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Abstract  

This paper presents a set of 3D general solutions for thermoporoelastic media for the 
steady-state problem. By introducing two displacement functions, the equations governing the 
elastic, pressure and temperature fields are simplified. The operator theory and superposition 
principle are then employed to express all the physical quantities in terms of two functions, one of 
which satisfies a quasi-Laplace equation and the other satisfies a differential equation of the eighth 
order. The generalized Almansi’s theorem is used to derive the displacements, pressure and 
temperature in terms of five quasi-harmonic functions for various cases of material characteristic 
roots. To show its practical significance, an infinite medium containing a penny-shaped crack 
subjected to mechanical, pressure and temperature loads on the crack surface is given as an 
example. A potential theory method is employed to solve the problem. One integro-differential 
equation and two integral equations are derived, which bear the same structures to those reported 
in literature. For a penny shaped crack subjected to uniformly distributed loads, exact and 
complete solutions in terms of elementary functions are obtained, which can serve as a benchmark 
for various kinds of numerical codes and approximate solutions. 
 
Keywords: Thermoporoelasticity, Transversely isotropic, General solutions, Potential theory method, 
Penny-shaped crack. 
 
 

1. Introduction 

The theory of poroelasticity was originally developed by Biot (1941) to consider 

the interaction between two phases composing a continuum. Now poroelasticity has 

many applications in various fields in science and engineering such as soil 

consolidation (Yue and Selvadurai, 1996), filtration (Barry et al., 1997) and 
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bio-science (Oomens et al., 1987; Cowin, 1999).   

It is well known that geomaterials are typically anisotropic (Cheng, 1997). In fact, 

the simple natural deposition of sedimentary rocks exhibit transverse isotropy and 

modeling anisotropic materials as an equivalent isotropic one can yield unexpected 

and erroneous results which has been demonstrated by analytical and numerical 

solutions (Abousleiman et al., 1996; Cui et al., 1996). Hence, it is natural to extend 

the isotropic theory to an anisotropic one, which was initially achieved by Biot (1955), 

based on the formality of the generalized Hooke’s law. To consider the effect of 

temperature, which arises in deep drilling and nuclear storage facilities, 

thermoporoelasticity model was founded (Coussy, 1995; Abousleiman and Ekbote, 

2000). Accordingly, analytical solutions of fundamental problems for 

thermoporoelastic media with material anisotropy play an import role in obtaining a 

deep insight in the interaction between the phases involved.   

Potential theory is the tool for studying problems governed by Laplace equations s 

in several areas of physics (Kellogg, 1929). Fabrikant (1989, 1991) developed a so 

called potential theory method by creatively representing the inverse of the distance of 

two points in Euclidean space in term of an integral (Chen and Ding, 2004a). Based 

on the general solutions proposed by Elliott (1948) for pure elasticity, Fabrikant (1989, 

1991) then performed 3D exact analyses of punch and crack problems by employing 

the method. Chen and his co-authors extended Fabrikant’s potential theory method to 

solve mixed boundary value problems mainly stemming from three-dimensional crack 

or contact problems of multi-field coupled media, for example, piezoelasticity (Chen 

and Shioya, 2000; Chen, 2000), thermoelasticity (Chen et al., 2004b), 

magneto-electro-thermo-elasticity (Chen, 2004c). It is noted that all the works by 

Chen and his coauthors were also based on the corresponding general solutions (Chen 

and Ding, 2004a). To the authors’ best knowledge, no parallel work in the domain of 

thermoporoelasticity has been reported yet in literature, mainly due to the lack of the 

general solution which should be expressed in terms of quasi-harmonic functions as 

that for purely elastic materials. 

   The purpose of the present paper is to construct a 3D thermoporoelastic general 
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solution expressed by quasi-harmonic functions only. Two displacement functions are 

introduced in order for simplifying the basic 3D equations for transversely isotropic 

thermoporoelastic media in a steady-state. Then, a general solution expressed by two 

functions is derived by employing the operator theory and the superposition principle. 

One function involved in the solution satisfies a quasi-Laplace equation and the other 

satisfies an eight-order partial differential equation. The general solution is further 

expressed in terms of five quasi-harmonic functions by virtue of the generalized 

Almansi’s theorem. Four possible cases of material characteristic roots are considered. 

To show its practical significance, an infinite medium containing a plane crack 

subjected to symmetric mechanical, pore pressure and temperature loads is considered 

for instance. The problem can be transformed to the corresponding mixed 

boundary-value problem of a half space and thus the potential theory method 

developed by Fabrikant can be utilized. One integro-differential equation and two 

integral equations are derived, which bear the same structures as those reported in the 

literature. For a penny shaped crack subjected to uniformly distributed loads, exact 

and complete solutions in terms of elementary functions are obtained. The present 

solution is compared with the results from the literature and good agreement is 

achieved. The solution presented in this paper can serve as a benchmark for various 

kinds of numerical codes and approximate analyses. 

 

2. Governing Equations 

In Cartesian coordinates ),,( zyx , the constitutive equations for transversely 

isotropic thermoporoelastic media with the z-axis coincident with the axis of 

rotational material symmetry are listed as follows (Coussy, 1995; Abousleiman and 

Ekbote, 2000) 
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in which ),( wvu  and ijσ  are components of displacement and stress, respectively; 

P  and T  are changes in the pore pressure and temperature, respectively; 0=P  

and 0=T  correspond to the stress-free state; ξ  is variation of fluid content; ijc , 

),( 31 Mαα  and ),( 31 mβββ  are elastic moduli, Biot’s effective stress coefficients and 

thermal constants, respectively. It is noted that ijc , iα  and iβ  can be expressed in 

terms of engineering constants such as Young’s moduli, Poisson’s ratio, etc., which 

are shown in Appendix A (Kanj and Abousleiman, 2005). 

   In the following analysis, uncoupled thermoporoelastic theory is adopted by 

assuming that the thermoporoelastic loading varies slowly in time and the rate of both 

fluid mass content and entropy vanishes. Consequently, if the medium is in a 

steady-state, the pressure and temperature fields are constant in time and governed 

respectively by the following two quasi-Laplace equations 
 

,02

2
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⎠
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⎜⎜
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∂
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+Δ P
z

κκ
 (3)
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⎝
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∂
∂

+Δ T
z

λλ  (4)

where 2222 yx ∂∂+∂∂=Δ  is the planar Laplacian; )( 3311 κκ  and )( 3311 λλ  are 

coefficients of permeability and thermal conductivity. 
   The equations governing the displacement field can be easily derived by inserting 

Eqn. (1) into the equilibrium equations in terms of stress components and are shown 

to be 
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where 661112 2ccc −= . 

In the steady-state, Eqns. (1-4) indicate that the fluid content ξ  is not an 

independent field variable and can be determined once the pressure, temperature and 

elastic fields have been obtained. 

3. Static thermoporoelastic general solution 

Introducing the following two displacement functions 0Ψ  and H  as 
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Eqns. (3)-(5) can be transformed into 
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where M  is the following operator matrix: 
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   The “determinant” of M  reads 
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 4 2 2 2
2

0 0 0 11 33 11 334 2 2 2 ,a b c
z z z z

κ κ λ λ
⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂

= + Δ + Δ Δ + Δ +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠
M  (10)

where 
 ( )22

0 33 44 0 11 33 44 13 44 0 11 44,  ,   .a c c b c c c c c c c c= = + − + =  
(11)

The above derivation procedure is similar to that given by Chen et al. (2004b), where 

the equation of heat conduction and the other two equations governing the 

displacement functions are combined, instead of solving the temperature field 

independently and a prior as shown in the traditional general solutions with a 

particular part (Ashida et al., 1993; Ding et al., 1997). Here, the idea is employed to 

seek the 3D general solutions for thermoporoelastic media, although the pressure and 

temperature field can be solved independently. 

   According to the operator theory, the following general solutions can be obtained 
 

1 2 3 4,  ,  ,  ,  ( 1,  2,  3,  4),i i i iH C F w C F P C F T C F i= = = = =  (12)

where ijC  are the algebraic cofactors of M , and F  satisfies 

 2 2 2 2

2 2 2 2
1 2 3 4

0,F
z z z z

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
Δ + Δ + Δ + Δ + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠  (13)

where zsz ii = , 33113 κκ=s , 33114 λλ=s , and )2,1( =js j  is the characteristic 

root with positive real part of the following algebraic equation (Ding et al., 1997) 
 4 2

0 0 0 0.a s b s c− + =  (14)

   It is seen that if i  was set to 1 or 2 in Eqn. (12), one can get two sets of general 

solutions with 0=P  and 0=T , which are actually the same to those for pure 

elasticity (Elliott, 1948; Ding et al., 1997); 3=i  corresponds to the general solution  

1X  
(say) with 0=T , which is identical to that for poroelasticity; Taking 4=i  

corresponds to the general solution 2X  
(say) with 0=P , which is equivalent to the 

one given by Chen et al. (2004b) for thermoelasticity. 

   Due to the linear nature of the thermoporoelastic theory adopted in this paper, 

superposing 1X  and 2X  
leads to 
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Taking advantage of the generalized Almansi’s theorem (Ding et al., 1996), F  

can be expressed by four quasi-harmonic functions 
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   For Case 1, the general solution in Eqn. (15) takes on the simplest form as 
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∂ ∂ ∂ ∂ ∂ ∂
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i
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∂ ∂ ∂ ∂ ∂
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∂ ∂

∑ ∑ ∑

∑ ∑
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where 1 2 1 ( 1) 2 3 3 4 1,  ( )( ) ,i i i i ij i j j j i i isμ λ λ μ λ δ δ δ δ λ+= = + + ( 2,3,  1 4j i= = − ) and ijδ  

is the Kronecker delta, and 

 2

2 0,    ( 0,  1,  2,  3,  4),i
i

i
z

⎛ ⎞∂
Δ + Ψ = =⎜ ⎟∂⎝ ⎠  (23)

with zsz 00 =  and .44660 ccs =  

In cylindrical coordinates system ),,( zφρ , the expressions of w , P  and T  

keep unchanged as given in Eqn. (22), while the expressions of the radial and 

circumferential displacements turn out to be 

 4 4
0 0

1 1

,  .i i

i i

u uρ φρ φ ρ ρ ρ φ= =

∂Ψ ∂Ψ ∂Ψ ∂Ψ
= − = − −

∂ ∂ ∂ ∂∑ ∑  (24)

The general solutions for the other three cases are given in Appendix B for the 

theoretical completeness.  

Once the general solutions are available, it is very convenient to conduct three- 

dimensional analyses of the mixed boundary-value problems associated with cracks 

and punches by virtue of the potential theory method proposed by Fabrikant (1989, 

1991) as shown in the parallel works by Chen and his coauthors (2000, 2004b, 2004c). 

In the following section, a flat crack problem is considered as an illustrative example 

to show the practical significance of the general solution for Case 1. 
 

4. Generalized potential theory method for thermoporoelastic crack problem 
To generalize the potential theory method suggested by Fabrikant (1989) to the 
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case of thermoporoelasticity, the following complex quantities are introduced 

 
1 2,  ,  2 ,  ,x y x y xy z zx yzU u iv i iσ σ σ σ σ σ σ τ σ σ= + = + = − + = +  (25)

where 1−=i . Then from Eqns (1) and (22), the expressions of the 

thermoporoelastic field take on a more compact form 

 
2 24 4 4

0 0
0 1 1 22 2

1 1 1

4 4
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2 66 0 3 44 0
1 1 0

,    ,    ,

2 ,  ,

i z j j
j j ji i

j
j z j

j j j

U i
z z

c i ic s
z z

σ γ σ γ

σ τ γ

= = =

= =

⎛ ⎞ ∂ Ψ ∂ Ψ
= −Λ Ψ + Ψ = =⎜ ⎟ ∂ ∂⎝ ⎠

⎛ ⎞∂Ψ⎛ ⎞ ∂Ψ
= − Λ Ψ + Ψ = Λ −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∑ ∑ ∑

∑ ∑
 (26)

where yix ∂∂+∂∂=Λ , and  

 
1 13 33 1 3 3 2 11 16 13 1 1 2 1 3

3 44 1

,  2 ,

( ),  1 4.
j j j j j j j j j

j j j

c c s c c c s

c s j

γ μ β μ γ μ α μ β μ

γ μ

⎡ ⎤= + − = − + − −⎣ ⎦
= − = −  (27)

It is note that the identity 3 1 , ( 1 4)j j js jγ γ= = −  holds true, which can be verified by 

direct substitution. 

Now consider an infinite transversely isotropic thermoporoelastic body weakened 

by a flat crack whose surface is parallel to the plane of isotropy. It is further assumed 

that the radius of the borehole 0r  is much smaller than the crack length 0L , so that 

the borehole effect can be ignored. The coordinates are chosen such that the yx −  

plane coincides with the crack surface and the origin is located on the surface of the 

crack. Two symbols S  and S  are introduced to denote the regions on the plane 

0=z , occupied respectively by the crack and its exterior. It may be noted that 

ISS =∪ , where I  is the entire plane 0=z  and ∅=∩ SS , implying there is no 

separation. It is assumed that arbitrarily distributed normal mechanical force 

),(2 1 yxΘπ , pressure ),(2 yxΘ  and temperature ),(3 yxΘ  are symmetrically applied 

over the upper and lower crack faces. Due to the symmetric condition occupied by the 

problem, the problem can be transformed to a mixed boundary-value problem of a 

half space 0≥z  subjected to the following boundary conditions on the plane 0=z  

(Chen, 2004b; Wang, 2000):  
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1 2 3( , ) :  2 ( , ),  ( , ),  ( , ),

( , ) :  0,  0,  0,

( , ) :  0,

z

z

x y S x y P x y T x y
P Tx y S w
z z

x y I

σ π

τ

∈ = Θ = Θ = Θ

∂ ∂
∈ = = =

∂ ∂
∈ =

 (28)

where the factor π2  is introduced for the algebraic convenience. In order to extend 

the potential theory method (Fabrikant, 1989) to thermoporoelasticity, assume that 
 

( )
3

0
1

0,  , , ,  ( 1 4),i ij j i
j

e x y z i
=

Ψ = Ψ = Ω = −∑  (29)

where ije  are constants to be determined, and  

 

[ ]{ }

1 0
1

0

0 0

( )( , , ) ,  
( , )

( , , ) ( ) ln ( , ) ( , ) ,  ( 2,3),
S

j j
S

Nx y z dS
R M N

x y z N z R M N z R M N dS j

ω

ω

Ω =

Ω = + − =

∫∫

∫∫
 (30)

where the kernels of the potentials 1ω , 2ω  and 3ω  are the crack surface 

displacement ( , ,0)w x y , pressure gradient 0( , , ) zP x y z z =∂ ∂  and temperature 

gradient 0( , , ) zT x y z z =∂ ∂ , respectively; 0( , )R M N  denotes the distance between 

the points ( , , )M x y z  and 0 0 0( , ,0)N x y , and SN ∈ .  

The zero-shear stress condition at 0=z  in Eqn. (28) can be meted by taking 
 4

3
1

0,  ( 1, 2,3).i ij
i

e jγ
=

= =∑  (31)

Using the well known property of a simple layer potential, one can arrive at 
  3

1
0 03

1
0 1

3
2

0 2 03

3
3

0 3 03

( , ) :  0,  0,  ( 2,3)

( , ) :  2 2 ( , , 0),

( , , )( , ) :  2 2 ,

( , , )( , ) :  2 2 .

j
z z

z

z z

z z

x y S j
z z

x y S w x y
z

P x y zx y S
z z

T x y zx y S
z z

πω π

πω π

πω π

= =

=

= =

= =

∂ Ω∂Ω
∈ = = =

∂ ∂
∂Ω

∈ = − = −
∂
∂ Ω ∂

∈ = − = −
∂ ∂
∂ Ω ∂

∈ = − = −
∂ ∂

 (32)

Eqns. (22), (32) and the second condition in Eqn. (28) then lead to 
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 4 4
1

1
1 1

,  ,  ( 2,3;  1, 2,3).
2 2

j jk
i ij ik ij i

i i
e e s k j

δ δ
μ μ

π π= =

= − = − = =∑ ∑  (33)

Thus combining Eqns. (31) and (33) yields 
 1

1 13 23 33 43

2 111 21 31 41

3 212 1 22 2 32 3 42 4

4 313 1 23 2 33 3 43 4

0

1 ,  ( 1, 2,3).
2

j

j j

j j

j j

e
e

j
e s s s s
e s s s s

γ γ γ γ
δμ μ μ μ
δμ μ μ μπ
δμ μ μ μ

−
⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥= − =⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

 (34)

To satisfy the first condition in Eqn. (28), we have  
 3

01 0
11 1 1

20 0

( )( ) 2 ( ),
( , ) ( , )

j
j

jS S

NNm dS m dS N
R N N R N N

ωω π
=

Δ − = − Θ∑∫∫ ∫∫  (35)

 
0

1
0

( )
2 ( ),  ( 2,3),

( , )
j

j j
S

N
dS s N j

R N N
ω

π += − Θ =∫∫  (36)

where 
4

1 1
1

,  ( 1, 2,3)j i ij
i

m e jγ
=

= =∑ , and ),( 0 NNR  is the distance between the two 

points )0,,( 000 yxN  and )0,,( yxN , both of which lie on S . It is noted that 11m  

depends on the elastic constants ijc  only; 12m  is independent of the coefficients 

( iji λβ , ) associated with the temperature fields and 13m  is independent of the 

coefficients ( iji κα , ) pertinent to the pressure field. This property can be verified by 

any standard symbol computation software. Substituting Eqn. (36) into Eqn. (35) 

gives arise to 

 
1 0

1
0

( ) 2 ( ),
( , )S

N dS N
R N N
ω πΔ = − Θ∫∫  (37)

where 

 [ ]1 1 12 3 2 13 4 3 11( ) ( ) ( ) ( ) ,N N m s N m s N mΘ = Θ + Θ + Θ
 (38)

which can be viewed as the generalized mechanical load. Once ),( yxiω  is available, 

the thermoporoelastic field can be obtained by differentiating the potential function   

   It is seen that the pressure and thermal loadings can effect the elastic field (see 

Eqns. 37 and 38), while the mechanical loadings can change neither the thermal nor 

pressure field (see Eqn. 36); furthermore, no mutual influences exist between the 

thermal and pressure fields. This is due to the uncoupled theory employed herein. 
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Consequently, the solutions thus obtained degenerate to those of the crack problems in 

thermoelasticity (poroelasticity) by setting 02 =Θ  ( 03 =Θ ), which provides a way 

to verify the solutions in this paper by comparing with those in literature.  
It is interesting to note that the structure of integral equations in Eqn. (36) is the 

same as the one for punch problems in elasticity while the structure of the 

integro-differential equation in Eqn. (37) is identical to that for crack problems in 

elasticity (Fabrikant, 1989; Chen, 2004b). Due to this similarity, the splendid results 

given by Fabrikant (1989, 1991) can be directly employed to seek the solutions to the 

governing equations in some particular cases. This will be shown in the next section, 

where the cylindrical coordinate system ),,( zφρ  with the origin coincident to the 

center of the crack is alternatively used for simplicity. 

 

5. A penny-shaped crack subjected to uniformly distributed loads 
Consider a penny-shaped crack subjected to uniformly distributed mechanical, 

pressure and temperature loads 

 0 0 0 0
1 1 2 2 3 3 1 1( , ) ,  ( , ) ,  ( , ) ,  ( , )  ,x y x y x y x yΘ = Θ Θ = Θ Θ = Θ Θ = Θ  (39)

where the quantities with the superscript 0  are prescribed constants. Under this 

condition, the exact solutions to Eqns. (36) and (37) can be obtained by using the 

results of Fabrikant (1989) as 

 00
12 21

1 2 2

22( , ) ,  ( , ) ,  ( 2,3),j j
j

s
a j

a
ω ρ φ ρ ω ρ φ

π π ρ
+ ΘΘ

= − = − =
−  (40)

where a  is the radius of the crack. Inserting Eqn. (39) into Eqn. (30) leads to 

 
( )

( )

2 2
0 2 2 2 1 2 21

1 1 2
2

2
0 2 2 1

1
2

2 2
2 2 2 21
2 2 2

2 3( , , ) 2 2 sin ,

( , , ) 2 sin
2

2 3                  2 ln ,  ( 2,3)

j j j

a laz a z l a
l a

az s a z
l

a l l a az l l a j
a

ρ φ ρ

ρρ φ

−

−
+

⎡ ⎤⎛ ⎞ −
Ω = Θ + − − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎛ ⎞⎛ ⎞

Ω = − Θ + −⎢ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣

⎤−
− − + + − =⎥

⎦

 

  (41)
where 
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( )
( )

2 2 2 2
1 1

2 2 2 2
2 2

1( , , ) ( ) ( ) ,  
2
1( , , ) ( ) ( ) .
2

l l a z a z a z

l l a z a z a z

ρ ρ ρ

ρ ρ ρ

= = + + − − +

= = + + + − +
 (42)

If there are no mechanical and pressure loads, 3ω  and 3Ω  vanish identically, and 

expressions for jω  and )2,1( =Ω jj  are exactly the same as these given by Chen 

(2004b). From Eqns. (41)-(42), the thermoporoelastic field is independent of the 

angular coordinate φ  because of the axisymmetry pertinent to the problem. 

At this stage, one can derive the whole thermoporoelastic field through 

differentiation 

 2 24
20 1

1 1 2
1 2 2

2 23 4
10 2 2 1

1 2
2 1 2

2 sin

4 sin ,
2 2

ji
j

j j j

i
j

k k jk j j
k j j

a l aaU e e
l l

le as e l a a az
a l

φ

φ

ρ

ρ
ρ

−

=

−
+

= =

⎡ ⎤−⎛ ⎞
⎢ ⎥= Θ −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞
− Θ − − − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

∑ ∑
 

 

( )

4
0 1 2 2
1 1 1 1

1 2

3 4
0 1 2 2 2 2

1 1 1 2 2
2 1 2

4 sin

4 sin ln ,

j j j j
j j

k k j jk j j j j
k j j

aw e z a l
l

as e z a l a l l
l

μ

μ ρ

−

=

−
+

= =

⎡ ⎤⎛ ⎞
= Θ − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
− Θ − − + + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑ ∑
 

 2 24 3 4
20 1 0 1

1 1 1 1 12 2
1 2 12 2 1 2

2 24 3
20 1 0 1

1 1 2 1 1 22 2
1 22 2 1 2

4 sin 4 sin ,

4 sin 4 sin

j
z j j k k j jk

j k jj j j j

j
j j k k j jk

j kj j j j

a l aa ae s e
l l l l

a l aa ae s e
l l l l

σ γ γ

σ γ γ

− −
+

= = =

− −
+

= =

⎡ ⎤−⎛ ⎞ ⎛ ⎞
⎢ ⎥= Θ − − Θ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤−⎛ ⎞ ⎛ ⎞
⎢ ⎥= Θ − − Θ⎜ ⎟ ⎜⎜ ⎟ ⎜−⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑

∑ ∑
4

1

2 2 24
1 1 20 2

2 66 1 2 2 2
1 2 2 1

2 3 4
0 2 2 2 2

66 1 2 12
2 1

2 24 3 4
3 1 10 2 0 2 2

1 1 3 12 2 2
1 2 12 2 1

,

8
( )

4 ( 2 ),

4 4 ( )
( )

j

j j ji

j j j j

i

k k jk j j j j
k j

i
j j ji

z k k j jk j
j k jj j j

e l l a
c ae

l l l

ec s e a l a z a l az

e a l ea e s e a l a
l l l

φ

φ

φ
φ

σ

ρ

γ
τ ρ γ

ρ

=

=

+
= =

+
= = =

⎟⎟

−
= − Θ

−

+ Θ − + − −

−
= Θ + Θ − −

−

∑

∑

∑ ∑

∑ ∑ ,∑

 

   
0 1 0 1
2 3

23 24

2 2sin ,   sin ,a aP T
l lπ π

− −⎛ ⎞ ⎛ ⎞
= Θ = Θ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠  (43)

where ),,( jijij zall ρ= , ( 41,2,1 −== ji ) defined in Eqn. (42). As expected, the 
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temperature field is identical to that shown in Chen (2004b). 

On account of the following property 

   
1 0 1 2 0 2( , ,0) min( , ),  ( , ,0) max( , ),z zl l a a l l a aρ ρ ρ ρ= == = = =  (44)

one can derive from Eqn.(43) that 

 0
0 1 11 1
1 2 2

0
1

44 sin , ( , ) ,
( , , 0)

, ( , ) ,
z

m aa S
a

S

ρ φ
ρσ ρ φ ρ

ρ φ

−⎧ ⎛ ⎞ Θ
Θ − ∈⎪ ⎜ ⎟= −⎝ ⎠⎨

⎪ Θ ∈⎩
 

   
0 1
2

0
2

0 1
3

0
3

2 sin , ( , ) ,
( , ,0)

, ( , ) ,

2 sin , ( , ) ,
( , ,0)

, ( , ) .

a S
P

S

a S
T

S

ρ φ
ρ φ π ρ

ρ φ

ρ φ
ρ φ π ρ

ρ φ

−

−

⎧ ⎛ ⎞
Θ ∈⎪ ⎜ ⎟= ⎨ ⎝ ⎠

⎪ Θ ∈⎩
⎧ ⎛ ⎞

Θ ∈⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪ Θ ∈⎩

 (45)

It is evident that the boundary conditions have been satisfied. It is also noted that the 

normal stress zσ  on S  is the sum of two terms which are singular and non-singular 

parts on the crack tip, respectively. This is similar to the crack problem in elasticity 

(Fabrikant, 1989).  

   If the stress intensity factor is defined as 

   
0lim 2 ( ) ,I z za

K a
ρ

π ρ σ =→
= −  (46)

then from Eqn. (45), one can obtain 

   ( )0 0 0 0
11 1 1 3 12 2 4 13 34 4 .IK m a a s m s mπ π= − Θ = − Θ + Θ + Θ  (47)

It is interesting to note that if the pressure and temperature loads are absent, the stress 

intensity factor is independent of the material property and is consistent with the 

result given by Fabrikant (1989).  

If the mechanical and pressure loads are missing and the temperature is solely 

presented, the forms of the displacements and stresses shown in Eqn (43) are the same 

as that in Chen (2004b) with an exception of the coefficients. However, numerical 

calculation reveals that the results presented in this section agrees well with those 

shown in the previous work. Furthermore, the pressure field in Eqn. (43) can be 

verified by solving the mixed boundary-value problems of a half space. These two 

aspects will be presented in the next section. 
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6. Verification of the solution 
As mentioned before, the pressure and temperature fields can be solved 

independently. Here, the potential theory method was presented to solve the pressure 

field governed by Eqn. (3) of a half-space subjected to an arbitrarily distributed 

pressure ),(2 φρΘ  on a circular domain ( ),  0 2S aρ φ π≡ ≤ ≤ ≤  and with 

0=∂∂ zP  on S . 

Eqn. (3) is satisfied by assuming 

   2 2 0 0
0 0 00 0

( , )( , , ) ,
a

P z d d
R

π ω ρ φρ φ ρ ρ φ
′

=
′∫ ∫  (48)

where 
   

3

2 2 2
2 0 0 0 0 3

3

1 ,  2 cos( ) .
2 z

P R z
z

ω ρ ρ ρρ φ φ
π =
∂′ ′= = + − − +
∂  (49)

   It is noted that the boundary condition ( , ) 0,  ( , )P S
z
ρ φ ρ φ∂

= ∈
∂

 is automatically 

meted. The boundary condition on S  is also satisfied by letting 

   2 2 0 0
0 0 0 22 20 0

0 0 0

( , ) ( , ).
2 cos( )

a
d d

π ω ρ φ ρ ρ φ ρ φ
ρ ρ ρρ φ φ

′
=Θ

+ − −
∫ ∫  (50)

By virtue of the results given by Fabrikant (1989), the solution to Eqn. (49) can 

be written out as 

 
( ) ( ) ( )2 22 22 2 2 20

1 1( , ) , ,
a xd xdx d ydyL L L y y

d x dxx x yρ
ω ρ φ ρ φ

π ρ ρ ρ
⎛ ⎞′ = − Θ⎜ ⎟
⎝ ⎠− −

∫ ∫  

  (51)
where )(•L  is an operator defined as: 

   22

0 020
0

1 1( ) ( ) ( ) ,  (0 1).
2 1 2 cos( )

kL k f f d k
k k

π
φ φ φ

π φ φ
−

= ≤ <
+ − −∫  (52)

Substituting Eqn. (52) into Eqn. (48) yields 

   

( )
2 1 3

2 0 0 0 0 032 0 0

1( , , ) tan ( , ) ,
a zR hP z d d

h R R

π
ρ φ ρ φ ρ ρ φ

π
−′⎡ ⎤⎛ ⎞= + Θ⎜ ⎟⎢ ⎥′ ′⎝ ⎠⎣ ⎦

∫ ∫  (53)

where 2 2 2 2
13 0h a l a aρ= − −  and )( 3113 zll =  is defined in Eqn. (42).   

Letting 0
2 2( , ) constantρ φΘ = Θ = , from Eqn. (51) one can obtain that 
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   0
2

2 2 2 2
( , ) ,  ( ).a

a
ω ρ φ ρ

π ρ
Θ′ = ≤
−  (54)

This immediately gives 

   
0 1
2

23

2 sin ,aP
lπ

− ⎛ ⎞
= Θ ⎜ ⎟

⎝ ⎠  (55)

which is identical to the expression in Eqn. (43). The temperature field can be verified 

in a similar manner. 

   To validate the solutions presented in the last section, numerical calculation is 

performed for a penny-shaped crack subjected to a constant thermal load C00
3 100=Θ  

only. The material constants are listed in Table 1 for a deep-water Gulf shale of 

Mexico (Kanj and Abousleiman, 2005), where the physical meanings are given in 

Appendix A. Under this situation, the solution in the preceding section should be 

identical to those given by Chen et al. (2004b). Comparison is made in Table 2 and 

good agreement is achieved. This further validates the thermoporoelastic fields in Eqn. 

(43). 
 

   Tables 1-2  

 

7. Concluding remarks 
The basic equations in static thermoporoelasticity are simplified by introducing 

two displacement functions. Then, a set of general solutions in terms of five 

quasi-harmonic functions are derived by using the operator theory and the 

superposition principle along with the generalized Almansi’s theorem. Four possible 

cases of material characteristic roots are considered for the theoretical completeness. 

No particular solutions associated with the pressure and temperature fields appear in 

the general solutions, making it possible to extend the potential theory method to 

thermoporoelasticity. 

Based on the general solution, the potential theory method developed by Fabrikant 

(1989) for the mixed boundary-value problems was extended to the transversely 

isotropic thermoporoelastic plane crack problems. Two potentials with the same 

mathematical structure are introduced to account for the thermal and pressure effects. 

The governing equations have the same structures as these reported in literatures. For 
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the problem of a penny-shaped crack under the actions of uniformly distributed 

mechanical, pressure and temperature loadings, exact and complete thermoporoelastic 

fields are expressed explicitly in terms of elementary functions. The present solution 

is verified by comparing to those given by Chen et al. (2004b). Furthermore, the 

solutions pertinent to the pore pressure are completely new to literature.  

It should be emphasized that the thermoporoelastic field is only valid for the 

materials with distinct characteristic roots. In the case of multiple roots, the general 

solutions will takes on different forms as shown in Appendix B. The potential theory 

method can also be employed if appropriate potentials are chosen. However, as 

pointed out by Fabrikant (1989), the corresponding solutions in the case of multiple 

roots can be derived directly from the solutions, as presented in this paper, with the 

aid of L’Hostpital rule. 

Although the loadings on the penny-shaped crack in this paper are independent of 

the angular coordinate, it is not the limitation inherent to the potential theory method. 

In fact, the problems of a penny-shaped crack subjected to the point loading can be 

successfully solved and the Green’s functions which are significant to the boundary 

element method can be derived. This will be reported in another paper.  
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Appendix A 
The material coefficients in Eqns. (1) can be denoted by the engineering constants as follows 

 2 2

11 122 2

2

13 33 442 2

( ) ( ),  ,
(1 )( 2 ) (1 )( 2 )

(1 ),   ,  ,
2(1 )2 2

E E E E E Ec c
E E E E E E

EE E Ec c c
E E E E E E

ν ν ν
ν ν ν ν ν ν

ν ν
νν ν ν ν

′ ′ ′ ′− +
= =

′ ′ ′ ′ ′ ′+ − − + − −

′ ′ ′ ′−
= = =

′′ ′ ′ ′ ′ ′ +− − − −

 (A.1)  

where E  is the drained Young’s modulus in the plane of isotropy ( yx −  plane), E′  the drained 

Young’s modulus perpendicular to that plane ( z − direction), respectively. If the assumption of 

micro-homogeneity and micro-isotropy of the solid skeleton is adopted, 1α  and 3α  can be 

formulated in terms of ijc  and the bulk modulus of the solid grain sK  according to 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS
X.-Y. LI, et al / European Journal of Mechanics A/Solids 

 18

 11 12 13 13 33
1 3

2
1 ,  1 .

3 3s s

c c c c c
K K

α α
+ + +

= − = −
 (A.2)  

Furthermore 1β , 3β  and mβ  are related to the linear expansion coefficients in the isotropic and 

transverse planes of the material ( 1
sα  and 3

sα ) and the volumetric expansion coefficient fα  of the 

pore fluid as 

 
1 11 12 1 13 3 3 13 1 33 3 1 1 3 3 1 3( ) ,  2 ,  2 ( 2 ) ,s s s s s s s s

m fc c c c cβ α α β α α β α α α α α α α φ′= + + = + = + + − −
 (A.3)  

where φ′  is the porosity. 

 

Appendix B 
The general solutions for the cases of multiple roots of )41( −=isi  are presented in the 

following without a detailed derivation for sake of simplicity. 

Case 2 ( 14321 sssss ≠=≠≠ ): After the same manipulation as Case 1 and by introducing  

 4 4 43
3 13 34

1 3 13 13 3 44 4 3 4
33 3 3

,  ( 1, 2),   ,  i
i i

i

F F FF
i s

sz z z z
η

η η η
∂ ∂ ∂∂′Ψ = = Ψ = + Ψ =
∂ ∂ ∂ ∂  (B.1)  

where )41,(,24 2 −=−=′ jibsa iiiijη , the general solutions are  

 ( ) ( )0 0
1 2 3 3 4 1 2 3 3 4

31 2 4 4 4
11 12 13 13 3 15 4 25 35

1 2 3 3 3 3

,  ,

,  ,  ,

u z v z
y x x y

w z P T
z z z z z z

μ μ μ μ μ μ μ

∂Ψ ∂Ψ∂ ∂
= − Ψ +Ψ +Ψ + Ψ = − − Ψ +Ψ +Ψ + Ψ

∂ ∂ ∂ ∂
∂Ψ∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ

= + + + + Ψ = =
∂ ∂ ∂ ∂ ∂ ∂

 (B.2)  

where  
 

( ) ( )

2 313 23
15 13 3 3

13 13

6 4 2 6 4 2
3 3 3 3 3 3 4 3 4 3 4 3

25 35
13 13

1 ,

6 4 2 6 4 2
,  .

s s

a s a s c s a s a s c s

η η
μ μ

η η

μ μ
η η

′ ′⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

− + − +
= =

 (B.3)  

It is noted that  ( 0 4)i iΨ = −  satisfies Eqn. (23) as well as that in Case 1. 

Case 3 ( 4321 ssss ==≠ ): Introducing the following functions satisfying  

 4 34 2
32 4

1 11 2 12 12 3 124 4 3 2
2 2 2

4 33
3 312 4 12

3 12 44 3 2 3
2 2 2 3 2

,  ,

2 ,  ,

i

i

F FF F
s

z z z z

F FF
s z z s z

η η η η

η η
η

∂ ∂∂ ∂′ ′′Ψ = Ψ = + +
∂ ∂ ∂ ∂

∂ ∂∂′Ψ = + Ψ =
∂ ∂ ∂

 (B.4)  

where 212 2 ,  ( , 1 4)ij i j ia s b i jη′′ = − = − , then one can obtain the general solutions as 
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20 4

1 2 2 3 2
2

20 4
1 2 2 3 2

2

2
231 2 4 4

11 12 12 2 12 2 15 3 2 16 42
1 2 2 22

2
3 4 4

25 2 262
2 22

,  

,

2 ,  

2 ,  

u z z
y x z

v z z
x y z

w z z z
z z z zz

P z T
z zz

μ μ μ μ μ μ

μ μ μ

⎛ ⎞∂Ψ ∂Ψ∂
= − Ψ +Ψ + Ψ +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂Ψ ∂Ψ∂
= − − Ψ +Ψ + Ψ +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂Ψ∂Ψ ∂Ψ ∂ Ψ ∂Ψ
= + + + + Ψ + + Ψ⎜ ⎟∂ ∂ ∂ ∂∂ ⎝ ⎠

⎛ ⎞∂Ψ ∂ Ψ ∂Ψ
= + + =⎜ ⎟∂ ∂∂⎝ ⎠

2
3 4 4

35 2 362
2 22

2 ,  z
z zz

μ
⎛ ⎞∂Ψ ∂ Ψ ∂Ψ

+ +⎜ ⎟∂ ∂∂⎝ ⎠

 (B.5)  

where  
 ( ) 3 2 2

22 22 2 12 12 2 15 12 2
16

12

2 4 4 2 4 432 3222 22 42 42
26 25 2 2 2 36 35 2 2 2

12 12 12 12 12 12

2 2
,

1 2 3 ,  1 2 3 .

s s s

s s s s s s

η η μ η μ η
μ

η

η ηη η η η
μ μ μ μ

η η η η η η

′′ ′ ′′ ′⎡ ⎤+ − −⎣ ⎦=

′′ ′′ ′ ′′ ′⎛ ⎞ ⎛ ⎞
= − + + = − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (B.6)  

In view of Eqns. (B.4) and (18), it is also seen that ( 0 4)i iΨ = −  satisfies Eqn. (23) 

Case 4 ( 4321 ssss === ): Introducing 

 24 3
31 2 4

1 11 11 1 11 1 114 3 2
11 1 1

3 3 24 2 2
3 3 311 2 11 4 11 12 4 12

2 11 3 44 3 2 2 3 2 3 2
1 1 11 1 1 1 1 1 1 2

24 ,  

3 32 ,  ,  ,

FF F F
s a

zz z z

F F FF F F
s s sz z z s z z s z

η η η η

η η η η η
η

∂∂ ∂ ∂′ ′′ ′′Ψ = + + +
∂∂ ∂ ∂

′′ ′∂ ∂ ∂∂ ∂ ∂′Ψ = + + Ψ = + Ψ =
∂ ∂ ∂ ∂ ∂ ∂

 (B.7)  

into Eqn. (15) leads to 
 2

2 30 4 4
1 1 2 1 1 2

1 1

2
2 30 4 4

1 1 2 1 1 2
1 1

2 3
2 31 2 4 4

11 1 1 12 3
1 2 1 1

2
33 4 4

15 2 1 1 16 3 12
1 11

,  

,

2 3 3

u z z z
y x z z

v z z z
x y z z

w z z z
z z z z

z z z
z zz

μ

μ μ

⎛ ⎞∂Ψ ∂Ψ ∂ Ψ∂
= − Ψ + Ψ + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂Ψ ∂Ψ ∂ Ψ∂
= − − Ψ + Ψ + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂Ψ ∂Ψ ∂ Ψ ∂ Ψ
= + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞ ⎛∂Ψ ∂ Ψ ∂Ψ
+ Ψ + + + Ψ +⎜ ⎟ ⎜∂ ∂∂ ⎝⎝ ⎠

17 4

2 3 2
33 3 32 4

25 1 1 26 1 27 42 3 2
1 12 1 1

2 3 2
33 3 32 4

35 1 1 36 1 37 42 3 2
1 12 1 1

,  

2 3 3  ,

2 3 3  ,

P z z z
z zz z z

T z z z
z zz z z

μ

μ μ μ

μ μ μ

⎞
+ Ψ⎟

⎠
⎛ ⎞ ⎛ ⎞∂ Ψ ∂ Ψ ∂Ψ∂Ψ ∂ Ψ

= + + + + + Ψ⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ Ψ ∂ Ψ ∂Ψ∂Ψ ∂ Ψ

= + + + + + Ψ⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂ ∂⎝ ⎠⎝ ⎠

 (B.8)  

where 
 ( )

( )

( )

3 2 2 2
21 22 1 1 11 1 15 11 1 16 11 1

17
11

4 2 2
31 31 1 25 11 1 26 11 1

27
11

4 2 2
41 41 1 25 11 1 26 11 1

37
11

2 8 2
3 ,

3
3 ,

3
3 .

s a s s s

s s s

s s s

η η μ μ η μ η
μ

η

η η μ η μ η
μ

η

η η μ η μ η
μ

η

′′ ′ ′′ ′⎡ ⎤− − − −⎣ ⎦=

′ ′′ ′′ ′⎡ ⎤+ − −⎣ ⎦=

′ ′′ ′′ ′⎡ ⎤+ − −⎣ ⎦=

 (B.9)  
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In view of Eqns. (B1.7) and (18), it is again seen that ( 0 4)i iΨ = −  satisfies Eqn. (23). 
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Captions of tables 

 
Table 1: material parameters for thermoporoelastic analysis 

Table 2: The dimensionless stress Ezσ  and displacement aw  on I  
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Table 1: Material parameters for thermoporoelastic analysis 

Parameter Value Unit 

E  ( E′ ) 1854 (927) [ ]MPa  

sK  12180 [ ]MPa  

ν (ν ′ ) 0.22 (0.44) _ 

11κ ( 33κ ) 0.1 (0.2) 
D

Pa s
⎡ ⎤
⎢ ⎥⎣ ⎦

 

11λ ( 33λ ) 2.65 (4.00) 0

W
C m

⎡ ⎤
⎢ ⎥⎣ ⎦

 

s
1α ( s

3α ) 6×10-6  (1.2×10-5) 0

1
C

⎡ ⎤
⎢ ⎥⎣ ⎦
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Table 2: The dimensionless stress Ezσ  and displacement aw  on I  

Ezσ  aw  

a
ρ

 

Present Chen et al. 
a
ρ

 

Present Chen et al. 

1.001 -0.025909095 -0.025909123 0.000 -0.012331027786 -0.012331041131 

1.010 -0.008174811 -0.008174820 0.100 -0.012269217734 -0.012269231012 

1.020 -0.005766139 -0.005766145 0.200 -0.012081890432 -0.012081903508 

1.030 -0.004696422 -0.004696427 0.300 -0.011763050799 -0.011763063529 

1.050 -0.003620044 -0.003620048 0.400 -0.011301573645 -0.011301585876 

1.100 -0.002529100 -0.002529103 0.500 -0.010678983317 -0.010678994875 

1.500 -0.001036622 -0.001036623 0.600 -0.009864822229 -0.009864832905 

2.000 -0.000669137 -0.000669138 0.700 -0.008806115238 -0.008806124769 

5.000 -0.000236576 -0.000236576 0.800 -0.007398616672 -0.007398624679 

10.00 -0.000116482 -0.000116482 0.900 -0.005374970399 -0.005374976216 

20.00 -0.000058022 -0.000058022 1.000 0 0 

50.00 -0.000023184 -0.000023184 10.00 0 0 

100.0 -0.000011590 -0.000011590 100.0 0 0 

1000 -0.000001159 -0.000001159 1000 0 0 

104 -0.000000116 -0.000000116 104 0 0 
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Captions of figures 
 
Fig. 1 Vertical (a) and horizontal (b) cross sections of a flat crack embedded in an 
infinite medium. 
 
Fig. 2 A penny-shaped crack and the coordinate systems. 

Fig. 3 The dimensionless temperature 0
3)0,,( ΘφρT  as a function of aρ .  

Fig. 4 The dimensionless temperature 0
3),,( ΘzT φρ  as a function of az  on the 

z-axis (ρ = a) and various cylindrical surfaces ρ =a, 2a and 10a. 
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Fig. 1 Vertical (a) and horizontal (b) cross sections of a flat crack embedded 
in an infinite medium. 
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Fig. 2 A penny-shaped crack and the coordinate systems. 
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 Fig. 3 The dimensionless temperature 0

3)0,,( ΘφρT  as a function of aρ .  
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 Fig. 4 The dimensionless temperature 0

3),,( ΘzT φρ  as a function of az  on 

the z-axis (ρ = 0) and various cylindrical surfaces ρ =a,  2a and 10a. 


