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An Enhanced Single-layer Variational Formulation for the Effect 
of Transverse Shear on Laminated Orthotropic Plates 

 
Enzo Cosentino1, * and Paul Weaver2 

 
1Composite Stress Engineer, Airbus UK Ltd., Bristol, England BS34 7AR, United Kingdom 

2Professorr in Lightweight Structures, University of Bristol, Bristol, England BS8 1TR, United Kingdom 

Abstract 

A novel mixed formulation is derived by means of Reissner’s variational approach based on Castigliano’s 
principle of least work in conjunction with a Lagrange multiplier method for the calculus of variations. The 
governing equations present an alternative theory for modeling the important three-dimensional structural 
aspects of plates in a two-dimensional form. By integrating the classical Cauchy’s equilibrium equations 
with respect to the thickness co-ordinate, and enforcing continuity of shear and normal stresses at each ply 
interface, condenses the effect of the thickness. A reduced system of partial differential equations of sixth 
order in one variable, is also proposed, which contains differential correction factors that formally modify 
the classical constitutive equations for composite laminates. The theory degenerates to classical composite 
plate analysis for thin configurations. Significant deviations from classical plate theory are observed when 
the thickness becomes comparable with the in-plane dimensions. A variety of case studies are presented 
and solutions are compared with other models available in the literature and with finite element analysis. 
 
Keywords: Castigliano’s Theorem; Variational Approach; Mixed Formulation.  
 

List of Symbols 
 

u0, v0  = in-plane displacement of neutral plane in x and y directions  

w = out-of-plane displacement 

xyyx εεε ,,  = in-plane strains 

xyyx ϕϕϕ ,,  = rotations of cross section 

000 ,, xyyx εεε  = in-plane strains at neutral plane level  

xyyx kkk ,,  = curvatures 

yzxz γγ ,  = transverse shear strains 

zε  = transverse normal strain 

xyyx σσσ ,,  = in-plane stresses 

yzxz ττ ,  = transverse shear stresses 

zσ  = transverse normal stress 

                                                 
* Corresponding author. Email: enzo.cosentino@airbus.com 
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lx, ly = length and width of panel 

t, 2h = plate total thickness 

tk = thickness of kth lamina 

N = total number of layers 

N, M = unit width stresses and bending moments vectors 

A, D = laminate in-plane and transverse stiffness matrices 

B = laminate coupling stiffness matrix 

A’, D’   = matrices of in-plane and flexural flexibility in inverted laminate constitutive equations 

B’   = coupling matrix in inverted laminate constitutive equations 

kQ  = transformed in–plane stiffness matrix for lamina k 

kG  = transformed transverse stiffness matrix for lamina k 

kk τσ ,  = vectors of normal and shear stresses at ply level k 

kk ba ,  = constants of integration of shear and normal stresses at ply level k 

C  = differential operator defined in equation (13) 

( )•∇  = divergence operator 

xyyx NNN ,,  = partial in-plane stress resultants 

yx VV ,  = transverse shear stress resultants 

BΑ,  = matrices of partial in-plane and coupling stiffness 

kk HF ,  = matrices defined in equations (40) and (41) 

Π  = Castigliano’s total potential 

τσ ΠΠ ,  = potentials of in plane and transverse stresses 

ΓΠ  = potential of external contour forces 

λΠ  = potential of the external transverse loads 

kΨ  = matrix defined in equation (A.1) 

λ  = Lagrange multiplier 

xyyx
ααα ,,  = matrices defined in equations (A.11), (A.12), and (A.13) 

yx ββ ,  = matrices defined in equations (A.14) and (A.15) 

y
ij

x
ij ηη ,  = boundary coefficients defined in equations (C.3), (C.4), and (C.6) 

xyyx
ΛΛΛ ,,  = matrices defined in equations (70) 

Ω  = potential of transverse bending moments 

kX  = matrix defined in equation (105) 
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1. Introduction 

 
It is well known from experimental observations (Reddy, 1984) that the Classical Theory of Plates (CTP), 

i.e. the two-dimensional model chiefly shaped by the works undertaken by Kirchhoff (1850) in the 19th 

century, and then revisited by Love (1934) and Timoshenko (1934) during the early 20th century, 

underpredicts global deformations of the elastic equilibrium. The principle hypothesis on which 

Kirchhoff’s theory is based, is that normals to the mid-plane before deformation remain straight and normal 

to the plane after deformation. This causes the main deficiency of the approach − neglecting the effect of 

the transverse shear strains on the deformation of elastic two-dimensional bodies. Ignoring some 

deformation modes constrains the deformed, modeled structure to one degree of freedom only (namely the 

transverse displacement w), thus yielding overly stiff behaviour. Note, we refer to degrees of freedom as 

Lagrange parameters in the present work. It is also noteworthy that neglecting shear stresses leads to a 

contraction of the three natural (force) boundary conditions that should be satisfied along a free edge 

(1945), i.e. vanishing of vertical forces, bending and twisting moments.  

Despite its limitations, Kirchhoff’s theory is still the most widespread approach used to obtain robust and 

reliable prediction of the behaviour of slender plated structures. Furthermore, it underpins the foundation 

for composite plate analysis, the well-known Classical Laminate Analysis (CLA). The main simplification 

is that three-dimensional structures are treated as two-dimensional coincident with the neutral plane (gray 

area in Fig.1), with a significant reduction of the total number of variables and computational effort. 

Furthermore, the governing equations become easier to solve and closed-form solutions, which typically 

provide more intuitive and physical representation, can be developed.  
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Figure 1. Two-dimensional elastic structure 

 
Nonetheless, the error induced by neglecting the effect of transverse shear stresses becomes significant in 

the following cases:  

i. Thick-sectioned configurations, for which the hypothesis of two-dimensionality becomes 

restrictive 

ii.  Proximity of free edges (especially in composite plates) 

iii.  Proximity of free corners 

The induced error becomes more important for plates and shells made of composite layers, for which the 

ratio of longitudinal to transverse shear elastic modulii is relatively large compared to isotropic materials 

(Reddy, 1984). Composite plates are, in fact, inherently subjected to transverse shear and normal stresses 

due to their discontinuous through-the-thickness behaviour and their global anisotropic nature. The CLA is 

able to accurately describe the global transverse behaviour of composite plates only within the inner 

domain, where the assumptions proposed by Kirchhoff are often formally recovered. However, it does not 

contain explanations for stress distortions and singularities that take place in thick laminates and in the 

proximity of free edges. Lekhnitskii proposed a first attempt to model anisotropic behaviour of composite 

beams (Lekhnitskii, 1935). The same author proposed a series of closed form solutions and solution 

strategies for anisotropic plates (Lekhnitskii ,1968). during the first decades of the 20th century. Since then, 

numerous researchers have proposed a variety of approaches to model the effect of transverse shears in 

isotropic and composite materials. Timoshenko (1934) introduced a second variable, namely the shear 
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deformation, in the study of isotropic beams, improving the classical model developed by Euler and 

Bernoulli in the 18th century. Reissner (1944) and Mindlin (1951), extended the concept to the analysis of 

two-dimensional structures, originating the so-called First Order Shear Deformation Theory (FSDT). Other 

distinguished researchers, such as Vlasov, Thomas, Reissner (Carrera et al., 2008) and Reddy (1992) 

introduced higher order expansions of the axial and shear deformation through the plate thickness. These 

models provide reasonably acceptable results if applied to isotropic, orthotropic, and anisotropic single 

layered laminates. They are not suitable to model the behavior of thick laminated composite plates where 

accurate descriptions of transverse stresses are required, especially in the proximity of free edges, or other 

special features such as holes, cut-outs, corners and notches, where the interlaminar shears triggered by the 

stress field distortion are highly dependent on the real stacking sequence. The so-called free edge effect is, 

in fact, mainly explained by the mismatch of elastic properties, in particular the Poisson’s ratio, at the 

interface between two adjacent plies. Hence, more accurate layer-wise field equations are required to 

capture such phenomena. The theories that have been developed, to account for through-the–thickness 

piece-wise behaviour of stresses and displacement are often referred to as Zig-Zag theories  (ZZ) in the 

open literature. The first attempt to define a self-contained ZZ theory was possibly proposed by Lekhnitskii 

(1968). The main limitation of the approach is that it models multi-layered beams where each layer is 

isotropic. Carrera et al. (2003) suggested that Ren (1986) later improved the work by Lekhnitskii. (1958-A 

and 1958-B) proposed an extension of the theory developed by Reissner (1944) to multi-layered plates. As 

a general consideration, this approach is based on the analytical or numerical calculation of five Lagrange 

parameters, which represent the degrees of freedom of the structure in a functional sense. Indeed each 

degree of freedom is represented by a function that is calculated over the entire domain. Typically, the 

DoFs are: the two axial in-plane displacements along x and y co-ordinates (namely ux and uy); the 

transverse displacement w, and the two transverse shear strains γxz and γyz. In uncoupled problems, i.e. when 

it is possible to separate the in-plane from the transverse response, the maximum number of degrees of 

freedom that must be determined in order to solve the transverse equilibrium problem is three. The shear 

strains are sometimes replaced by the two rotations of the cross section about the y and x-axes, ϕx and ϕy  

respectively. Another important class of models is symbolized by those theories that are derived by means 

of Reissner’s variational approach. The so-called mixed variational approach- based on the variational 
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principles developed by Hellinger (1914) was proposed by Reissner (1944 ) and then improved by the same 

author (Reissner, 1945) to solve the problem of stress concentration around holes in transversely bent 

panels. Recently, Shimpi et al. (2007) derived two novel formulations with only two variables, which 

provide fast and accurate results for moderately thick isotropic plates and includes classical laminate 

analysis as a degenerate case.  However, it requires ad-hoc calculated shear correction factors for transverse 

shear stresses in multilayered composite panels. The governing field equations are derived from 

Castigliano’s Theorem of Least Work. A variety of conditions can be assigned to kinematical and 

mechanical variables contemporarily.  As thoroughly summarized by Carrera (1995), the layer-wise 

approaches based on Reissner’s principle require a large computational efforts. However, they do provide 

an extremely accurate description of the transverse shear stresses. The number of variables that must be 

computed is at least 2N+1, N being the total number of layers. The number of variables can be significantly 

reduced by means of a weak form of Hooke’s Law (Carrera, 1995), which expresses the aforementioned 

variables in terms of the three displacements only. Yet, the number of degrees of freedom needed is at least 

equal to three. Recently, other approaches have been proposed by Mittelstedt and Becker (2003-A, 2003-B 

and 2004), which require the calculation of the three axial displacements only: ux, uy, and uz as functions of 

six parameters. These variables were determined by minimizing the complementary potential. Good 

accuracy, at relatively high computational expense, is reached, but the models are based on an arbitrary 

choice of functions, representing the stress field, in order to capture the decaying rate of the stress 

perturbation as the distance from the free edge, or free corner, increases. Also, the through-the-thickness 

behaviour is described by means of first order Taylor’s expansion, which represents a further axiomatic 

assumption. Despite this limitation, the CLA was recovered within a distance from the singularity 

comparable to the plate thickness. The models proposed by Mittelstedt and Becker appear more suitable for 

accurate local computation of stress distortions in proximity of singularities, than for rapidly detecting the 

influence of shear deformations on the global behaviour of multi-layered panels. Recently, Tessler et al. 

(2009) have developed a refined Zigzag theory based on the kinematics of FSDT. The deployment of novel 

piecewise linear zigzag functions provides a robust and accurate approach, at relatively low (for layer-wise 

theories) computational expenses (six unknown variables only must be calculated). 
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There is scope to develop a novel formulation, which requires reduced computational effort when 

compared to the models available in the open literature. Reducing the computational effort can be obtained 

by means of two different strategies: 

1. reduction of the number of functional degrees of freedom; 

2. choice of the degrees of freedom in such a way that the associated calculation requires less time to 

converge. 

Indeed, reducing the number of variables does not necessarily imply a consequential reduction of the 

calculation time. If higher order variables are used as primary variable and solutions are calculated by 

means of numerical approaches such as the Galerkin technique or Rayleigh-Ritz method, convergence rate 

could be relatively quick (Cosentino and Weaver, 2009) often obtained without difficulty in terms of the 

primary variables. Yet, for all the secondary variables, whose computation necessitates partial or total 

differentiations, the convergence rate might be slower or not obtainable at all (Reddy, 1984). Furthermore, 

the accuracy of back-calculated variables generally decreases with the order of the required differentiation 

(Reddy, 1984).. As such, systematic and careful considerations should be used when choosing the primary 

variables and the relations that link them to the secondary variables.  

The choice of primary variables and additional differential relations introduced in the present theory is 

therefore extensively commented upon and justified throughout the work.  

The aim of the present study is to develop a flexible and robust self-contained formulation, able to reduce 

the computational effort by reducing the total number of variables involved, thus choosing the most 

appropriate set of primary variables. The present study demonstrates that an equivalent layer approach is 

consistent with, and can be directly derived from, a multi-layer approach under certain conditions. The 

theory developed is, to some extent, free from the limitations affecting the classical equivalent layer 

approaches, such as shear locking or membrane locking (Reddy, 1979) . The simplifying kinematical 

assumptions on which CTP and CLA are based are initially retained. The through-the-thickness normal and 

shear stresses are then derived in an exact manner, by means of a stress-based approach, integrating the 

Cauchy’s equations governing the elastic continuum.  A mixed formulation is then derived by means of 

Reissner’s variational approach based on the Castigliano’s principle of least work in conjunction with a 

Lagrange multipliers method for the calculus of variations (Reissner, 1945). The derived field and 
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boundary equations are initially expressed in terms of four functional degrees of freedom. To this end, the 

theory is free from the contraction of the number of boundary conditions that can be assigned, and a set of 

three dual boundary conditions is derived and can be fulfilled. The number of degrees of freedom can be 

reduced to two by means of an ad-hoc defined stress function. An additional novel boundary compatibility 

equation is also introduced. It is also demonstrated that, under certain simplifying conditions, the total 

number of degrees of freedom can be condensed to one only (the transverse displacement w), and an 

original transverse equilibrium equation is proposed, which contains correction terms derived from the 

contraction of the layer-wise, through-the-thickness properties on to the equivalent layer. 

 
2. Transverse stresses derivation and formal analysis 

Let us neglect the natural body forces acting upon a generic elastic continuum. The system of three 

Cauchy’s equilibrium equations governing the elastic problem is: 

                0=
∂
∂+

∂
∂+

∂
∂

xzxyx zyx
τσσ                                             (1a) 

                                                        0=
∂
∂+

∂
∂+

∂
∂

yzyxy zyx
τσσ                                             (1b) 

                                                        0=
∂
∂+

∂
∂+

∂
∂

zyzxz zyx
σττ                                              (1c) 

 
Figure 2. Ply levels and interfaces numbering 
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Let the tensors of in-plane stresses σ , in-plane strains ε , curvatures k, transverse shear stresses τ , and 

transverse shear strain γ  be defined as follows: 

                                         

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=
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


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=
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

=



















=



















=
yz

xz

yz

xz

xy

y

x

xy

y

x

xy

y

x

k

k

k

γ
γ

τ
τ

γ
ε
ε

σ
σ
σ

γτkεσ   , , ,  ,             (2a, b, c, d, e) 

The following transformed in-plane and transverse stiffness matrices (namelyQ andG ) are defined at each 

ply level (Reddy, 1984): 

                                             













=



















=
k

k

k

k

k

k

k

kk

kk

kk

kk

55

45

45

44

66

26

16

2616

2212

1211

Q

Q

Q

 Q
 ,

Q

Q

Q

   

Q   Q

Q   Q

Q   Q

  GQ                             (3a, b) 

 

In the linear regime, the following Kirchhoff’s kinematical relations link membrane strains and 

curvatures to in-plane and transverse displacements: 

                                                         
x

uo
x ∂

∂
=0ε ,

x

v

y

u
xy ∂

∂
+

∂
∂

= 000ε  , 
y

v
y ∂

∂
= 00ε                               (4a, b, c) 

                                                        
2

2

x

w
kx ∂

∂−= , 
2

2

y

w
kx ∂

∂−= ,
yx

w
kxy ∂∂

∂−=
2

2                              (5a, b, c)                     

Following Classical Laminate Analysis (CLA), laminate strains and curvatures are related to in-plane 

forces and transverse bending moments by the constitutive equations, which are expediently expressed 

hereby in inverted form (Reddy, 1984):  

                                          

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
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
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
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where: 
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                    (7a, b, c, d) 

The following constitutive equations hold true at each ply level (Fig.2): 

                                                              kkk zz ≤≤= 1-kz       , εQσ                                                (8) 
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                                                              kkk zz ≤≤= 1-kz      ,γGτ                                           (9) 

Assuming a linear variation of the in-plane strains through the laminate thickness: 

                                                              ( ) ),(),(,, 0 yxzyxzyx kεε +=                               (10) 

and substituting Eq.(10) in Eq. (6): 

                                                                       )''('' MDNBMBNAε +++= Tz                         (11) 

Substituting Equation (11) in Equation (8), the following expression for in-plane stresses is derived at the 

generic ply level k: 

                                                       [ ])''('' MDNBMBNAQσ +++= T
kk z           (12) 

Introducing the divergence∇  and the differential operator C: 

                                                                            



















∂
∂

∂
∂

∂
∂

∂
∂

=

xy

yx

        0 

      0    

C                                       (13) 

The governing system of equilibrium equations can be expressed in compact form at each ply level: 

                                                                    0τCσ =
∂
∂+ kk z

                                              (14) 

                                                                                 0=
∂
∂+∇

kzk z
στ                                                        (15) 

   Substituting Eq. (12) in Eq. (14) and integrating with respect to z, a general solution for shear stresses is 

found as 

                                            ( ) ( ) kk
T

kk zz aMBNAQCMDNBQCτ ++−+−= ''''
2

1 2         (16) 

The constants ka are calculated by enforcing the boundary conditions at each interface. Starting, for 

example, from the lower surface z = z0 (in the present work, shear and normal transverse stresses are 

calculated starting from the lower surface of the laminate and this convention is held throughout the 

theory), and assuming that no shear stresses act upon the external surfaces of the laminate: 

                                                                       0ττ == == Nzzzz 0
                                                 (17) 

the constants at ply level 1 are derived:  
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                                           ( ) ( ) 0
2
01 ''''

2

1
zz k

T
k MBNAQCMDNBQCa +−+−=                     (18) 

The expression for shear stresses at ply level 1 is then: 

                                           ( ) ( ) 11
2

11 ''''
2

1
azzT ++−+−= MBNAQCMDNBQCτ          (19) 

The symmetry of the stress tensor in conjunction with local equilibrium satisfy the continuity of the shear 

stresses at each ply interface. This condition can be used to assign the boundary conditions for the 

subsequent ply 2: 

                                                                       
11

21 zzzz == = ττ                           (20) 

Substituting Equations (16), (18), and (19) in Equation (20) the following expression for 2a  is obtained: 

                                 ( )( ) ( )( ) 112
2
11212 ''''

2

1
zzT MBNAQQCMDNBQQCaa +−++−+=           (21) 

Equation (21) can be extended to the generic ply level k, and it can be straightforwardly verified that: 

                              ( )( ) ( )( )∑
=

−−−− 






 +−++−=
k

j
jjjj

T
jjk zz

1
11

2
11 ''''

2

1
MBNAQQMDNBQQCa        (22) 

where the transformed stiffness matrix 0Q  is conventionally made equal to the null matrix 0 . 

Combining Equations (16) and (22) the final expression for shear stresses at each ply level through the 

entire laminate thickness is derived: 

( ) ( ) ( )( )[ ]∑
=

−− +−++−+−=
k

j
j

T
jjk

T
kk zzz

1

2
11

2 ''
2

1
''''

2

1
MDNBQQCMBNAQCMDNBQCτ  

                                                     ( )( )[ ]∑
=

−− +−+
k

j
jjj z

1
11 '' MBNAQQC                                          (23) 

Equation (23) can be re-written in the following more convenient form by 

( ) ( ) )('')(''
2

1
1

2
1

2
−− −+−−+−= kkk

T
kk zzzz MBNAQCMDNBQCτ  

                                 ( )MDNBQQC ''()(
2

11

1
1

2
1

2 +






 −+−− ∑
−

=
−−

T
k

j
jjjjjj zzzz                             (24)  

Analyzing the expression found for the shear stresses, three components can be remarkably identified: 
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i. A local component, which is parabolic in the through-the-thickness coordinate z and that only 

depends upon local mechanical and geometrical properties. 

ii.  A local component, which is linear in the through-the-thickness coordinate z and only dependent 

upon local mechanical and geometrical properties. 

iii.  A constant term that depends on the mechanical and geometrical properties of the laminae lying 

below the considered ply level.  

Despite the cumbersome appearance, a physical interpretation of Equation (24) can be deduced. Defining 

the following matrices of partial in-plane and coupling stiffness (namely A and B ) : 

                                           ( ) ( ) ( )dzzzzzzz
z

z

jj

k

j

jkkk ∫∑ =−+−= −

−

=
−

0

1

1

1
1)( QQQA          (25) 

                                         ( ) ( ) ( )zdzzzzzzz
z

z

jj

k

j

jkkk ∫∑ =−+−= −

−

=
−

0

2
1

2
1

1

2
1

2

2

1

2

1
)( QQQB          (26) 

Equation (24) can be re-written as: 

                                            ( ) ( )[ ]MDNBBMBNAACτ '')('')( +++−= T
kkk zz           (27) 

The quantity between square brackets: 

                                                        ( ) ( )MDNBBMBNAAN '')('')()( +++= T
kk zzz                         (28) 

represents the partial amount of normal forces carried by the part of laminate between the lower surface and 

the actual through-the-thickness z co-ordinate. Equation (27) collapses to the well-known Jourawsky’s 

formula for the isotropic one-dimensional case (Jourawski, 1856). Equation (28) expresses the translational 

in-plane equilibrium of the part of laminate above the z co-ordinate. Furthermore, the )(zB  matrix 

represents the first (or static) moment of the stiffness of the partial cross-section lying between the lower 

surface and the current z co-ordinate. The same result can be formally derived considering the first two 

Cauchy’s equilibrium equations. Equations (1a) and (1b) are valid throughout the inner domain with the 

exception of the boundary.  Integrating indefinitely both equations with respect to z gives 

                                                  0

000

=
∂
∂+

∂
∂+

∂
∂

∫∫∫
z

z

xz

z

z

xy

z

z

x d
z

d
y

d
x

ζτζσζσ                             (29a) 
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                                                  0

000

=
∂
∂+

∂
∂+

∂
∂

∫∫∫
z

z

yz

z

z

y

z

z

xy d
z

d
y

d
x

ζτζσζσ                             (29b) 

By definition, we can re-write Eqs. (29a) and (29b) as follows: 

                                                0)()()()( 0 =−+
∂
∂+

∂
∂

zzzN
y

zN
x xzxzxyx ττ                            (30a) 

                                               0)()()()( 0 =−+
∂
∂+

∂
∂

zzzN
y

zN
x yzyzyxy ττ                             (30b) 

The above system of two partial differential equations (PDE) can be readily compacted and reduced to 

Equation (27) under the hypothesis that no shear stresses act upon the lower surface of the laminate (z = 

z0). Let us reconsider Eq. (15). The transverse normal stress zσ  can be obtained by means of a ply-by-ply 

integration with respect to z, once the shear stresses are known: 

                                                    kk

z

z
kz zzzdz

k
k

≤≤∇−= −∫
−

1   ,
1

τσ                                       (31) 

Substituting Eq. (16) in Eq. (31) and carrying out the integration, the following expressions for the 

transverse normal stress is obtained at the generic ply level k: 

                            ( ) ( ) kkk
T

kz bzzzσ
k

+∇−+∇++∇= aMBNAQCMDNBQC 23 ''
2

1
''

6

1             (32) 

Let us assume that no transverse loads act on the lower surface z = z0, while a transverse load per unit area 

p(x,y) act on the upper surface of the panel z = zN. The unknown constants bk are obtained by enforcing the 

required boundary conditions, i.e. the z-wise equilibrium at each ply interface 

                                                           0
0

1
=

=zzzσ , 
1

1
1 −

−
− ==

=
k

k
k

k zzzzzz σσ    (33a, b) 

Starting from ply 1 and enforcing condition (33a) in Eq.(32) the first constant b1 is obtained:  

                          ( ) ( ) 01
2
01

3
011 ''

2

1
''

6

1
zzzb T aMBNAQCMDNBQC ∇++∇−+∇−=          (34) 

Iterating the procedure at the generic ply level k and enforcing condition (33b): 

( )( ) ( )( )∑
=

−−−−−− 






 −∇−+−∇++−∇=
k

j
jjjjjjj

T
jjk zzzb

1
11

2
11

3
11 )(''

2
1

''
6
1

aaMBNAQQCMDNBQQC      (35) 

Substituting expression (35) in Eq. (32) the following final expression for the transverse normal stress zσ  at 

each ply level is derived: 
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( ) ( ) zzz kk
T

kzk
aMBNAQCMDNBQC ∇−+∇++∇= 23 ''

2

1
''

6

1σ  

( )( ) ( )( )∑
=

−−−−−− 






 −∇−+−∇++−∇+
k

j
jjjjjjj

T
jj zzz

1
11

2
11

3
11 )(''

2
1

''
6
1

aaMBNAQQCMDNBQQC  (36) 

It is observed that the last boundary condition that can be enforced is related to the interface between ply N-

1 and ply N (z = zN-1). Apparently, no conditions can be enforced on the value of zσ  at the upper surface z 

= zN, which must equal the external load p. This condition is automatically fulfilled if the transverse 

vertical equilibrium is satisfied, as shown in Section 3. 

 

3. Symmetric laminates 

One major advantage of composites is their inherent ability to tailor elastic properties for maximizing 

performance. The prospect of selecting lay-ups with specific stacking provides a potential advantage of 

composite laminates against metals. However, symmetrically laminated composite plates still embody most 

of engineering composite structures. The possibility of modeling such configurations by means of 

analytical closed form solutions, due to the simplification introduced by the symmetry with respect to the 

mid-plane, is one explanation for their pervasive use. Quasi-isotropic and specially orthotropic lay-ups 

(Ashton et al, 1969), cross-ply and angle-ply composite plates remain the lay-up of choice for many 

composite components in aerospace, automotive and marine applications. There is, therefore, good reason 

for focusing the attention of the present theory on those composite plates that are symmetrical or quasi-

symmetrical in behaviour. For composites belonging to the class of quasi-symmetrical panels, the flexural 

coupling quantified by the magnitude of the components of the coupling matrix B is negligible. As a 

consequence, in the linear regime, the membrane and transverse structural responses can be analyzed 

separately, leading to a formal simplification of the mathematical model and to a significant reduction of 

the number of variables which must be computed simultaneously. The laminate constitutive equations (6) 

collapse to the following: 

                                                                        NAε '0 = , Μ= 'Dk                                                      (37a, b) 

De-coupling the in-plane forces N from the transverse bending moments M, and focusing on the transverse 

behaviour, the expressions of out-of-plane shear and normal stresses simplify:            
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                                                             MDBCτ ')(zkk −=                                        (38) 

                                                              ')( MDFC zkzk
∇=σ                                                        (39) 

where 

                                          [ ]∑
−

=
−− −+−=

1

1
11 )()()()()(

k

j
jjjjkkkk zzzzz HHHHF                         (40) 

and 

                                      ∫ ∑∫∫
− −

−

=

+==
z

z

k

j

z

z
jk

z

z
kk

k

j

j

dzzddz
1 10

1

1

)()()()( BBBH ζζζζ                    (41) 

If p is the external transverse load per unit area acting upon the upper external surface z = zN, the boundary 

condition requires that 

                                                                              pzNzN
=)(σ                                                       (42) 

This condition is fulfilled only if vertical equilibrium equation is satisfied. Integrating over the total 

thickness with respect to z the third Cauchy’s equilibrium equation (1c), the equilibrium in terms of vertical 

forces per unit width is derived, 

                                                 0
000

=
∂
∂+

∂
∂+

∂
∂

∫∫∫
NNN z

z
z

z

z
yz

z

z
xz dz

z
dz

y
dz

x
σττ                     (43) 

Denoting Vx and Vy as the vertical shear resultants per unit width, by definition we have: 

                                                    0
0

=−+
∂
∂+

∂
∂

== zzzzzzyx
N

V
y

V
x

σσ                                 (44) 

Defining the vector V of shear force resultants: 

       







=

y

x

V

V
V                                                          (45) 

and recalling the boundary conditions (33a) and (42), Equation (44) can be written as: 

                                                                                 p−=∇V                                                                     (46) 

Similarly, substituting Eqs. (33a), (38), and (41), the left hand side of Eq. (44) can be re-written as: 

[ ]
N

k

k

k

k

zzz

N

k
kkkk

N

k

z

z

N

k

z

z

kk zzdzzdz =
=

−
= =

−=












−−∇=































−∇=∇=∇ ∑∑ ∫ ∑ ∫

− −

σMDHHCMDBCτV ')()(')(
1

1
1 1

1 1

     (47)     
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Substituting Eq. (46) in Eq. (47), the boundary condition sought is obtained and Eq. (42) is formally 

recovered: 

                                                                      p
N

N zzz =
=

σ                                                            (48) 

The identity (48), together with the fulfillment of Eq. (17), represents the first notable result of this theory. 

The expression derived for shear and normal stresses fulfill the internal equilibrium and continuity of the 

stresses, intrinsically satisfying the boundary conditions as long as the transverse vertical equilibrium is 

satisfied. To this end, expressions for the transverse displacement (w), transverse shears (τxz and τyz) and 

normal stress (σz) are derived, which are equilibrated and respect the natural boundary conditions.  

 

4. Variational formulation 

Under the assumption of state of plane stress throughout the domain, in order to obtain a system of 

governing field and boundary equations, the Castigliano’s Theorem of Least Work is employed. The 

theorem states that, among all statically correct states of stresses, the state of stress which also satisfies the 

constitutive equations and the displacement boundary conditions is characterized by the condition that the 

variation of the following functional Π vanishes: 

                            ( )dsdzwuudxdydz nzsnsnn
TT

∫∫∫∫∫ ++−+=Π ττσε )(
2

1
γτσ                   (49) 

The double integral is calculated over the thickness and the closed curve Γ defining the plate mid-plane on 

x-y plane. The co-ordinates n and s are, respectively, the normal and the tangent to the above curve (Fig.3). 
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Figure 3. Boundary tangential (s) and normal (n) local co-ordinate system  

 
Following Reissner’s variational principle (Reissner, 1945), and recalling transverse equilibrium (44) 

expressed in terms of vertical shear resultants: 

                                                                       0=+
∂
∂+

∂
∂

pV
y

V
x yx                                                          (50) 

The variation of expression (49) must equal zero in such a way that the equilibrium equation (50) is 

satisfied. In compliance with the rules of the calculus of variations, this is achieved by introducing a 

Lagrange multiplier λ(x,y) and adding an appropriate term to the variation of Castigliano’s potential Π: 

( )


 ++−+ ∫∫∫∫∫ dsdzwuudxdydz nzsnsnn

TT ττσδ )(
2

1
γτεσ  

                                                        0=














+

∂
∂+

∂
∂+ ∫∫ dydypV

y
V

x yxλ                                       (51) 

The variations are performed with respect to the three bending moments Mx, My, and Mxy. Let us examine 

the variations of each component of the total potential separately, 

                                                                     0=Π+Π+Π+Π Γ λτσ δδδδ                                                (52) 

where 

                                                                         ∫ ∫ ∫=Π
N x yz

z

l l

T dxdydz

0 0 0
2

1
εσσ                                                   (53a) 
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                                                                         ∫ ∫ ∫=Π
N x yz

z

l l

T dxdydz

0 0 0
2

1
γττ                                                   (53b) 

                                                                ( )∫ ∫
Γ

Γ ++−=Π
Nz

z

nzsnsnn dsdzwuu

0

ττσ                                       (53c) 

                                                                  ∫ ∫ 







+

∂
∂+

∂
∂=Π

x yl l

yx dydypV
y

V
x

0 0

λλ                                      (53d) 

a. Potential of in-plane stresses 

Let us analyze the potential of internal in-plane stresses: 

dxdydzzdxdydzdxdydz
N

k

T
k

TT
N

k

T
k

T MDQDMεσεσ '' 
2

1
 

2

1

1

2

1
∫∫∫∑∫∫∫∑∫∫∫

==

===Π δδδδ σ  

                                                ∫∫∫∫ ∑ ∫ =













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=

=
−

dxdydxdydzz T
N

k

z

z

T
k

TT
k

k

MDMMDQDM '''
1

2

1

δδ                      (54) 

and with respect to Mx, My and Mx is 

( ) ( )dxdyMDMDMDMdxdyMDMDMDM xyyxyxyyxx ∫∫∫∫ +++++=Π '
26

'
22

'
12

'
16

'
12

'
11 δδδ σ  

                                                    ( )dxdyMDMDMDM xyyxxy∫∫ +++ '
66

'
26

'
16δ                                         (55) 

 

b. Potential of transverse shear stresses 

The field and boundary integrals that express the potential of transverse shear stresses are (see Appendix A 

for details) 

∫ ∫












∂∂
∂+

∂∂
∂+

∂∂
∂+

∂
∂+

∂
∂+

∂
∂=Π

x yl l

xy
xy

y
xy

x
xy

xy
x

y
x

x
x M

yx
M

yx
M

yx
M

x
M

x
M

x
0 0

2

13

2

12

2

112

2

132

2

122

2

11 ααααααδ τ  








∂∂
∂+

∂
∂+

∂
∂+

∂
∂+








∂
∂+

∂
∂+

∂
∂

x
xy

xy
x

y
x

x
x

xxy
y

y
y

x
y M

yx
M

x
M

x
M

x
MM

y
M

y
M

y

2

212

2

232

2

222

2

212

2

132

2

122

2

11 ααααδααα  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 19 








∂
∂+







∂
∂+

∂
∂+

∂
∂+

∂∂
∂+

∂∂
∂+ x

x
yxy

y
y

y
x

y
xy

xy
y

xy M
x

MM
y

M
y

M
y

M
yx

M
yx 2

2

312

2

232

2

222

2

21

2

23

2

22 αδααααα

y
y

x
y

xy
xy

y
xy

x
xy

xy
x

y
x M

y
M

y
M

yx
M

yx
M

yx
M

x
M

x 2

2

322

2

31

2

33

2

32

2

312

2

332

2

32 ∂
∂+

∂
∂+

∂∂
∂+

∂∂
∂+

∂∂
∂+

∂
∂+

∂
∂+ ααααααα

∫
Γ 









∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+














∂
∂+ y

y
x

y
xy

x
y

x
x

x
xyxy

y M
y

M
y

M
x

M
x

M
x

dxdyMM
y

12111312112

2

33 βββββδα  

yxy
y

y
y

x
y

xy
x

y
x

x
x

xxy
y MM

y
M

y
M

y
M

x
M

x
M

x
MM

y
δββββββδβ 





∂
∂+





∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+





∂
∂+ 23222123222113

dsMM
y

M
y

M
y

M
x

M
x

M
x xyxy

y
y

y
x

y
xy

x
y

x
x

x













∂
∂+





∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+ δββββββ 333231333231                (56) 

 
 

c. Potential of external contour loads 

The final expression of the potential of external contour loads is : 
 

                                                          ( )∫ ∫
Γ

Γ ++−=Π
Nz

z

nzsnsnn dsdzwuu

0

ττσδδ                                         (57) 

 
d. Potential of the external transverse loads 

 
The potential of the external transverse loads is (see Appendix B for details): 
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5. Governing equations 

In order to derive the final set of governing equations, all the terms multiplying each variation must be 

added and equated to zero. However, a proper interpretation of the terms representing each potential is 

required. It is emphasized that the three mechanical primary variables chosen are the three transverse 

bending moments Mx, My, and Mxy. However, it must be highlighted that two terms contained in Eqs. (57) 

and (58) respectively, appear as multipliers of the variation of the normal vertical shear resultant Vn. These 

terms were not further developed for convenience. Equating their summation to zero, the following 

equation is obtained: 
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                                                                             )()( ssw λ=                                                                      (59) 

Since the same result is obtained for any generic inner closed contour Γ, the Lagrange multiplier λ 

coincides with the transverse displacement w (Reissner, 1944). This fundamental statement allows 

derivation of the final set of field and boundary equilibrium equations. Equating to zero all the 

aforementioned components of Eqs. (55), (56), (57), and (58), we obtain: 
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In addition to Eqs. (60a), (60b), and (60c), the following equilibrium equation holds true: 
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The essential boundary conditions are: 
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If the system is kinematically indeterminate at the boundary, then the following dual natural boundary 

conditions must be considered instead, 

                                                          nn MM = , nsns MM = , nn VV =                                           (62a, b, c) 

Equations (60) in conjunction with the boundary conditions (61) and (62) represent a set of partial 

differential equations governing the elastic problem of a composite panel. However, equations (61) contain 

two additional variables that are apparently independent from the transverse displacement w. Once the 

effect of the transverse shear stresses is included in the variational statement of the problem, the differential 

relationships relating the rotations and the transverse displacement are formally abolished. This implies 

additional variables and equations to be sought in order to obtain a complete and consistent formulation of 

the elastic problem. Following Reissner (1944), the present theory assumes that the boundary conditions 

over the cylindrical portion of the free boundary (Fig.3) are prescribed on σn, τns, and τzs  in such a way that 

the variation of  potential ΠΓ of the external contour load vanishes, 

                                                                                   0=
Γ

δΠ                                                            (63a, b) 

Introducing Eqs. (63) in Eqs. (61), and recalling the following in-plane coordinate transformations (ref. to 

Fig. 3): 
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                                                        (64) 

the final set of essential boundary conditions can be expressed in terms of the four primary variables Mx, 

My, Mxy, and w: (see Appendix C for details) 
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In addition, the following boundary compatibility condition must be satisfied:  
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6. Reduction of primary variables: Potential of bending moments 

In order to reduce the number of primary variables, it is convenient to express Eqs. (60a), (60b), and (60c)   

in the following compact form: 

                                            ( )w
yyxx

yxyx dMαMαMαMD =
∂
∂+

∂∂
∂+

∂
∂+

2

22

2

2

'                                      (67) 

where the following differential operator is introduced: 
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 Multiplying both sides by the bending stiffness matrix D: 
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Defining the following matrices: 

               xx DαΛ = , xyxy DαΛ = , yy DαΛ =                                       (70a, b, c) 

and expanding (69), we obtain the following set of governing equations, 

xy
xy

y
xy

x
xy

xy
x

y
x

x
x

x M
yx

M
yx

M
yx

M
x

M
x

M
x

M
∂∂

∂Λ+
∂∂

∂Λ+
∂∂

∂Λ+
∂
∂Λ+

∂
∂Λ+

∂
∂Λ+

2

13

2

12

2

112

2

132

2

122

2

11  

                  
yx

w
D

y

w
D

x

w
DM

y
M

y
M

y
xy

y
y

y
x

y

∂∂
∂−

∂
∂−

∂
∂−=

∂
∂Λ+

∂
∂Λ+

∂
∂Λ+

2

162

2

122

2

112

2

132

2

122

2

11 2             (71a) 

xy
xy

y
xy

x
xy

xy
x

y
x

x
x

y M
yx

M
yx

M
yx

M
x

M
x

M
x

M
∂∂

∂Λ+
∂∂

∂Λ+
∂∂

∂Λ+
∂
∂Λ+

∂
∂Λ+

∂
∂Λ+

2

23

2

22

2

212

2

232

2

222

2

21  

                
yx

w
D

y

w
D

x

w
DM

y
M

y
M

y
xy

y
y

y
x

y

∂∂
∂−

∂
∂−

∂
∂−=

∂
∂Λ+

∂
∂Λ+

∂
∂Λ+

2

262

2

222

2

122

2

232

2

222

2

21 2                (71b) 

xy
xy

y
xy

x
xy

xy
x

y
x

x
x

xy M
yx

M
yx

M
yx

M
x

M
x

M
x

M
∂∂

∂Λ+
∂∂

∂Λ+
∂∂

∂Λ+
∂
∂Λ+

∂
∂Λ+

∂
∂Λ+

2

33

2

32

2

312

2

332

2

322

2

31  

               
yx

w
D

y

w
D

x

w
DM

y
M

y
M

y
xy

y
y

y
x

y

∂∂
∂−

∂
∂−

∂
∂−=

∂
∂Λ+

∂
∂Λ+

∂
∂Λ+

2

662

2

262

2

162

2

332

2

322

2

31 422              (71c) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 23 

A potential function Ω is now introduced, 

                                                        
2

2

x
M x ∂

Ω∂= , 
yx

M xy ∂∂
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2

, 
2

2

y
M y ∂

Ω∂=                                    (72a, b, c) 

By substituting Eqs. (72) in to the transverse equilibrium equation (60d), the following biharmonic 

equation is obtained which governs the transverse equilibrium of the panel: 

                                                                  p
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2                                                   (73) 

Differentiating Eq. (71a) twice with respect to x, Eq. (71b) twice with respect to y, and multiplying both 

sides of Eq.(71c) by two and differentiating twice with respect to x and y and adding the results, in view of 

Eq. (73), the following expression is obtained:  
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where the following shear coefficients are introduced: 

           x
xxxxxxc 11Λ−= , xyxx

xxxxxyc 113113 2 Λ−Λ−Λ= , yyxy
xyyyyyc 322322 2Λ−Λ−Λ−= , y

yyyyyyc 22Λ−=   (75a, b, c, d) 

     yxyxyxxx
xxxxyyc 113113332112 22 Λ−Λ−Λ−Λ−Λ−Λ−= yyyxyxyx

xxyyyyc 332112322322 22 Λ−Λ−Λ−Λ−Λ−Λ−=   (75e, f) 

                                            yyxyxyxyxx
xxxyyyc 31133321123223 222 Λ−Λ−Λ−Λ−Λ−Λ−Λ−=                                (75g) 

Equations (73) and (74) provide a complete and self-consistent mathematical representation of the elastic 

problem of a composite multi-layered panel. Equation (69b) establishes a novel constitutive relation 

between bending moments and curvatures, which involves new differential correction factors. The 

algebraic relations derived from the CLA, i.e. Eqs.(6), are now transformed to differential equations. 

Clearly, for linear problems involving transverse loads, the calculation of the internal bending moments 

remains the same as in the CLA. In contrast, the transverse displacements, which can be calculated once the 

potential Ω is known, are affected by the inclusion of the shear stresses. It is emphasized that three 

boundary conditions can be still fulfilled instead of two as in the CLA.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 24 

 

7. Special one-dimensional cases. Closed form solutions  

a. Simply supported multi-layered panel subjected to transverse load  

Let us consider a rectangular multi-layered panel as illustrated in Fig.4. The panel is simply supported 

along the two opposite edges x = 0 and x = lx. The remaining two edges y = 0 and y = ly are free. 

 
Figure 4. Multi-layered composite plate subjected to transverse loading 

 

Let the external transverse load p be a function of x only: 

                                                           ( )xpxpyxp nn θsin)(),( == ,   
x

n l

x
nπθ =                                     (76) 

Due to the special boundary conditions and the external load acting, it is not restrictive to assume the 

structural response to be a function of the x co-ordinate only. The governing equations (73) and (74) 

simplify to 

                                                       p
dx

d −=Ω
4

4

, 
6

6

4

4

11
dx

d
cp
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wd
D xxxxxx

Ω+=                                       (77a, b) 

Differentiating Eq. (77a) twice with respect to x and substituting the result in (77.b), the following 

expression is obtained for the transverse displacement w, 

                                                                    
2

2

4

4

11
dx

pd
cp

dx

wd
D xxxxxx−=                                                     (78) 

A suitable solution in terms of transverse displacements is: 

                               ( )xwyxw nn θsin),( =                                                         (79) 

Substituting Eq. (79) in Eq. (78), the following final expression is obtained: 
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                                                                      ( )xxxxxxn
n

n
n c

D

p
w 2

4
11

1 θ
θ

+=                                                     (80) 

It is evident that the solution found differs from the solution predicted by the CLA due to the presence of 

the coefficient cxxxxxx. The ratio between the maximum amplitudes of the transverse displacements 

predicted by the two models is 

                                                                       
2

22

,

, 1
x

xxxxxx

CLAn

presentn

l

c
n

w

w
π+=                                                  (81) 

The deviation of the present model from the CLA was calculated for five different stacking sequences. The 

assumed material properties are reported in Table 1. The quantity cxxxxxx/lx
2 was calculated and plotted 

against the ratios t/lx (Fig.5.A) and (t/ lx)
2 (Fig.5.B),where  t is the plate total thickness. Clearly, the 

differences increase with a parabolic trend as the ratio t/lx increases. Figure 5.A shows that the trends of the 

deviation are linear with (t/ lx)
2. Hence the constant cxxxxxx is proportional to the total thickness squared, 

according to a factor which is function of the lay up and the stacking sequence. This parabolic trend  is 

well-known for thick isotropic plates and for thick plates of one orthotropic lamina. Therefore, results 

presented in figure 5 demonstrate that a theoretical generalization to laminated composite plates is possible 

if shear correction factors are calculated according to Equation (75g). 

For each laminate considered, the differences tend to zero as the thickness over length ratio tends to zero. 

The linear relation found implies that only one extra calculation of the coefficient cxxxxxx/lx
2 is needed for 

each analyzed configuration. Once two points are known for each configuration, the linear relation allows 

calculation of the difference for any value of t/lx. As a general qualitative comment, laminates with larger 

bending stiffnesses show larger differences from CLA. 

Table 1. Material properties  
Ex, MPa Ey, MPa Gxy, MPa ννννxy Gxz, MPa Gyz, MPa 

150000 8800 4800 0.35 4000 4000 
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Figure 5. Difference between proposed model and CLA. 

 

The transverse displacement predicted by the two models were calculated in the case of an external 

pressure law which represents one half wave in the x-direction. Results are illustrated in Fig. 6, where the 

ratios wn,present/wn,CLA are plotted for each configuration against the t/lx ratio. 
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Figure 6. Deviation from CLA. Compared maximum transverse displacements 

 

b. Buckling of simply supported multi-layered beam 

Let us consider a rectangular multi-layered panel as illustrated in Fig.7. The panel is simply supported 

along the two opposite edges x = 0 and x = lx. The remaining two edges y = 0 and y = ly are free. 

 
Figure 7. Multi-layered composite plate subjected to axial in-plane load 

 
The plate is loaded by an external in-plane load acting in the x-direction. The critical buckling loads are 

sought.  Following the von Karman formulation for moderately large transverse displacements 

(Timoshenko, 1959), it is convenient to re-write the governing equations as follows: 
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Substituting the transverse equilibrium equation (82a) in to the constitutive equation (82b): 
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6

6

2

2

4

4

11
dx

d
c

dx

wd
N

dx

wd
D xxxxxxx
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Differentiating Eq. (82a) twice with respect to x and substituting the result in Eq. (83) the following 

buckling expression is derived: 

     ( ) 0
2

2

4

4

11 =++
dx

wd
N

dx

wd
NcD xxxxxxxx                                            (84) 

Its general solution is: 

                                                              )cos()sin( 4321 xcxcxccw ωω +++=                                            (85) 

where:  

 
xxxxxxx

x

NcD

N

+
=

11

2ω                                                          (86) 

The presented simplified form of the buckling equation (86) does not satisfy the complete set of three dual 

boundary conditions (61) and (62). The fulfillment of three dual boundary conditions requires a sixth-order 

equation to be solved. However, under the caveats provided by Blaauwendraad (2008), the use of a 

simplified approximate solution allows a direct comparison of the present model with the classical solution 

proposed by Timoshenko and Gere (1964). The comparison also shows that classical accepted relations are 

directly derived by an approximate solution of the present theory and extendable to multi-layered 

composite plates. Let us assume the solution to be in the form: 

                                                                                 )sin( xww ω=                                                              (87) 

The boundary conditions (61d) lead to the following condition: 

                          πω nl x =                                                                   (88) 

Substituting Eq. (86) in Eq (88) and choosing the minimum value of the critical load, we obtain the 

following expression: 
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Introducing the quantities Ncr,CLA and Ncr,s,  
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which are, respectively, the buckling load predicted by the CLA (i.e. in the case of infinitely large shear 

rigidity), and the buckling load in the case of infinitely large bending stiffness (but finite shear rigidity).  

Equation (89) can be equivalently re-written as: 

                                                                   
scrCLAcrpresentcr NNN ,,,

111 +=                                                    (91) 

Equation (91) represents an exact interaction formula for the calculation of buckling loads of a 1-

dimensional shear deformable composite panel. It is formally equivalent to the interaction formulas 

proposed by Engesser (Blaauwendraad, 2008) and Timoshenko and Gere (1964) for the isotropic case. 

Furthermore, equation (91) can be used to clarify the physical meaning of the coefficient cxxxxxx. For the 

isotropic case the following relations hold true (Blaauwendraad, 2008): 

                                                                     
2

2

,
x

CLAcr
l

EI
P

π= ,
χ

GA
P scr =,                                            (92a, b) 

Whereχ is the shear factor Timoshenko and Gere (1964), G is the shear modulus, A is the area of the cross 

section and E the Young’s modulus. 

Applying the present theory to the case of an isotropic panel, Eq. (90b) expressed in terms of total loads 

becomes: 

                                                        ( ) ( ) xxxxxxxxxxxx

y
scr

c

EAt
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lEt
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2
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,
112112 νν −

=
−

=                                           (93) 

Equation Eqs. (92b) and (93), the following relation is found: 

                                  
( ) χν

6

1
2

+=
t

cxxxxxx                                                           (94) 

 Equation (94) shows that the quantities cxxxxxx/t
2, i.e. the slopes of the curves plotted in Fig5.B, are directly 

proportional to the shear correction factor. The shear correction factor can be directly calculated once 

cxxxxxx is known. As an example, let us consider the case of an isotropic aluminium plate. The material 

properties chosen are: E = 74000 MPa, ν = 0.3. Applying the present theory, we obtain 2827.0=xxxxxxc  

with a shear factor 5/6=χ , thus recovering the classical Reissner’s approach for isotropic equivalent 

single layer. 
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Comparisons between the buckling loads predicted by means of the present analysis and the ones predicted 

by means of the CLA are reported in Fig. 8.  
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Figure 8. Deviation from CLA. Compared critical buckling loads 

 

Comparing Eq. (81) with Eq. (89) the following remarkable relation between critical buckling loads and 

maximum amplitudes of transverse displacements is emphasized:  

                                                                       
( )
( ) presentn

CLAn

CLAcr
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w

w

N

N

n

n

,

,=                                                        (95) 

Buckling loads can be readily derived by means of Equation (95) by performing a linear analysis on the 

equivalent simpler problem of a beam loaded by a sinusoidal transverse load, thus reducing significantly 

the calculation time. 

 

8.  Special two-dimensional cases. Closed form solutions  

a. Simply supported rectangular multi-layered plate subjected to sinusoidal transverse load  

 A simply supported rectangular plate is subjected to a sinusoidal transverse pressure defined by the 

following law: 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 31 

                                                                   ( ) ( )yxpp nmmn βα sinsin=                                                   (96a) 

where 

                                                                      
x

m l

xmπα = ,
y

n l

ynπβ =                                                      (96b, c) 

The rectangular domain is defined by [ ]xlx ,0∈  and [ ]yly ,0∈ . Under the assumption of symmetric lay-up 

and neglecting, as a first approximation, the terms D16 and D26 Eqs. (73) and (74) become: 
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From Eq.(97), a suitable solution in terms of potential Ω is obtained: 

                                  ( ) ( ) sinsin yx nmmn βαΩ=Ω , 
4224 2 nnmm
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ββαα ++
−=Ω                              (99a, b)  

Substituting Eqs. (99a) and (99b) in Eq. (98) and assuming: 

                                                                 ( ) ( ) sinsin yxww nmmn βα=                                                    (100a) 

coefficients wmn are derived 
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As in the one-dimensional case, the solution found differs from the solution predicted by the CLA due to 

the presence of the shear coefficients. The ratio between the maximum amplitudes of the transverse 

displacements predicted by the two models is: 
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Transverse shears τxz and τyz, and transverse normal stress σz are derived by substituting Eqs. (99) in Eqs. 

(38) and (39) respectively: 

( ) ( )[ ] ( ) ( ){ yx
p

nmkknmkm
nnmm

mn
mnkxz βαβαα

ββαα
τ sincos

2
3312

2
11

3
4224

Ψ+Ψ+Ψ
++

−=  

                                                ( )[ ] ( ) ( )}yx nmnmn kkk
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                                                  ( )[ ] ( ) ( )}yx nmnmn kkk
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2
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         ( ) ( )[ ] ( ) ( ){ yx
p
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nnmm

mn
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σ sinsin

2
22

4
313312

22
31

4
4224

Χ+Χ+Χ+Χ+Χ
++

−=  

                                     ( ) ( )[ ] ( ) ( )}yx nmnmnm kkkk
βαβαβα coscos22 1231

3
2332

3 Χ+Χ+Χ+Χ−                    (104) 

where the components of matrix ΨΨΨΨ are defined in Appendix A, and the following matrix has been 

introduced: 

                                                                               (z)D'FΧ k=k                                                            (105) 

 

b. Compression buckling of simply supported rectangular multi-layered plate   

A simply supported rectangular plate is subjected to a compressive load per unit width Nx. Introducing the 

Laplace operator∇ , the two governing equations can be written as: 

                                                                        
2

2
2

x

w
Nx ∂

∂−=Ω∇                                                               (106) 
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The following solutions are assumed: 

                                           ( ) ( )yx nmmn βα sinsinΩ=Ω , ( ) ( )yxww nmmn βα sinsin=                       (108a, b) 

Substituting Eqs. (108) in Eq. (106): 
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Substituting Eq. (109) in Eq. (107), after algebraic manipulations: 
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Defining the following quantities: 
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Equation (110) can be re-written in the form of : 

                                                               
scrxCLAcrxpresentcrx NNN ,,,,,,

111 +=                                              (112) 

Notably, the following relation between buckling loads and transverse displacements holds true also in the 

two-dimensional case: 

                                                                       
( )
( ) presentn

CLAn

CLAcr

presentcr

w

w

N

N

n

n

,

,=                                                      (113) 

 

9.  Model validation  

To validate the accuracy of the present model, solutions for a variety of examples are considered and 

compared to finite element analysis (FEA) and to other solutions available in the open literature. In 

particular, the refined Zigzag Theory recently developed by Tessler et al. (2009), the three-dimensional 

elasticity solution by Pagano (1969) and a first order shear deformation theory (FSDT) were compare to the 

present analysis.  

A first set of simulations was performed on sandwich square laminates defined in a domain identified by 

[ ]ax ,0∈ , [ ]ay ,0∈  and [ ]hhz ,−∈ . Laminates are subjected to a sinusoidal transverse pressure p defined  

by p=p0sin(πx/a)sin(πy/a). Examples include three variations of a three-layer square uniaxial sandwich 
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laminate, indicated as A, B, and C respectively, having uniaxial carbon-epoxy external sheets and polyvinyl 

chloride (PVC) core (modeled as an isotropic material). Furthermore, a sandwich laminate made of 

titanium external sheets and titanium honeycomb core, indicated herein as laminate D, is simulated. 

Material properties and laminate configurations and stacking sequences are provided in Tables 1 and 2, 

respectively. Laminates are simply supported along all the edges. 

Comparisons in terms of maximum deflection are presented in Tables 3 and 4. Results obtained by means 

of different theories are indicated as 

• Exact 3D Elasticity - fully three-dimensional solution developed by Pagano (1969). 

Implementation of the method and results are provided by Tessler et al. (2009) . 

• FSDT - First order Shear Deformation Theory. 

• Zigzag - Zigzag Theory developed by Tessler et al. (2009). 

• Refined Zigzag – Transverse shear stresses obtained by integration of the equilibrium equations 

(1) using the in-plane stresses derived by Tessler et al. (2009). 

• CLA -  Classical Laminate Analysis. 

• FEM – Results extracted from ad-hoc three-dimensional finite element models. 

In Table 3, comparisons of the maximum displacements calculated by means of a variety of numerical 

solutions are presented, for a span-to-thickness ratio equal to 5. Results show that the present theory is in 

very good agreement with solutions calculated by Tessler et al. (2009) and Pagano (1969) for 

configurations B and C. Some discrepancies were found in comparing results for configurations A and D, 

differences of the order of 15% and 20% respectively. For both configurations A and D, the maximum 

deflections calculated by means of the present approach appear to be slightly over-estimated. To understand 

the cause of such a discrepancy, the normalized transverse shear stresses τxz(0,lx/2,z) (normalization factor 

equal to 2h/p0lx) are plotted against the normalized through-the-thickness coordinate  in Fig.9. Clearly, the 

present model calculates the shear stresses within the sandwich core with good accuracy, but under-

estimates the stresses arising within the face sheets. The shear stress resultants, i.e. the integral over the 

thickness of the shear stress distribution, are the same for the three models, i.e. present, Tessler et al. 

(2009), and Pagano (1969). Therefore, the amount of shear carried by the face sheet predicted by the 

present theory is smaller than the one predicted by Pagano and Tessler et al. Consequently, the present 
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theory predicts a larger amount of deformation energy concentrated within the core, which is considerably 

less stiff than the face sheets.   Since the face sheets represent 20% of the total laminate thickness, their 

influence on the global behaviour is significant, therefore predictions obtained by the present theory are to 

some extent more conservative (in terms of transverse displacements). Furthermore, the shear stresses 

distribution calculated by means of Pagano’s exact solution suggests that state of stress and state of strain 

are fully three-dimensional within the face sheets. Therefore the hypothesis of state of plane stress on 

which the present theory is based, does not hold true. For a more accurate description of the real state of 

stress throughout the domain, the work performed by the through-the-thickness normal stress σz should be 

included in the variational statement (49). This is beyond the scope of the present study, which focuses on 

the behaviour of reasonably thick composite laminates, thus neglecting the influence of  σz. 

Further comparisons in terms of normalized transverse shear stresses are presented in Figs. 10 to 15. 

Notably, as the face sheet thickness decreases (configurations B and C), the present theory captures 

adequately the shear stress distribution in the proximity of the upper and lower surfaces of the laminates. 

Good agreement is also found in the case of configuration D. 

To provide an overview on the range of applicability of the present model, a sensitivity study was 

undertaken on laminate configuration B. Several span-to-thickness ratios were analyzed and normalized 

maximum transverse displacement were calculated and compared to results calculated by Tessler et al. 

(2009). Results are presented in Table 4. It is noted that the FSDT generally yields over stiff results, while 

the present theory provide very accurate results for values of the span-to-thickness ratio equal to 10. For 

relatively thicker configurations , i.e. span-to-thickness ratio equal to 4, the error induced increases up to 

30%. 
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Table 1. Material properties 

 Orthotropic materials Isotropic materials 

Properties Carbon-epoxy (C) Titanium core (H) PVC core (P) Titanium lamina (T) 

E1, GPa 1.579×102 1.915×10-1 

E2, GPa 9.584 1.915×10-1 

E3, GPa 9.584 1.915 

1.040×10-1 1.041×102 

G12, GPa 5.930 4.227×10-8 

G13, GPa 5.930 5.651×10-1 

G23, GPa 3.227 1.248 

( )ν+
=

12

E
G  ( )ν+

=
12

E
G  

ν12 0.32 0.658×10-2 

ν13 0.32 0.643×10-6 

ν23 0.49 0.643×10-6 

0.3 0.31 

 

 
 

Table 2. Configurations and stacking sequences  
Laminate 

configuration 
Normalized ply 

thicknesses (hk/2h) 
Laminate 
materials 

Stacking 
sequence 

A (0.1/0.8/0.1) (C/P/C) (0/0/0) 
B (0.025/0.95/0.025) (C/P/C) (0/0/0) 
C (0.0025/0.995/0.0025) (C/P/C) (0/0/0) 
D (0.1/0.8/0.1) (T/H/T) (0/0/0) 

 
 
 
 

Table 3. Normalized maximum (central) deflections 
( Normalization factor: 102 D11/polx

4 ) 
Laminate 

configuration 
3-D Elasticity 

(Pagano) 
FSDT Zigzag 

(Tessler et al.) 
Present  

A 29.761 2.731 29.769 35.665 
B 11.645 2.819 11.693 11.303 
C 2.080 1.728 2.103 2.001 
D 1.331 0.389 1.333 1.672 
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Fig.9. Normalized shear stresses for laminate A. Normalization factor: 2h/p0lx. 
 
 

 
 

Fig.10. Normalized shear stresses for laminate B. Normalization factor: 2h/p0lx. 
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Fig.11. Normalized shear stresses near the top layer for laminate B. Normalization factor: 2h/p0lx. 

 

 
 

Fig.12. Normalized shear stresses for laminate C. Normalization factor: 2h/p0lx. 
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Fig.13. Normalized shear stresses near the top layer for laminate C. Normalization factor: 2h/p0lx. 
 

 
 

Fig.14. Normalized shear stresses for laminate D. Normalization factor: 2h/p0lx. 
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Fig.15. Normalized shear stresses near the top layer for laminate D. Normalization factor: 2h/p0lx. 

 
 
 

Table 4. Normalized maximum (central) deflections 
( Normalization factor: 102 D11/polx

4 ) 
Laminate 

configuration 
Span-to-

thickness ratio 
3-D Elasticity 

(Pagano) 
FSDT Zigzag 

(Tessler et al.) 
Present  

A 4 42.42 3.739 42.124 55.23 
A 10 9.734 1.321 9.738 9.981 
A 20 3.487 0.948 3.489 3.664 
A 50 1.303 0.841 1.305 1.367 
A 100 0.945 0.826 0.945 0.973 
A 200 0.852 0.822 0.852 0.882 

 
To further validate the present theory, a variety of solutions were derived for classical multilayered 8-layer 

composite laminates. A simply supported square plate was studied (lx=5mm). Five different quasi-isotropic 

stacking sequences were analyzed. Lamina properties are the same as the properties reported in Table 1 for 

the carbon-epoxy unidirectional lamina. Configurations are indicated in Table 5. 

Table 5. Laminate configurations 
 

Laminate 
configuration 

Stacking 
sequence 

L1 [0/90/45/-45]s 
L2 [0/45/-45/90]s 
L3 [90/45/-45/0]s 
L4 [0/90]2s 
L5 [45/-45]2s 
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A three-dimensional high-fidelity finite element model was created with ABAQUS. The domain was 

regularly discretized using three elements per each layer and 50 subdivision along each span direction, for a 

total of 60,000 quadratic hexahedron - type C3D20R elements (ABAQUS User manual, 2004). In 

consideration of potential numerical problems, such as shear locking or hourglassing, quadratic elements 

with reduced integration were used to counter the former, whilst mesh convergence studies and 

comparisons with other methods (Tessler et al., 2009) provided confidence that the latter was suppressed.  

As a first case-study, and for all configurations, buckling loads were calculated for a compressive 

longitudinal load Nx. To assess the effect of the span-to-thickness ratio lx/2h, calculations were performed 

for five different ratios (lx/2h) equal to 500, 50, 20, 10 and 5 respectively). Results are presented in Table 6. 

As expected, the normalized buckling loads calculated by CLA are constant and do not depend upon the 

span-to-thickness ratio. For span-to-thickness ratios that are larger than 10, the difference between the 

present theory and FEM are within a 10%-15% range. Significant discrepancies (larger than 15%) are 

found as soon as lx/2h=5. However, within the range of reasonably thick laminates, the present analysis 

shows good accuracy and the inclusion of through-the-thickness normal stresses in the variational statement 

(49) does not appear to be required. 

 

Table 6. Normalized buckling loads. Normalization factor: lx
2/D11 

Laminate 
configuration 

Span-to-thickness 
ratio, lx/2h 

CLA Present FEM 

500 17.6 17.5 17.6 
50 17.6 17.3 17.0 
20 17.6 17.1 15.1 
10 17.6 16.2 14.4 

L1 

5 17.6 13.4 10.1 
500 18.5 18.5 18.5 
50 18.5 18.3 17.7 
20 18.5 18.1 16.7 
10 18.5 17.3 14.1 

L2 

5 18.5 14.8 11.4 
500 69.2 68.9 69.2 
50 69.2 68.5 68.2 
20 69.2 67.8 66.2 
10 69.2 64.0 57.9 

L3 

5 69.2 52.2 43.7 
500 18.4 18.3 18.4 L4 
50 18.4 18.4 17.4 
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20 18.4 18.2 16.9 
10 18.4 17.5 15.1 
5 18.4 15.2 12.9 

500 43.4 43.4 43.3 
50 43.4 43.2 42.4 
20 43.4 42.4 39.6 
10 43.4 39.7 33.7 

L5 

5 43.4 31.7 26.0 
As a second case study, the plate was loaded with a uniform transverse pressure p0. Normalized transverse 

maximum displacements (normalization factor equal to 102 D11/polx
4 ) and non-dimensional through-the-

thickness normal stress (σz/p0) were calculated and results were compared to FEM. Solutions are calculated 

by linear superposition of basic solutions (99a) and (100a): 

                          ( ) ( )∑∑
= =

Ω=Ω
M

m

N

n
nmmn yx

1 1

sinsin βα , ( ) ( )∑∑
= =

=
M

m

N

n
nmmn yxww

1 1

sinsin βα                       (114)           

where the amplitudes Ωmn and wmn are given by Eqs (99b) and (100b), and M and N are reasonably large 

integers Cosentino and Weaver (2009). Coefficients pmn, i.e. the components of the transverse pressure 

along the sinusoidal base functions, are calculated by means of a Galerkin technique Cosentino and Weaver 

(2008).   

To assess the convergence rate of the solution, a preliminary convergence study was performed on 

configuration L1 for a series of values of M and N. For the sake of simplicity it was assumed M=N in all the 

cases analyzed. Convergence of transverse displacements is obtained at relatively small computational 

expenses The maximum transverse displacement appears to converge when more than three base functions 

are used per each span co-ordinate (Fig.16).  
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Fig.16. Comparison of maximum transverse displacements. 

In contrast, more base functions are needed to guarantee convergence of higher order variables. The case of  

through-the-thickness normal stresses was assessed in configuration L1, subjected to a uniform pressure 

and with a span-to-thickness ratio equal to 1. Results are reported in Fig.17, where the normalized stresses 

are plotted against the normalized thickness co-ordinate for values of M and N varying from one to thirteen. 

To fulfill the natural boundary condition at the upper interface, the value of σz/p0 must equal 1, i.e. σz in 

equilibrium with the external pressure. Notably, the fulfillment of such a boundary condition is obtained 

when 13 or more base functions are used. However, it must be emphasized that the convergence rate is, in 

this case, directly influenced by the degree of accuracy and convergence rate associated with the 

discretization of the external load in generalized Fourier series obtained by the Galerkin technique 

employed. More comparison between the present theory and results obtained by means of FEM are 

presented in Figs. 18  to 21, where the case of uniform pressure is analyzed and normalized normal 

through-the-thickness stresses, calculated in the center of the laminate (x=lx/2, y=ly/2) are plotted against 

the normalized thickness co-ordinate. The values M=N=13 were chosen to perform the simulations. 
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Fig.17. Comparison of through-the-thickness stresses -σσσσz(lx/2,ly/2,z) for configuration L1.  
 
 

 
Fig.18. Comparison of through-the-thickness stresses -σσσσz(lx/2,ly/2,z)/p0 for configuration L2.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 45 

 
 

Fig.19. Comparison of through-the-thickness stresses -σσσσz(lx/2,ly/2,z)/p0 for configuration L3.  
 
 

 
 
 

Fig.20. Comparison of through-the-thickness stresses -σσσσz(lx/2,ly/2,z)/p0 for configuration L4.  
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Fig.21. Comparison of through-the-thickness stresses -σσσσz(lx/2,ly/2,z)/p0 for configuration L5.  
 
 

Comparisons between the calculated transverse displacements are presented for all the configurations in 

Table 7. A uniform pressure was assumed to load the top surface of the panel and two span-to-thickness 

ratios, five and ten respectively, were chosen.  

Table 7. Comparison of maximum transverse displacements for panels under uniform pressure. 

  Maximum transverse displacement, µm 

lx/2h 
Laminate 

configuration 
CLA Present FEM 

L1 1.01 0.84 0.64 
L2 1.03 0.87 0.66 
L3 0.90 0.72 0.63 
L4 0.96 0.79 0.68 

5 

L5 0.91 0.73 0.60 
L1 52 58.7 58.1 
L2 50 57.4 58 
L3 49 53.2 54.2 
L4 53.1 56.5 56 

10 

L5 53.6 59.7 59.2 
 

Results are very accurate in terms of through-the-thickness normal stresses. The calculation of transverse 

displacements are less accurate but still acceptable if considering that the case of a very thick laminate is 
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analyzed. Notably, the error associated with the results provided by CLA is of the order of 10% for span-to-

thickness ratios larger than five. 

 
10. Conclusions   

A novel theory was developed to assess the effect of transverse shear stresses on bending and buckling of 

reasonably thick composite laminates and sandwich plates. The contribution of transverse stresses was 

included in the variational statement governing the elastic equilibrium of the body and a novel set of 

equilibrium equations and boundary conditions was derived. To reduce the final number of unknown 

variables, a stress function was introduced. Simple problems were solved and a variety of closed form 

solutions were derived for simple one-dimensional and two-dimensional cases. The continuity of the shear 

stresses at each lamina interface, which is one of the most common weaknesses of other theories, is 

intrinsically satisfied by the present approach. Another important attribute of the present theory is that the 

total number of unknown variables needed to fully determine the stress field throughout the domain is 

reduced to two only, rendering the present approach extremely efficient in terms of computational 

expenses. Furthermore, the theory is particularly suitable for meshless approaches, which represent a robust 

alternative to FEM. An intrinsically three-dimensional problem can be reduced to an equivalent two-

dimensional single layer approach by appropriately condensing the layer-wise properties. The present 

theory is, of course, less appropriate when very thick configurations are analyzed. However, the range of 

validity is sufficiently large to include a significant variety of structural problems, especially in the 

aerospace industry. 

 Results were found to be in very good agreement with other more refined theories and with high-fidelity 

FEM models, suggesting that the present approach can be an alternative, within its range of validity to other 

more accurate, but less computationally efficient, approaches. 

 
 

APPENDIX A 
Potential of transverse shear stresses 

 

In order to carry out the variations, it is convenient to express the potential as an explicit function of the 

transverse shear stresses τxz and τyz. Defining the following matrix: 
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                                                                               ')( DBΨ zkk −=                                                           (A.1) 

and considering Eq. (38), the following explicit expressions are derived for shear stresses as functions of 

the transverse bending moments, 
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Assuming the following constitutive relations 
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and substituting the constitutive equation (A.3) and Eqs. (57) in Eq. (53b):  
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The variation of the potential is 
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For convenience, the two contributions Πxz and Πyz due to τxz and τyz respectively, are analyzed 

individually. Defining the following 
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and substituting Eqs. (A.2) in Eqs. (A.6) we obtain: 
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Substituting expressions (A.8) in Eq. (A.5), performing the integrations with respect to z, and factoring out 

with respect to the three virtual variations, namely δMx, δMy, and δMxy, the following field and boundary 

integrals are obtained: 
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where, with reference to Fig.3: 

                                                                               ϑcos=xn , ϑsin=yn                                                  (A.10.a, b) 
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APPENDIX B 

Potential of external transverse loads 
 
Referring to Eq. (53d), and performing the variations, we obtain: 
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Integrating by parts with respect to the variations: 
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Projecting the shear resultants in the boundary integral of Eq. (B.2): 
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Following, for example, Reissner [8], the following vertical equilibrium equations are introduced: 
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Substituting Eqs. (B.4) in the domain integral of Eq. (B) and carrying out the variations: 
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Integrating by parts and factoring out gives 
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                                                                                  ∫
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+ dsVs nδλ )(                                                          (B.6) 

 
 
 

APPENDIX C 
Essential boundary conditions 

 
 
Substituting Eq. (63) in Eqs. (61a), (61b), and (61c) gives 
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where 
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Substituting Eqs. (C.2) in Eq. (C.1.c), the following expression is obtained: 
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Equation (C.5) is identically satisfied if exact solutions are found in terms of transverse bending moments. 

Generally, exact solutions can be found for few particular cases only, and the use of approximate solutions 

in conjunction with numerical methods to minimize the induced error is required. Therefore Eq. (C.5) 

represents a supplementary compatibility condition over the boundary of the domain.  
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