behaviour. Many of these systems have a two-component
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circuit operating at the core of the decision-making process. This occurs

with Xenopus oocytes, which convert a continuously variable concentration

of the maturation-inducing hormone progesterone, into an all-or-none bio-

logical maturation response Ferrell and Machleder (1998). Stem cells on the

other hand display a switch-like response, where the expression of the in-

volved transcription factors (OCT4, SOX2, and NANOG) are stabilized by

a bistable switch. When they are expressed and the switch is ON, the self-

renewal genes are ON and the differentiation genes are OFF. The opposite

holds when the switch is OFF (Chickarmane et al. (2006)). A third example

is the cell-cycle regulation, which exhibits a temporally abrupt response of

Cdc2 to non-degradable cyclin B (Pomerening et al. (2003)). The question

here is: are two-component circuits compatible only with bistable (N = 2)

patterns? Or are these circuits instead capable of multistable (N > 2) be-

haviour? (Kaufman and Thomas (1987); Ma and Wu (2007); Demongeot

et al. (2000); Ozbudak et al. (2004); Tyson et al. (2003)). We can pose

these problems in terms of general questions such as: Is the logic of cellular

decisions Boolean? If it is, why is that?

Despite the question about the presence of multistability in two-component

circuits has been previously addressed (Snoussi and Thomas (1993)), several

questions remain open. Among them three seem articularly relevant: (a)

How the degree of multimerization correlates with the potential multista-

bility achievable, (b) how likely is the emergence of systems with M > 2

multistability, and (c) how the degree of multimerization determines the ro-

bustness of these minimal circuits are questions addressed in this work.
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Figure 1: (a) A genetic circuit with multimeric autoloops and cross-regulation involving

two genes (GA, GB) coding for two proteins (A, B) acting as transcription factors. Under

certain conditions, this type of genetic network can show multistability. Here all possible

regulatory modes are shown (+/−). In (b) a simplified diagram summarizes the logic of

the system.
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In a recent study (Guantes and Poyatos (2008)) on multistable circuits,

the authors found tristable (N = 3) dynamics in genetic circuits of two com-

ponents involving dimeric regulators. The computational analysis involved a

systematic (both deterministic and stochastic) exploration of mutual-activation

and mutual-inhibition circuits, i.e. circuits where the cross-regulatory inputs

have the same sign. The study revealed very interesting properties of the

resulting molecular switches, with relevant implications for cell behavioural

patterns, It would be desirable to extend this approach to completely gen-

eral scenarios, finding the mathematical conditions for different multistable

patterns and how are they affected by the degree of multimerization. In this

work we will focus our attention on the analysis of such a general, minimal

genetic circuit and its potential multistable patterns. We use a systematic

methodology to analytically establish possible types of dynamics displayed

by two-component regulatory circuits. This method is based on the analysis

of the crossings of nullclines, considering only simple, geometrical features.

Specifically, for a two-dimensional dynamical system described by a pair of

differential equations, namely:

dA

dt
= f(A, B)

dB

dt
= g(A, B) (1)

the nullclines are defined as the curves

f(A, B) = 0

g(A, B) = 0 (2)
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or alternatively Ȧ = 0 and Ḃ = 0 (here ẋ indicates time derivation, i.e.

dx/dt). The first (A-nullcline) curve corresponds to the points in the (A, B)

phase plane where A does not change, whereas the second (B-nullcline) de-

fines those where B is stable. The crossing points between both curves define

the equilibrium points and the shape of the curves allows to identify their

stability properties (Edelstein-Keshet (1988)).

Analyzing a minimal set of geometrical properties of the nullclines, allows

to determine the necessary conditions for the emergence of mono- (N = 1),

bi- (N = 2) or in general multistable (N > 2) dynamics. We show that

two key ingredients are independently determinant for the mode of decision-

making, namely the presence of an auto-regulatory feedback and the multi-

merization of the regulatory factors. Finally we present a numerical explo-

ration of the feasibility of different types of dynamics and their robustness

against parameter changes implemented by simple two-gene circuits. Our

study shows that bistability is by far the dominant type of behaviour dis-

played by two component circuits.

Understanding these minimal systems sets the stage for the comprehension of

more complex decision-making mechanisms present in nature (Kaufman and

Thomas (2003); Ninfa and Mayo (2004)) and allows for sophisticated syn-

thetic designs with biomedical applications. This knowledge, their logic and

how it will change under parameter tuning are important goals of systems

biology.
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Figure 2: The possible qualitative geometries of the nullclines (bottom) deduced from the

various combinations of numerator and denominator (top) considering only the biologically

meaningful region, i.e. (A > 0, B > 0). Detailed example of the procedure is featured in

the Appendix. The location of the vertical asymptote is denoted by ϕ and ξi indicates the

crossing with the horizontal axis. The inflection point (open circle) and extrema, if exist,

arise at the indicated locations, but not elsewhere.
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2. Description of the genetic circuit

The analitic approach taken here considers the most general system formed

by two genes. We consider a competitive model with a single binding site

per gene, involving a minimal set of interactions. The qualitative properties

found in this setting can be found in more complex models (considering e.g.

cooperative regulation) as well. Expression of gene A is regulated by two

different modes: firstly, protein A exhibits an auto-regulatory loop by bind-

ing to its own promoter; secondly, expression is cross-regulated by protein B.

Gene B is regulated homologously (see figure 1).

The tunable parameters αi
l and αi

c describe the type of regulatory inter-

actions, i.e. activation or inhibition, without any predefined specific assump-

tions. They denote the regulatory rates with respect to the basal transcrip-

tion, for the autoloop and cross-regulation respectively. Parameter values

smaller than one correspond to inhibitory regulation, whereas those larger

account for activation. Modelling deterministically this two-component sys-

tem on assuming basal transcription, the standard rapid equilibrium approx-

imations and constant number of promoter sites, we obtain:

Ȧ = γA

(
1 + ωA

l αA
l Anl + ωB

c αB
c Bmc

1 + ωA
l Anl + ωB

c Bmc

)
− dAA (3)

Ḃ = γB

(
1 + ωB

l αB
l Bml + ωA

c αA
c Anc

1 + ωB
l Bml + ωA

c Anc

)
− dBB (4)

Here, the binding equilibrium of the autoloop and the cross-regulators are

denoted by ωi
l and ωi

c, respectively. The degradation rate of protein i is

denoted as di. The degree of multimerization of autoloop (l) and cross-

regulators (c) is given by nl,c and ml,c for the respective proteins. Finally,
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Figure 3: Numerical simulations and stability analysis of monomeric systems with (a)

two and (b) one autoloop. Circle denotes a stable foci whereas white square denotes

a saddle point. The basins of attraction are shown in green and white. The following

sets of parameters have been used: (a) γA = 1, dA = 1, αA

l
= 10, ωA

l
= 1, ωB

c
= 1,

αB
c = 0,γB = 1.1, dB = 0.1, αB

l
= 2.1, ωB

l
= 0.1, ωA

c = 1.1, αA
c = 0 and (b) γA = 5,

dA = 8, αA

l
= 9, ωA

l
= 1, ωB

c = 1, αB
c = 0, γB = 8.5, dB = 1, αB

l
= 0, ωB

l
= 0, ωA

c = 1,

αA
c

= 0

the concentration of other biochemical elements involved remain constant

during time and can be subsumed in the kinetic constant γi.

3. Nullclines analysis

In order to analyze the system’s dynamics we obtain the following ex-

pressions for the nullclines (i.e.imposing Ȧ = 0 and Ḃ = 0):

(B)Ȧ=0 =

(
γA + γAωA

l αA
l Anl − dAA− dAωA

l Anl+1

ωB
c (dAA− γAαB

c )

) 1

mc

(5)
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(A)Ḃ=0 =

(
γB + γBωB

l αB
l Bml − dBB − dBωB

l Bml+1

ωA
c (dBB − γBαA

c )

) 1

nc

(6)

The number of crossing points between (5) and (6) defines the number of

different fixed points within the system. Both nullclines have symmetric ex-

pressions. This symmetry facilitates their analysis due to interchangeability

of their characteristic features under exchange between variables A and B.

Hence, the problem can be evaluated by focusing only on expression (5).

3.1. Geometric features

The qualitative shape of the nullclines and the resulting dynamical con-

straints are addressed by the analysis of a specific set of simple geometrical

features, namely: the behaviour of the asymptotes, the crossing points with

the axes, the extrema and the inflection points. First we will consider the

geometrical features of the numerator and the denominator of the nullcline

separately.

The denominator is a straight line independent of the degree of multimeriza-

tion crossing the horizontal axis at

ϕ =
γAαB

c

dA

(7)

which determines the location of the vertical asymptote of the corresponding

nullcline. The numerator is a polynomial of degree nl + 1.

To determine the geometric features of the numerator we consider the

crossing point of the numerator with the vertical axis in B = γA and the

number of crossing points ξi with the horizontal axis. The number of these

points depends on the specific set of parameters, but are constrained between

10
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Figure 4: The minimal geometrical conditions implementing bistability, classified by the

number of autoloops and the emergence of respective extrema. We show cases without

(a) and with (b, c) extrema. The insets depict the topology of the genetic circuit. (a)

Nullclines with nl = 0, mc = 1 and ml = 0, nc = 2 exhibiting an horizontal asymptote

and an inflection point respectively with γA = 5, dA = 0.1, αA

l
= 0, ωA

l
= 0, ωB

c = 2.5,

αB
c = 0, γB = 5, dB = 0.1, αB

l
= 0, ωB

l
= 0, ωA

c = 1, αA
c = 0. Region I and Region

II (grey areas) have been plotted with more detail. In (b) a system of nl = 2, mc = 1

and ml = 0, nc = 2 is shown exhibiting extrema in a single nullcline based on a single

autoloop, applying γA = 0.271, dA = 0.1, αA

l
= 14.767, ωA

l
= 2.7 · 10−3, ωB

c
= 1.25 · 10−2,

αB
c = 1.73 · 10−3, γB = 5, dB = 0.1, αB

l
= 0, ωB

l
= 0, ωA

c = 1, αA
c = 0. (c) Nullclines with

nl = 2, mc = 1 and ml = 2,nc = 1, γA = 0.236, dA = 0.1, αA

l
= 16.96, ωA

l
= 2.7 · 10−3,

ωB
c = 2.7 · 10−4, αB

c = 22.99, γB = 0.236, dB = 0.1, αB

l
= 16.96, ωB

l
= 2.7 · 10−3,

ωA
c

= 2.7 · 10−4, αA
c

= 22.99. Circles indicate stable foci, white squares denote saddle

points and black square represents unstable foci.
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one and three. If A → ∞ the polynomial tends to −∞, and the numerator

necessarily crosses the horizontal axis, due to the fact that the numerator

crosses the vertical axis at a positive value γA. Furthermore the numerator

exhibits a single inflection point (IP) in the biological domain, i.e. A > 0

and B > 0 at

AIP =
(nl − 1)αA

l γA

(nl + 1)dA

. (8)

From this result two possible scenarios are expected to occur: i) no extrema

in the biological domain and hence only one crossing with the horizontal axis

is possible (i.e. the previously discussed crossing), ii) the numerator exhibits

two extrema (a minimum followed by a maximum) and multiple (up to three)

crossings are possible.

The shape of the nullcline is defined by the possible overlaps between the

numerator and the denominator. In figure 2 all possible qualitative overlaps

are shown. For illustrative purposes we discuss a full set of examples to

demonstrate the effects of the overlap on the shape of the nullcline in the

Appendix. Subfigures 2(a) - (f) present some examples of the shapes of the

nullcline. Subfigures 2(g) and (h) represent scenarios with very specific loca-

tion of ϕ: g) ξ2 < ϕ < AIP and for h) AIP < ϕ < ξ2. The role of the genetic

cross-regulation is represented by the exponent 1/mc in (5). The value of mc

does not have a qualitative effect onto the crossings, the extrema nor on the

vertical asymptote within the biological domain. However it exerts influence

on the curvature and the exact position of the inflection point of the nullcline.

In the specific case of monomeric regulation nl = mc = 1 another geomet-

12
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rical element appears related with the presence of autoloops, i.e. the oblique

asymptotes with a slope −ωA
l /ωB

c . As we will see later this asymptote is a

requirement for bistability in monomeric circuits. Additionally, no extrema

are possible, preventing multistability beyond degree two.

Considering these basic geometrical features of the nullclines we can al-

ready classify the studied systems into two blocks: systems with monomeric

regulation are qualitatively different from systems with multimeric regula-

tion, which are characterized by a high level of nonlinearity, increasing with

the degree of multimerization. These differences have their logical counter-

parts in their multistable dynamic potentials.

4. Analysis of the different multistable scenarios

In this section, we are aiming to overlap both nullclines (equations (5)

and (6)) in order to obtain to obtain the full system, its respective fixed

points and its level of stability: mono-, bi-, tri- and tetrastability. Once the

geometrical requirements are satisfied, the degree of multistability depends

on the given set of parameters. The essential geometrical properties are

linked to two biological functions, i.e. the existence of the autoloop and the

degree of multimerization of the feedback, as well as of the cross-regulation.

4.1. Bistability (N = 2)

Considering the different size of the multimeric regulators and circuit

topologies, there are different ways to achieve bistability. Genetic circuits of

two components without autoloops cannot exhibit bistability with monomeric

regulators as shown by (Cherry and Adler (2000)). The biological mechanism

13



Acc
ep

te
d m

an
usc

rip
t 

Figure 5: Examples of tri- (a, b) and tetrastable (c) systems. The minimal requirement for

tristability is the existence of one autoloop as seen in (a). In (a) Regions I and II have been

plotted in detail. For the emergence of tetrastability two autoloops are needed, as depicted

in (c). Figure (a) Nullcline showing tristability for nl = 2, mc = 1 and ml = 0, nc = 2 with

parameters γA = 0.2, dA = 6 · 10−2, αA

l
= 16, ωA

l
= 1.6 · 10−3, ωB

c
= 1, αB

c
= 0, γB = 2,

dB = 0.1, αB

l
= 0, ωB

l
= 0, ωA

c = 7, αA
c = 0. (b) Tristability implemented by a circuit

with two autoloops with parameters nl = 2, mc = 1 and ml = 2, nc = 1, respectively,

γA = 0.271, dA = 0.1, αA

l
= 14.767, ωA

l
= 2.7 · 10−3, ωB

c = 1 · 10−2, αB
c = 1.73 · 10−3,

γB = 0.271, dB = 0.1, αB

l
= 14.767, ωB

l
= 2.7 · 10−3, ωA

c = 4 · 10−2, αA
c = 2. The system

(c) shows tetrastability based on inflection points and extrema in both nullclines nl = 2

mc = 1 and ml = 2 nc = 1, with the set of parameters γA = 0.271, dA = 0.1, αA

l
= 14.767,

ωA

l
= 2.7 · 10−3, ωB

c
= 6.75 · 10−3, αB

c
= 1.73 · 10−3, γB = 0.271, dB = 0.1, αB

l
= 14.767,

ωB

l
= 2.7 · 10−3, ωA

c = 6.75 · 10−3, αA
c = 1.73 · 10−3. Here cicles denote stable foci, white

squares saddle points and black square denotes unstable foci.
14
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able to provide the minimal nonlinearity in the circuit response is the exis-

tence of a single monomeric autoloop. The existence of the autoloops allows

for the presence of an oblique asymptote in the nullclines plot, which in turn

provides the possibility to generate a bistable scenario (Wolf and Eeckman

(1998)) as can be seen in figure 3. On the other hand, multimeric circuits

without autoloops are able to provide bistability, but involving some geomet-

rical differences. Now the oblique asymptote disappears and is substituted

by the emergence of inflection points in the nullclines within the region A > 0

and B > 0. The size of the regulator has a direct effect in the position of the

inflection points and increases the curvature of the nullclines at both sides of

the inflection point. This development enhances the feasibility to encounter

bistability. Finally the last qualitative scenario providing bistability involves

multimeric circuits with autoloops, providing the degree of nonlinearity to

introduce additional extrema to the nullclines. The extrema supply the cir-

cuits with a maximum of geometrical plasticity. In figure 4 we show the

minimal biological requirements (in terms of circuit architecture and degree

of multimerization) to obtain bistability via the different geometrical features

described above.

More complex overlaps between nullclines with multiple geometrical ele-

ments can be considered, thus providing a huge amount of possible combina-

tions for the emergence of bistability. Yet no new geometrical elements are

involved.

4.2. Tristability (N = 3):

According with Poincare-Hopf theorem Glass (1975), in order to ob-

15
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Figure 6: Effects of multimerization of the regulators on the geometry of the nullclines.

With bigger regulator size, curvature increases enhancing the plasticity of the genetic

circuit. The picture shows the nullclines of a minimal bistable circuit without autoloops.

Regulator A is kept constantly monomeric (dashed line), whereas the size of regulator B

is increased stepwise from di- (red), over tri- (green) to tetramers (blue). The increasing

curvature is related with an increase in the robustness of the circuit against parametric

changes. The inset (blue bars) shows the mean number of mutations needed to fall into

the monostable regime. The simulations have been performed starting from the same set

of parameters, changing only the size of the multimeric regulator.

16



Acc
ep

te
d m

an
usc

rip
t 

tain tristability in a deterministic setting at least five nullcline crossings are

needed. Three of the fixed points correspond to the stable states, while

the other two provide the limits of the basins of attraction. Applying the

previously described procedure, several combinations of differently shaped

nullclines are feasible, providing tristable dynamics. All of them need to ex-

hibit extrema in at least one of the nullclines, hence at least one multimeric

autoloop is required. Figure 5 gives some examples of tristable systems for

different circuits. In particular, in figure 5(a) we show an example of the

least complex system allowing tristability, implemented by the reassembly of

nullclines with nl = 2, mc = 1 and ml = 0, nc = 2. In figure 5(b) an example

for a higher degree of complexity is shown. Ignoring the constraint of min-

imal interactions, further combinatorial scenarios exist comprising tristable

dynamics.

4.3. Tetrastability (N = 4):

For the emergence of tetrastable behaviour, we need four stable fixed

points. Due to the shape of our nullclines the only solution able to pro-

vide this number of stable fixed points involves the existence of five unstable

fixed points as figure 5(c) shows. Under the geometrical point of view, this

scenario is feasible only if both nullclines exhibit extrema. To satisfy the

minimal geometrical requirements, the existence of two autoloops with mul-

timeric regulators for both genes is necessary independently of the degree of

multimerization of the cross-regulation.

4.4. Beyond Tetrastability (N > 4):

Systems with multimeric auto-regulation and nullcline shape of the type

17
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Figure 7: Relative frequency of parameter sets showing bistable (square), multistable

(circle) behaviour. (a) Results for competitive regulation, (b) for cooperative regulation

are shown. In both cases bistability is largely dominant. The relative frequency for non-

bistable systems is higher in the cooperative model (blue bars shown below respectively).
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shown in figure 2(g) and (h) can exhibit multistability beyond degree four.

The maximally possible fixed points achieved by these scenarios can provide

heptastability. However, these types of shape suffer from strong geometrical

constraints, i.e. the numerator of the nullcline must exhibit three crossing

with the horizontal axis and the denominator has to cross the horizontal axis

within a very specific range located between the inflection point of the numer-

ator and the second crossing of the numerator with the horizontal axis. This

degree of multistability is exceptionally difficult to achieve, hence can prob-

ably not be implemented by this sort of circuit. Discarding these marginal

scenarios the maximal degree of multistability achieved by these circuits is

four.

5. Abundance and Robustness:

The geometrical analysis of the nullclines has shown that the case for

strictly monomeric circuits is restricted to a single scenario, which can pro-

vide bistability at most. On the other hand, for dimeric or higher regula-

tors we find more possible geometrical scenarios implementing multistability.

These scenarios stay qualitatively identical independently of the degree of

multimerization.

A priori this fact suggests that the biggest qualitative difference lies in

the transition between monomeric and multimeric regulation. However, the

increase of the size of the multimeric regulators has a relevant effect in the

feasibility of the scenarios implementing multistability, since along with mul-

timerization level there is an increase in the curvature of the nullclines and
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the centering of the inflection point within the region A > 0 and B > 0.

These effects provide easier access to a higher number of crossing points.

The same argument holds for robustness versus parameter change. Numeri-

cal simulations have shown that the mean number of parametric mutations

required to lose bistable behaviour increases with multimer size. This in-

dicates that bistable systems with higher multimerization degree are more

robust versus parametric change. Figure 6 shows some illustrative examples.

To understand in detail the role of the regulator size, we performed a nu-

merical study calculating the abundance of bistability versus multistability

in parameter space. We assume that each possibly implemented dynamic has

an associated parameter space, in which the respective type of dynamic is

realised. The conjecture is that dynamics with a larger parameter space will

be encountered more abundantly. We are choosing random sets of param-

eters in a wide range for the equations (3) and are analyzing the dynamics

of the system in terms of bistability and multistability (three or more stable

states). We have found that for all circuits under investigation, bistability is

largely dominant over multistability as shown in figure 7. The same analysis

has been performed for circuits with cooperative binding and similar qual-

itative results have been obtained. That suggest, that even though various

types of dynamics can be implemented by two-gene networks, these circuits

are optimal to implement Boolean switches.

By increasing the size of the regulators, it is possible in principle to en-

hance the absolute frequency of appearance of multistable parameter sets.
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However, the ratio between bistable systems and the rest remains practi-

cally constant. These numerical results are consistent with the fact that the

geometrical constraints defining each scenario increase with the number of

stable states. In other words, the number of viable biological scenarios able

to provide a given type of multistability, decreases. From the presented re-

sults we assume that circuits efficient implementing multistable behaviour

should involve either a more complex topology or larger, heteromeric regula-

tor complexes.

6. Conclusions

Regulatory networks define the computational machinery of life at the

cellular level. They largely define the cell hardware, allowing cells to preserve

or change their internal state, adapt to changing conditions or even die. Most

of these events result from the presence of molecular switches. Bistability,

catastrophes and hysteresis have been identified as key dynamical phenomena

pervading such switching behavior (Tyson et al. (2008)). Many complex

processes taking place at different levels are strongly tied to such switch-

like decisions. Waddington’s picture of developmental paths, would be an

example of this ideas (Waddington (1957)). As the embryo grows and changes

its shape, cells undergo switching transitions, with different genes turning ON

or OFF as a result of both intra- and cell-cell interactions (Kauffman (1993);

Forgacs and Newman (2005)). In many cases, the resulting spatial patterns

can be explained in terms of simple regulatory modules (Sole et al. (2002))

Although there is a large literature devoted to multistability in high-

dimensional dynamical systems and a few low-dimensional cases (Mendoza
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and Alvarez-Buylla (2000); Glass and Kauffman (1973); Snoussi and Thomas

(1993)) many relevant questions remain open. In this paper, the general prob-

lem of the possible and the actual two-component circuits has been analyti-

cally (and numerically) addressed, focusing on the feasibility of occurrence of

bi- or higher order multistability. The results obtained so far allow to reach

two basic conclusions.

We have shown that tri- and tetra-stability are also possible outcomes of

simple, two-component regulatory networks. Our analysis allows to predict

the set of conditions under which such multiple states are expected to occur.

The emergence of different dynamics is closely related to the circuit topol-

ogy (i.e. number of autoloops) as well as the degree of multimerization of

the regulators. We have seen that there exists a great qualitative difference

between strictly monomeric circuits and circuits involving multimeric regula-

tors. Monomeric, competitive circuits are able to provide at most bistability,

whereas networks involving multimers can achieve at most tetrastability in-

dependently of the specific size of the regulator. In order to obtain bistability

no special topological requirement, in terms of autoloops, must be met. How-

ever, the necessary geometrical constraints for tri- and tetrastability impose

the existence of at least one or two multimeric autoloops, respectively. The

degree of multimerization, however, plays an important role in the frequency

of emergence and the robustness versus parametric changes of the different

multistable dynamics. Increasing the size of the multimer implies an increase

of frequency and robustness.

Are multistable solutions equally likely to be implemented by two-gene
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networks in molecular systems? Although only a few have been reported so

far, they are possible and thus, should be designable using synthetic biology

techniques. However, our results indicate that despite that simple two-gene

circuits are able to implement a variety of different multistable behaviour,

their optimal regime is bistability. This is consistent with the scarcity of

biological two-gene circuits which have been reported to implement multi-

stability so far. Our study shows that the size of bistable parameter space

is dominantly larger than any other alternative dynamic spaces. We suspect

that the rarity of multistable dynamics in two-component regulatory circuits

might be explained from our analysis and that the number of constrains re-

quired to reach a genetic switch with more than two stable states using only

two regulatory elements, might be too large for natural selection to find it.

Future work is required to determine the optimal topological and regulatory

configuration to implement multistable decision processes.
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8. Appendix

In order to describe the procedure for the determination of the nullcline’s

shape we present some examples in detail.

Starting from the nullcline expressions (5) and (6), we independently analyze

the behaviour of the numerator and the denominator, which puts us into the

position to discern possible combinatorial scenarios of interplay between the

two parts of the expression. Subsequently we reassemble and study the geo-

metric properties of the entire nullcline, before mounting the combinatorial

of the whole system, represented by both nullclines. The deduction of the rel-

evant geometrical properties of the nullcline follows the standard procedure

(Abramowitz and Stegun (1964)). Here, we are focusing on the cases with

monomeric cross-regulation mc = 1. The cases of dimeric cross-regulation,

mc = 2, have the same geometrical features as their monomeric counterparts,

except the number of inflection points, which is usually higher.

The number of extrema of the nullcline is a significant factor in the emer-

gence of multistability. The biological mechanism behind the existence of

extrema is the auto-regulation. Due to the fact that the degree of the null-

cline’s expression increases with the degree of multimerization, in principle

multiple extrema are possible. However, the fact that the numerator can

only exhibit a single inflection point within the biological domain and hence

only two extrema, constraints the number of total extrema of the nullcline

within the biological region to maximal three (see figure (8)).

The different shapes of the nullcline can be classified based on two elements:

i) number of solutions for the crossings between the nullcline and the hori-

zontal axis ξi, namely, a single or more crossings and ii) the position of the

28



Acc
ep

te
d m

an
usc

rip
t 

Figure 8: The shape of the nullclines nl = 2, mc = 1 (lower panel) deduced from the overlap

of numerator and denominator (upper panel). The upper picture is the representation of

the numerator (solid line) and the denominator (dashed line) independently. The lower

picture shows the corresponding nullclines within the entire mathematical domain. In red

we depict the biologically feasible region (B > 0, A > 0). The grey regions indicate the

negative part of the nullclines (B < 0). The limits of the grey zones correspond to the

different crossings of the numerator (ξi) and the denominator (ϕ) with the horizontal axis.

For the nullclines with only two crossings with the horizontal axis (not shown), the distance

between the asymptotically dominated region and the MR collapses into a minimum of

the nullcline, without any further qualitative effects on its shape. Systems with mc = 2

display qualitatively similar properties within the positive region, however, the negative

region does not exist for R and a higher number of inflection points are possible. The

parameters are as follows:(a) γA = 0.4, dA = 0.1, αA

l
= 10, ωA

l
= 5.4 · 10−3, ωB

c = 2 · 10−2,

αB
c = 0, (b) γA = 0.24, dA = 0.1, αA

l
= 16, ωA

l
= 2.7 · 10−3, ωB

c = 1 · 10−2, αB
c = 0.4, (c)

γA = 0.225, dA = 0.1, αA

l
= 17.5, ωA

l
= 2.3 · 10−3, ωB

c
= 1, αB

c
= 7.29
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vertical asymptote located at the abscissa ϕ = γAαB
c /dA. For example, con-

sidering a single crossing, two possible scenarios can emerge i) ϕ < ξ (figure

(8)a) and ii) ξ < ϕ resulting in qualitatively equal behaviour of the nullcline,

but mirrored across the vertical asymptote.

Considering three crossings, again two different geometries emerge i) ϕ <

ξ1 ∨ ϕ > ξ3 and ii) ξ1 < ϕ < ξ3. The biological branch of the nullcline is

split into two parts at varying distance, the asymptotic and the MR region,

respectively. Under the first condition and in B > 0 the asymptotic region

does not exhibit extrema, whereas MR accommodates a single maximum

(see figure 8(b)). Under the second condition the extrema might be accom-

modated differently. Of the maximally three extrema, one is again used by

MR, whereas the other two can locate to the asymptotic region lateral to an

inflection point (figure 8(c)).

More different geometrical combinations of numerator and denominator are

possible, see figure 2.

30




