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An Enhanced Single-layer Variational For mulation for the Effect

of Transverse Shear on Laminated Orthotropic Plates

Enzo Cosentinb” and Paul Weaveér
'Composite Stress Engineer, Airbus UK Ltd., Bridgimigland BS34 7AR, United Kingdom

Professorr in Lightweight Structures, UniversityBifstol, Bristol, England BS8 1TR, United Kingdom
Abstract

A novel mixed formulation is derived by means ofidaer’s variational approach based on Castigl@no’
principle of least work in conjunction with a Lagge multiplier method for the calculus of variasoithe
governing equations present an alternative theamryrfodeling the important three-dimensional strradtu
aspects of plates in a two-dimensional form. Bggnating the classical Cauchy’s equilibrium equaio
with respect to the thickness co-ordinate, andreirig continuity of shear and normal stresses el @y
interface, condenses the effect of the thicknesseddiced system of partial differential equatiohsigth
order in one variable, is also proposed, which @iostdifferential correction factors that formathodify
the classical constitutive equations for compolsiteinates. The theory degenerates to classical ositep
plate analysis for thin configurations. Significatgviations from classical plate theory are obsttwben
the thickness becomes comparable with the in-pthmensions. A variety of case studies are presented
and solutions are compared with other models abailia the literature and with finite element arsady

Keywords: Castigliano’s Theorem; Variational Appoba Mixed Formulation

List of Symbols
Ug, Vo = in-plane displacement of neutral plane in x andrgations
w =  out-of-plane displacement
Ex,Ey Exy =  in-plane strains
¢ $y.# =  rotations of cross section
£n,€),€5, = in-plane strains at neutral plane level
Ky Ky, Kyy =  curvatures
YxzrVyz =  transverse shear strains
£, =  transverse normal strain
0,,0,,0,, = in-plane stresses
Tz Ty, =  transverse shear stresses
o =  transverse normal stress
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length and width of panel

plate total thickness

thickness of R lamina

total number of layers

unit width stresses and bending moments vectors

laminate in-plane and transverse stiffness wedri

laminate coupling stiffness matrix

matrices of in-plane and flexural flexibility inverted laminate constitutive equations

coupling matrix in inverted laminate constituteguations
transformed in—plane stiffness matrix for lamkna

transformed transverse stiffness matrix for fzark

vectors of normal and shear stresses at ply leve

constants of integration of shear and normaksgs at ply level k
differential operator defined in equation (13)

divergence operator

partial in-plane stress resultants

transverse shear stress resultants

matrices of partial in-plane and coupling stifee

matrices defined in equations (40) and (41)
Castigliano’s total potential

potentials of in plane and transverse stresses
potential of external contour forces

potential of the external transverse loads

matrix defined in equation (A.1)

Lagrange multiplier

matrices defined in equations (A.11), (A.12), AdL3)

matrices defined in equations (A.14) and (A.15)
boundary coefficients defined in equations (C(8)4), and (C.6)
matrices defined in equations (70)

potential of transverse bending moments

matrix defined in equation (105)



1. Introduction

It is well known from experimental observations @idg, 1984)that the Classical Theory of Plates (CTP),
i.e. the two-dimensional model chiefly shaped by #orks undertaken by Kirchhoff (1850) the 19’
century, and then revisited by Love (1934) and Ehemko (1934)during the early 2D century,
underpredicts global deformations of the elastiaildgyium. The principle hypothesis on which
Kirchhoff's theory is based, is that normals to thiel-plane before deformation remain straight aoidmal

to the plane after deformation. This causes thenrdaficiency of the approachneglecting the effect of
the transverse shear strains on the deformatiorelastic two-dimensional bodies. Ignoring some
deformation modes constrains the deformed, modstedture to one degree of freedom only (namely the
transverse displacemew), thus yielding overly stiff behaviour. Note, wefer to degrees of freedom as
Lagrange parameters in the present work. It is atseworthy that neglecting shear stresses leads to
contraction of the three natural (force) boundamyditions that should be satisfied along a freeeedg
(1945), i.e. vanishing of vertical forces, bendargl twisting moments.

Despite its limitations, Kirchhoff’'s theory is dtthe most widespread approach used to obtain tand
reliable prediction of the behaviour of slendert@dastructures. Furthermore, it underpins the fatiod

for composite plate analysis, the well-known CleasLaminate Analysis (CLA). The main simplificatio
is that three-dimensional structures are treatefivasdimensional coincident with the neutral plggeay
area in Fig.1), with a significant reduction of tteal number of variables and computational effort
Furthermore, the governing equations become essisolve and closed-form solutions, which typically

provide more intuitive and physical representatean be developed.
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Figure 1. Two-dimensional elastic structure

Nonetheless, the error induced by neglecting thecebf transverse shear stresses becomes signtifita
the following cases:

i. Thick-sectioned configurations, for which the hympegis of two-dimensionality becomes

restrictive

ii. Proximity of free edges (especially in compositatet)

iii. Proximity of free corners
The induced error becomes more important for plates shells made of composite layers, for which the
ratio of longitudinal to transverse shear elastmddiii is relatively large compared to isotropic tevéals
(Reddy, 1984). Composite plates are, in fact, iahly subjected to transverse shear and normalsstse
due to their discontinuous through-the-thicknedsalv®ur and their global anisotropic nature. TheAG&
able to accurately describe the global transveet®aviour of composite plates only within the inner
domain, where the assumptions proposed by Kirchduaffoften formally recovered. However, it does not
contain explanations for stress distortions andjdarities that take place in thick laminates andhe
proximity of free edges. Lekhnitskii proposed affiattempt to model anisotropic behaviour of coritpos
beams (Lekhnitskii, 1935)The same author proposed a series of closed fotati@ms and solution
strategies for anisotropic plates (Lekhnitskii ,826luring the first decades of the"™2€entury. Since then,
numerous researchers have proposed a variety obaghes to model the effect of transverse shears in

isotropic and composite materials. Timoshenko (}198%oduced a second variable, namely the shear



deformation, in the study of isotropic beams, inyimg the classical model developed by Euler and
Bernoulli in the 18 century. Reissner (1944) and Mindlin (1951), edtzhthe concept to the analysis of
two-dimensional structures, originating the soawlFirst Order Shear Deformation Theory (FSDT).e®th
distinguished researchers, such as Vlasov, ThoRassner (Carrera et al., 2008) and Reddy (1992)
introduced higher order expansions of the axial stimear deformation through the plate thicknesss@&he
models provide reasonably acceptable results ifiepbpo isotropic, orthotropic, and anisotropic gl
layered laminates. They are not suitable to mddelbehavior of thick laminated composite platesrehe
accurate descriptions of transverse stresses qu@ed, especially in the proximity of free edgespother
special features such as holes, cut-outs, cormeifietches, where the interlaminar shears triggbyetthe
stress field distortion are highly dependent onrtted stacking sequence. The so-called free edgetas,

in fact, mainly explained by the mismatch of elagiroperties, in particular the Poisson’s ratio theg
interface between two adjacent plies. Hence, mamirate layer-wise field equations are required to
capture such phenomena. The theories that have dmeroped, to account for through-the—thickness
piece-wise behaviour of stresses and displacenrenbften referred to as Zig-Zag theories (ZZ)he t
open literature. The first attempt to define a-selfitained ZZ theory was possibly proposed by Lékkin
(1968). The main limitation of the approach is titainodels multi-layered beams where each layer is
isotropic. Carrera et al. (2003) suggested that (R886) later improved the work by Lekhnitskii. GEBA

and 1958-B) proposed an extension of the theorgldeed by Reissner (1944) to multi-layered plafes.

a general consideration, this approach is basetie@analytical or numerical calculation of five ltagge
parameters, which represent the degrees of freemfotine structure in a functional sense. Indeed each
degree of freedom is represented by a function ithailculated over the entire domain. Typicallye t
DoFs are: the two axial in-plane displacements gil@nand y co-ordinates (namely and uy); the
transverse displacement and the two transverse shear stragpnand . In uncoupled problems, i.e. when

it is possible to separate the in-plane from tlamdverse response, the maximum number of degrees of
freedom that must be determined in order to sdieettansverse equilibrium problem is three. Theashe
strains are sometimes replaced by the two rotatidribe cross section about thendx-axes,@, and @,
respectively. Another important class of modelsyimbolized by those theories that are derived bgnse

of Reissner’s variational approach. The so-callagech variational approach- based on the variational



principles developed by Hellinger (1914) was pragubby Reissner (1944 ) and then improved by theesam
author (Reissner, 1945) to solve the problem a#sstrconcentration around holes in transversely bent
panels. Recently, Shimpi et al. (2007) derived twawvel formulations with only two variables, which
provide fast and accurate results for moderatelgktlisotropic plates and includes classical langnat
analysis as a degenerate case. However, it reguiréoc calculated shear correction factors forsiverse
shear stresses in multilayered composite panele gbverning field equations are derived from
Castigliano’s Theorem of Least Work. A variety afnditions can be assigned to kinematical and
mechanical variables contemporarily. As thoroughlynmarized by Carrera (1995), the layer-wise
approaches based on Reissner’s principle requaega computational efforts. However, they do pdevi
an extremely accurate description of the transvehsmr stresses. The number of variables that baust
computed is at least\?1, N being the total number of layers. The number oiatdes can be significantly
reduced by means of a weak form of Hooke’s Law (&ar 1995), which expresses the aforementioned
variables in terms of the three displacements orgy, the number of degrees of freedom neededléeaat
equal to three. Recently, other approaches have freposed by Mittelstedt and Becker (2003-A, 2803-
and 2004), which require the calculation of the¢haxial displacements only;, u,, andu, as functions of
six parameters. These variables were determinednioymizing the complementary potential. Good
accuracy, at relatively high computational expensegached, but the models are based on an aybitra
choice of functions, representing the stress fighdorder to capture the decaying rate of the stres
perturbation as the distance from the free edgdreer corner, increases. Also, the through-thektiess
behaviour is described by means of first order digylexpansion, which represents a further axiomati
assumption. Despite this limitation, the CLA wasaeered within a distance from the singularity
comparable to the plate thickness. The models [seghby Mittelstedt and Becker appear more suitimlole
accurate local computation of stress distortionpriximity of singularities, than for rapidly deteq the
influence of shear deformations on the global b&havof multi-layered panels. Recently, Tessleraket
(2009) have developed a refined Zigzag theory basetthe kinematics of FSDT. The deployment of novel
piecewise linear zigzag functions provides a rolamst accurate approach, at relatively low (for fayise

theories) computational expenses (six unknown legonly must be calculated).



There is scope to develop a novel formulation, Whiequires reduced computational effort when
compared to the models available in the open titeea Reducing the computational effort can be iabth
by means of two different strategies:

1. reduction of the number of functional degrees eéffom;

2. choice of the degrees of freedom in such a wayttimassociated calculation requires less time to

converge.

Indeed, reducing the number of variables does eoessarily imply a consequential reduction of the
calculation time. If higher order variables are dises primary variable and solutions are calculdted
means of numerical approaches such as the Galextfimique or Rayleigh-Ritz method, convergence rate
could be relatively quick (Cosentino and WeaveQ@0often obtained without difficulty in terms dig
primary variables. Yet, for all the secondary vlalés, whose computation necessitates partial @l tot
differentiations, the convergence rate might beveloor not obtainable at all (Reddy, 1984). Funthanre,
the accuracy of back-calculated variables geneddbyreases with the order of the required difféation
(Reddy, 1984).As such, systematic and careful considerationsldhmeiused when choosing the primary
variables and the relations that link them to theosdary variables.
The choice of primary variables and additional etétial relations introduced in the present theery
therefore extensively commented upon and justifiedughout the work.
The aim of the present study is to develop a flexdand robust self-contained formulation, abledduce
the computational effort by reducing the total nemlof variables involved, thus choosing the most
appropriate set of primary variables. The presamysdemonstrates that an equivalent layer apprésach
consistent with, and can be directly derived frammulti-layer approach under certain conditionse Th
theory developed is, to some extent, free from ltmétations affecting the classical equivalent laye
approaches, such as shear locking or membranentpdiReddy, 1979) . The simplifying kinematical
assumptions on which CTP and CLA are based aiialipitetained. The through-the-thickness normal an
shear stresses are then derived in an exact mamnenegans of a stress-based approach, integrdiang t
Cauchy’s equations governing the elastic continuulnmixed formulation is then derived by means of
Reissner’s variational approach based on the Qastigs principle of least work in conjunction with

Lagrange multipliers method for the calculus of iaons (Reissner, 1945). The derived field and



boundary equations are initially expressed in teofr®ur functional degrees of freedom. To this et
theory is free from the contraction of the numbEb@undary conditions that can be assigned, aret afs
three dual boundary conditions is derived and aaffuliilled. The number of degrees of freedom can b
reduced to two by means of an ad-hoc defined sftegsion. An additional novel boundary compatityili
equation is also introduced. It is also demongtrdtet, under certain simplifying conditions, thatat
number of degrees of freedom can be condensed doonly (the transverse displacemev)t and an
original transverse equilibrium equation is proghsehich contains correction terms derived from the

contraction of the layer-wise, through-the-thickspsoperties on to the equivalent layer.

2. Transverse stresses derivation and formal analysis

Let us neglect the natural body forces acting upogeneric elastic continuum. The system of three

Cauchy’s equilibrium equations governing the etagtbblem is:

0 0 0
—0o,t+—o,+—1,,=0 la
X X ay Xy 9z Xz ( )
0 0 0
—0o,t—o,+—r1,,=0 1b
ox ¥ ooy Y a9z ”* (1b)
0 0 0
—TI,+—r1,+—0,=0 1c
X Xz ay yz 0z z ( )
AZ
ZN -
N
Ik - L X
Zk-1-- P
71 ... 2
Zo -

Figure 2. Ply levelsand interfaces numbering



Let the tensors of in-plane stressesin-plane strainse, curvaturesk, transverse shear stresses and

transverse shear strain be defined as follows:

g £ k
_ X _ X k_ kx _ Z-XZ — yXZ 2 b d
c=|0, |,e=|¢g, |k=|k, |T= Tyz,y— V,n (2a, b, c,d, e)

The following transformed in-plane and transvet#féngss matrices (namety and@) are defined at each
ply level (Reddy, 1984):
611k 612 61@ — =
“ — Q44k Q45(

6k = 612k 622k Qs Gk =|_ (3a, b)
- Qus, Qss,
Qs Qo6 Qes,

In the linear regime, the following Kirchhoff's lematical relations link membrane strains and

curvatures to in-plane and transverse displacements

£0 = ou, -“:)(()y duy = 9v, ’ 8 vy (4a, b, ¢)
0X dy  OX oy
9w 0w 0w
k,=—, k,=— k, =—2— 5a, b, c
X X2 X ayz Xy 6x0y ( )

Following Classical Laminate Analysis (CLA), lamieastrains and curvatures are related to in-plane

forces and transverse bending moments by the tatinsti equations, which are expediently expressed

el

hereby in inverted form (Reddy, 1984):

where:
£x K, N, M,
e®=|e) |, k=|k, | N=IN, |, M=|M, (7a, b, ¢, d)
é')?y kxy ny M Xy
The following constitutive equations hold true atke ply level (Fig.2):
6y =6ks, 215257 (8)



Ty =Gy, 21257, 9)
Assuming a linear variation of the in-plane stratm®ugh the laminate thickness:
ex y,2)=2°(x y) + &(x, ) (10)
and substituting Eq.(10) in Eq. (6):
£e=A'N+B'M + 2B N+D'M) (11)

Substituting Equation (11) in Equation (8), theldaling expression for in-plane stresses is deriakethe

generic ply levek:
o =QuA'N+BM +2(BT N +D'M)| (12)

Introducing the divergendeé and the differential operat@:

5 ° %
c=|* y (13)

9 9

dy 0x

The governing system of equilibrium equations camkpressed in compact form at each ply level:

0
Co, +— =0 14
oy Osz (24)

Or, +%azk =0 (15)

Substituting Eqg. (12) in Eq. (14) and integrgtimith respect to z, a general solution for shéasses is

found as
Tk = _%Cak(B'TN*'D'M)Zz _Cak(A'N +B'M)Z+ak (16)

The constantsa, are calculated by enforcing the boundary conditiahseach interface. Starting, for

example, from the lower surface z 7 @ the present work, shear and normal transvenssses are
calculated starting from the lower surface of thenihate and this convention is held throughout the

theory), and assuming that no shear stresses awtthp external surfaces of the laminate:

1 _ =1 _
z=g, z=2y

the constants at ply level 1 are derived:

10



a, = _%CQK(B-T N+ D-M)zg -CQ(A'N+B"M)z, (18)
The expression for shear stresses at ply levetleis
T = _%Cal(B'T N+ D'M)ZZ ~CQ;(A'N+B'M)z+a (19)

The symmetry of the stress tensor in conjunctiotidgcal equilibrium satisfy the continuity of tishear
stresses at each ply interface. This condition lbanused to assign the boundary conditions for the

subsequent ply 2:

T1| =z

(20)

12|z:zl

Substituting Equations (16), (18), and (19) in Bira(20) the following expression fax, is obtained:
a, =a, +%c@2 —61)(B'T N+ D'M)zf +(:(62 —61)(A'N +B'M)z (21)
Equation (21) can be extended to the generic pigi le, and it can be straightforwardly verified tha

=03 30,-0ule oo, fwnsem ] e

where the transformed stiffness mat@g) is conventionally made equal to the null matix

Combining Equations (16) and (22) the final expi@sdor shear stresses at each ply level through th

entire laminate thickness is derived:

T, = —%CGK(B'T N+D'M)z2 -CQ(A'N +B'M)Z+%Czk‘,[(5j Q1 )JB” N+D'M)ZJ'2—1]

=
k [— —_—
+cY [0, -9 kAN +B M)z ] (23)
j=1
Equation (23) can be re-written in the following ma@onvenient form by

T, = —%cﬁk(s“ N+D'M)22 - 22,) -CQu (AN +B'M )(z- ;)

K _ _
-CY | 50,2 -7+ Q2 -7, BT+ Om) 24

-1
j=

Analyzing the expression found for the shear stgsthree components can be remarkably identified:

11



i. A local component, which is parabolic in the thrbtife-thickness coordinate z and that only
depends upon local mechanical and geometrical piiepe
ii. A local component, which is linear in the throudie-thickness coordinate z and only dependent
upon local mechanical and geometrical properties.
iii. A constant term that depends on the mechanicalgandhetrical properties of the laminae lying
below the considered ply level.

Despite the cumbersome appearance, a physicapiatation of Equation (24) can be deduced. Defining

the following matrices of partial in-plane and cbug stiffness (namerK and E) :

k-1
Ak(z) ka zk1+z Jz -z .[Qz)dz (25)
j=1
= 1= 15— (=
Be(2) =5 Q77 - 2.)+ 5 2. Q)l - )= [Qlaeoz (26)
j=1 2,
Equation (24) can be re-written as:
Ty =—C[Kk(z)(A'N+B'M)+§k(z)(B'Tu+D'M)] (27)
The quantity between square brackets:
N@) =Ac@)(A'N +B'M)+Bk(2[B" N +D'M) (28)

represents the partial amount of normal forcedexivy the part of laminate between the lower sgrfand
the actual through-the-thickness z co-ordinate.affiqn (27) collapses to the well-known Jourawsky’s

formula for the isotropic one-dimensional case (dwski, 1856). Equation (28) expresses the transial
in-plane equilibrium of the part of laminate abotle z co-ordinate. Furthermore, th_ﬁ(z) matrix

represents the first (or static) moment of thefreds of the partial cross-section lying betweenltdwer
surface and the current z co-ordinate. The samdtresn be formally derived considering the firat
Cauchy’s equilibrium equations. Equations (1a) éHa) are valid throughout the inner domain with the

exception of the boundary. Integrating indefinitebth equations with respect to z gives

d ¢ ¢ (o
= J’axd( +a—yj'axyd( + .[Erxzdi =0 (29a)
Z % %

12



d d {0
o [oyds +a—yj'aydz + IE r,,00 =0 (29b)
Z z z

By definition, we can re-write Egs. (29a) and (28b)ollows:

%Nx(zwaiyﬁxy(z)ﬂxz(z)—rxz(zo)=o (302)
9N (z)+iN (2)+71,,(2)-1,,(25) =0 (30D)
ox Xy ay y yz yz\ <0

The above system of two partial differential equagi (PDE) can be readily compacted and reduced to
Equation (27) under the hypothesis that no sheasss act upon the lower surface of the lamirate (

o). Let us reconsider Eqg. (15). The transverse nbstnasso, can be obtained by means of a ply-by-ply
integration with respect to z, once the shear sé®are known:

z

o, = —I Or,dz, z, <2<z (31)

41
Substituting Eq. (16) in Eq. (31) and carrying dhé integration, the following expressions for the
transverse normal stress is obtained at the geplsrievel k:

1_ = (o7 R I T -y . 2
75 =5 0CQBTN+DMz +EDCQK(AN+B M)z? - Da, z+by (32)

Let us assume that no transverse loads act ower kurface z =ozwhile a transverse load per unit area
p(x,y) act on the upper surface of the panel z=The unknown constankg are obtained by enforcing the

required boundary conditions, i.e. the z-wise elguiim at each ply interface

o, - =0, o, — =0, , — (33a, b)
Starting from ply 1 and enforcing condition (33a)Hq.(32) the first constabt is obtained:
R e b3 _lo~n (A )52
b = --0CQ; (BT N +D'M )75 ED(:Ql(A N +B'M)z2 + Daz, (34)

Iterating the procedure at the generic ply levahk enforcing condition (33b):
k
1. (= = 1. (= =
by = Z{EDC(QH -Q; )(B-T N +D'M )z]?'_l +EDC(QH -Q )(A' N +B'M )212—1 -0O(aj —a; )zj_l} (35)
j=1

Substituting expression (35) in Eq. (32) the follogvfinal expression for the transverse normalssige at

each ply level is derived:

13



o, =%DC6K(B'T N + D'M)z3 +%DC6k(A'N +B'M)z? - Oa, z

+zk: 1D(:(G. —G»XB'TN+D'M)23 +lmc(6, —5‘)(A'N+B'M)Z»2 -O(ai4-a;)z,_; | (36)
= 6 X 175 IS i-1 j-17 )4
]:

It is observed that the last boundary conditiont tlaan be enforced is related to the interface betvsy N-

1 and ply N (z = g1). Apparently, no conditions can be enforced onvileie of o, at the upper surface z

= zy, which must equal the external load This condition is automatically fulfilled if th&ransverse

vertical equilibrium is satisfied, as shown in Sact3.

3. Symmetric laminates

One major advantage of composites is their inheadxility to tailor elastic properties for maximigin
performance. The prospect of selecting lay-ups wihcific stacking provides a potential advantafye o
composite laminates against metals. However, synca#y laminated composite plates still embody mos
of engineering composite structures. The posgibitif modeling such configurations by means of
analytical closed form solutions, due to the sifigdiion introduced by the symmetry with respectte
mid-plane, is one explanation for their pervasige.uQuasi-isotropic and specially orthotropic Ig@gu
(Ashton et al, 1969), cross-ply and angle-ply cositeoplates remain the lay-up of choice for many
composite components in aerospace, automotive amshenapplications. There is, therefore, good neaso
for focusing the attention of the present theorytlomse composite plates that are symmetrical osigua
symmetrical in behaviour. For composites belongmthe class of quasi-symmetrical panels, the fiaixu
coupling quantified by the magnitude of the compuseof the coupling matriB is negligible. As a
consequence, in the linear regime, the membranetramdverse structural responses can be analyzed
separately, leading to a formal simplification bétmathematical model and to a significant reduactid
the number of variables which must be computed kameously. The laminate constitutive equations (6)
collapse to the following:

e =A'N, k=D'M (37a, b)
De-coupling the in-plane forcés$ from the transverse bending momeMitsand focusing on the transverse

behaviour, the expressions of out-of-plane shedmanmal stresses simplify:

14



1, = -CBk(2)D'M (38)

o, =0CFk(2D'M 39j
where
J— —_— —_— k_l — —_—
Fe(@=He@-Hi@e) + Y [H(z)~H (z;) (40)
i1
and
— z — z — k-1 7 —
Hi(2) = LoBk(Z)dZ = L Bk(()d(+2j B (2)dz (41)
k-1 =1 Zj-1

If pis the external transverse load per unit area@etpon the upper external surface z=the boundary

condition requires that
0, (Zn)=p (42)
This condition is fulfilled only if vertical equibrium equation is satisfied. Integrating over tltalt

thickness with respect to z the third Cauchy’s Bopiim equation (1c), the equilibrium in terms\artical

forces per unit width is derived,

0 (& 0 (& 0 (&
—\| r,dz+—| r,.dz+—| o,dz=0 43
5l e WLyz 5l O (43)

DenotingV, andV, as the vertical shear resultants per unit widgtdddfinition we have:

0 0 _
oy FOelens, T2, 70 (44)
Defining the vectol of shear force resultants:
V= {VX} (45)
Vy

and recalling the boundary conditions (33a) and,(Bguation (44) can be written as:
aov =-p (46)

Similarly, substituting Egs. (33a), (38), and (4hg left hand side of Eq. (44) can be re-written a

Z %
oV :DZN: j 7, dz=-0C ZN:[ J.Ek(z)dZJ D'M =—DC{i[ﬁk(Zk)—ﬁk(Zk_l)]}D'M =0y, (47

k=lg k=1l 5 , k=1
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Substituting Eq. (46) in Eq. (47), the boundary diton sought is obtained and Eq. (42) is formally

recovered:

=p (48)

Nlz= zy

The identity (48), together with the fulfillment &q. (17), represents the first notable resulhaf theory.
The expression derived for shear and normal stsefssil the internal equilibrium and continuityf the
stresses, intrinsically satisfying the boundaryditions as long as the transverse vertical equilibris
satisfied. To this end, expressions for the trarsevelisplacemenw, transverse shearg{ and r,;) and

normal stressd;) are derived, which are equilibrated and resgexhitural boundary conditions.

4. Variational formulation

Under the assumption of state of plane stress ¢fmout the domain, in order to obtain a system of
governing field and boundary equations, the Caatigls Theorem of Least Work is employed. The
theorem states that, among all statically corrates of stresses, the state of stress which at&fiss the
constitutive equations and the displacement boyndanditions is characterized by the condition tifnet

variation of the following functionall vanishes:
1
= EI”(GTE +1"y)dxdydz ” (anun +7. U+ TnZW)dsdz (49)

The double integral is calculated over the thickresd the closed curvedefining the plate mid-plane on

x-y plane. The co-ordinatesands are, respectively, the normal and the tangertéabove curve (Fig.3).
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% x
>
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S
Figure 3. Boundary tangential (s) and normal (n) local co-ordinate system
Following Reissner’s variational principle (Reissn&945), and recalling transverse equilibrium (44)

expressed in terms of vertical shear resultants:

0 ]
&VX +a—yvy +p=0 (50)

The variation of expression (49) must equal zersuoh a way that the equilibrium equation (50) is
satisfied. In compliance with the rules of the chis of variations, this is achieved by introduciag

Lagrange multiplierd(x,y) and adding an appropriate term to the vamatf Castigliano’s potentidl:

5{%IJI(GT£ +t" y)dxdydz ”(crnun + T + T,Widsdz

0 0 _
+ J' J' /][&VX Nl pjdydy} =0 (51)
The variations are performed with respect to theetbending momentd,, My, andM,,. Let us examine

the variations of each component of the total pidkseparately,

A, +d1, +d1 +d1, =0 (52)
where
T
M, =E£J;J;c edxdydz 534)
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% j j j " ydxdydz 53p)
70

2y

Mr= —.M(anun + ThUg +rnzw)dsdz (53c)
zol
ley a a
My,=||A=Vy+=—V, +p|dyd 53d
A J;.([ [ax X ay y pj yay ( )

a. Potential of in-plane stresses

Let us analyze the potential of internal in-platresses:

a, =%IH&JT£ dxdde%jijN:&sIsdxdde mZN: 2230 7D” O D'Mdxdydz
k=1 k=1

=j MTDT zN: Télzzdz D' Mdxdy= ”d\/ITD'dedy (54)

k=lz,
and with respect tM,, My andM, is

d‘lg:J.'[d\/IX(DilMX+Di2My+Di6MXy xdy+J.'[d\/|y(Di2Mx+D'22|\/|y+D'26|\/|Xy xdy

+de\/| Xy (DiBM X + D‘ZGM y + D('SGM Xy Xdy (55)

b. Potential of transver se shear stresses

The field and boundary integrals that express titential of transverse shear stresses are (seendppa

for details)
Ily 2 2 2 2 2 2
0 0 0 0
— X X X Xy Xy Xy
al, _-([-([Kall_axz My tap—5My+ta—5M, +aj3 oy x5 My a3 v
62 62 62 2 62 2 62
alyl_z X alyzay_zMy alya zMxy dv'x"' a;l Mx a;z_My+a§3 zMxy ;{66 X
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y 02 xy 62 y 02 y 62 y 02 « 02
azza_xay y T 230X_6nyy+a210y_2M azzEM azaw_zMxy)dVly"'(aalaX_zMx
52 52 y 92 y 92 5 92 , 92 , 07
+a§2¥My+a;3¥Mxy+%lax_0y x T 320x_6y y T 336X_0nyy+a316y_2M aszangy

0? 0 0
+ 0’3}/3 ay M ><yjdvI xy‘|dXdy+ §|:[Bll M + :812 M + 513 xy + Blyla_y M x T ﬁlyza_y M y

0 0 0
+51y36 jdV' +[521 M +/5’22 M +/323 xy+,32y1a_ny+,32yza_yMy+Bzysa_nydeV|y
+ 53)(1 532 M +/333 M, +,33yliMx+/33yziM +BsysiMx M, |ds (56)

y ay ay y ay y y

c. Potential of external contour loads

The final expression of the potential of externaitour loads is :

N
e —ijf(anun +TpUg +T,,W)dsdz (57)

d. Potential of the external transver se loads

The potential of the external transverse loadsds Appendix B for details):

Ixly 2
922 6 A 0/ 041 04
al, = — M, +2——M,, +—M |dxd — M, +|n,—+n, M
’ ” ox’ oy Y gy? } yﬂ [yax ay] Y
0/
+nya—yd\/ly—/l(s)d/n ds (58)

5. Governing equations

In order to derive the final set of governing edprad, all the terms multiplying each variation mbst
added and equated to zero. However, a proper metatipn of the terms representing each potential i
required. It is emphasized that the three mechhmpigenary variables chosen are the three transverse
bending momentM,, M,, andM,,. However, it must be highlighted that two terms&tained in Egs. (57)
and (58) respectively, appear as multipliers ofutheation of the normal vertical shear resulteptThese
terms were not further developed for conveniencgualing their summation to zero, the following

equation is obtained:
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w(s) = A(S) (59)

Since the same result is obtained for any genemeri closed contour, the Lagrange multiplier
coincides with the transverse displacemant(Reissner, 1944). This fundamental statement allows

derivation of the final set of field and boundargudibrium equations. Equating to zero all the

aforementioned components of Egs. (55), (56), &9, (58), we obtain:

' ! ) X 62 X 02 X 62 Xy 02 Xy 62
DM + DMy + DigM +‘3'1167Mx +0'1267My +a130X_2Mxy+all ax_Ony a; ax_ayMy
a2 a2 a2 02 0%w
+a:l?<3y axay M Xy +a1ylay_2M alyz ayg M y alys ayg M Xy — X2 (60a)
) ) ) « 62 62 2 of 62 xy 62
D12Mx+D22My+D26Mxy+a12¥M azz—M +ds;3 XZM y T2 5o 2255 My
a2 a2 02 02 02w
+ay— 5y My +ah— oy M, +a3,— oy M, +a);— oy M,y = __ayz (60b)
. . . 02 02 02 02 02
DlGMx+D26My+D66Mxy+a]?(3¥M azng agsnyy*'afgW gWNMy
02 2 a2 a2 02w
+ta —M  +at,—M +a),—M +a),—M  , =—2—— 60c
3 3% Xy xy T Y13 a2 X 23 6y2 y 33 6y2 Xy xdy (60c)
In addition to Eqgs. (60a), (60b), and (60c), thofeing equilibrium equation holds true:
a2 02 02
o ey M T My TP 0
The essential boundary conditions are:
0 0 0 0 0 0 ow
/31X1&Mx +,31X2&M y +51X3&Mxy +:31y16_ny +Blyza_yM y +,6’1y36—nyy—nX&:O (61a)
0 0 0 0 0 ow
:8 a — M, /822 M +523 xy+:82yla_ny+:82y26_yM IBZYSa_nyy_nya_y:O (61b)
0 ow ow
Ba— x —M +,332 M +,333 xy+ﬂ.3¥16yM +:3326yM +,333 xy_ny&_nxa_y: (61c)
w=w (61d)
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If the system is kinematically indeterminate at thmundary, then the following dual natural boundary
conditions must be considered instead,

M,=Mn, M, =Mnus, V, =V (62ach,
Equations (60) in conjunction with the boundary ditions (61) and (62) represent a set of partial
differential equations governing the elastic problef a composite panel. However, equations (61jaton
two additional variables that are apparently indejemt from the transverse displacementOnce the
effect of the transverse shear stresses is inclindéie variational statement of the problem, tlifecential
relationships relating the rotations and the transy displacement are formally abolished. This iespl
additional variables and equations to be sougbtdier to obtain a complete and consistent formuadif
the elastic problem. Following Reissner (1944), phesent theory assumes that the boundary conslition
over the cylindrical portion of the free boundaFyy(3) are prescribed am, 1,5, andt,s in such a way that

the variation of potentidil of the external contour load vanishes,
oll, =0 (63a, b)

Introducing Egs. (63) in Egs. (61), and recallihg following in-plane coordinate transformationsf.(to

Fig. 3):
ow a_vv
an 2 nx ny ax (64)
a_W - ny Ny %
0s oy

the final set of essential boundary conditions barexpressed in terms of the four primary variaMgs

My, My, andw: (see Appendix C for details)

0 0 0 0 0 0 ow
,71)(1&M X +,71X2&M y +’71X3&M Xy +,71yla_yM X +’71yza_yM y +,71y?,a_yM Xy = E (65.8)
0 0 0 0 0 0 ow
,751&M X +’7;2&M y +’7§3&M Xy +/72yla_yM X +/72yZa_yM y +’72y36_yM Xy :E (65-b)
In addition, the following boundary compatibilitpredition must be satisfied:
0 0 0 0 0 0
/7;1&'\/' X +’7§2&M y +’7§3&M Xy +’7:¥10_yM X +’7:¥26_yM y +/7:§/30_yM xy = 0 (66)
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6. Reduction of primary variables: Potential of bending moments

In order to reduce the number of primary variabiess, convenient to express Eqgs. (60a), (60b), @od)

in the following compact form:

2 2 2
D'M +aX:—2M +aXV%M +ay:—2M =d(w) (67)
X y y

where the following differential operator is inttazkd:

2 42 2 77
N -
ox? dy? oxay

Multiplying both sides by the bending stiffnesstrxaD:

a2 a2 a2
M +Da*—M +Da” =M +Da’ —M = Dd(w) (69a)
0X oxay oy
or
) 9° xy 02 g%
M +Da* —M +Da¥ ——M +Da’ — M =Dk (69b)
x> oxay ay?

Defining the following matrices:
A* =Dao*,AY =Da™,AY =Da” (704, b, c)
and expanding (69), we obtain the following seyo¥erning equations,

M, + A% 0° M, + A% 0° M, +A% 0° M +/\"y—a2 + Xy—az + Xy—az M
X 1167 X 1267 y 1367 Xy 11 axay X 12 axay y 13 axay Xy

+/\>1/1:y_22 X +/\)1/2§ y +/\¥3:y_22M xy = D11 2)2(\2, — Dy, (;;\;v_ 2Dsg g:av)\; (71a)
My N oM o N D D ey T ey o,

+/\)£1:y_22Mx+/\§2;y_22My+/\é3:y_22Mxy=_D12%V_D22(;27\2/—2D26% (71b)
AV P e IR S VR Pt

+N§1§M X +N§2§M y +N§3:_;ZM xy = —2D163%v— ZDZG%\I“‘DGG% (71c)

22



A potential functiorQ is now introduced,

2 2 2
|\/|x:—a gz, Mxyz_a Q, y:—a? (72&, b,C)
ox oxoy oy

By substituting Egs. (72) in to the transverse Mouim equation (60d), the following biharmonic

equation is obtained which governs the transvegsdilerium of the panel:

) *Q  9%Q
+ + =-
ox*  oxPay®  oay*

73]

Differentiating Eq. (71a) twice with respectxpEq. (71b) twice with respect tg and multiplying both
sides of Eq.(71c) by two and differentiating twigih respect to x and y and adding the resultsjemw of

Eq. (73), the following expression is obtained:

0w 0w 0w 0w Y 0°Q 0°Q
Dy;—— + 4Dy ——=— + 2(Dy, + 2D )—— + 4D +Dyy— = — —
11 0X4 16 axgay ( 12 66)6x20y2 26 axayg, 22 ay4 p XXXXXX 6X6 xxxxxyax5ay
6 6 6 6 6
0°Q 0°Q 0°Q 0°Q 0°Q (74)

+ CXXXX + CXXX + CXX + CX +cC
Wax4ay2 yyy ax3ay3 yyyy 6X26y4 yyyyy axayS yyyyyy ayG

where the following shear coefficients are introghlic

— _AX —_ X _ X _ Xy — _AXY _ y _ y — _AY
Cxxoxoxxx = 11» Cxxxxxy_ /\13 2/\31 /\11’ nyyyyy_ /\22 /\23 2/\32 ' nyyyyy_ /\22 (753" b' C, d)
— _AX _AX X _AXY _ Xy _ y — _AX  _AXY _ Xy _ Y _AY _ y
Croxxyy = "N12 =\ 21 33 = \13 ~ 2N\31 = N1 Cuyyyy = ~Nop = N33 = 2N55 = N5 = N5 = 2035 (75e, )
— _AX X _AXY _AXY _ Xy _ y _ y
Cxxxyyy = ~/\23 32 ~N1p ~ NP =205 = N3 =205 (759)

Equations (73) and (74) provide a complete anda®isistent mathematical representation of thetielas
problem of a composite multi-layered panel. Equat{69b) establishes a novel constitutive relation
between bending moments and curvatures, which \wegolnew differential correction factors. The
algebraic relations derived from the CLA, i.e. Eff. are now transformed to differential equations.
Clearly, for linear problems involving transversmads, the calculation of the internal bending mamsen
remains the same as in the CLA. In contrast, thestrerse displacements, which can be calculates thec
potential Q is known, are affected by the inclusion of the ashstresses. It is emphasized that three

boundary conditions can be still fulfilled insteaittwo as in the CLA.
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7. Special one-dimensional cases. Closed form solutions
a. Simply supported multi-layered panel subjected to transverse load
Let us consider a rectangular multi-layered parselllastrated in Fig.4. The panel is simply suppdrt

along the two opposite edges 0 andx = I,. The remaining two edges= 0 andy = |, are free.

N
<
\ ry
a
o
<—
<—

\ Y]

Simply supported Free Simply s1k1pported

Figure 4. Multi-layered composite plate subjected to transver se loading

Let the external transverse lopdbe a function of x only:

p(%,y) = () = p,sin(6,%), 6, =nr— (76)

IX

Due to the special boundary conditions and thereatdoad acting, it is not restrictive to assurhe t
structural response to be a function of theo-ordinate only. The governing equations (73) &érd)
simplify to

d*Q d*w d°Q
=-p, DllW =pt Cxxxxxxﬁ (77a, b)

dx*
Differentiating Eqg. (77a) twice with respect toand substituting the result in (77.b), the follogi

expression is obtained for the transverse displacéw)

d*w d?p
Dj;——=p-cC — (78)
11 dX4 XXXXXX dX2
A suitable solution in terms of transverse disphaests is:
w(X, y) = w, sin(Hn x) (79)

Substituting Eq. (79) in Eq. (78), the followingdil expression is obtained:
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Wy =P {14 620, 0000) (80)
Dl lgn

It is evident that the solution found differs fratre solution predicted by the CLA due to the presenf

the coefficientc,xx. The ratio between the maximum amplitudes of ttendverse displacements

predicted by the two models is

W, o
n,present _ 1+ n277.2 xx;xxx 168
WncLa I

The deviation of the present model from the CLA walksulated for five different stacking sequenddse
assumed material properties are reported in Tableh& quantity g/l> Was calculated and plotted
against the ratio#/l, (Fig.5.A) and ¢ l)? (Fig.5.B),where t is the plate total thickness. Clearly, the
differences increase with a parabolic trend asdtie t/l, increases. Figure 5.A shows that the trends of the
deviation are linear witht/(1,)%>. Hence the constani,e. is proportional to the total thickness squared,
according to a factor which is function of the lay and the stacking sequence. This parabolic trend
well-known for thick isotropic plates and for thigkates of one orthotropic lamina. Therefore, rssul
presented in figure 5 demonstrate that a theoteje@eralization to laminated composite platesoissible

if shear correction factors are calculated accgrtinEquation (75g).

For each laminate considered, the differences termro as the thickness over length ratio tend=eto.
The linear relation found implies that only oneraxtalculation of the coefficientg/ly’ is needed for
each analyzed configuration. Once two points amknfor each configuration, the linear relatioroals
calculation of the difference for any valuetdf. As a general qualitative comment, laminates \tlger
bending stiffnesses show larger differences frorACL

Table 1. Material properties

E, MPa

E, MPa

G,y MPa

Vyy

G, MPa

G,. MPa

150000

8800

4800

0.35

4000

4000
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CXXXXXX/IX

0 0.2 0.4 0.6 0.8 1
(t/1%)?
Figure5. Difference between proposed model and CLA.

t/Ix

The transverse displacement predicted by the twdefsowere calculated in the case of an external
pressure law which represents one half wave irxitlieection. Results are illustrated in Fig. 6, wdéhe

ratioswn preseriWn cLadlre plotted for each configuration againstttheratio.
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Figure 6. Deviation from CLA. Compared maximum transver se displacements

b. Buckling of simply supported multi-layered beam
Let us consider a rectangular multi-layered pamselllastrated in Fig.7. The panel is simply suppdrt

along the two opposite edges 0 andx = |,. The remaining two edggs= 0 andy =1, are free.

z % Free
4
=4
¥ °X
Simol 4 : X
imply supporte Free Simply supported

Figure 7. Multi-layered composite plate subjected to axial in-plane load
The plate is loaded by an external in-plane loathgdn thex-direction. The critical buckling loads are
sought.  Following the von Karman formulation foroderately large transverse displacements

(Timoshenko, 1959), it is convenient to re-write foverning equations as follows:

d*Q d’w _ d*w_ d*Q 40
N R Y (822.5)

Substituting the transverse equilibrium equatid?a(dn to the constitutive equation (82b):
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d*w d?w d°Q
Dii——F="Ny—+ Cxxxxxxﬁ (83)

Differentiating Eq. (82a) twice with respect to rdasubstituting the result in Eq. (83) the follogin

buckling expression is derived:

d*w d?w

(Dyy + CxxxxxJ\lx)W + NXW =0 (84)
Its general solution is:
W=, +C,X + C5Sin(ax) + ¢4 COSEX) (85)
where:
O - (86)
Di1 + Crxoolx

The presented simplified form of the buckling eip@i86) does not satisfy the complete set of tithes
boundary conditions (61) and (62). The fulfilmeftthree dual boundary conditions requires a sorther
equation to be solved. However, under the caverisigqed by Blaauwendraad (2008), the use of a
simplified approximate solution allows a direct quarison of the present model with the classicaltgmh
proposed by Timoshenko and Gere (1964). The cosgaalso shows that classical accepted relatians ar
directly derived by an approximate solution of theesent theory and extendable to multi-layered

composite plates. Let us assume the solution fo thee form:
W = wsin(ax) (87)
The boundary conditions (61d) lead to the followamgdition:

a, =nrmr (88)
Substituting Eq. (86) in Eq (88) and choosing thmimum value of the critical load, we obtain the

following expression:

°D
NX,CI’ = = (89)
2 Cxxxxxx
Ix[1+I X nzj
X
Introducing the quantitieNy, ciaaNdNe s
7°D D
Nercta = 2 1, Ners = L (903, b)
Ix Cxxxxxx
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which are, respectively, the buckling load predichy the CLA (i.e. in the case of infinitely largbear
rigidity), and the buckling load in the case ofimitely large bending stiffness (but finite sheigidity).
Equation (89) can be equivalently re-written as:

1 -1 + 1 (91)

Ncr, present Ncr,CLA Ncr,s

Equation (91) represents an exact interaction ftanfaor the calculation of buckling loads of a 1-
dimensional shear deformable composite panel. lfoisally equivalent to the interaction formulas
proposed by Engesser (Blaauwendraad, 2@08) Timoshenko and Gere (1964) the isotropic case.
Furthermore, equation (91) can be used to clahié physical meaning of the coefficienf,g«. For the

isotropic case the following relations hold truda@iwendraad, 2008):

T2El GA
Percia = Tz Rrs=— (92a, b)
X X

Wherey is the shear factor Timoshenko and Gere (19864%, the shear modulué, is the area of the cross

section and the Young'’s modulus.

Applying the present theory to the case of an igutr panel, Eq. (90b) expressed in terms of tatati$

becomes:
Et EAR
Pers =1 =2 (93)
12(\1_ V2 kxxxxxx 12(1_ v 2 kxxxxxx
Equation Egs. (92b) and (93), the following relatis found:
CXXXXXX - (1+ V)X (94)

t? 6
Equation (94) shows that the quantitigg./t’, i.e. the slopes of the curves plotted in Fig@i directly
proportional to the shear correction factor. Theashcorrection factor can be directly calculatedeon
Cooooxx IS Known. As an example, let us consider the cdsandsotropic aluminium plate. The material

properties chosen ar& = 74000 MPay = 0.3. Applying the present theory, we obtag,,,,= 0.2827
with a shear factory = 6/5, thus recovering the classical Reissner’'s apprdachsotropic equivalent

single layer.
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Comparisons between the buckling loads predictethésns of the present analysis and the ones peddict

by means of the CLA are reported in Fig. 8.

1 T T T T T T T T T
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t/lx
Figure 8. Deviation from CLA. Compared critical buckling loads
Comparing Eq. (81) with Eq. (89) the following reikable relation between critical buckling loads and

maximum amplitudes of transverse displacementsjghasized:

Ne;,)
(,Crn present _ Wh.cLA

WI"I, present

(95)
(N Chy )CLA

Buckling loads can be readily derived by means gfidion (95) by performing a linear analysis on the
equivalent simpler problem of a beam loaded bynassidal transverse load, thus reducing signifigant

the calculation time.

8. Special two-dimensional cases. Closed form solutions

a. Simply supported rectangular multi-layered plate subjected to sinusoidal transver se load
A simply supported rectangular plate is subjedieda sinusoidal transverse pressure defined by the

following law:
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P = Prn sin(@,X)sin(B,y) 966)

where

By =— (96b, c)

The rectangular domain is defined &y] [O,IX] and yD[O,IyJ. Under the assumption of symmetric lay-up

and neglecting, as a first approximation, the tebmsand D Egs. (73) and (74) become:

4 4 4
9 ?+2 6202+a ?:—pmnsin m sinﬂ (97)
X ox2ay? ay Ix ly
0w a*w a*w 0°Q
D;;——+2(Dy, +2Dgg ) ——— ——=p+c —
11 6X4 ( 12 66)6x26y2 22 ay4 XXXXXX 6x6
2°Q 2°Q 2°Q
c ———+cC —+cC — (98)
XOOKYY A ay? XYY 52 ay* yyyyyy ay®
From EQ.(97), a suitable solution in terms of pttm is obtained:
; ; Prn
Q=Q . sinlax)sin ) A = \— 99a, b
mn ( m ) (ﬁny) mn a:,]-l-za%ﬁﬁ-l—ﬁ: ( )
Substituting Eqgs. (99a) and (99b) in Eq. (98) as&liming:
W= Wy, sin(amx)sin(,Bn y) (100a)
coefficientsw,,, are derived
— Pmn (
Wy = 1+
& D1y + 205 B2 (Dy; +2Dgg )+ 51Dy,
+ Cxxxxxﬂr% +Cxxxxy)ﬁr¢1ﬂr? +Cxxyyy)ﬂr€1:8r? + nyyyyygri3 (100b)

4 2 o2 4
am+205,85 + B,

As in the one-dimensional case, the solution fodifiers from the solution predicted by the CLA dige
the presence of the shear coefficients. The ragivden the maximum amplitudes of the transverse

displacements predicted by the two models is:

6 4 2 2 4 6
1+ Crxoxo@m * Cxxxxyﬂmﬁn + Cxxyyy)ﬁmﬁn + nyyyyygn

2 2 n2 , o4
WmncLA A +205B5 + By

Wm n present _

(101)
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Transverse sheartg, andty,, and transverse normal stressare derived by substituting Egs. (99) in Egs.

(38) and (39) respectively:

_ Pmn
am+205B7+ B

1 {Iar?ﬁwllk +0 B2 (quzk +Wag, )]Cos(a'mx)sin(ﬂn Y)

n

(TXZk )mn B

+ lﬂswszk +ahB, (qu3k +Ws )]sin(amx)coe(ﬁn Y)} (102)

_ Pmn
am+20%B5+ B

a2 way, + 02 (W1, +wag Joodax)sin(B,y)

n

(2 =

+ [ﬂr? W ta =B (qJ21k +Way )Jsin(a' mx)cog 3, Y)} (103)

Prun 7 ﬂarAﬁXSIK + ar%]ﬂr?(xuk +Xaz + Xag )+ BaX 22 ]Sin(a'mx)sin(ﬁn y)

(Oac)n=-
i an - 2al 7+ B

- I,a'mﬁr? (2X 32, T Xo3, )"‘ aspn (2X 31, T X1, )JCOE(amX)COS(ﬂn Y)} (104)

where the components of matri¢ are defined in Appendix A, and the following mativas been

introduced:

X, =Fk(2)D’ (105)

b. Compression buckling of simply supported rectangular multi-layered plate
A simply supported rectangular plate is subjected tompressive load per unit width. Introducing the

Laplace operatadr , the two governing equations can be written as:

0w
20 = -
0°Q= ny (106)
94w y 0w 'w ., 2°Q
D116X_4+ 2(Dy, +2Dgs) ox23y? +Dyp oy =-0°Q +Cxxxxxan_6
0°Q 0°Q 0°Q
+c ———+¢C ———+¢C — (107)
XXXXYY ax 4 ayz XXYYYY ax 2 ay4 yyyyyy aye
The following solutions are assumed:
Q=Qmn sin(crmx)sin(,Bn y) , W=W, sin(crmx)sin(,Bn y) (108a, b)

Substituting Eqgs. (108) in Eq. (106):
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Nyam

Qi = ~Wmp 0@
O +207 57 + By
Substituting Eq. (109) in Eq. (107), after algebmraianipulations:
N, = Dy + 205 B3 (D1, + 2Dgs) + B Dz (110)
X,Cr
0’2 1+ Cxxxxxﬂr?] + C)()oo(y)ﬂr‘:ngn2 + Cxxyyy)/:)(rznﬁri1 + nyyyyyﬁr(w5
) am+ 20587 + Ba
Defining the following quantities:
4 2 np2 4
a Dy +2a B5\Dy, +2Dgg )+ 54D
nycr’CLA = m=11 m/~n ( 122 66) n 22 (111a)
am
_ ar%l (Cxxxxxgr?l + Cxxxxy)ar‘;'llgn2 + Cxxyyy)ﬁr%]ﬁri1 + nyyyyy'gr?)
Nyers =712 > 2 Z S T— (111b)
(a'm Dy, +20455 (D12 + 2D66)+ JEm Dzzxa'm +2a58y + B, )
Equation (110) can be re-written in the form of :
I v, ) (112)

N

X,Cr, present Nx,cr,CLA Nx,cr,s
Notably, the following relation between bucklingais and transverse displacements holds true aktbe in

two-dimensional case:

Ne,,)
(lcrn present _ Wh.cLA

WI"I, present

(113)
(N Chy )CLA

9. Mod€ validation

To validate the accuracy of the present model,tigwois for a variety of examples are considered and
compared to finite element analysis (FEA) and tbeptsolutions available in the open literature. In
particular, the refined Zigzag Theory recently deped by Tessler et al. (2009), the three-dimeraion
elasticity solution by Pagano (1969) and a firstesrshear deformation theory (FSDT) were compatbdo
present analysis.

A first set of simulations was performed on sandimgquare laminates defined in a domain identifigd b

xD[O, a] , yD[O, a] and zD[—h, h]. Laminates are subjected to a sinusoidal traneveressure defined

by p=pesin(ix/a)sinfty/a). Examples include three variations of a tHeger square uniaxial sandwich
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laminate, indicated as A, B, and C respectivelyjriuniaxial carbon-epoxy external sheets and\poly
chloride (PVC) core (modeled as an isotropic matgriFurthermore, a sandwich laminate made of
titanium external sheets and titanium honeycomle,cardicated herein as laminate D, is simulated.
Material properties and laminate configurations atatking sequences are provided in Tables 1 and 2,
respectively. Laminates are simply supported aklhthe edges.
Comparisons in terms of maximum deflection are gméed in Tables 3 and 4. Results obtained by means
of different theories are indicated as

e Exact 3D Elasticity - fully three-dimensional sotmt developed by Pagano (1969).

Implementation of the method and results are pexvioly Tessler et al. (2009) .

» FSDT - First order Shear Deformation Theory.

e Zigzag - Zigzag Theory developed by Tessler et2009).

» Refined Zigzag — Transverse shear stresses obthinaategration of the equilibrium equations

(1) using the in-plane stresses derived by Tesslal. (2009).

» CLA - Classical Laminate Analysis.

* FEM — Results extracted from ad-hoc three-dimeraditinite element models.
In Table 3, comparisons of the maximum displacemeaiculated by means of a variety of numerical
solutions are presented, for a span-to-thicknet#s egual to 5. Results show that the present theom
very good agreement with solutions calculated byssle et al. (2009) and Pagano (1969) for
configurations B and C. Some discrepancies weradan comparing results for configurations A and D,
differences of the order of 15% and 20% respegtivebr both configurations A and D, the maximum
deflections calculated by means of the presentagmbr appear to be slightly over-estimated. To wstdad
the cause of such a discrepancy, the normalizedvesse shear stressgg0,,/2,z) (normalization factor
equal to 2Mdyl,) are plotted against the normalized through-thekttess coordinate in Fig.9. Clearly, the
present model calculates the shear stresses witikirsandwich core with good accuracy, but under-
estimates the stresses arising within the facetsh&be shear stress resultants, i.e. the inteyrd the
thickness of the shear stress distribution, arestmae for the three models, i.e. present, Tesslat. e
(2009), and Pagano (1969). Therefore, the amourghefr carried by the face sheet predicted by the

present theory is smaller than the one predictedPdyano and Tessler et al. Consequently, the fresen
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theory predicts a larger amount of deformation gpeoncentrated within the core, which is consitbra
less stiff than the face sheets. Since the faeets represent 20% of the total laminate thicknthssr
influence on the global behaviour is significaiigrefore predictions obtained by the present thaosyto
some extent more conservative (in terms of trarsevelisplacements). Furthermore, the shear stresses
distribution calculated by means of Pagano’s egatition suggests that state of stress and staggaih

are fully three-dimensional within the face shedtserefore the hypothesis of state of plane stoss
which the present theory is based, does not hakl #or a more accurate description of the redé sth
stress throughout the domain, the work performethkythrough-the-thickness normal stresshould be
included in the variational statement (49). Thibéyond the scope of the present study, which &xos

the behaviour of reasonably thick composite langisathus neglecting the influence of.

Further comparisons in terms of normalized trarsveshear stresses are presented in Figs. 10 to 15.
Notably, as the face sheet thickness decreasedigigmtions B and C), the present theory captures
adequately the shear stress distribution in theiprity of the upper and lower surfaces of the laaés.
Good agreement is also found in the case of corstgn D.

To provide an overview on the range of applicapilif the present model, a sensitivity study was
undertaken on laminate configuration B. Severahgpathickness ratios were analyzed and normalized
maximum transverse displacement were calculatedcantpared to results calculated by Tessler et al.
(2009). Results are presented in Table 4. It ischohat the FSDT generally yields over stiff resuihile

the present theory provide very accurate resultzvdtues of the span-to-thickness ratio equal toFdy
relatively thicker configurations , i.e. span-téettness ratio equal to 4, the error induced in@sag to

30%.
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Table 1. Material properties

Orthotropic materials Isotropic materials
Properties| Carbon-epoxy (€) Titanium core (H) P\WeeqP)| Titanium lamina (T
E,, GPa 1.579x10 1.915x10"
E,, GPa 9.584 1.915x10 1.040x10" 1.041x10
Es, GPa 9.584 1.915
G1,, GPa 5.930 4.227x10
Gi3 GPa 5.930 5651xT0 | G=—— G=—r"
1 ' ' 201+v) 201+v)
Gy3, GPa 3.227 1.248
Vio 0.32 0.658x10
Vis 0.32 0.643x18 0.3 0.31
V23 0.49 0.643x16
Table 2. Configurations and stacking sequences
Laminate Normalized ply Laminate Stacking
configuration thicknesses (2h) materials sequence
A (0.1/0.8/0.1) (C/PIC) (0/0/0)
B (0.025/0.95/0.025) (C/IPIC) (0/0/0)
C (0.0025/0.995/0.0025) (C/PIC) (0/0/0)
D (0.1/0.8/0.1) (T/HIT) (0/0/0)
Table 3. Normalized maximum (central) deflections
( Normalization factor: 10°Dy./pol*)
Laminate 3-D Elasticity FSDT Zigzag Present
configuration (Pagano) (Tessler et al.)
A 290.761 2.731 29.769 35.665
B 11.645 2.819 11.693 11.303
C 2.080 1.728 2.103 2.001
D 1.331 0.389 1.333 1.672
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Table 4. Normalized maximum (central) deflections
( Normalization factor: 10°Dyi/pgly’)

0.4

Laminate Span-to- 3-D Elasticity FSDT Zigzag Present
configuration | thickness ratio (Pagano) (Tessler et al.)
A 4 42.42 3.739 42.124 55.23
A 10 9.734 1.321 9.738 9.981
A 20 3.487 0.948 3.489 3.664
A 50 1.303 0.841 1.305 1.367
A 100 0.945 0.826 0.945 0.973
A 200 0.852 0.822 0.852 0.882

To further validate the present theory, a varidtgautions were derived for classical multilaye&thyer

composite laminates. A simply supported squareeplats studied,=5mm). Five different quasi-isotropic

stacking sequences were analyzed. Lamina propartiethe same as the properties reported in Tafde 1

the carbon-epoxy unidirectional lamina. Configwa$ are indicated in Table 5.

Table 5. Laminate configurations

Laminate Stacking
configuration sequence
L1 [0/90/45/-45]s
L2 [0/45/-45/90]s
L3 [90/45/-45/0]s
L4 [0/90]s
L5 [45/-45)s
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A three-dimensional high-fidelity finite element d& was created with ABAQUS. The domain was
regularly discretized using three elements per é&aar and 50 subdivision along each span direcfmma
total of 60,000 quadratic hexahedron - type C3D28Bments (ABAQUS User manual, 2004). In
consideration of potential numerical problems, sashshear locking or hourglassing, quadratic elésnen
with reduced integration were used to counter themér, whilst mesh convergence studies and
comparisons with other methods (Tessler et al.92p@ovided confidence that the latter was supgabss

As a first case-study, and for all configuratiommjckling loads were calculated for a compressive
longitudinal loadN,. To assess the effect of the span-to-thickness Ikg2h, calculations were performed
for five different ratiosl{/2h) equal to 500, 50, 20, 10 and 5 respectively) uRe&re presented in Table 6.
As expected, the normalized buckling loads caledldiy CLA are constant and do not depend upon the
span-to-thickness ratio. For span-to-thicknesosathat are larger than 10, the difference betwben
present theory and FEM are within a 10%-15% rargjgnificant discrepancies (larger than 15%) are
found as soon alg/2h=5. However, within the range of reasonably thiakninates, the present analysis
shows good accuracy and the inclusion of throughtiiickness normal stresses in the variationa¢stant

(49) does not appear to be required.

Table 6. Normalized buckling loads. Nor malization factor: 1,%/Dy;

La_mlnatg Span-.to—th|ckness CLA Present FEM
configuration ratio, Ix/2h

500 17.6 17.5 17.6

50 17.6 17.3 17.0

L1 20 17.6 17.1 15.1

10 17.6 16.2 14.4

5 17.6 13.4 10.1

500 18.5 18.5 18.5

50 18.5 18.3 17.7

L2 20 18.5 18.1 16.7

10 18.5 17.3 14.1

5 18.5 14.8 11.4

500 69.2 68.9 69.2

50 69.2 68.5 68.2

L3 20 69.2 67.8 66.2

10 69.2 64.0 57.9

5 69.2 52.2 43.7

L4 500 18.4 18.3 18.4

50 18.4 18.4 17.4
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20 18.4 18.2 16.9

10 18.4 17.5 151

5 18.4 15.2 12.9

500 43.4 43.4 43.3

50 43.4 43.2 42.4

L5 20 43.4 42.4 39.6
10 43.4 39.7 33.7

5 43.4 31.7 26.0

As a second case study, the plate was loaded withifarm transverse pressuysg Normalized transverse
maximum displacements (normalization factor eqoal® D../p.ls* ) and non-dimensional through-the-
thickness normal stress,{p,) were calculated and results were compared to FEMitions are calculated

by linear superposition of basic solutions (99a) 6100a):

M N M N
Q= Z z Qumn sin(amx)sin(ﬁn y) , W= Z Z Wi sin(amx)sin(,Bn y) (114)
m=1 n=1 m=1 n=1

where the amplitude&,,,, andw,,, are given by Egs (99b) and (100b), atcandN are reasonably large
integers Cosentino and Weaver (2009). Coefficignis i.e. the components of the transverse pressure
along the sinusoidal base functions, are calculayeheans of a Galerkin technique Cosentino andwafea
(2008).

To assess the convergence rate of the solutionrelmmary convergence study was performed on
configuration L1 for a series of valueshMfandN. For the sake of simplicity it was assuniddN in all the
cases analyzed. Convergence of transverse disptatens obtained at relatively small computational
expenses The maximum transverse displacement apjmeaonverge when more than three base functions

are used per each span co-ordinate (Fig.16).
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In contrast, more base functions are needed tagtea convergence of higher order variables. The o
through-the-thickness normal stresses was asséssmhfiguration L1, subjected to a uniform pressur
and with a span-to-thickness ratio equal to 1. Resue reported in Fig.17, where the normalizedsses
are plotted against the normalized thickness cinate for values oM andN varying from one to thirteen.
To fulfill the natural boundary condition at thepgy interface, the value @f,/p, must equal 1, i.ed, in
equilibrium with the external pressure. Notablye fllfillment of such a boundary condition is olizd
when 13 or more base functions are used. Howetvam$t be emphasized that the convergence raite is,
this case, directly influenced by the degree ofuesmcy and convergence rate associated with the
discretization of the external load in generalizédurier series obtained by the Galerkin technique
employed. More comparison between the present yhaod results obtained by means of FEM are
presented in Figs. 18 to 21, where the case dbumipressure is analyzed and normalized normal
through-the-thickness stresses, calculated in émtec of the laminate (¥#2, y=,/2) are plotted against

the normalized thickness co-ordinate. The vaMedl=13 were chosen to perform the simulations.
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Comparisons between the calculated transverseadisplents are presented for all the configurations i
Table 7. A uniform pressure was assumed to loaddpesurface of the panel and two span-to-thickness
ratios, five and ten respectively, were chosen.

Table 7. Comparison of maximum transver se displacementsfor panelsunder uniform pressure.

Maximum transverse displacement, um
I/2h Lam matg CLA Present FEM
configuration
L1 1.01 0.84 0.64
L2 1.03 0.87 0.66
5 L3 0.90 0.72 0.63
L4 0.96 0.79 0.68
L5 0.91 0.73 0.60
L1 52 58.7 58.1
L2 50 57.4 58
10 L3 49 53.2 54.2
L4 53.1 56.5 56
L5 53.6 59.7 59.2

Results are very accurate in terms of through+tiekhess normal stresses. The calculation of trenssv

displacements are less accurate but still accepiflobnsidering that the case of a very thick lzaie is
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analyzed. Notably, the error associated with tiselte provided by CLA is of the order of 10% foaggto-

thickness ratios larger than five.

10. Conclusions

A novel theory was developed to assess the efferhinsverse shear stresses on bending and buakiing
reasonably thick composite laminates and sandwiateq The contribution of transverse stresses was
included in the variational statement governing éhastic equilibrium of the body and a novel set of
equilibrium equations and boundary conditions wasived. To reduce the final number of unknown
variables, a stress function was introduced. Sinmpteblems were solved and a variety of closed form
solutions were derived for simple one-dimensiomal two-dimensional cases. The continuity of theashe
stresses at each lamina interface, which is onth@fmost common weaknesses of other theories, is
intrinsically satisfied by the present approachother important attribute of the present theorthet the
total number of unknown variables needed to fultedmine the stress field throughout the domain is
reduced to two only, rendering the present approaxnemely efficient in terms of computational
expenses. Furthermore, the theory is particulariakle for meshless approaches, which represmtiust
alternative to FEM. An intrinsically three-dimensa problem can be reduced to an equivalent two-
dimensional single layer approach by appropriandensing the layer-wise properties. The present
theory is, of course, less appropriate when veigkthonfigurations are analyzed. However, the raofe
validity is sufficiently large to include a sigrafint variety of structural problems, especiallytive
aerospace industry.

Results were found to be in very good agreemetit ather more refined theories and with high-figeli
FEM models, suggesting that the present approathean alternative, within its range of validitydther

more accurate, but less computationally efficiapproaches.

APPENDIX A
Potential of transver se shear stresses

In order to carry out the variations, it is convartito express the potential as an explicit fumctd the

transverse shear stressgsandr,. Defining the following matrix:
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¥, =-Bk(2)D' (A.1)
and considering Eq. (38), the following explicitpegssions are derived for shear stresses as foeatib

the transverse bending moments,

0 0 0 0 0 0
szk :T:L]k&MX+S”12k&My+S”13K&MXy-FS”s]ka_yMX+S”32ka_yMy+T33»<a_yMXy (A2a)
0 0 0 09 0 09

(A.2b)

oy

Assuming the following constitutive relations

Gk = G, O (A.3)
0 Gyzk

and substituting the constitutive equation (A.3) &ys. (57) in Eq. (53b):

L1 e yaayaz= 2|3 ferae
. m'r ydxdydz= J' J' > J'r G dz |dxdy (A.4)
2 2OO =R
The variation of the potential is
|y|yNszZk IINZ“T
al, = —*0r,, dz |dxdy+ R LT vz dz |dxd (A.5)
B O e

For convenience, the two contributiofi$, and Iy, due to 5, and 7,, respectively, are analyzed
individually. Defining the following
Il

|

and substituting Eqgs. (A.2) in Egs. (A.6) we obtain

<

o —

N % I, y
Zj_zk O, dz fdxdy, I, H
lzk G 00

N Kk T
> j % 57,, dz|dxdy (A.6a, b)
X% 2

-1

Y N
_ 1 9 9 9 9 d d
mxz_”; = J' K\PMK&MXHPm&MyHPBK&MXyHPSlka—yMX+qJ32kEMy+LP33Ka—yMXy]
0 0 K= _

0 0 0 0 0 0
x[”’llﬂ F Mt Wig o My + g = My + Wy, a_deIx +Wa a_deIy +Wag a_yd\/'xyﬂdz}d)(dy (A.7.2)
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0 0 0 0
—M, +¥. M
oM

ley N %
1 0 0
at,, = — (LP — M, +¥0 —M, +W¥,; —M, +LP —M, +W¥
yz 23 X 22 y 23 3% 3%
][ #a gt vag e vay "
0 0 a 0 0
—M +‘-|J32< &d\/l +LIJ33< axd\/lxyﬂdz}dxdy (A.7.b)

0

Integrating by parts and conveniently re-arranging

2 2 62 62
M, +W, 2 M, +W, 2 M
W T oy ¢ P oxgy Y

W, a2 0 0
I[ ("’l&?“”x*“’ﬂ@mv*”’mﬁ

I, |

m

00 k=17,
62 62 62 2 2 62
+W33(Way|ley ze( qulk aXayMX+kp12ka—xayMy+qua(a—xanyy+qJ31kay—2Mx+W32kay—2My
92 9 0 0 9
Wy v ij dz}dxd)d\/lx §Z J’[ (wllk&MX+w12k&My+w13K&MXy+w31ka M,
rk=l|z sz
0 0 0 0 0 0 0
+LP32"EMV+W33‘5MXVJ”X+G (wljka M, +w12ka M +‘”13Ka M, +l|J31kE|v|x+wgzka—yl\/ly
X
Ly N | 2 W 2 2 2 2
12, 0 0 0 0
+y M., In, |*dsdM, — W My +W, — M, +W M,, +W,, —M
33‘ ]y} " ﬂ,;zkj zek[ ara " ox? Mg Y oy
62 62 L|J32k 62 2 62 62
Yy, — M +Y, — M +¥, — M +Y,, —M
Zooxay V% axd Xy) Gg | eaxay ¢ Raxay Y eaxay Y gy X

K d 6

2 62 N Z
o oo ]2

rkl g
0 0 0 W, d 0 0 d
+\P3JKEMX+W3ZKEM),+W33(EMXy]nX sz[wuka M+ Wi — My +Wg — M, +W3Jka_yMX
X7
ly N 2 2 2
0 0 Wiz 0 0 0
W, —M +Wo —M,, |n, |tdSOM, - Wy — M+, — M, +W M
32kay y 33kay ny y:l} y '(UOKZ:;,Z;[ zek 1% 5.2 x> 12ka 13‘62 Xy
2 2

02 )
+ —y'\"y““lekm'\"xy

62 62 62 qJ
02 02 02 Wi, 0 0
tWy — My +W — My +Wy — Xyﬂdz dxdyoM { (kp“k My +W, —M,
oy* oy i kzi‘ ij = ox ox
0 0 0
—M, +W¥, M.,
13 o ax

9 M, s (w ZM, Y
— n, +———< +
G, | % ox 1% ax

0 0 0

.a)
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00k |z, Y%
02 31, 02 02 62 2 02
33 axay XVJ Gy, (W“k axay T P2 g My + Was G May W o Mt Bag 5 o My
2 Z g
2 0 0 0 0
+ Wy ]:ldz}dxdydle § {J‘ {G k( 21, 5y Mt Voo, 5 My + Wag oMoy + Wy M,
Tkl | g X3
a9 3 0 0 0 0 0
X%
Lly N W 2 2 2 2
22, 0 0
W, Mxyjnx}}dsdwx—n‘z j S [wzjk Mt Wy~ My Wy o My + Wiy M
00kl |z L Y&

y

2
+l4132k;7|v|y Wy : ]:ldz}dxd)d\/ly §Z j {

0 0 0
Wy, —M, +W, —M +W,; —M,
r=he ( oy oy oy

M +W,, 2 M, +W, 2 M
Zogxay X Peoaxoy Y PHoaxay Y

62 62 62 l.IJ
+l-IJ3:lk aX—ZMX +‘-|J32k a)(_ZMy+ l-l—’33K Py Xy]:|dz}dXd)dV| Xy §z J- |:G

rk—l Z

d d
Wy — M, +W,, —M,
" ( 21, y X 220 A dy

0 0 0 0 LP 733 0 0 9
X7

+w31k: M, + Wy, : M+ Wy ; M ] X}}dsd\/lxy (A.8.b)

Substituting expressions (A.8) in Eq. (A.5), penfiarg the integrations with respect to z, and fdotpout
with respect to the three virtual variations, naméi,, dM,, and dM,y, the following field and boundary

integrals are obtained:
[

Lely 2 2 2 2 2 2
~ 9 9 9 9 9 9
an, = j j Kaﬁ s My @ My Ml My al S My
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—M +aya—2M +a'ya—2M M, + axa—zM +a, a—2M +a'Xa—2
X 12 ayz y 13 ayz Xy X 21 6x2 X 22 6x2 23

vy 02 vy 07 xy 02 y 02 y 02 y 02
+a216_x0yMX+azzmMy+a236_x6nyy+a210_y2Mx+a220_y2My+a230_y2Mxy M,

+ axa—zM +axa—2M +axa—2M +axya—2M +axya—2M +0/XV—02 M +aya—2M
3 ox 32 P 33 P R may X 32 axay Y 33 xay Y 31 ayz

0 0 0 0 0
+a3y2VMy+a33WMxy]dV|xy‘|dXdy+§[( Xa M X a M xy lgly x+ﬂly25M

9
oy

(,331 M +,5’32 M +,5’33 xy+ﬂglainx+,3 :yM +'6336 J } (A.9)

0 d
+’Bly36y jdV' ‘{ﬁ 15 — My ,Bzz M ﬁ23 M,y ﬁua My + B, —M "‘,323a xyjdv'y

where, with reference to Fig.3:

n, =cosd, n, =sind .R.a, b)

The matricesn™, ¥, «, B*, and ¥ were introduced. Their components are hereby defase

N A (@2 g2 1
a ==y _[ oy S gy (All.a
=1 Gy Gy
L% i
N[z i
==Y j[w“kw”k s rate (A.11.b)
=10 G Cyz |
N[ 7 ]
a=-y j[w“kw“‘ o Fote g, (A.11.c)
=P G, Cyz |
ajs :_ZN: T ﬁ+—w§2k dz (A.}.
22 k=1 Gy Gy
L%
N |z
W, W, W,W
ajs=-), j[ — 33‘]dz (Alle)
=1 X3, ya
N[ 7 (w2 2
w2 oW
X — _ 13 3%
ak = ZU[_G Pk ]dz (AD1.
k1| 5\ Va4
Ay =015,03 =013,03 =0y (All.g, i
qu q',3 LPZ l'IJ?>
oy =—22 j ( b3 ék L (A.12.3)
=1 G, V.
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G
-1

Y%

X GY@

o
| %-
N W e W W W vy
a,lx%/__zz J’[ 13, 33K 3% 713, T24 733 T ¥l Yoy |
| Z-1

N W, W, W,W
a;{——zz [ 2t zék = sz
k=1
Zq

4 Y4
N (W, Woo +Wo W Yoo Yoo + W, W
ay=-2> I( 12, 733 * Y33, *13 | Yoa Y3 * ez oy |

G G
=1 X2 Y%

N W W, W W
agxél‘—ZZ I[ Sy zé‘ i }dz

k=l| 7, 4 Y%

Xy — Xy XYy — XY Xy — xy
0y =015,031 =013,03, =04,

N | % 2 2
LPS LPZ
O’lylz—z J.[G]k le}dz

Xz Y%

G Cys,

Z
2 &

N | %
aly = _z _[ You o + Yo Vo dz
k=1 G>@< GY4<
L% i
N | % 2 2
W Y
ag’zz—z I 4
k=1 C
Z-1
N | %
afy=-) J‘ Voo, Yoy, Voo ¥og |,
k=1 G>@< GY4<
L&A
afy=- J. dz
33 ; Cq Gy
L%

V=Y oY =
a)n=a),,a3=0%,a% =0

5 :ZN: J- llJljkn + Wy Wiy, LIJg,Jan+'~IJ31k‘1J21kny &
G Gy

X%

( GXZk Gyzk

GXZk Gyzk

Z
Wiy, Wig, N + War, Wia Ny wsjkwszknx+w32kw2]kndez

Wiy Wig N+ War Wiy Wy Wag N+ Wag W 0y ]dz

(A.12.b)

(A.12.0)

(A.12.d)

(A.12.e)

(A.12.)

(A12., ], i

(A. 2.

(A.13.b)

(A.13.c)

(A1

(A.13.e)

(R.)
(A.13.g, h, i)

(A.14.3)

(A.14.b)

(A.14.c)
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GX

G

k=1 Zk—l( Z Y%
e | (W W, Wony LIJ32kn + Wy, Wao 0y
pe=>| | 5 5
k=l 7z, Xz Y%
Pz = z j G + G
=P X3 iz
. k=1 G>@< GY&
L4
_ Zf Wig Wig e+ Wag Wia Ny Wa Wag Ny + Wag Yo Ny
32~
=1 G Gy,

k=L| 7,

G

2
T ( WE N+ Waa Wiany
4 B

GY4<

W2 n, +W,, Waa
+ Vo + Yoy 33Ky}jz

Gy,

LIJ11k LIJ32k n, + llJ31k lP32k ny

ZJ% [HJ3JKLIJ1]an +WZn, .

Wy, Wy + W Ny sz

qu(

I8
5

Gy,

]dz

dz

L Wi Yo, s +w22kw2]k y]d

11, Lp?:lk n + LIJ3]k Lp32k y

Wy, Waa n, +Lu31kw33k y , Yo Yo s +tp23KL|J2]k yJ

szk llJ32k n, + '~IJ22k llszk ny
B3, = Z G d
=1 P V2
5 = ZN: [ Wy Wi n +WE 0y L Yoo Yo i+ w2 ny N
22 = J- G G
= Xz va
23 = J- G G
k| 5, Xz va
31 = G G
=1 X2 va
32 = G G
=1 e Xz va

N
Bz =

k=1

2
l"”za( LP33( ﬂx + qua( ﬂy

Z,
i

1

2
( Wag Wiy +Wian,

Gyzk

dz

dz

z

(A.14.d)

(A.14.e)

(A.14.1)

(A.14.9)

(A.14.h)

(A.14.i)

(A.15.3)

(A.15.b)

(A.15.c)

(A.15.d)

(A.15.¢)

(A.15.9)

(A.15.9)

(A.15.h)

(A.15.i)
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APPENDIX B
Potential of external transver seloads

Referring to Eq. (53d), and performing the variasiowe obtain:

v, vy
—= [+ —= ||dyd B.1
H ax] 5[ oy ydy (B.1)
Integrating by parts with respect to the variations
al, = ”( N, +— jdydy+§/1(nxavx+nyavy)ds (B.2)
r

Projecting the shear resultants in the boundaggnal of Eq. (B.2):

Lely

jlj'( Jv+_ jdydy+§A6\/nds (B.3)
00 r

Following, for example, Reissnf8], the following vertical equilibrium equations @an¢roduced:

_0 0 _0 0
VX_&Mx+a_nyy'Vy_&Mxy+6_yMy (B.4.a, b)

Substituting Egs. (B.4) in the domain integral of EB) and carrying out the variations:

1,
: oM M,y M,

= 04 f My, My |, 04 dydy+§/w ds (B.5)
el ox L ox oy By OX ay

Integrating by parts and factoring out gives

hlyr a2 2 2
a, = J'MJVIX+2M5MX + 92 au dydy- | n, Md\/l ofn, 2 in 2 an, +n, 2 av, lds
O my Y a2 Y ] ™ox ™oy Yoy

+§/1(s)avnds (B.6)
r

APPENDIX C
Essential boundary conditions

Substituting Eq. (63) in Egs. (61a), (61b), andcjafives
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0 0 6
,31X1&Mx+:31X2&My+,31X ax '6116 ,Bzay y+,31y36_M
2 ow ow
=Ny —-—-n,n, — C.la
on VY os ( )
0
B2 15y —M +1322 M +1323 ><y"‘ﬁ21a M, "‘,BzzayM +ﬁ230y Xy
2 OW ow
=n{—+n,n, — C.1lb
Yoan X7V ds ( )
0 0
—M, + |v| + + M, + M, + —M
B3 15 /3’32 /3’33 M,y ,331 dy /3’32 dy :333 dy
ow ow
-2nn —+{ng —n Cl.c
Y on ( )as C1
Solving fora—W anda—W provides
on 0s
0 0 0 0 0 6 ow
'71)(1&Mx +'71X2&M y +/71X3&Mxy +,71yla ’71yz a M +'71y3 ay xy = % (C-Z-a)
0 0 6 0 6 0 ow
’7;1&Mx+’7;2&|v|y+,75 ox xy nglay ,7%/2 ay ’72y3 anyy:g (C.2.b)
where
M1 =B+ Bar, Mo = /lez + B2, M3 = Bis+ Bas (C3.a,b, )
N = 1311 "‘1321 Moo = 1312 "‘ﬁzz M3 = ﬁ13 "'1323 (C.3.d,e,f)
Ny ny ny Ny Ny ny
nh =B+ Bys 1 = B+ B, 15 = Bl +:32y3 (C4.a,b,c)
1311 +1321 M3 = ﬁlz +1322 M35 = ﬁ13 +1323 (C4d, e, f)
Ny ny ny ny Ny ny
Substituting Egs. (C.2) in Eq. (C.1.c), the follogiexpression is obtained:
0 0 6 6 0 6
/7§<16 /7326_M +N33— x My +13— Oy ) 13— 3y M,y +nd;— 3y M, =0 (C.5)
where
n, .
,731 ,71] +,72] n 1=123 (C.6.a)
Ny y
n n .
ny =nf >+nf = j=123 (C.6.b)
ny ny
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Equation (C.5) is identically satisfied if exaclgmns are found in terms of transverse bendingnerats.

Generally, exact solutions can be found for fewtipalar cases only, and the use of approximatetisoisi

in conjunction with numerical methods to minimizee tinduced error is required. Therefore Eq. (C.5)

represents a supplementary compatibility conditieer the boundary of the domain.
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