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Abstract 
 
We consider a social game with two choices, played between two relatives, where 

roles are assigned to individuals so that the interaction is asymmetric. Behaviour in 

each of the two roles is determined by a separate genetic locus. Such asymmetric 

interactions between relatives, in which individuals occupy different behavioural 

contexts, may occur in nature, for example between adult parents and juvenile 

offspring. The social game considered is known to be equivalent to a donation game 

with non-additive payoffs, and has previously been analysed for the single locus case, 

both for discrete and continuous strategy traits. We present an inclusive fitness 

analysis of the discrete trait game with roles and recover equilibrium conditions 

including fixation of selfish or altruistic behaviour under both behavioural contexts, 

or fixation of selfish behaviour under one context and altruistic behaviour under the 

other context. These equilibrium solutions assume that the payoff matrices under each 

behavioural context are identical. The equilibria possible do depend crucially, 

however, on the deviation from payoff additivity that occurs when both interacting 

individuals act altruistically. 

 

Keywords 

evolutionary game theory, 2 x 2 games, kin selection, donation game, synergistic 

effect 
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Introduction 

Social behaviour is often considered in its simplest form as an interaction between 

two individuals, each of which can exhibit two alternative behaviours. It is assumed 

that the two individuals’ choices are made independently, and that each receives a 

payoff from the game according to their own action and that of the other. Such a game 

can be written in its most general form as a payoff matrix of the following form (table 

1). 

 

Grafen (1979) labelled the above payoff matrix the ‘Hawk-Dove’ game, not to be 

confused with the particular instantiation of the above payoff matrix labelled ‘Hawk-

Dove’ by Maynard Smith (Maynard Smith & Price, 1973; Maynard Smith, 1982). By 

choosing different parameters A, B, C and D in this game a variety of social dilemmas 

can be realised (Rapoport & Guyer, 1966; Rapoport, 1967), including the widely 

studied Prisoner’s Dilemma and Snowdrift games. The study of such social dilemmas 

between related individuals has attracted much attention since the introduction of the 

concept of inclusive fitness (Hamilton, 1964a; 1964b). Inclusive fitness theory 

considers altruistic interactions between individuals, where altruism is defined as 

incurring a fitness cost c to the altruist, while providing a fitness benefit b to the 

recipient. This is often referred to as the donation game. In fact, more general social 

interactions can be considered by allowing costs c or benefits b to be negative, such as 

weak altruism (c is negative, hence ‘altruism’ also increases personal fitness (Wilson, 

1979) and even spite (b is negative, hence ‘altruism’ actually decreases the recipients’ 

personal fitness (Hamilton, 1970). In this paper, we limit ourselves to the simple 

donation game with positive c and b, corresponding to strong altruism (c is positive, 

ibid.). 
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If altruism is under genetic control, and if some population structure exists such that 

genetically similar individuals interact with each other more frequently than they 

interact with individuals drawn uniformly at random from the entire population (e.g. 

Grafen, 1979), then altruistic behaviour is selected for whenever Hamilton’s rule is 

satisfied (Hamilton, 1964a; 1964b): 

b
cr > , 

(1) 

where r is the average degree of relatedness between interacting individuals. 

 

Games having the form shown in table 1 played between relatives have been analysed 

both for populations of fixed strategy individuals, and populations of individuals 

whose strategy is a probability of playing each of the two game alternatives. Different 

strategy equilibria have been demonstrated for each situation (Grafen, 1979). 

By defining  

DBc −=− , (2a) 

DCb −= , (2b) 

and 

DCBAd +−−= , (2c) 

and by transforming the payoffs such that D = 01, the payoff matrix in table 1 can be 

rewritten as table 2 below (Queller, 1984). 

 

                                                 
1 game theoretic equilibria are invariant under such a payoff matrix transformation 
(e.g. Weibull, 1995, p. 73) 
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Table 2 is the payoff matrix for the synergistic donation game in which each 

individual can decide whether to behave altruistically (choose I) or not (choose II). 

Note that for strong altruism we require that b, c > 0, as described above. One 

important point is that there is a deviation from payoff additivity d, also known as the 

synergistic effect, that occurs when both individuals behave altruistically towards 

each other. The game payoffs A, B, C and D can be chosen such that d = 0 (payoffs 

are additive), d < 0 (payoffs are negatively non-additive), or d > 0 (payoffs are 

positively non-additive), while still maintaining b, c > 0. Deviation from payoff-

additivity has implications for the application of Hamilton’s rule. For the synergistic 

donation game played in a population of relatives with deterministic strategies, the 

population strategy at equilibrium depends both on relatedness r and on deviation 

from additivity of payoffs d. If relatedness is sufficiently high or low, or if payoffs are 

additive (d = 0) altruistic (type I) or selfish (type II) behaviour will take over the 

population. However if relatedness is intermediate and payoffs are non-additive (d ≠ 

0) then a polymorphic population equilbrium which is either stable (d > 0, i.e. 

positively non-additive payoffs) or unstable (d < 0, i.e. negatively non-additive 

payoffs) results (Queller 1984). 

 

Games With Roles Played Between Relatives 

Analyses of the 2 x 2 games, and the donation game in particular, often assume a 

symmetric interaction in which both players have opportunities to donate altruistically 

towards the other, and do so using a common decision rule. However in nature many 

typical social interactions are not symmetric, but individuals may interact under 

different behavioural contexts, making use of different rules to determine behaviour 

in each context (e.g. Maynard Smith & Parker, 1976; Selten, 1980; 1983, 
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Hammerstein, 1981; Maynard Smith, 1982).  It is then interesting to consider such 

interactions between relatives. For example, in a potentially altruistic interaction 

between an adult and offspring each individual may occupy different behavioural 

contexts, and hence use different rules to decide on altruistic behaviour, through 

differences in individuals’ state variables such as energy reserves and body mass, 

possession of a territory, and so on. In such situations it may provide an inclusive 

fitness benefit to an individual to behave altruistically in one context, but not in 

another. Maynard Smith & Parker (1976) have also noted that one need not assume 

differences in payoffs under the different contexts for such equilibria, as one would 

expect if individuals’ states did indeed differ, but that ‘uncorrelated asymmetries’ 

having the same outcome can occur when the payoff matrices are identical for each 

individual. In the remainder of this paper we will examine conditions for 

‘uncorrelated asymmetries’ to occur in the donation game with roles played between 

relatives. 

 

The Donation Game with Roles and Relatedness 

For the model described below we will adopt the usual ‘phenotypic gambit’ (Grafen, 

1984), and assume that each behaviour is under independent genetic control by a 

haploid locus. We consider the game defined by the payoff matrix of table 1, which as 

noted above can be mapped onto the donation game with potentially non-additive 

payoffs as presented in table 2. We assume discrete, deterministic strategies. Thus far, 

our model is entirely the same as the discrete trait models considered by Grafen 

(1979) and Queller (1984). We now make two modifications to these previous 

approaches: first, by considering two distinct behavioural contexts, with action under 

each being subject to a separate genetic locus. These two contexts are mutually 
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exclusive for any given interaction, so when two players interact each must occupy a 

different behavioural context, and thus use different loci to determine their behaviour 

for the interaction. We consider a population in which individuals in one role have 

type I (hereafter called altruistic) behaviour at population frequency g, and type II 

(hereafter called selfish) behaviour at population frequency (1 – g). We model the 

inclusive fitness of altruistic and selfish behaviour to determine the change in g over 

time, given that these individuals encounter altruistic behaviour in opponents 

occupying the other role at the population frequency f, and selfish behaviour at 

population frequency (1 – f). A similar calculation is done for the change in f over 

time, given g. Second, to model the inclusive fitness component of the interaction, the 

payoff the opponent receives from the interaction is included in the fitness 

calculation, weighted by the degree of relatedness r for interactions within the 

population. We shall not consider the frequency with which individuals in the 

population experience each behavioural context. Rather, we shall write down 

inclusive fitness equations for the alleles for altruistic (type I) and selfish (type II) 

behaviour in each context, and solve for fitness inequality. Subsequently we shall 

examine the relationship between selection pressure at these two behavioural loci 

using the replicator dynamics. Under the above model, these equations for a single 

behavioural context are 

))1(()1( fCAfrfBAfwI −++−+= , (3a) 

and 

))1(()1( fDBfrfDCfwII −++−+= , (3b) 

where, as described above, r is relatedness for the locus in question, and f is the 

population frequency of altruistic behaviour at the locus for the other behavioural 
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context. In equations 3a and 3b above the first two terms give the expected payoff to 

the focal individual, and the last term is the expected payoff to the opponent, 

weighted by the focal individual’s relatedness to them. The above inclusive fitness 

equations avoid double-counting the fitness effects of genes (Grafen, 1982; 1984), as 

fitness benefits of genes at two distinct loci are considered (cf. Queller, 1996). 

 

There are two important quantities of interest to solve for in considering when 

altruistic and selfish behaviours have equal fitness. If we solve wI = wII for the critical 

relatedness threshold r′ above which altruistic behaviour is favoured by selection we 

have 

( )
( ) DCDCBAf

DBDCBAfr
−++−−
−++−−−=′ . 

(4) 

Through rewriting using equations 2a-2c this gives a synergistic version of 

Hamilton’s rule 

′ r = c − fd

b + fd
, (5) 

which is the equivalent for our discrete donation game with roles of Queller’s (1984) 

equation 5b for the discrete donation game without roles. If payoffs are additive (d = 

0) then equation 5 reduces to Hamilton’s rule, however as discussed in Queller and 

above positively non-additive payoffs (d > 0) make altruism easier to select for than 

predicted by Hamilton’s rule, while for negatively non-additive payoffs (d < 0) 

altruism is harder to select than Hamilton’s rule predicts. In both cases the relatedness 

threshold for altruism varies non-linearly as a function of frequency of altruism in the 

population under the other behavioural context. 
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If instead we solve wI = wII for the population frequency of altruistic behaviour in the 

other, opponent’s, context above which altruistic behaviour will be favoured in the 

current behavioural context, then we have 

′ f = D − B − r(C − D)

(1+ r)(A − B − C + D)
. (6) 

Intriguingly, this is identical to Grafen’s equilibrium frequency for altruism in the 

continuous ‘Hawk-Dove’ game between relatives (Grafen, 1979, eq. 10), although 

here equation 6 above is actually the threshold frequency for altruistic behaviour 

under the opponent’s behavioural context, above which altruistic behaviour at the 

focal individual’s behavioural context will be selected for. Rewriting using equations 

2a-2c, equation 6 can be expressed in terms of fitness costs, benefits and synergistic 

effects as 

′ f = c − rb

(1+ r)d
. (7) 

It is easy to examine the fixed points of selection at the loci determining behaviours in 

both roles by substituting equations 3a and 3b into the replicator dynamics (Schuster 

& Sigmund, 1983), so we consider change in frequency of altruistic behaviour for the 

focal individual’s behavioural context, g, as 

( )( )( )IIII wggwwgg −+−= 1& . (8) 

Equations 3 to 8 all refer to selection operating on one of the behavioural contexts. By 

symmetry, equations for the other behavioural context are obtained by simply 

exchanging f for g and vice-versa throughout. This gives an equation for Ýf , the 

change in f over time, that is the counterpart of equation 8, allowing us 

simultaneously to consider the change in g and f over time. 
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The equilibria of equation 8 are, of course, where g = 0, g = 1, and wI = wII. In all 

cases this last equilibrium will be unstable. Selection of the remaining two equilibria 

according to the replicator dynamics will depend on relative costs c and benefits b of 

altruism, the relatedness r in the population, and the synergistic effect d. Figures 1 to 

3 show numerically calculated sample dynamics of equation 8 (and its counterpart for 

Ýf ), for representative values of these parameters. If ratio of cost to benefit is 

sufficiently high, or low, relative to population relatedness, then at both behavioural 

contexts alike altruistic or selfish behaviour will go to fixation regardless of 

population state, just as in the standard donation game with additive payoffs (e.g. 

figure 1). If, however, the synergistic effect is non-zero, and if population relatedness 

is at an intermediate value, such that it falls between the extrema of equation 5, then 

more interesting dynamics are observed. If the synergistic effect d is negative, then 

selective pressures act to bring about a stable co-existence of an altruistic behaviour 

for one behavioural context and a selfish behaviour for the other behavioural context 

(figure 2). Which of these equilibria is selected will depend on the population 

frequencies of the two behaviours and the relative strength of selection at the two loci. 

Conversely, if the synergistic effect d is positive, then either fixation of altruistic 

behaviour under both contexts, or selfish behaviour under both contexts, is stable 

(figure 3). Again, which equilibrium is selected depends on population frequencies 

and relative strengths of selection for the two behaviours. The stability of the different 

equilibria is demonstrated in the Appendix A. These results agree with a derivation 

based on Maynard Smith’s (1982) work, as demonstrated in Appendix B. 

 

Discussion 
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Evolutionary game theory has been applied to the study of altruistic interactions 

between relatives where there may be a synergistic deviation from payoff additivity 

when two altruists interact (Grafen, 1979; Queller, 1984). In earlier models a single 

altruistic trait has been considered. In this paper we have examined the synergistic 

donation game played between relatives when each individual occupies a different 

behavioural context, and different altruistic traits govern behaviour under each 

behavioural context. In such games stable equilibria corresponding to fixation of 

altruistic behaviour under both contexts, or fixation of selfish behaviour under both 

contexts, are both possible according to payoffs and relatedness. Negatively non-

additive payoffs and intermediate levels of relatedness however, induce a change in 

the stable equilibria of the population: negatively non-additive payoffs and a suitably 

intermediate relatedness result in stable pairings of altruism under one behavioural 

context, and selfishness under the other behavioural context. In contrast, positively 

non-additive payoffs with a suitably intermediate relatedness result in stable fixation 

of altruistic behaviour under both contexts, or stable fixation of selfish behaviour 

under both contexts. These results for the donation game with roles are analogous to 

results for the single trait case in which negatively non-additive payoffs induce stable 

polymorphic population equilibria, and positively non-additive payoffs induce 

unstable polymorphic population equilibria (Queller, 1984). 

 

Situations in which individuals involved in an altruistic interaction do so under 

different behavioural contexts are likely to occur frequently in nature. For example, 

the use of state-dependent behavioural rules leads to such asymmetric interactions 

(e.g. Maynard Smith & Parker, 1976; Selten, 1980; 1983; Hammerstein, 1981; 

Maynard Smith, 1982; Houston & McNamara, 1999). We consider cases in which 
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payoffs and actions are the same from both players’ points of view, but each player 

makes use of a different trait to determine their action. One particular example of 

when such situations can occur is during repeated interaction with memory, where 

both individuals base their decisions on the outcome of their previous interaction. If at 

one interaction one individual provides an altruistic benefit to the other, but receives 

nothing in return, then at the next interaction each individual has a different 

perspective: one individual has just exploited the other, while the other has just been 

exploited. Marshall & Rowe (2003) studied such games and concluded, based on the 

traditional Prisoner’s Dilemma payoff matrix, that interactions between relatives 

could undermine selection for ‘retaliatory’ behaviour in the Iterated Prisoner’s 

Dilemma, in which an individual responds to exploitation of the form just described 

above by behaving selfishly on the next interaction. Marshall & Rowe concluded that 

kin selection could thus undermine selection for conditionally cooperative strategies 

for repeated interactions, such as the famous Tit-for-Tat (Axelrod, 1984). The results 

presented here show that this effect is in fact due to the negatively non-additive nature 

of the traditional Prisoner’s Dilemma payoffs, and that a variety of other outcomes 

could occur given additive or positively non-additive game payoffs. 

 

Games played between relatives using different behavioural rules as they occupy 

different behavioural contexts are likely occur in many other situations in nature. 

Queller (1996) discussed conditional expression of traits based on state variables, 

such as in the example of a stronger individual monopolising the role of reproductive 

and relegating the weaker relative to the role of helper, and sketched an outline of our 

model by considering interactions in which individuals express different genes to 

make their game choices. We agree with Queller’s observation that conditional 
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expression of traits is likely to be more common than unconditional expression due to 

the greater flexibility of the former strategy (see also Houston & McNamara, 1999). 

In cases such as the example of a stronger individual monopolising reproduction, 

differences in the resources of the individuals might well be expected to lead to 

different payoff matrices for the interactants. In such cases it is of course easy to 

envisage payoff matrices that induce one individual to behave selfishly and the other 

to behave altruistically, due to the different costs and benefits of altruism that would 

accrue to each. However Maynard Smith & Parker (1976) have pointed out that 

differences in payoffs are not necessary for such equilibria to arise, and that 

‘uncorrelated asymmetries’ of the same form can arise even when the payoff matrices 

are the same for both interacting individuals. The scenario presented in Marshall & 

Rowe (2003) and outlined above is an example of just such an uncorrelated 

asymmetry. The contribution of this paper is an explicit analysis of how uncorrelated 

asymmetries can arise in donation games with roles played between relatives, in terms 

of a modified version of Hamilton’s rule. This analysis highlights the crucial 

importance of negative non-additivity of payoffs in such interactions. Given it seems 

likely that non-additive interactions occur frequently in nature, it is hoped that the 

results presented here will be of some value. 
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We consider the stability of the various equilibria under the replicator dynamics 

(equation 7), which for ease of exposition can be written as 

Ý g = (g − g2)(wI − wII ) , (A1)

making clear that selection always acts in favour of the fittest allele, since as g ∈ [0,1] 

then g – g2 ≥ 0. 

Now it is easy to see that the wI – wII equilibrium is unstable since, as wI – wII does 

not depend on g and there can thus be no frequency dependent effects in g, an 

increase in the fitness of one allele will lead to runaway positive selection for that 

allele. 

For the stability of the f ∈ {0,1} , g ∈ {0,1} equilibria we first choose f = 0. Then 

wI − wII = rb − c , (A2)

which is positive when equation 1 is satisfied. So if f = 0, then g = 1 is stable iff r > c / 

b. 

Next we choose f = 1. Then 

wI − wII = d − c + r(d + b) , (A3)

which is negative when r is less than the r´ given by equation 5 with f = 1. So if f = 1, 

then g = 0 is stable iff r < (c – d) / (b + d). By symmetry the same analysis can be 

applied (exchanging f for g and vice-versa throughout) to find the stability of the f = 0 

and f = 1 equilibria. 

Putting these conditions together, the f = 0, g = 1 and f = 1, g = 0 equilibria are 

bistable iff 

c

b
< r < c − d

b + d
. (A4)
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Conversely both the f = 0, g = 0 and f = 1, g = 1 equilibria are bistable iff 

c − d

b + d
< r < c

b
. (A5)

Now assuming that we are considering strong altruism, so b and c are both positive, 

then 

c

b
< c − d

b + d
. (A6)

iff d < 0. So the f = 0, g = 1 and f = 1, g = 0 equilibria are bistable iff inequality A4 is 

satisfied, which can only occur if d < 0 (payoffs are negatively non-additive), whereas 

the f = 0, g = 0 and f = 1, g = 1 equilibria are bistable iff inequality A5 is satisfied, 

which can only occur if d > 0 (payoffs are positively non-additive). Otherwise one of 

the f = 0, g = 0 or f = 1, g = 1 equilibria will be globally stable. 

 

Appendix B 

We show the relationship between the derivation of the results presented in this paper, 

and a derivation based on Maynard Smith’s (1982, pp.123-126) ‘uncorrelated 

asymmetries’ approach. 

We first assign values to Maynard Smith’s payoff matrix (table B1) to reflect the 

inclusive fitness of type I and type II behaviour given the opponent’s behaviour, 

based on equations 3a and 3b. If the opponent displays type I behaviour then f = 1 in 

these equations, otherwise f = 0. Thus the payoffs in the game are 

α = (1+ r)A , (B1a) 

β = C + rB , (B1b) 
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χ = B + rC , (B1c) 

δ = (1+ r)D. (B1d) 

 

Maynard Smith’s condition for mutual type I behaviour to be an equilbrium is 

α > β , (B2a) 

and 

χ > δ , (B2b) 

whereas mutual type II behaviour is an equilibrium if both of these inequalities are 

reversed. Maynard Smith referred to both of these equilibria as ‘Type 1’. 

Substituting equations B1a-B1d into equations B2a-B2b we find that both of these 

inequalities are identical if d (as defined in equation 2c) is 0; in other words if payoffs 

are additive. The resulting single inequality can then be rewritten using equations 2a 

and 2b for –c and b respectively, and the fact that d = 0 to be exactly the same as 

equation 1; in other words, if payoffs are additive then fixation of altruistic or non-

altruistic behaviour in both behavioural contexts is predicted by Hamilton’s rule. 

 

Maynard Smith’s condition for type I behaviour at one context and type II behaviour 

at the other context to be an equilibrium is (labelled by Maynard Smith as a ‘Type 2’ 

equilibrium) 

α > β , (B3a) 

and 
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χ < δ , (B3b) 

whereas mutual type I behaviour or mutual type II behaviour is an equilibrium 

(labelled ‘Type 3’ by Maynard Smith) if both of these inequalities are reversed (N.B. 

the conditions for ‘Type 2’ and ‘Type 3’ appear to have been swapped erroneously in 

Maynard Smith (1982, p.124). 

If inequalities B3a and B3b are satisfied then one can rewrite them using equations 

B1a-B1d and 2a-c and combine to give inequality A4, whereas if neither inequality is 

satisfied then we can rewrite as inequality A5. Thus the results of appendix A can also 

be derived using Maynard Smith’s results. 
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Figure 1: Selection pressure on frequency of altruistic behaviour under first context (f) 
and second context (g) for additive payoffs and high relatedness (b = 4, c = 2, d = 0, r 
= 0.6) 

 
Figure 2: Selection pressure on frequency of altruistic behaviour under first context (f) 
and second context (g) for negatively non-additive payoffs and intermediate 
relatedness (b = 4, c = 1, d = –1, r = 0.5) 

 
Figure 3: Selection pressure on frequency of altruistic behaviour under first context (f) 
and second context (g) for positively non-additive payoffs and intermediate 
relatedness (b = 4, c = 2, d = 1, r = 0.4) 
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 I II 

I A B 

II C D 

Table 1. Payoffs for the general ‘Hawk-Dove’ game (payoffs to row player shown). 
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 I II 

I b – c + d –c 

II b 0 

Table 2. Payoffs for the donation game with potentially non-additive payoffs (payoffs 
to row player shown). 
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I α  χ  

II β  δ 

Table B1. Payoffs for the ‘uncorrelated asymmetry’ analysis (payoffs to row player 
shown). 
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Fig 1: 
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Fig 3: 

 




