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A NEW APPROACH TO QUANTITATIVE PROPAGATION

OF CHAOS FOR DRIFT, DIFFUSION AND JUMP

PROCESSES

S. MISCHLER, C. MOUHOT, AND B. WENNBERG

Abstract. This paper is devoted the the study of the mean field limit
for many-particle systems undergoing jump, drift or diffusion processes,
as well as combinations of them. The main results are quantitative es-
timates on the decay of fluctuations around the deterministic limit and
of correlations between particles, as the number of particles goes to in-
finity. To this end we introduce a general functional framework which
reduces this question to the one of proving a purely functional estimate
on some abstract generator operators (consistency estimate) together
with fine stability estimates on the flow of the limiting nonlinear equa-
tion (stability estimates). Then we apply this method to a Boltzmann
collision jump process (for Maxwell molecules), to a McKean-Vlasov
drift-diffusion process and to an inelastic Boltzmann collision jump pro-
cess with (stochastic) thermal bath. To our knowledge, our approach
yields the first such quantitative results for a combination of jump and
diffusion processes.
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1. Introduction

Fundamental in Boltzmann’s deduction of the equation bearing his name is
the “stosszahlansatz”, or chaos assumption. Vaguely expressed this assump-
tion means that when two particles collide, they are statistically uncorrelated
just before the collision. After the collision they are not, of course, because,
for example, the knowledge of the position and velocity of one particle that
just collided gives some information on the position of the collision partner.
And while the correlations created by collisions decrease with time, they
never vanish in a system of finitely many particles, and hence the Boltz-
mann assumption could only be true in the limit of infinitely many particles.

A mathematical framework for studying this limit is the so-called BBGKY
hierarchy (see Grad [17], Cercignani [9] and the book [11] by Cercignani et
al), which consists of a family of Liouville equations, each describing the
evolution of an N -particle system (deterministic, in this case), and whose
solutions are densities in the space of N -particle configurations in phase
space. The BBGKY hierarchy describes in a systematic way the evolution
of marginal distributions. Formally, and under appropriate assumptions,
most notably the chaos assumption, the one-particle marginal of solutions
to the N -particle Liouville equation, converges to solutions of the Boltzmann
equation.

It would take until 1974 before a mathematically rigorous proof of this
statement was given by Lanford [27]. While this is a remarkable result, it
only proves that the Boltzmann equation is a limit of the N -particle systems
for a fraction of the mean free time between collisions, and this is essentially
where the problem stands today (see however [22] for a large time limit in
a near to the vacuum framework; it is worth emphasizing that in such a
framework no more collisions occur than in Lanford’s framework).

In order to avoid some of the difficulties related to the deterministic evo-
lution of a real particle system, Kac [23] invented a Markov process for a
particular N -particle system, and gave a mathematically rigorous definition
of propagation of chaos. He then proved that this holds for his Markov sys-
tem, and thus obtained a mathematically rigorous derivation of a simplified
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(spatially homogeneous) Boltzmann equation in this case, usually called the
Kac equation.

Kac’s work provides the framework of this paper, and we will now describe
our main results. We let E be the state space of one particle (usually R

d,
but metric, separable and locally compact is fine). A sequence of probability
measures (fN )

∞
N=0, where each fN ∈ P(EN ) is symmetric in the sense that

it is invariant under permutation of the coordinates, is said to be f -chaotic
for some probability measure f ∈ P(E) if for each k ≥ 1 and functions
φj ∈ Cb(E), j = 1, . . . , k, (continuous bounded),

lim
N→∞

∫

EN

k
∏

j=1

φj(zj) f
N (dz1, . . . ,dzN ) =

k
∏

j=1

∫

E
φj(z) f(dz).(1.1)

We next consider a family of time dependent probability measures (fNt )
∞
N=0,

being the distributions of the states of Markov processes in EN . The Markov
process is said to propagate chaos if given an initial family of N -particle
distributions (fN

in
)
∞
N=0, that is fin -chaotic, there is a time dependent distri-

bution ft such that (fNt )
∞
N=1 is ft-chaotic. In this paper we are interested

in specific equations that govern the evolution of ft; but it is important to
bear in mind that they are in general nonlinear, and it may be difficult to
prove well-posedness in function spaces relevant for proving the propagation
of chaos.

The main results of this paper are abstract. We consider:

• the family of N -particle systems represented by a Markov processes
(ZN

t )t≥0 in some product space EN , with ZN
t = (Z1,t, . . . ,ZN,t),

and the corresponding probability distributions (fNt )
∞
N=1, solving

Kolmogorov’s backward equations1, and where the distributions fNt
belong to a suitable subspace of P(EN ),
• a (nonlinear) equation defined on a subspace of P(E), which is the

formal limit of the equations governing one-particle marginals of fNt :

∂

∂t
ft = Q(ft), fin ∈ P(E).(1.2)

Then we:

• provide conditions on the processes and related function spaces that
guarantee that (fNt )

∞
N=1 is ft-chaotic for t ≥ 0,

• give explicit estimates of the rate of convergence in (1.1): more pre-
cisely, for any T > 0, ℓ ∈ N

∗ and φj ∈ F ⊂ Cb(E) (j = 1, . . . , ℓ),

1As we will see in the following section, the formalism also works if Z
N
t satisfies a

deterministic evolution, in which case Liouville’s equations replace Kolmogorov’s backward
equation
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there is a constant ǫ(N) converging to zero as N →∞ such that
(1.3)

sup
t∈[0,T ]

∣

∣

∣

∣

∣

∣

∫

EN

ℓ
∏

j=1

φj(zj) f
N
t (dz1, . . . ,dzN )−

ℓ
∏

j=1

∫

E
φj(z) ft(dz)

∣

∣

∣

∣

∣

∣

≤ ǫ(N),

which holds for N ≥ 2ℓ and a suitably chosen space F ; if F is dense
in Cb(E), this implies in particular the propagation of chaos.

To this end, our starting point is a technique that goes back at least to
GrÂ¸nbaum [21], which consists in representing an N -particle configuration
ZN
t as a sum of Dirac measures,

ZN
t = (Z1,t, . . . ,ZN,t) ←→ µN

ZN
t

=
1

N

N
∑

j=1

δZj,t
∈ P(E)

and proving that, in a weak sense, µN
ZN

t

converges to fNt . In fact, because

ZN
t is random, µN

ZN
t

is a random measure in P(E), which has a probabil-

ity distribution ΨN
t ∈ P(P(E)). Proving the propagation of chaos is here

equivalent to proving that ΨN
t → δft in P(P(E)) when N → ∞. The error

ǫ(N) is dominated by, on the one hand, how well the initial measure fin can
be approximated by a sum of N Dirac measures, and, on the other hand,
estimates comparing the equations for fNt and ft. These estimates depend
on rather technical assumptions, and although the abstract main theorem is
stated in Section 2, the assumptions are stated in full detail only in Section 4.

With the main theorem of this paper in hand, proving the propagation of
chaos for a particular N -particle system is reduced to proving:

(i) a purely functional estimate on the dual generator GN of the N -
particle dynamics which establishes and quantifies that, at first or-
der, GN is linked to the mean field limit generator Q (consistency
estimate);

(ii) some fine stability estimates on the flow of the mean field limit equa-
tion involving the differential of the semigroup with respect to the
initial data (stability estimates).

Point (i) of our method is largely inspired from the “duality viewpoint"
of Grünbaum’s paper [21] where he considered the propagation of the chaos
issue for the Boltzmann equation associated to hard-spheres (unbounded)
kernel. As he confessed himself the proof in [21] was incomplete due to the
lake of suitable stability estimates, i.e. precisely the point (ii) of our method.

It is worth emphasizing that after we had finished writing our paper, we
were told about the recent book [26] by Kolokoltsov and his series of pa-
pers on nonlinear Markov processes and kinetic equations. These interesting
works focus on fluctuation estimates of LLN and CLT types in the general
framework of nonlinear Markov processes, and in some sense they generalise
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to several other kinetic models the Grünbaum’s duality viewpoint (although
Kolokoltsov seems to not be aware of that earlier work). However we were
not able to extract from these works a full proof in the cases when the gen-
erator is an unbounded operator and weak distances have to be used. While
the comparison of generators for the many-particle and the limit semigroup
present in both [21] and [26] is reminiscent of our work, we believe that the
main novelty of the present paper is to achieve, for the first time, both the
fine stabilities estimates in point (ii) and the consistency estimate in point
(i) in appropriate spaces (with weak topologies), in such a way that they
may be combined and they lead to the already mentioned propagation of
chaos result with quantitative estimates.

We illustrate the method by proving the propagation of chaos for three
different well known examples:

(a) We first consider the Boltzmann equation for Maxellian molecules
with angular cutoff. For such a bounded kernel case the result is
well-known since the pioneering works of Kac [23, 24] and McKean
[29] (who prove the propagation of chaos without any rate) and from
the works by Graham and Méléard [18, 19, 20, 30] (where the au-
thors establish the propagation of chaos with optimal rate O(1/N)).
In these papers, the cornerstone of the proof is a combinatorial argu-
ment applied to the equation on the law (Wild sum expansion) or to
the stochastic flow (stochastic tree). These approaches are restricted
to a constant (or at least bounded) collision rate.

(b) The second example is the McKean-Vlasov model. For such a model
again, propagation of chaos is well-known and has been extensively
studied. One of the most popular and efficient approach to deal
with this model is the so-called “coupling method” introduced in the
1970’s, which yields the optimal convergence rate O(1/

√
N) (note

that the difference between these two optimal rates in (a) and (b)
comes from the fact that they are not measured with the same dis-
tance). We refer to the lecture notes [37, 30] as well as to the ref-
erences therein for a detailed discussion of that method. We also
refer to [5] and the references therein for recent developments on the
subject.

(c) The third example is a mixed collision-diffusion equation which arises
from granular gas modeling. For such a model, it seems that both
the “combinatorics method” and the “coupling method” fail while
our present method is robust enough to apply and yield quantitative
chaos estimates. Let us also emphasize that the BBGKY method
and the nonlinear martingale method (see again [37, 30] or [1, 31])
may also apply but would give a propagation of chaos without any
rate since they are based on compactness arguments.

Let us emphasize that it is not difficult to write a uniform in time version
of Theorem 2.1: in short, if the assumptions (A1) to (A5) are satisfied with
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T = +∞, then the conclusion of the main abstract Theorem 2.1 holds with
T = +∞ and the proof is unchanged. But such an abstract theorem does
not readily apply to the examples (a), (b) and (c) discussed above. More
precisely, it is indeed possible to prove quantitative uniform in time propaga-
tion of chaos by our method (for the elastic Boltzmann model for instance),
but the price to pay is a significant modification to the set of assumptions
(A1) to (A5). This issue is addressed in our companion paper [32] where
the abstract method is developed in a more general framework in order to (1)
apply it to Boltzmann collision models associated to unbounded collisions
rates, (2) develop a theory of uniform in time propagation of chaos estimates.
We shall consider the question of uniform in time chaoticity estimates for
the McKean-Vlasov equation in future works.

These three examples illustrate the generality of the method that we study:
the same abstract framework can be used to prove propagation of chaos for
N -particle systems that have not yet been analysed as well as for models that
have been studied before but with conceptually different methods. But we
chose to emphasize generality over optimality of the result. By optimizing
the method of proof for a specific problem one can certainly obtain sharper
results, for example in terms of the rate of convergence as a function of N
or in the choice of topologies for which convergence can be proven. We did
not pursue this goal in this paper.

Also, in applying the abstract theorem to a concrete model, one is faced
with the challenge of finding functional spaces that satisfy the conditions of
our abstract convergence theorem and are adapted to the model. In many
cases, like for the three examples presented here, existing theory for the N -
particle systems and for the limiting equations may give a strong hint on
what choices to make, but in other cases this could present serious diffi-
culties. Another guiding principle is the consistency estimates between the
generators of the N -particle system and the limit equation which constrain
the norms or metrics that can be used and hint at the losses on the norms
or metrics at the basis of the scale of spaces used in the stability estimates.

In spite of a cost of technicality, the original approach proposed by Grun-
baum, even if originally incomplete, seems to us intuitively very attractive,
and with Theorem 2.1, Theorem 5.1, Theorem 6.2 and Theorem 7.1 we make
this approach into a mathematically rigorous theory.

The plan of the paper is as follows. In Section 2, we present the method
in an abstract framework, by first setting up a functional framework that is
appropriate for comparing the N -particle dynamics with the limiting dynam-
ics, and we establish the abstract quantitative propagation of chaos (Theo-
rem 2.1). The main steps of the proof are given as well, but these rely on
some technical assumptions and lemmas which are postponed to Section 4.
The functional framework is developed with the necessary details in Sec-
tion 3, where we also develop a differential calculus for functions on P(E),
as needed for studying the nonlinear semigroup. In Section 5, we apply
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EN/SN Psym(EN ) C(EN )

PN (E) ⊂ P(E) P(P(E)) C(P(E))

master eq. duality

µNZ µ̄N
fN

duality
πN R

ZN
t SN

t TN
t

∣

∣GN

SNL
t T∞

t

∣

∣G∞

pullback

Figure 1. A summary of spaces and their relations. Semi-
groups are in most cases given together with their generators,
as in SN

t

∣

∣A.

the method to the Boltzmann equation associated to the Maxwell molecules
collision kernel with Grad’s cut-off. In Section 6, we apply the method to
the McKean-Vlasov equation, and finally, in Section 7, it is applied to some
mixed jump and diffusion equations motivated by granular gases.

2. Propagation of chaos for abstract N-particle systems

In this section we introduce the mathematical notation used in the paper,
make precise statements of the results, and describe the main steps of the
proof, leaving the details of the proofs to the next sections.

2.1. The N-particle system. The phase space of the N -particle system
is2 EN/SN . Here E is assumed to be a locally compact, separable metric
space, and SN denotes the symmetric group of order N . This means that
we identify all points in the N -particle phase space that can be obtained
by permutation of the particles, so that if Z = (z1, . . . , zN ) ∈ EN/SN we
have (z1, . . . , zN ) ∼ (zσ1 , . . . , zσN

), where (σ1, . . . , σN ) is any permutation
of {1, . . . , N}. The evolution in phase space may be a stochastic Markov
process or the solution to an Hamiltonian system of equations. In both
cases, we denote by (ZN

t )t≥0 the flow of the process.
Figure 1 illustrates the relation between the different objects that we con-

sider. The N -particle system is represented in the upper left corner of Fig-
ure 1. The different mathematical objects in this diagram are explained
along the following subsections.

2The phase space of a realistic N-particle system may be a subspace of the N-fold
product, determined e.g. by energy constraints or by the fact that particles of finite size
may not overlap. However, in the limit N → ∞, all of E should be accessible for any
given particle.
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2.2. Master equations, Liouville’s equations and their duals. Let
Psym(E

N ) denote the proability measures on EN that are invariant under
permutation of the indices in Z = (z1, . . . , zN ) ∈ EN . The flow ZN

t induces
a semigroup of operators SN

t on Psym(E
N ) defined through the formula

∀ fNin ∈ Psym(E
N ), ϕ ∈ Cb(E

N ),(2.1)
〈

SN
t (fNin ), ϕ

〉

= E
(

ϕ
(

ZN
t

))

:=

∫

EN

EZ0

(

ϕ
(

ZN
t

))

fNin (dZin),

where the bracket denotes the duality bracket between P(EN ) and Cb(E
N ):

〈f, φ〉 =

∫

EN

φ(Z) f(dZ),

and EZin
denotes the conditional expectation with respect to the initial con-

dition ZN
in = Zin. This semigroup is the solution to Kolmogorov’s forward

equation in the case where (ZN
t )t≥0 is a random process (this equation is

often called the master equation), and of the Liouville equation in the Hamil-
tonian case. We always assume that SN

t preserves the symmetry under per-
mutation, and therefore restricts to an evolution semigroup on Psym(E

N ).
There is a dual semigroup of SN

t , that acts on Cb(E
N ), the set of bounded

continuous functions on EN . We write this semigroup TN
t , and denote its

generator by GN . The two semigroups are related by

(2.2)
〈

fN , TN
t φ
〉

=
〈

SN
t f

N , φ
〉

.

Markov processes such that (1) TN
t is a contraction in C0(E

N ), the set of
continuous functions that vanish at infinity, and (2) t 7→ TN

t φ is continuous
for any φ ∈ C0(E

N ), are known as Feller processes.
Hence the upper part of the diagram represents a (random) process, and

its distributions. The lower part of the diagram essentially shows the same
thing as induced by the map µNZ , as we shall now see.

2.3. The limiting dynamics. The components (z1, . . . , zN ) of Z ∈ EN/SN

represent the positions (in generalized sense, i.e. in the phase space E) of
the N particles. These N particles can also be uniquely3 represented as an
empirical measure, that is a sum of Dirac measures:

(2.3) Z = (z1, . . . , zN ) 7→ µNZ =
1

N

N
∑

j=1

δzj .

The resulting measure is normalized so as to give a probability measure,
which is obviously independent of any permutation of the indices. The set
of such empirical measures is denoted by PN (E). Probability measures on
E are denoted by P(E), so that PN (E) ⊂ P(E).

When the number of particles go to infinity, we may have µNZ → f ∈ P(E),
where now f is a distribution of particles in E. We call a “limiting equation
for the N -particle systems” the (usually nonlinear) equation of the form (1.2)

3The equivalence of particle configurations under permutation is used here.
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that is satisfied by the probability distribution ft obtained as the limit of
µNZ , and we write its solution in the form of a nonlinear semigroup SNL

t :

ft = SNL
t (fin)

is the solution of
∂tft = Q(ft) , f0 = fin .

The main result of this paper can be seen as a perturbation result: given a
solution to the limiting equation, we consider a sequence of measures µNZin

∈
PN (E) such that

µNZin
→ fin

and prove that for all t in some interval 0 ≤ t ≤ T ,

µNZt
→ SNL

t (fin) .

The convergence is established in the weak topology for the law of the random
empirical measures, as will be explained next.

2.4. N-particle dynamics of random measures and weak solutions of
the limiting equation. A random point Z ∈ EN with law fN ∈ Psym(E

N )
can be identified with a random measure, denoted by µNZ ∈ PN (E), whose
law is induced from fN . We denote this law πNP f

N ∈ P(P(E)). Note that
since E is a separable metric space, then so is P(E) by Prokhorov’s Theorem,
and we may define the space P(P(E)) of probability measures on P(E), as
well as the set of continuous bounded functions, denoted Cb(P(E)), which is
the dual of P(P(E)). In Section 3 we will discuss how the choice of topology
on P(E) influences Cb(P(E)).

The nonlinear dynamics given by the semigroup SNL
t is deterministic and

defines a semigroup of operators on Cb(P(E)), in a way that is reminiscent
to the equations (2.1)-(2.2) but now using the duality structure between
Cb(P(E)) and P(P(E)). We define, for any fin ∈ P(E) and Φ ∈ Cb(P(E)),

T∞
t Φ(fin) = Φ

(

SNL
t (fin)

)

.

The semigroup T∞
t is called the pullback semigroup of SNL

t . As we shall see,
it plays a similar role for the deterministic limiting flow SNL

t associated with
the equation (1.2) (lower half of the diagram), as the one the semigroup TN

t

plays for the flow ZN
t at the level of the N -particle system (upper half of

the diagram): in both cases these are the dual statistical flows. Note that
for making sense of the pullback semigroup T∞

t on Cb(P(E)), one needs the
map fin 7→ SNL

t (fin) to be continuous, and this will be a major issue when
all arguments are made precise.

To connect the N -particle dynamics with the limiting dynamics, we also
need mappings between Cb(E

N ) and Cb(P(E)). On the one hand

πN :

{

Cb(P(E)) → Cb(E
N )

Φ 7→ φ
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is dual to the map P(E) ∋ fN 7→ πNP f
N ∈ P(P(E)), and is defined by

∀Z ∈ EN , φ(Z) =
(

πNΦ
)

(Z) = Φ
(

µNZ
)

,

where the empirical measure µNZ is defined through (2.3). On the other hand

(2.4) RN :

{

Cb(E
N ) → Cb(P(E))

φ 7→ Φ

is defined in the following way: for each φ ∈ Cb(E
N ), RN [φ] is evaluated at

the point f ∈ P(E) as

(2.5) f 7→ RN [φ](f) = RN
φ (f) =

∫

EN

φ(z1, . . . , zN ) f(dz1) · · · f(dzN ),

which can be interpreted, as we shall see later, as a real valued polynomial
taking probability measures as arguments.

2.5. The abstract theorem. We are now ready to give a more precise
version of the main abstract theorem. The exact statement involves rather
technical definitions, and its validity depends on five assumptions, (A1) to
(A5) which are properly stated in Section 4. The first assumption is the
requirement of symmetry under permutations that has already been stated.
The remaining conditons are (1) estimates on the regularity and stability of
the nonlinear semigroup, and (2) consistency estimates that quantifies that
the N -particle systems and the limiting semigroup are compatible.

Theorem 2.1 (Fluctuation estimate). Consider a process (ZN
t )t≥0 in EN/SN ,

and the related semigroups SN
t and TN

t as defined above. Let fin ∈ P(E),

and consider a hierarchy of N -particle solutions fNt = SN
t (f⊗N

in ), and a so-
lution ft = SNL

t (fin) to the limit equation. We assume that (A1) to (A5)
hold.

Then there is an absolute constant C > 0 and, for any T ∈ (0,∞), there

are constants CT , C̃T > 0 (depending on T ) such that for any N, ℓ ∈ N
∗,

with N ≥ 2ℓ, and for any

ϕ = ϕ1 ⊗ · · · ⊗ ϕℓ ∈ F⊗ℓ, ϕj ∈ F , ‖ϕj‖F ≤ 1,

we have

sup
[0,T )

∣

∣

∣

〈(

SN
t (f⊗N

in )−
(

SNL
t (fin)

)⊗N
)

, ϕ⊗ 1
N−ℓ

〉∣

∣

∣(2.6)

≤ C ℓ2

N
+ CT ℓ

2 ε(N) + C̃T ℓΩ
G3
N (fin),

with

(2.7) ΩG3
N (fin) :=

∫

EN

distG3

(

µNZ , fin

)

f⊗N
in (dZ).

The space F ⊂ Cb(E) and the distance distG3 are defined later in Section 4.
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We have used the notation ϕ = ϕ1 ⊗ · · · ⊗ ϕℓ to denote

ϕ(z1, . . . , zℓ) = ϕ1(z1)ϕ2(z2) · · ·ϕℓ(zℓ),

and ϕ⊗ 1
N−ℓ to denote

(ϕ⊗ 1
N−ℓ)(z1, . . . , zN ) = ϕ1(z1)ϕ2(z2) · · ·ϕℓ(zℓ).

We first note that the left hand side of (2.6) is the same as the left hand
side of (1.3), the only difference being that the inital data to the N -particle
system are assumed to factorize: fNin = f⊗N

in , where fin is also the inital
data to the limiting nonlinear equation. This is a stronger hypothesis than
merely requiring the initial data to be chaotic (where the initial data to the
N -particle system may factorize only in the limit of infinitely many particles).
This restriction simplifies the proof, but it can easily be relaxed at the cost
of some additional error terms.

The restriction to test functions of the form ϕ1 ⊗ · · · ⊗ ϕℓ ⊗ 1⊗(N−ℓ), i.e.
functions depending only on the first ℓ variables, corresponds to analysing
ℓ-particle marginals. Hence the theorem implies the propagation of chaos
as soon as F is dense in Cb(E) in the topology of uniform convergence on
compact sets. This condition is satisfied in all examples given below.

2.6. Main steps of the proof. The proof begins by splitting the quantity
we want to estimate,

〈(

SN
t (f⊗N

in )−
(

SNL
t (fin)

)⊗N
)

, ϕ⊗ 1
N−ℓ

〉

,

in three parts, each one corresponding to one of the error terms in the right
hand side of the equation (2.6):

∣

∣

∣

〈

SN
t (f⊗N

in )−
(

SNL
t (fin)

)⊗N
, ϕ⊗ 1⊗N−ℓ

〉∣

∣

∣ ≤

≤
∣

∣

∣

〈

SN
t (f⊗N

in ), ϕ⊗ 1⊗N−ℓ
〉

−
〈

SN
t (f⊗N

in ), Rℓ[ϕ] ◦ µNZ
〉∣

∣

∣

+
∣

∣

∣

〈

f⊗N
in , TN

t (Rℓ[ϕ] ◦ µNZ )
〉

−
〈

f⊗N
in , (T∞

t Rℓ[ϕ]) ◦ µNZ )
〉∣

∣

∣

+
∣

∣

∣

〈

f⊗N
in , (T∞

t Rℓ[ϕ]) ◦ µNZ )
〉

−
〈

(SNL
t (fin))

⊗ℓ, ϕ
〉∣

∣

∣
=: T1 + T2 + T3.(2.8)

Then each of these terms is estimated separately:

(1) The first term, T1, is bounded by Cℓ2/N , as proven in Lemma 4.2.
From the definitions of Rℓ and µNZ , it follows that Rℓ[ϕ](µNZ ) is a
sum of terms of the form ϕ(zj1 , . . . , zjℓ), where each index j1, . . . , jℓ
describes the set {1, . . . , N}. The error is then due to the fraction of
terms for which two or more of the indices j1, . . . , jℓ are the same.
Hence the estimate of T1 is of purely combinatorial nature, and only
depends on the symmetry under permutation, i.e. the assumption
(A1).

(2) The estimate of the second term, T2, relies on the convergence of the
N -particle semigroups TN

t to the limiting semigroup T∞
t . This is
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where the N -particle dynamics and the limiting dynamics are com-
pared. The estimate can be found in Lemma 4.3, which depends on
the consistency assumption (A3) on the generators and the stability
assumption (A4) on the limiting dynamics. While the generator GN

of TN
t can be defined in a straightforward manner, defining and es-

timating the generator G∞ of T∞
t requires a more detailed analysis.

It indeed involves derivatives of functions acting on P(E), and the
required differential structure depends on the topology and metric
structure chosen on P(E). The generator G∞ is characterized in
Lemma 4.1. The assumption (A4) is proved by establishing refined
stability estimates on the limiting semigroup, showing their differen-
tiability according to the initial data in a metric compatible with the
previous steps.

(3) For the last term T3, we note that

T∞
t Rℓ[ϕ](µNZ ) = Rℓ[ϕ]

(

SNL
t (µNZ )

)

=
〈

(SNL
t (µNZ ))⊗ℓ, ϕ

〉

,

which means that the nonlinear limiting equation is solved taking a
sum of Dirac masses as initial data, and an ℓ-fold product of the
solution is integrated against φ. The resulting function of Z =
(z1, . . . , zN ) is then integrated against f⊗N

in , which amounts to tak-
ing an average over all intial data such that the position of the N
particles are independently taken at random from the law fin. When
N is large, the random empirical measures µNZ are close to fin, i.e.
ΠN

P (f⊗N
in ) ⇀ δfin in P(P(E)). This implies that the term T3 vanish

in the limit when N goes to infinity. However the rate of this con-
vergence sensitively depends on the regularity of the test function
ϕ and on the continuity properties of SNL

t . In all cases considered
here, the error T3 dominates the other error terms, and effectively
determines the rate of convergence in the propagation of chaos. The
precise result, together with the required assumptions, is given in
Lemma 4.5.

3. Metrics on P(E) and differentiability of functions on P(E)

This section contains the techical details concerning the space of probabil-
ity measures on P(E) and its dual, that is the space of continuous functions
acting on P(E).

3.1. The metric issue. P(E) is our fundamental “state space”, where we
compare the marginals of the N -particle density fNt and the chaotic infinite-
particle dynamics ft through their observables, i.e. the evolution of con-
tinuous bounded functions on EN and P(E) respectively under the dual
dynamics TN

t and T∞
t .

There are two canonical choices of topology on the space of probabilities,
which determine two different sets Cb(P(E)).
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On the one hand, for a given locally compact and separable metric space
E , the space M1(E) of finite Borel measures on E is a Banach space when
endowed with the total variation norm:

∀ f ∈M1(E), ‖f‖TV := f+(E) + f−(E)
= sup

φ∈Cb(Z), ‖φ‖∞≤1
〈f, φ〉 = sup

φ∈C0(E), ‖φ‖∞≤1
〈f, φ〉,

where f = f+ − f− stands for the Hahn decomposition and the equality
between the two last terms comes from the fact that E is locally compact
and separable.

We recall that fk
TV−−→ f (strong topology) when (fk) and f belongs to

M1(E) and ‖fk−f‖TV → 0 when k →∞, and that fk ⇀ f (weak topology),
if

∀ϕ ∈ Cb(Z) 〈f, ϕ〉 = lim
k→∞
〈fk, ϕ〉 .

The associated topology is denoted by σ(M1(E), Cb(E)). However, the weak
convergence can be associated with different, non-equivalent metrics, and
the choice of metric plays an important role as soon as one wants to perform
differential calculus on P(E).

In the sequel, we will denote by Cb(P(E), w) the space of continuous and
bounded functions on P(E) endowed with the weak topology, and Cb(P(E), TV )
the space of continuous and bounded functions on P(E) endowed with the
total variation norm. It is clear that Cb(P(E), w) ⊂ Cb(P(E), TV ) since

fk
TV−−→ f implies fk ⇀ f .

However, the supremum norm ‖Φ‖L∞(P(E)) does not depend on the choice
of topology on P(E), and endows the two previous sets with a Banach space
topology. The transformations πN and RN satisfy:

(3.1)
∥

∥πNΦ
∥

∥

L∞(EN )
≤ ‖Φ‖L∞(P(E)) and ‖RN [φ]‖L∞(P(E)) ≤ ‖φ‖L∞(EN ).

The transformation πN is well defined from Cb(P(E), w) to Cb(E
N ), but

it does not map Cb(P(E), TV ) into Cb(E
N ).

In the other way round, the transformation RN is well defined from
Cb(E

N ) to Cb(P(E), w), and therefore also from Cb(E
N ) to Cb(P(E), TV ):

for any φ ∈ Cb(E
N ) and for any sequence fk so that the weak convergence

fk ⇀ f holds, we have f⊗N
k ⇀ f⊗N , and then RN [φ](fk)→ RN [φ](f).

The different metric structures associated with the weak topology are not
seen at the level of Cb(P(E), w). However any norm (or semi-norm) “more
regular” than the uniform norm on Cb(P(E)) (in the sense of controlling
some modulus of continuity or some differential) strongly depends on this
choice, as is illustrated by the abstract Lipschitz spaces defined below.

Definition 3.1. Let mG : E → R+ be given. Then we define the following
weighted subspace of probability measures

PG(E) := {f ∈ P(E); 〈f,mG〉 <∞},
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together with a corresponding space of “increments”,

IPG(E) := {f1 − f2 ; f1, f2 ∈ PG(E)} .
If moreover there is a vector space G (with norm denoted by ‖ · ‖G) which
contains IPG(E), we then define the following distance on PG(E)

∀ f1, f2 ∈ PG(E), distG(f1, f2) := ‖f1 − f2‖G .
Remark 3.2. Note carefully that the space of increments IPG(E) is not a
vector space in general.

Now we can define a precised notion of equivalence of metrics:

Definition 3.3. We say that PG(E) has a bounded diameter if there exits
KG > 0 such that

∀ f ∈ PG(E), distG(f, g) ≤ KG

for some given fixed g ∈ PG(E).
Two metrics d0 and d1 on PG(E) are said to be Hölder uniformly equiva-

lent on bounded sets if there exists κ ∈ (0,∞) and for any a ∈ (0,∞) there
exists Ca ∈ (0,∞) such that

∀ f1, f2 ∈ BPG,a,
1

Ca
[d2(f1, f2)]

κ ≤ d1(f1, f2) ≤ Ca [d2(f1, f2)]
κ

where
BPG,a := {f ∈ PG(E) ; 〈f,mG〉 ≤ a} .

Finally, we say that two normed spaces G0 and G1 are Hölder uniformly
equivalent (on bounded sets) if this is the case for the corresponding metrics.

We also define the vector space UC(PG(E);R) of uniformly continuous
and bounded function Ψ : PG(E) → R, where the continuity is related the
metric topology on PG(E) defined by distG above. Observe that this is a
Banach space when endowed with the supremum norm.

Example 3.4. With the choice mG := 1, ‖ · ‖G := ‖ · ‖TV we obtain
PG(E)(E) = (P(E), TV ) endowed with the total variation norm.

3.2. Examples of distances on measures when E = R
d. There are

many ways to define distances on P(E) which are topologically equivalent
to the weak topology of measures, see for instance [35, 6].

We list below some well-known distances on P(Rd) or on its subsets

Pq(Rd) := {f ∈ P(Rd); Mq(f) <∞}, q ≥ 0,

where the moment Mq(f) of order q of a probability measure is defined as

Mq(f) := 〈f , 〈v〉q〉 , 〈v〉2 = 1 + |v|2.
These distances are all Hölder uniformly equivalent to the weak topology
σ(P(E), Cb(E)) on the bounded subsets

BPq,a(E) :=
{

f ∈ Pq(Rd), Mq(f) ≤ a
}
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for any a ∈ (0,∞) and for q large enough. For more informations we refer
to [12].

Example 3.5 (Dual-Hölder, or Zolotarev’s, distances). Denote by distE a
distance on E and fix z0 ∈ E (e.g. z0 = 0 when E = R

d in the sequel).
Denote by Lip0(E) the set of Lipschitz functions on E vanishing at one
arbitrary point z0 ∈ E endowed with the norm

[ϕ]Lip = [ϕ]1 := sup
z,z̃∈E, z 6=z̃

|ϕ(z) − ϕ(z̃)|
distE(z, z̃)

.

We then define the dual norm: take mG := 1 and endow PG(E) with

(3.2) ∀ f, g ∈ PG(E), [g − f ]∗1 := sup
ϕ∈Lip0(E)

〈g − f, ϕ〉
[ϕ]1

.

Example 3.6 (Monge-Kantorovich-Wasserstein distances). For q ∈ [1,∞),
define

PG(E)(E) = Pq(E) := {f ∈ P(E); 〈f,mG〉 := 〈f,dist(·, v0)q〉 <∞}
and the Monge-Kantorovich-Wasserstein (MKW) distance Wq by

(3.3) ∀ f, g ∈ Pq(E), W q
q (f, g) := inf

p∈Π(f,g)

∫

E×E
distE(z, z̃)q p(dz,dz̃),

where Π(f, g) denote the set of probability measures p ∈ P(E × E) with
marginals f and g (p(A × E) = f(A), p(E × A) = g(A) for any Borel set

A ⊂ E). Note that for Z, Z̃ ∈ EN and any q ∈ [1,∞), one has
(3.4)

Wq

(

µNZ , µ
N
Z̃

)

= dℓq(EN/SN )(Z, Z̃) := min
σ∈SN

(

1

N

N
∑

i=1

distE(zi, z̃σ(i))
q

)1/q

,

and that

(3.5) ∀ f, g ∈ P1(E), W1(f, g) = [f − g]∗1 = sup
φ∈Lip0(E)

〈f − g, φ〉

as well as

(3.6) ∀ q ∈ [1,∞), ∀ f, g ∈ Pq(Rd), W1(f, g) ≤Wq(f, g).

We refer to [41] and the references therein for more details on the Monge-
Kantorovich-Wasserstein distances and for a proof of these claims.

Example 3.7 (Fourier-based norms). For E = R
d, mG := 1, let

∀ f ∈ T PG(E), ‖f‖G = |f |s := sup
ξ∈Rd

|f̂(ξ)|
〈ξ〉s , s > 0.

We denote by H−s (which includes IPG(E) for s large enough) the Banach
space associated to the norm | · |s. Such norms first appeared in connection
with kinetic theory in [16].
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Example 3.8 (Negative Sobolev norms). For E = R
d, mG := 1, let

∀ f ∈ T PG(E), ‖f‖G = ‖f‖H−s(Rd) :=

∥

∥

∥

∥

∥

f̂(ξ)

〈ξ〉s

∥

∥

∥

∥

∥

L2(Rd)

, s > 0.

We denote by H−s (which includes IPG(E) for s large enough) the Hilbert
space associated to the norm ‖ · ‖H−s .

For E = R
d, mG := 1, and some integers k, ℓ ≥ 0, we also define

∀ f ∈ T PG(E), ‖f‖G = ‖f‖H−k
−ℓ

(Rd) := sup
ϕ∈Hk

ℓ

〈f, ϕ〉,

where

‖ϕ‖2Hk
ℓ
:=

∑

|α| ≤k

∫

Rd

|∂αϕ(z)|2 〈z〉2ℓ dz.

We denote by H−k
−ℓ (R

d) (which includes IPG(E) for k large enough) the
Hilbert space associated to the norm ‖ · ‖H−k

−ℓ
(Rd).

3.3. Differential calculus for functions of probability measures. We
start with a definition of Lipschitz regularity, for which a mere metric struc-
ture is sufficient.

Definition 3.9. For metric spaces G̃1 and G̃2 we denote by C0,1(G̃1, G̃2) the

space of functions from G̃1 to G̃2 with Lipschitz regularity, i.e. the set of
functions Ψ : G̃1 → G̃2 such that there exists a constant C > 0 so that

(3.7) ∀ f, g ∈ G̃1, distG̃2
(Ψ(g),Ψ(f)) ≤ C distG̃1

(g, f).

We then define the semi-norm [·]C0,1(G̃1,G̃2)
on C0,1(G̃1, G̃2) as the infimum of

the constants C > 0 such that (3.7) holds.

The next step consists in defining a higher order differential calculus; this
is where the assumption that metrics are inherited from a normed vector
space structure plays a role.

Definition 3.10. Let G1 and G2 be normed spaces, and let G̃1 and G̃2 be two
metric spaces such that G̃i−G̃i ⊂ Gi. For k ∈ N, we define Ck,1(G̃1; G̃2) to be

the set of bounded continuous functions Ψ : G̃1 → G̃2 such that there exists
DjΨ : G̃1 → Bj(G1,G2) continuous and bounded, where Bj(G1,G2) is the
space of bounded j-multilinear applications from G1 to G2 (endowed with its
canonical norm) for j = 1, . . . , k, and some constants Cj > 0, j = 0, . . . , k,
so that for any j = 0, . . . , k

(3.8) ∀ f, g ∈ G̃1,
∥

∥

∥

∥

∥

Ψ(g)−
j
∑

i=0

〈

DiΨ(f), (g − f)⊗i
〉

∥

∥

∥

∥

∥

G2

≤ Cj ‖g − f‖j+1
G1

(with the convention D0Ψ = Ψ).
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We also define the following seminorms on Ck,1(G̃1, G̃2)
[Ψ]j,0 := sup

f∈G̃1

∥

∥DjΨ(f)
∥

∥

Bj(G1,G2)
, j = 1, . . . , k,

with

‖L‖Bj(G1,G2)
:= sup

hi, ‖ hi‖G1≤1, 1≤i≤j
‖L (h1, . . . , hj)‖G2

,

and

[Ψ]j,1 := sup
f,g∈G̃1

∥

∥

∥
Ψ(g) −∑j

i=0〈DiΨ(f), (g − f)⊗i〉
∥

∥

∥

G2

‖g − f‖j+1
G1

.

Finally we combine these semi-norms into the norm

‖Ψ‖Ck,1(G̃1,G̃2)
=

k
∑

j=1

[Ψ]j,0 + [Ψ]k,1.

Remark 3.11. Observe that for any j ≥ 1 the LHS of (3.8) makes sense
since

Ψ(g)−
j
∑

i=0

〈

DiΨ(f), (g − f)⊗i
〉

=
[

Ψ(g)−Ψ(f)
]

−
j
∑

i=1

〈

DiΨ(f), (g − f)⊗i
〉

∈ G2

since Ψ(g)−Ψ(f) ∈ G̃2− G̃2 ⊂ G2 and DiΨ(f) ∈ Bj(G1,G2). Then note that
our definition is very close to the usual Fréchet definition of differentiability
in Banach spaces for the function h 7→ Ψ(f +h) with h = g− f ∈ G1, except
that the domain and range are restricted to subsets that have no vectorial
structures and are not open within G1 and G2. We also only consider Lipschitz
differentiability.

The following lemma confirms that this differential calculus is well-behaved
for composition, which seems to be a minimal requirement for further appli-
cations.

Lemma 3.12. Consider U ∈ Ck,1(G̃1, G̃2) and V ∈ Ck,1(G̃2, G̃3). Then the

composition Ψ := V ◦U belongs to Ck,1(G̃1, G̃3). Moreover the following chain
rule holds at first order k = 1

(3.9) ∀ f ∈ G̃1, DΨ[f ] = DV[U(f)] ◦DU [f ],
with the estimates















[Ψ]0,1 ≤ [V]0,1 [U ]0,1,
[Ψ]1,0 ≤ [V]1,0 [U ]1,0,
[Ψ]1,1 ≤ [V]1,0 [U ]1,1 + [V]1,1 [U ]20,1.
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At second order k = 2 one also has the chain rule
(3.10)
∀ f ∈ G̃1, D2Ψ[f ] = D2V[U(f)] ◦ (DU [f ]⊗DU [f ]) +DV[U(f)] ◦D2U [f ].
Proof of Lemma 3.12. It is straightforward by writing and compounding
the expansions of U and V provided by Definition 3.10. �

3.4. The subalgebra of polynomials in Cb(P(E)). In Section 2 we de-
fined a map Rℓ : C(Eℓ)→ Cb(P(E)), which may be used to define a subal-
gebra of polyomials in Cb(P(E)). We first define the monomials:

Definition 3.13. A monomial in Cb(P(E)) of degree ℓ is a function Rℓ[ϕ]
with ϕ = ϕ1 ⊗ · · · ⊗ ϕℓ, ϕi ∈ Cb(E) and ℓ ∈ N. Explicitly

Rℓ[ϕ](f) =

∫

Eℓ

ϕ(z1, . . . , zℓ) df
⊗ℓ(z1, . . . , zℓ)

=
ℓ
∏

j=1

∫

E
ϕj(z) df(z) ,

which is well-defined for all f ∈ P(E).

The product of two monomials is defined in a natural way by Rℓ1 [φ]Rℓ2 [ψ] =
Rℓ1+ℓ2 [φ⊗ψ], and the polynomial functions are linear combinations of mono-
mials. These form a subalgebra of Cb(P(E)) that contains the constants and
separates points in P(E), and hence the Stone-Weierstrass Theorem implies
that this subalgebra is dense in Cb(P(E)), where the meaning of “dense”
depends on the topology chosen on P(E).

While the polynomials in R always are differentiable, the smoothness of the
polynomials depends on the metric structure. We need first some preliminary
definitions.

Definition 3.14. • Duality of type 1: We say that a pair (F ,G) of
normed vector spaces such that F ⊂ Cb(E) and P(E) − P(E) ⊂ G
satisfies a duality inequality if

(3.11) ∀ f, g ∈ P(E), ∀ϕ ∈ F , |〈(f − g), ϕ〉| ≤ C ‖f − g‖G ‖ϕ‖F .
• Duality of type 2: More generally we say that a pair (F ,PG(E)) of

a normed vector space F ⊂ Cb(E) endowed with the norm ‖ · ‖F and
a probability space PG(E) ⊂ P(E) endowed with a metric dG satisfies
a duality inequality if

(3.12) ∀ f, g ∈ PG(E), ∀ϕ ∈ F , |〈g − f, ϕ〉| ≤ C distG(f, g) ‖ϕ‖F .

Lemma 3.15. If ϕ ∈ Fℓ and the pair (F ,G) satisfy a duality of type 1, the
polynomial function Rℓ[ϕ] is of class Ck,1(PG(E),R) for any k ≥ 0. In the
more general case where the pair (F ,PG(E)) satisfies a duality of type 2, the
polynomial function Rℓ[ϕ] is at least of class C0,1(PG(E),R).
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Proof. It is clearly enough to prove the lemma for monomials, and the proof
then mainly follows from the multilinearity of R. In the case of duality of
type 2, then the conclusion follows from

Rℓ[ϕ](f2)−Rℓ[ϕ](f1) =

ℓ
∑

i=1





∏

1≤k<i

〈ϕk, f2〉



 〈ϕi, f2 − f1〉





∏

i<k≤ℓ

〈ϕk, f1〉



 .

In the case of duality of type 1, we define

G → R, h 7→ DRℓ[ϕ](f)(h) :=

ℓ
∑

i=1





∏

j 6=i

〈ϕj , f〉



 〈ϕi, h〉,

and we write

Rℓ[ϕ](f2)−Rℓ[ϕ](f1)−DRℓ[ϕ](f1)(f2 − f1) =

=
∑

1≤j<i≤ℓ





∏

1≤k<j

〈ϕk, f2〉



 〈ϕj , f2 − f1〉





∏

j<k<i

〈ϕk, f1〉



×

× 〈ϕi, f2 − f1〉





∏

i<k≤ℓ

〈ϕk, f1〉



 .

We deduce then
∣

∣

∣
Rℓ[ϕ](f2)−Rℓ[ϕ](f1)

∣

∣

∣
≤ ‖ϕ‖1,F⊗(L∞)ℓ−1 ‖f2 − f1‖G ,

∣

∣

∣
DRℓ[ϕ](f1)(h)

∣

∣

∣
≤ ‖ϕ‖1,F⊗(L∞)ℓ−1 ‖h‖G ,

∣

∣

∣
Rℓ[ϕ](f2)−Rℓ[ϕ](f1)−DRℓ[ϕ](f1)(f2 − f1)

∣

∣

∣
≤ ‖ϕ‖1,F2⊗(L∞)ℓ−2 ‖f2 − f1‖2G ,

where

‖ϕ‖1,Fk⊗(L∞)ℓ−k :=
∑

{i1,...,ik}⊂{1,...,ℓ}

‖ϕi1‖F · · · ‖ϕik‖F
∏

j 6=(i1,...,ik)

‖ϕj‖L∞(E)

≤







ℓ ‖ϕ‖∞,F⊗(L∞)ℓ−1 for k = 1,

ℓ(ℓ− 1)

2
‖ϕ‖∞,F2⊗(L∞)ℓ−2 for k = 2,

and we have defined

‖ϕ‖∞,Fk⊗(L∞)ℓ−k := max
i1,...,ik distinct in [|1,ℓ|]

‖ϕi1‖F · · · ‖ϕik‖F
∏

j 6=(i1,...,ik)

‖ϕj‖L∞(E)

≤ ‖ϕ‖F⊗ℓ ,

since ‖ · ‖L∞(E) ≤ ‖ · ‖F . This proves that Rℓ[ϕ] ∈ C1,1(PG(E),R). The
cases k ≥ 2 are proved similarly. �
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4. Assumptions and technical lemmas

In this section we collect the lemmas used in the proof of Theorem 2.1,
and the technical assumptions that are needed.

The first assumption is simply the statement that the N -particle dynamics
is well defined and invariant under permutation of the particles.

(A1) N-particle semigroup. The family TN
t consists of strongly

continuous Markov semigroups on Cb(E
N ) that are invariant

under permutations of indices. We denote their generator
by GN and we denote by SN

t the dual semigroup on the N -
particle distributions.

4.1. The generator of the pullback semigroup. While the definition of
TN
t and its generator is rather standard, it takes more care when defining

the pullback of the nonlinear semigroup and the corresponding generator.
The second assumption that we need to impose on the system is related to
this, and relates to our definition of a differential calculus of functions on
P(E).

(A2) Nonlinear semigroup. Consider a probability space
PG1(E) (defined in Definition 3.1) associated to a weight func-
tion mG1 , endowed with the metric induced from a normed
space G1, and with bounded diameter. Assume that for any
τ > 0 we have:
(i) The equation (1.2) generates a continuous semigroup

SNL
t on PG1(E) which is uniformly Lipschitz continuous:

there exists Cτ > 0 such that

∀ f, g ∈ PG1(E), sup
t∈[0,τ ]

distG1

(

SNL
t f, SNL

t g
)

≤ Cτ distG1(f, g).

(ii) There exists δ ∈ (0, 1] such that the (possibly nonlinear)
generator Q (introduced in equation (1.2)) is bounded
and δ-Hölder continuous from PG1(E) into G1 in the
following sense: there exist L,K > 0 so that for any
f, g ∈ PG1(E)

‖Q(f)‖G1 ≤ K, ‖Q(f)−Q(g)‖G1 ≤ L ‖f − g‖δG1
.

This assumption is sufficient for defining the generator of T∞
t :

Lemma 4.1. Under assumption (A2) the pullback semigroup T∞
t is a con-

traction semigroup on the Banach space UC(PG1(E);R) and its generator
G∞ is an unbounded linear operator on UC(PG1(E);R) with domain Dom(G∞)
containing C1,1(PG1(E);R). It is defined by
(4.1)
∀Φ ∈ C1,1(PG1(E);R), ∀ f ∈ PG1(E), (G∞Φ) (f) = 〈DΦ[f ], Q(f)〉 .
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Proof. The proof is split into several steps.
Step 1. We claim that for any fin ∈ PG1(E) and τ > 0 the map

S(fin) : [0, τ)→ PG1(E), t 7→ SNL
t (fin)

is right-differentiable at t = 0+ with S(fin)
′(0) = Q(fin).

Denote ft := SNL
t fin. First, since Q(ft) is bounded in G1 uniformly on

t ∈ [0, τ ] from (A2)-(ii), we have, uniformly on fin ∈ PG1(E),

(4.2) ‖ft − fin‖G1 =

∥

∥

∥

∥

∫ t

0
Q(fs) ds

∥

∥

∥

∥

G1

≤ K t,

and then using (A2)-(ii) and the inequality (4.2) we obtain

‖ft − fin − tQ(fin)‖G1 =

∥

∥

∥

∥

∫ t

0
(Q(fs)−Q(fin)) ds

∥

∥

∥

∥

G1

= L

∫ t

0
‖fs − fin‖δG1

ds

≤ L

∫ t

0
(K s)δ ds = LKδ t

1+δ

1 + δ
,

which implies the claim.
Step 2. We claim that (T∞

t ) is a C0-semigroup of linear and bounded (in
fact contraction) operators on UC(PG1(E);R). Indeed, first for any Φ ∈
UC(PG1(E);R) and denoting by ωΦ the modulus of continuity of Φ, we have

|(T∞
t Φ)(g)− (T∞

t Φ)(f)| =
∣

∣Φ(SNL
t (g)) − Φ(SNL

t (g))
∣

∣

≤ ωΦ

(

distG1

(

SNL
t (g), SNL

t (f)
))

≤ ωΦ (Cτ distG1(f, g))

so that T∞
t Φ ∈ UC(PG1(E);R) for any t ≥ 0. Next, we have

‖T∞
t ‖ = sup

‖Φ‖≤1
‖T∞

t Φ‖ = sup
‖Φ‖≤1

sup
f∈PG1

(E)

∣

∣Φ(SNL
t (f))

∣

∣ ≤ 1, ‖Φ‖ = sup
h∈PG1

(E)
|Φ(h)|.

Finally, from (4.2), for any Φ ∈ UC(PG1(E);R), we have

‖T∞
t Φ− Φ‖ = sup

f∈PG1
(E)

∣

∣Φ(SNL
t (f))− Φ(f)

∣

∣ ≤ ωΦ(K t)→ 0 as t→ 0+.

As a consequence, Hille-Yosida Theorem (see for instance [33, Theorem 3.1])
implies that (T∞

t ) is associated to a closed generator G∞ with dense domain
dom(G∞) ⊂ UC(PG1(E);R).

Step 3. A candidate for this generator is defined as follows. Let G̃∞ be
defined by

∀Φ ∈ C1,1(PG1(E);R), ∀ f ∈ PG1(E), (G̃∞Φ)(f) := 〈DΦ[f ], Q(f)〉 .
The RHS is well defined since DΦ(f) ∈ B(G1,R) = G′1 and Q(f) ∈ G1 by
assumption. Moreover, since both f 7→ DΦ[f ] and f 7→ Q(f) are uniformly
continuous so is the map f 7→ (G̃∞Φ)(f). It yields G̃∞Φ ∈ UC(PG1(E);R).
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Step 4. Finally, by composition,

∀ f ∈ PG1(E)(E), t 7→ T∞
t Φ(f) = Φ ◦ SNL

t (f)

is right-differentiable at t = 0+ and

d

dt
(T∞

t Φ)(f)|t=0 :=
d

dt
(Φ ◦ S(f)(t))|t=0

=

〈

DΦ(S(f)(0)), d
dt
S(f)(0)

〉

= 〈DΦ[f ], Q(f)〉 =
(

G̃∞Φ
)

(f),

which implies Φ ∈ Dom(G∞) and (4.1). �

4.2. Estimates in the proof of Theorem 2.1. The proof of Theorem 2.1
relies on the three following lemmas, together with their assumptions.

4.2.1. Estimate of T1. The first error term is estimated by the following
combinatorics argument.

Lemma 4.2. Let SN
t , µNZ and Rℓ[ϕ] as defined in Section 2 (see Figure 1),

and let ϕ ∈ Cb(Eℓ). For any t ≥ 0 and any N ≥ 2ℓ
(4.3)

T1 :=
∣

∣

∣

〈

SN
t (f⊗N

in ), ϕ⊗ 1⊗N−ℓ
〉

−
〈

SN
t (f⊗N

in ), Rℓ[ϕ] ◦ µNZ
〉∣

∣

∣
≤

2 ℓ2 ‖ϕ‖L∞(Eℓ)

N
.

Proof. Since SN
t (f⊗N

in ) is a symmetric probability measure, estimate (4.3) is
a direct consequence of the following estimate: For any ϕ ∈ Cb(E

ℓ) and any
N ≥ 2ℓ we have

(4.4)

∣

∣

∣

∣

(

ϕ⊗ 1
⊗N−ℓ

)

sym
− πNRℓ[ϕ]

∣

∣

∣

∣

≤
2 ℓ2 ‖ϕ‖L∞(Eℓ)

N
.

Here the symmetrized version of a function φ ∈ Cb(E
N ), is defined as

(4.5) φsym =
1

|SN |
∑

σ∈SN

φσ.

As a consequence for any symmetric measure fN ∈ Psym(E
N ) we have

(4.6)
∣

∣

∣
〈fN , Rℓ[ϕ](µNZ )〉 − 〈fN , ϕ〉

∣

∣

∣
≤

2 ℓ2 ‖ϕ‖L∞(Eℓ)

N
.

To establish the inequality (4.4), we let ℓ ≤ N/2 and introduce

AN,ℓ :=
{

(i1, . . . , iℓ) ∈ {1, . . . , N}ℓ : ∀ k 6= k′, ik 6= ik′
}

and BN,ℓ := Ac
N,ℓ.
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Since there are N(N − 1) . . . (N − ℓ+ 1) ways of choosing ℓ distinct indices
among {1, . . . , N} we get

|BN,ℓ|
N ℓ

= 1−
(

1− 1

N

)

. . .

(

1− ℓ− 1

N

)

= 1− exp

(

ℓ−1
∑

i=0

ln

(

1− i

N

)

)

≤ 1− exp

(

−2
ℓ−1
∑

i=0

i

N

)

≤ ℓ2

N
,

where we have used

∀x ∈ [0, 1/2], ln(1− x) ≥ −2x and ∀x ∈ R, e−x ≥ 1− x.
Then we compute

Rℓ[ϕ](µNZ ) =
1

N ℓ

N
∑

i1,...,iℓ=1

ϕ(zi1 , . . . , ziℓ)

=
1

N ℓ

∑

(i1,...,iℓ)∈AN,ℓ

ϕ(zi1 , . . . , ziℓ) +
1

N ℓ

∑

(i1,...,iℓ)∈BN,ℓ

ϕ(zi1 , . . . , ziℓ)

=
1

N ℓ

1

(N − ℓ)!
∑

σ∈SN

ϕ(zσ(1) , . . . , zσ(ℓ)) +O
(

ℓ2

N
‖ϕ‖L∞

)

=
1

N !

∑

σ∈SN

ϕ(zσ(1), . . . , zσ(ℓ)) +O
(

2 ℓ2

N
‖ϕ‖L∞

)

and the proof of (4.4) is complete. Next for any fN ∈ P(EN ) we have
〈

fN , ϕ
〉

=

〈

fN ,
(

ϕ⊗ 1
⊗N−ℓ

)

sym

〉

,

and (4.6) follows from (4.4). �

4.2.2. Estimate of T2. The second error term is estimated thanks to a con-
sistency result for the generators of the N particle system and the limiting
dynamics, and stability estimates on the limiting dynamics. To proceed we
need to introduce the two corresponding assumptions.

(A3) Convergence of the generators. Let PG1(E) be the probabil-
ity space endowed with a metric considered in (A2). For k = 1
or 2 there is a function ε(N) with limN→∞ ε(N) = 0 such that
for all N ∈ N: and all Φ ∈ Ck,1(PG1(E);R), the generators GN

satisfy

(4.7)
∥

∥GN (πN Φ)− πN G∞(Φ)
∥

∥

L∞(EN )
≤ ε(N) ‖Φ‖Ck,1(PG1

(E)).

where Q is the nonlinear operator involved in equation (1.2), and
G∞(Φ) = 〈Q,DΦ〉 is the generator of the pullback semigroup
T∞.
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(A4) Differential stability of the limiting semigroup. We assume
that the flow SNL

t is Ck,1(PG1(E),PG2(E)) in the sense that there
exists CT > 0 such that

(4.8)
∫ T

0

∥

∥SNL
t

∥

∥

Ck,1(PG1
(E),PG2

(E))
dt ≤ CT

where PG2(E) is the same subset of probabilities as PG1(E), en-
dowed with the norm associated to a normed space G2 ⊃ G1
possibly larger than G1 and where k is the same integer as above.

Lemma 4.3. Suppose that the assumptions (A1) to (A4) are satisfied, and
let T2 be as defined in equation (2.8). Then

T2 :=
∣

∣

∣

〈

f⊗N
in

, TN
t (Rℓ[ϕ] ◦ µNZ )

〉

−
〈

f⊗N
in

,
(

(T∞
t Rℓ[ϕ]) ◦ µNZ

)〉∣

∣

∣
(4.9)

≤ C(k, ℓ)CT ε(N) ‖ϕ‖Fk
1 ⊗(L∞)ℓ−k

for an explicitly given constant C(k, ℓ) depending only on k and ℓ.

Proof. We start from the following identity

TN
t πN − πNT∞

t = −
∫ t

0

∂

∂s

(

TN
t−s πN T

∞
s

)

ds

=

∫ t

0
TN
t−s

[

GNπN − πNG∞
]

T∞
s ds ,

which we evaluate on Φ = Rℓ[φ] ∈ Cb(P(E)). From assumption (A3) we
have for any t ∈ [0, T ]

∣

∣

∣

〈

f⊗N
in , TN

t πNR
ℓ[ϕ]− πNT∞

t Rℓ[ϕ]
〉∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

〈

SN
t−s

(

fNin
)

,
[

GNπN − πNG∞
]

(T∞
s Rℓ[ϕ])

〉

ds

∣

∣

∣

∣

≤
∫ T

0

∥

∥

∥

[

GNπN − πNG∞
]

(T∞
s Rℓ[ϕ])

∥

∥

∥

L∞(EN )
ds

≤ ε(N)

∫ T

0

∥

∥

∥
T∞
s Rℓ[ϕ]

∥

∥

∥

Ck,1(PG1
(E))

ds.(4.10)

Since T∞
t (Rℓ[ϕ]) = Rℓ[ϕ] ◦ SNL

t with SNL
t ∈ Ck,1(PG1(E),PG2(E)) thanks

to assumption (A4) and Rℓ[ϕ] ∈ Ck,1(PG2(E),R) because ϕ ∈ F⊗ℓ
2 (see

Subsection 3.4), we obtain with the help of Lemma 3.12 that T∞
t (Rℓ[ϕ]) ∈

Ck,1(PG1(E)) with uniform bound. We hence conclude that

(4.11)
∫ T

0

∥

∥

∥
T∞
s (Rℓ[ϕ])

∥

∥

∥

Ck,1(PG1
(E))

ds ≤ C(k, ℓ)CT

∥

∥

∥
Rℓ[ϕ]

∥

∥

∥

Ck,1(PG2
)
,

where C(k, ℓ) ≤ ℓ2 since k = 1 or k = 2.
Going back to the computation (4.10), and plugging (4.11) we deduce

(4.9). �
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4.2.3. Estimate of T3. The error term T3 from equation (2.8) depends on
estimating how well the initial data for the nonlinear equation fin can be
approximated by an empirical measure, and how well this error is then prop-
agated along the semigroup. To this purpose we need to make a stability
assumption for the limiting semigroup.

(A5) Weak stability of the limiting semigroup. There is proba-
bility space PG3(E) (corresponding to to a weight function mG3

and metric distG3) such that every T > 0 there exists a constant
C̃T > 0 such that

(4.12)
∀ f1, f2 ∈ PG3(E), sup

[0,T )
distG3

(

SNL
t (f1), S

NL
t (f2)

)

≤ C̃T distG3(f1, f2).

Remark 4.4. Observe that when PG1(E) = PG1(E) = PG3(E) with the same
weights and distances, the assumption (A5) is included in (A4). However
it is crucial to have the flexibility to play with different metric structures in
these assumptions.

Lemma 4.5. Assume that the limiting semigroup SNL
t satisfies assumption

(A5) for some probability space PG3(E). Let F3 satisfies a duality inequality
with PG3(E) as defined in Definition 3.14. Let ϕ ∈ Cb(E

ℓ).
Then for any fin ∈ P(E), t > 0 and N ≥ 2ℓ we have

(4.13) T3 :=
∣

∣

∣

〈

f⊗N
in ,

(

T∞
t Rℓ[ϕ]

)

◦ µNZ
〉

−
〈

(

SNL
t (fin)

)⊗k
, ϕ
〉∣

∣

∣

≤ ℓ C̃T ΩG3
N (fin) ‖ϕ‖F3⊗(L∞)ℓ−1 ,

where ΩG3
N (fin) is defined in (2.7) and ‖ϕ‖F3⊗(L∞)ℓ−1 is defined in the proof

of Lemma 3.15.

Proof. We split T3 in two terms, the first one being

T3,1 :=
〈

f⊗N
in ,

(

T∞
t Rℓ[ϕ]

)

◦ µNZ
〉

=

∫

EN

Rℓ[ϕ]
(

SNL
t

(

µNZ
))

fin(dz1) . . . fin(dzN )

=

∫

EN

(

ℓ
∏

i=1

ai(Z)

)

fin(dz1) . . . fin(dzN ),

with

∀ i = 1, . . . , ℓ, ai = ai(Z) :=

∫

E
ϕi(w)S

NL
t (µNZ )(dw).

Similarly, we write for the second term

T3,2 =
〈

(

SNL
t (fin)

)⊗ℓ
, ϕ
〉

=

∫

EN

(

ℓ
∏

i=1

bi

)

fin(dz1) . . . fin(dzN ),
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with

∀ i = 1, . . . , ℓ, bi :=

∫

E
ϕi(w)S

NL
t (fin)(dw).

Using the identity

ℓ
∏

i=1

ai −
ℓ
∏

i=1

bi =
ℓ
∑

i=1

a1 . . . ai−1 (ai − bi) bi+1 . . . bℓ,

we get

(4.14) T3 ≤
ℓ
∑

i=1





∏

j 6=i

‖ϕj‖L∞(E)





∫

EN

|ai(Z)− bi| fin(dz1) . . . fin(dzN ).

Then by using the duality bracket together with assumption (A5) we have

|ai(Z)− bi| :=

∣

∣

∣

∣

∫

E
ϕi(w)

(

SNL
t (fin)(dw)− SNL

t (µNV )(dw)
)

∣

∣

∣

∣

≤ ‖ϕi‖F3 distG3

(

SNL
t (fin), S

NL
t (µNZ )

)

≤ C̃T ‖ϕi‖F3 distG3

(

fin, µ
N
Z

)

.(4.15)

Therefore combining (4.14) and (4.15) (for any 1 ≤ i ≤ ℓ), we conclude that
(4.13) holds. �

In order to use Lemma 4.5 we need an estimate on the term ΩG3
N (fin). This

information is provided by the following quantitative version of the law of
large number for empirical measures taken from [35]. We refer to [32] for a
more detailed discussion of this issue.

Lemma 4.6. For any fin ∈ Pd+5(R
d) and any N ≥ 2 there exists a constant

C which only depends on d and Md+5(fin) so that

Ω
W 2

2
N (fin) =

∫

RdN

W2(µ
N
Z , fin)

2 f⊗N
in (dZ) ≤ C N− 2

d+4 .

4.3. A remark on assumption (A4). In this section we briefly explain
how our key estimate (A4) can be obtained in the case of a nonlinear oper-
ator Q which splits into a linear part and a bilinear part:

∀f ∈ P(E), Q(f) = Q1(f) +Q2(f, f)(4.16)

with Q1 linear and Q2 bilinear symmetric.
For two initial data fin and gin in a space PG(E) of probability measures,

and some initial data hin ∈ G we introduce the following evolution equations,














∂tg = Q(g) = Q1(g) +Q2(g, g), g|t=0 = gin,

∂tf = Q(f) = Q1(f) +Q2(f, f), f|t=0 = fin,

∂th = DQ[f ](h) = Q1(h) + 2Q2(f, h), h|t=0 = hin
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In the third equation the solution ht depends linearly on hin (but also
nonlinearly on fin): it is formally the first-order variation of the semigroup,
i.e. DSNL

t fin(hin) = ht.
We now want to write a second-order variation of the semigroup. To this

purpose we conside ht and h̃t two solutions to the third equation above and
write

∂tr = DQ[f ](r)+
1

2
D2Q(f)(h, h̃) = Q1(r)+2Q2(f, r)+Q2(h, h̃), r|t=0 = 0.

In this fourth equation rt depends bilinearly on ht and h̃t which are two
solutions to the third equation, and therefore bilinearly on hin, h̃in (it also
depends nonlinearly on fin again): it is formally the second-order derivative
of the semigroup D2SNL

t [fin](hin, h̃in) = rt. Observe that the initial data rin
are always zero for this second variation problem since the map (ft)t≥0 7→ fin

is linear.
Consider now hin = h̃in = gin − fin (which implies ht = h̃t). Let us define

s := f + g, d := g − f , ω := g − f − h, ψ := g − f − h− r, for which we get
the following evolution equations















∂td = Q1(d) +Q2(s, d), d|t=0 = din = gin − fin,

∂tω = Q1(ω) +Q2(s, ω) +Q2(h, d), ω|t=0 = 0,

∂tψ = Q1(ψ) +Q2(s, ψ) +Q2(h, ω) +Q2(r, d), ψ|t=0 = 0.

Now we can translate the regularity estimates on SNL
t in terms of estimates

on these solutions on some given time interval [0, T ]:


































































sup
t∈[0,T ]

‖dt‖G2 ≤ CT ‖din‖G1 =⇒ SNL
t ∈ C0,1(PG1(E), PG2(E))















SNL
t ∈ C0,1(PG1(E), PG2(E))

supt∈[0,T ] ‖ht‖G2 ≤ CT ‖hin‖G1

supt∈[0,T ] ‖ωt‖G2 ≤ CT ‖din‖2G1















=⇒ SNL
t ∈ C1,1(PG1(E), PG2(E))















SNL
t ∈ C1,1(PG1(E), PG2(E))

supt∈[0,T ] ‖rt‖G2 ≤ CT ‖hin‖G1‖h̃in‖G1

supt∈[0,T ] ‖ψt‖G2 ≤ CT ‖din‖3G1















=⇒ SNL
t ∈ C2,1(PG1(E), PG2(E)).

Such estimates are typically obtained by energy estimates for the equations
satisfied by d, r, ω and ψ, for a well chosen “cascade” of norms connecting
‖ · ‖G1 to ‖ · ‖G2 (see later in the applications).

5. Maxwell molecule collisions with cut-off

5.1. The model. In this section we assume that E = R
d, d ≥ 2, and

we consider an N -particle system undergoing a space homogeneous random
Boltzmann collisions according to a collision kernel b ∈ L1([−1, 1]) only
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depending on the deviation angle and locally integrable. This is usually
called Maxwellian molecules with Grad’s angular cut-off, as introduced in
[23, 24, 29]. We make the normalization hypothesis

‖b‖L1 =

∫

Sd−1

b(σ1) dσ = 1.

Let us now describe the stochastic process. Since the phase space EN

corresponds to the velocities of the particles, we shall denote Z = V in
this section. Given a pre-collisional N -system of velocity particles V =
(v1, . . . , vN ) ∈ EN = (Rd)N , the stochastic runs as follows:

(i) for any i′ 6= j′, we draw randomly for the pair of particles (vi′ , vj′)
a random time Ti′,j′ of collision according to an exponential law of
parameter 1, and then choose the collision time T1 and the colliding
pair (vi, vj) (which is a.s. well-defined) in such a way that

T1 = Ti,j := min
1≤i′ 6=j′≤N

Ti′,j′ ;

(ii) we then choose σ ∈ S
d−1 at random according to the law b(cos θij)

where we define the angular deviation θij by cos θij = σ·(vj−vi)/|vj−
vi|;

(iii) the new state after collision at time T1 becomes

V ∗ = V ∗
ij = Rij,σV = (v1, . . . , v

∗
i , . . . ., v

∗
j , . . . , vN ),

where the rotation Rij,σ on the (i, j) pair with vector σ is defined by

(5.1) v∗i =
wij

2
+
u∗ij
2
, v∗j =

wij

2
−
u∗ij
2
,

with

wij = vi + vj , u∗ij = |uij|σ, uij = vi − vj .

Scaling the time by a factor 1/N and repeating the above construction
lead to the definition of a Markov process (VNt ) on (Rd)N . It is associated to
a Feller semigroup (TN

t ) with generator GN . Moreover the master equation
on the law fNt is given in dual form by

(5.2)
d

dt
〈fNt , ϕ〉 = 〈fNt , GNϕ〉

with

(5.3) (GNϕ)(V ) =
1

N

N
∑

1≤i<j≤N

∫

Sd−1

b(cos θij)
[

ϕ∗
ij − ϕ

]

dσ

where ϕ∗
ij = ϕ(V ∗

ij) and ϕ = ϕ(V ) ∈ Cb(R
Nd). Finally, the flow fNin 7→ fNt

defines a semigroup SN
t for the N -particle distributions which is nothing but

the dual semigroup of TN
t .
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Note that the collision process is invariant under permutation of the veloc-
ities, and satisfies the microscopic conservations of momentum and energy
at any collision time

∀α = 1, . . . , d,
∑

k

v∗kα =
∑

k

vkα, |V ∗|2 = |V |2 :=
N
∑

k=1

|vk|2.

We write V = (vi)1≤i≤N = (v1, . . . , vN ) ∈ EN and v = (vα)1≤α≤d ∈ R
d,

so that V = (viα) ∈ R
Nd with viα ∈ R.

As a consequence, for any symmetric initial law f⊗N
in ∈ Psym(R

Nd) the
law density fNt remains a symmetric probability and conserves momentum
and energy






















∀α = 1, . . . , d,

∫

RdN

(

N
∑

k=1

vkα

)

fNt (dv) =

∫

RdN

(

N
∑

k=1

vkα

)

f⊗N
in (dv),

∀ θ : R+ → R+,

∫

RdN

θ(|V |2) fNt (dv) =

∫

RdN

θ(|V |2) f⊗N
in (dv).

The formal limit of this N -particle system is the nonlinear homogeneous
Boltzmann equation on P(Rd) defined by

(5.4)
∂

∂t
ft = Q(ft, ft)

where the quadratic Boltzmann collision operator Q is defined by

(5.5) 〈Q(f, f), ϕ〉 :=
∫

R2d×Sd−1

b(θ) (φ(w∗
2)− φ(w2)) dσ f(dw1) f(dw2)

for ϕ ∈ Cb(R
d) and f ∈ P(Rd), with

(5.6) w∗
1 =

w1 + w2

2
+
|w2 − w1|

2
σ, w∗

2 =
w1 + w2

2
− |w2 − w1|

2
σ

and cos θ = σ · (v −w)/|v −w|. The equation (5.4)-(5.5) is the space homo-
geneous Boltzmann equation for elastic collisions associated to the Maxwell
molecules cross section with Grad’s cutoff. We refer to the textbooks [10] and
[40] and the numerous references therein for both the physical background
and the mathematical theory of the Boltzmann equation. This equation gen-
erates a nonlinear semigroup SNL

t on P(Rd) defined by SNL
t fin := ft for any

fin ∈ P(Rd), which satisfies conservation of momentum and energy:

∀ t ≥ 0,

∫

Rd

v ft(dv) =

∫

Rd

v fin(dv),

∫

Rd

|v|2 ft(dv) =
∫

Rd

|v|2 fin(dv).

5.2. Statement of the result. On the one hand, it is well known that for
the collision kernel that we have chosen the N -particle Markov process (VNt )
described above is well defined for any initial velocity VN0 , and in particular,
for any given initial law fNin ∈ Psym((R

d)N ) there exists a unique solution
fNt ∈ Psym((R

d)N ) to equations (5.2)-(5.3) so that the N -particle semigroup
SN
t is well defined, see [24, 25, 38, 30]. On the other hand, it is also well



30 S. MISCHLER, C. MOUHOT, AND B. WENNBERG

known that for any fin ∈ Pq(Rd), q ≥ 0 the nonlinear Boltzmann equa-
tion (5.4)-(5.5) has a unique solution ft ∈ Pq(Rd). This solution conserves
momentum and energy as soon as q ≥ 2, see for instance [38, 39, 14, 40].

Our mean field limit result then states as follows.

Theorem 5.1 (The Boltzmann equation for Maxwell molecules with Grad’s
cut-off). Consider an initial distribution fin ∈ Pq(Rd), q ≥ 2, the hierarchy

of N -particle distributions fNt = SN
t (f⊗N

in ) following (5.2), and the solution
ft = SNL

t (fin) following (5.4).
Then there is a contant C > 0 and, for any T > 0, there are constants

CT , C̃T > 0 such that for any

ϕ = ϕ1 ⊗ · · · ⊗ ϕℓ ∈ F⊗ℓ, F := Cb(R
d) ∩ Lip(Rd), ‖ϕj‖F ≤ 1,

we have for N ≥ 2ℓ:
(5.7)

sup
[0,T ]

∣

∣

∣

〈(

SN
t (fNin )−

(

SNL
t (fin)

)⊗N
)

, ϕ
〉∣

∣

∣ ≤ C ℓ2

N
+ CT

ℓ2

N
+ C̃T ℓΩ

W2
N (fin)

where ΩW2
N was defined in (2.7) and W2 is the quadratic MKW distance

defined in (3.3).
As a consequence of (5.7) and Lemma 4.6, this implies propagation of

chaos with rate ε(N) ≤ C(ℓ, T, fin)N
− 1

d+4 for any initial data fin ∈ Pd+5(R
d),

where C(ℓ, T, fin) is an explicitly computable constant.

For the Boltzmann equation with bounded kernel, propagation of chaos
has been established by McKean in [29], where he adapted the method intro-
duced by Kac in [24] based on the Wild sum representation of the solutions to
the Boltzmann equation. Grünbaum in [21] gave an alternative proof based
on the same “duality viewpoint” as developed in the present paper. Sznit-
man in [36] also gave a proof of propagation of chaos based on a nonlinear
martingale approach. In all these works, propagation of chaos is proved but
without any rate of convergence (as the number of particles goes to infinity).
Graham and Méléard in [18, 19, 30] were then able to prove the propagation
of the chaos with the sharp rate C(ℓ, T )/N . Their proof is based on the con-
struction of a stochastic tree associated to the process VNt which is specific
to the Boltzmann equation with bounded kernel. More recently Kolokoltsov
in [26] proved a fluctuation estimate for similar processes using a “duality
view point” like the one developed by Grünbaum and used also in our work.
His fluctuation estimate is similar to our Lemma 4.9 (and of the same order),
but pays less attention to the remaing terms of our estimate. Fournier and
Godinho [15] prove the propagation of chaos for a one-dimensional caricature
of the Boltzmann equation using a coupling method in the spirit of [38, 37].
Their chaoticity estimate is of the same rate as ours.

5.3. Proof of Theorem 5.1. The assumptions (A1)-(A2)-(A3)-(A4)-
(A5) needed to apply Theorem 2.1 will be verified step by step. In this proof
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we fix F1 = F2 = C0(R
d) and F3 = Lip(Rd) and define PG1(E) = PG2(E) :=

P(Rd) endowed with the total variation norm ‖ · ‖TV , PG3(E) := P2(Rd)
endowed with the quadratic MKW distance W2. Notice that (G1,F1) and
(G2,F2) satisfy a duality inequality of type 1, and (PG3 ,F3) satisfy a duality
of type 2 (see Definition 3.13).

Proof of (A1). The symmetry assumption is satisfied because of the well-
known properties of the Boltzmann-Kac N -particle system, and we refer to
the previous works [29, 21, 18, 19, 30] for details.

Proof of (A3). We claim that there exists C1 ∈ R+ such that for all
Φ ∈ C1,1(PG1(E),R)
(5.8)
∥

∥GN (Φ ◦ µNV )−
〈

Q(µNV , µ
N
V ),DΦ[µNV ]

〉∥

∥

L∞(EN )
≤ C1

N
‖Φ‖C1,1(PG1

(E),R),

which is nothing but (A3) with k = η = 1 and ε(N) = C1N
−1.

Take Φ ∈ C1,1(PG1(E),R), set φ = DΦ[µNV ] and compute

GN (Φ ◦ µNV ) =
1

N

∑

1≤i<j≤N

∫

Sd−1

b(θij)
[

Φ(µNV ∗
ij
)−Φ(µNV )

]

dσ

=
1

N

∑

1≤i<j≤N

∫

Sd−1

b(θij) 〈µNV ∗
ij
− µNV , φ〉dσ (= I1(V ))

+
1

N

∑

1≤i<j≤N

∫

Sd−1

O
(

‖Φ‖C1,1

∥

∥

∥µNV ∗
ij
− µNV

∥

∥

∥

2

TV

)

dσ (= I2(V )).

On the one hand, we have

I1 =
1

2N2

N
∑

i,j=1

∫

Sd−1

b(θij)
[

φ(v∗i ) + φ(v∗j )− φ(vi)− φ(vj)
]

dσ

=
1

2

∫

Rd

∫

Rd

∫

Sd−1

b(θ) [φ(v∗) + φ(w∗)− φ(v)− φ(w)] µNV (dv)µNV (dw) dσ

=
〈

Q(µNV , µ
N
V ), φ

〉

.

On the other hand, we have

I2(V ) =
1

2N

N
∑

i,j=1

∫

Sd−1

O
(

‖Φ‖C1,1

(

4

N

)2
)

dσ

≤ 8
‖Φ‖C1,1

N





N
∑

i,j=1

1

N2



 ≤ 8 ‖b‖‖Φ‖C1,1

N
.

Collecting these two terms we have proved that (5.8) holds.
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Proof of (A4). Here we prove that for any f, h ∈ P (Rd) and for any
T > 0

(5.9) sup
t∈[0,T ]

∥

∥

∥
SNL
t (g)−SNL

t (f)−LS∞
t [f ](g− f)

∥

∥

∥

TV
≤ e4 ‖γ‖∞ T ‖g− f‖2TV ,

where LS∞
t [f ] is the linearization of SNL

t at f . As a consequence, this implies
that (A4) holds with k = η = 1 and the previous definitions of PG1(E) and
PG2(E). We denote by ft, gt, ht the solutions to the following equations:



















∂tft = Q(ft, ft), f|t=0 = fin,

∂tgt = Q(gt, gt), g|t=0 = gin,

∂tht = 2Q̃(ft, ht) := Q(ft, ht) +Q(ht, ft), h|t=0 = hin,

where Q̃ denotes the symmetrized form of the bilinear collision operator.
The third equation corresponds to the first-order variation of the semigroup:
LS∞

t [f ](hin) = ht solution to this equation.
Standard Gronwall arguments show the existence and uniqueness of such

solutions, which moreover satisfy, uniformly on [0, T ]

‖ht‖TV ≤ e2 T ‖hin‖TV , ‖gt − ft‖TV ≤ e2T ‖gin − fin‖TV .

Next, writing rt := gt − ft − ht, we find that this expression satisfies the
equation

∂trt = Q̃(ft + gt, rt) + Q̃(gt − ft, ht), rin = 0.

Introducing yt := ‖rt‖TV , we have

y′t ≤
1

2
‖Q̃(ft + gt, rt)‖TV + ‖Q̃(gt − ft, ht)‖TV

≤ ‖γ‖∞ ‖ft + gt‖TV ‖rt‖TV +C ‖gt − ft‖TV ‖ht‖TV

≤ C yt + C e4t ‖h− f‖2TV ,

from which we deduce

∀ t ∈ [0, T ], yt ≤ e4T ‖h− f‖2TV .

This concludes the proof of (5.9).

Proof of (A2). Assumption (A2)-(i) is clearly a consequence of (A4). For
(A2)-(ii) we write

‖Q(f, f)−Q(g, g)‖TV = sup
‖ϕ‖L∞≤1

∫

E
(Q(f, f)−Q(g, g))ϕdv

= sup
‖ϕ‖L∞≤1

∫

E×E
(f f∗ − g g∗)

∫

Sd−1

b (ϕ′ − ϕ) dσ dv dv∗

≤ 4 ‖b‖L1 ‖f − g‖TV ,

so that the function f 7→ Q(f, f) is Lipshitz from PG1(E) to M1(Rd).
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Proof of (A5). It is known since the seminal work of Tanaka [38] that
the nonlinear Boltzmann flow associated to Maxwellian molecules is a con-
traction for the quadratic MLW distance W2: for any fin, gin ∈ P1(Rd) the
solutions ft, gt to the Boltzmann equation (5.4) satisfy

sup
[0,T ]

W2(ft, fgt) ≤W2(fin, gin).

That immediately implies (A5) in the space PG3(E) defined above. �

6. Vlasov and McKean-Vlasov equations

6.1. The model. In this section we assume that E = R
m (where m = d or

m = 2d with d the physical space dimension, see later) and we consider an N -
particle system which undergoes McKean-Vlasov type stochastic dynamics,
i.e. a drift deterministic force field combined with diffusion. We refer to
the lecture notes [37, 30] and the references therein for more details on the
model, and among many references, we highlight the recent paper [5] for
recent results and references (using the so-called “coupling” method). The
method we shall present here does not rely on any of these references. The
results in this section are mostly not new but compare to the latest results
of mean field limit on this equation as far as we know. Indeed we shall make
strong smoothness assumptions on the coefficients of the evolution equation
in order to avoid technical difficulties and our goal is to advocate for our new
method and show its power and ability to deal with very different models.

We assume that the N particles ZN
t = (Z1,t, . . . ,ZN,t) satisfies the sto-

chastic differential equation

(6.1) dZi,t = σi(Zi,t) dBi,t + T Zi,t dt+ FN
i (ZN

t ) dt 1 ≤ i ≤ N,
where the σ(zi) are the diffusion m×m-matrices, the Bi,t are independent
standard Wiener processes valued in R

m, T is an m × m-matrix and the
FN
i : R

m → R
m are the force fields acting on each particle. Because of

indistinguishability we assume

FN
i (Z) := FN

(

zi, µ
N−1

ẐN
i

)

with ẐN
i := (z1, . . . , zi−1, zi+1, . . . , zN ) and FN : Rm×P(Rm)→ R

m. (Note
that here and below the latin letters “i, j, . . . ” label the particles, whereas
the greek letters “α, β, . . . ” label the coordinates).

We assume that FN is uniformly bounded and Lipschitz in both variables
(when endowing P(Rm) with a distance inherited from a negative Sobolev
norm). More precisely, we assume that for any k > m/2 there exists CF,k > 0

such that for any z, z̃ ∈ R
m, f, f̃ ∈ P(Rm)

(6.2) ∀N ∈ N
∗,

∣

∣

∣FN (z, f)− FN (z̃, f̃)
∣

∣

∣ ≤ CF,k

[

|z − z̃|+ ‖f − f̃‖H−k

]

.
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It is also natural for the limit to exist to assume that there exists a function
F : Rm × P(Rm) → R

m such that FN → F , in the sense that there is a
constant CF,lim > 0 such that

(6.3) ∀N ∈ N
∗, ∀ z ∈ R

m, ∀ f ∈ P(Rm),
∣

∣FN (z, f)− F (z, f)
∣

∣ ≤ CF,lim

N
.

A simple example which satisfies these assumptions is
(6.4)

FN
i

(

Z, µN−1

Ẑi

)

=
N

N − 1
FN

(

zi, Ẑi

)

, FN
(

zi, Ẑi

)

:=
1

N

∑

j 6=i

U (zi − zj)

for a smooth vector field U : Rm → R
m, so that F (z, f) = (U ∗ f)(z).

Under the smoothness assumptions (6.2) on the N -particle force fields, for
any N ≥ 1 there exists a Markov process (ZN

t )t≥0 which solves the system
of stochastic differential equations (6.1), see [37, 30].

The time-dependent law fNt of the process ZN
t satisfies the following linear

master equation corresponding to (6.1), given in dual form by

(6.5) ∀ϕ ∈ D(Rm), ∂t
〈

fNt , ϕ
〉

=
〈

fNt , G
N ϕ
〉

where GN is defined by

∀Z ∈ R
mN , (GNϕ)(Z) =

N
∑

i=1

A(zi) : ∇2
iϕ+

N
∑

i=1

(T zi) · ∇iϕ

+
N
∑

i=1

FN
(

zi, µ
N−1

Ẑi

)

· ∇iϕ .

The nonnegative diffusion matrix A, the gradient ∇i and the Hessian matrix
∇2

i associated to the variable zi = (zi,1, . . . , zi,m) ∈ R
m corresponding to the

i-th particle are given by

A =
1

2
σ σ∗ = (Aα,β)1≤α,β≤m , Aα,β =

d
∑

γ=1

σα,γ σβ,γ ,

and

∇iϕ =
(

∂zi,αϕ
)

1≤α≤m
, ∇2

iϕ =
(

∂2zi,αzi,βϕ
)

1≤α,β≤m
.

We also introduce the nonlinear mean field McKean-Vlasov equation on
P(Rm):

(6.6)
∂

∂t
f = Q(ft), f|t=0 = fin in P(Rm),

with

Q(f) =
m
∑

α,β=1

∂2α,β (Aα,β f)−
m
∑

α=1

∂α[(T z)αf ]−
m
∑

α=1

∂α (Fα(z, f) f) .
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There is an important literature on this class of nonlinear partial differ-
ential equations. See fore example [28] and [8] where more details and more
references can be found.

In the sequel, we make the following strong structure, smoothness and
boundedness assumptions on the coefficients:

(6.7) (A ≡ 0, κ := 0) or (A ≥ κ Id, κ > 0, A ∈W k,∞(Rm)),

as well as

(6.8) ∀ z ∈ R
m, ∀ f ∈ P(Rm), F (z, f) =

∫

Rm×Rm

U (z − z̃) f(dz̃)

where U ∈ H2k
6 (Rm) for some k ∈ N, k > m/2 + 3.

When the diffusion matrix A = 0 is zero, m = 2d, z = (x, v) ∈ R
2d, our

assumptions cover the case of the mean-field Vlasov equation. Indeed the
classical Vlasov equation reads

∂tf + v · ∇xf + (∇xψ ∗ ρ[f ]) · ∇vf = 0, f = f(t, x, v), x, v ∈ R
d,

with

ρ[f ](t, x) =

∫

Rd

f(t, x, v) dv,

and it falls into our structural assumptions with z = (x, v) ∈ R
d × R

d,
U (z) = U (x) = (0,∇xψ(x)) with ∇xψ is Hd+6+0 and

T =

(

0xx Idxv

0vx 0vv

)

.

Then F = (Fx, Fv) defined by (6.8) is given by

Fx(x, v) = 0, Fv(x, v) = ∇xψ ∗ ρ[f ]
for the limiting system, and, with X ∈ (Rd)N and V ∈ (Rd)N , we have for
the N -particle system T defined as above and FN = (FN

X , F
N
V ) given by

FN
X = 0, (FN

V )i =
1

N

N
∑

j 6=i

∇xψ(Xi −Xj), i = 1, . . . , N.

Observe in particular that it does not allow for the Coulomb or Newton
interactions in this Vlasov setting due to the smoothness assumption on ψ.

6.2. Statement of the result. Our main result in the section is a quanti-
tative propagation of chaos result for the class of equations described above.
We state two separate results respectively for the McKean-Vlasov case (pos-
sibly non-zero diffusion matrix) and the Vlasov case (zero diffusion matrix).

Theorem 6.1 (The McKean-Vlasov equation). Consider an initial dis-
tribution fin ∈ Pq(Rm), q ≥ 2, the hierarchy of N -particle distributions

fNt = SN
t (f⊗N

in ) following (6.5) and the nonlinear evolution ft = SNL
t (fin)

following (6.6). Assume that (6.7) and (6.8) hold.
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Then there is k ∈ N and a constant C > 0 and, for any T > 0, there are
constants CT , C̃T > 0 such that for any

ϕ = ϕ1 ⊗ · · · ⊗ ϕℓ ∈ F⊗ℓ, F := Hk
6 (R

m) ∩ Lip(Rm), ‖ϕj‖F ≤ 1,

we have for N ≥ 2ℓ:
(6.9)

sup
[0,T ]

∣

∣

∣

〈(

SN
t (fNin )−

(

SNL
t (fin)

)⊗N
)

, ϕ
〉∣

∣

∣
≤ C ℓ2

N
+ CT

ℓ2

N
+ C̃T ℓΩ

W2
N (fin).

As a consequence of (6.9) and Lemma 4.6, this implies the propagation

of chaos with rate ε(N) ≤ C(ℓ, T, fin)N
− 1

m+4 for any initial data fin ∈
Pm+5(R

m).

Now we consider the case of the Vlasov equation. As will be clear from the
proof, when A = 0 and U (0) = 0, the error ε(N) = 0 vanishes in assumption
(A3). This leads to the following improved result.

Theorem 6.2 (The Vlasov equation). Suppose, in addition to the assump-
tions for Theorem 6.1, that A ≡ 0 and U (0) = 0. Then there is a constant

C > 0 and, for any T > 0, a constant C̃T > 0 such that for any ϕ ∈ Lip(Rℓm)
and any N ≥ ℓ:
(6.10)

sup
[0,T ]

∣

∣

∣

〈(

SN
t (f⊗N

in )−
(

SNL
t (fin)

)⊗N
)

, ϕ
〉∣

∣

∣ ≤ C ‖∇ϕ‖L∞(Rℓm)

ℓ

N
+C̃T ΩW1

N (fin)

(observe the replacement of W2 by W1 in the last term) which in turn implies

sup
[0,T ]

1

N
W1

(

(SN
t (f⊗N

in ),
(

SNL
t (fin)

)⊗N
)

≤ C

N
+
C̃T ΩW1

N (fin)

N
.

Remark 6.3. Note that the coupling method introduced in [37] leads to a rate

of chaoticity of order O(1/
√
N) for the normalized Wasserstein distance W2

between the law of ZN
t and the tensor product f⊗N

t . This is better than
our estimate, which is limited by the estimate in Lemma 4.6. However, the
coupling method is usually limited to the quadratic interaction given by (6.4).

6.3. Proof of Theorem 6.1. As in the proof of Theorem 5.1 we prove that
Theorem 6.1 is a consequence of Theorem 2.1, by verifying that assumptions
(A1)-(A2)-(A3)-(A4)-(A5) hold. However, in the present model we can-
not, as in Section 5, use the total variation norm for the key consistency
estimate (A3) and differential stability estimate (A4). The reason is that
GNπNΦ involves derivatives of Z 7→ Φ(φNZ ), and hence of Z 7→ µNZ which
is not differentiable from R

mN to P(Rm) when P(Rm) is endowed with the
total variation norm. We therefore make the following choice of functional
spaces: E := R

m with
{

G1 := H−s1
−2 (Rm), F1 = Hs1

2 (Rm), s1 >
m
2 + 2

G2 := H−s2
−6 (Rm), F2 = Hs2

6 (Rm), s2 := s1 + 2,
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and the weight mG1(z) = mG2(z) = 1, and F3 = Lip(Rm) and PG3(E) :=
P2(Rm) endowed with the quadratic MKW distance W2.
Proof of assumption (A1). The symmetry assumption is a consequence
of the fact that first (6.5) is well posed for any fNin ∈ Psym(R

mN ) so that
fNt is a probability measure for any t ≥ 0, and second the generator GN

commutes with the permutations.
Proof of assumption (A3). We claim that for any s1 > m/2 + 1 there
exists a constant Cs1 such that for all Φ ∈ C2,1(PG1(E),R)

(6.11)
∥

∥GN (Φ ◦ µNZ )−
〈

Q(µNZ ),DΦ[µNZ ]
〉∥

∥

L∞(EN )
≤ Cs1

N
‖Φ‖C2,1(PG1

(E),R),

which is nothing but (A3) with k = 2, η = 1 and ε(N) = Cs1 N
−1.

Proof of (6.11). First, the map

R
mN → H−s1(Rm), Z 7→ µNZ

is C2 with

∂zi,αµ
N
Z =

1

N
∂αδzi , ∂2zi,α,zi,βµ

N
Z =

1

N2
∂2αβδzi .

Take Φ ∈ C2,1
b (PG1(E)). Then the map

R
mN → R, Z 7→ Φ(µNZ )

is C2
b . Indeed, denoting φ = φZ(·) = DΦ

[

µNZ
]

∈ (H−s1
−2 (Rm))′ = Hs1

2 (Rm),
we can write:

∂zi,αΦ
(

µNZ
)

=

〈

DΦ
[

µNZ
]

,
1

N
∂αδzi

〉

=
1

N
∂αφZ(vi)

∂2zi,α,zi,βΦ
(

µNZ
)

=

〈

DΦ
[

µNZ
]

,
1

N
∂2zi,α,zi,βδzi

〉

+D2Φ
[

µNZ
]

(

1

N
∂zi,αδzi ,

1

N
∂zi,βδzi

)

=
1

N
∂2α,βφZ(zi) +

1

N2
D2Φ

[

µNZ
] (

∂zi,αδzi , ∂zi,βδzi
)

and both ∂zi,αδzi and ∂2zi,α,zi,βδzi belong toH−s1
−2 (Rm) thanks to the condition

s1 > m/2 + 2.
As a consequence, we compute
(

GNπNΦ
)

(Z) = GN Φ(µNZ )

=
N
∑

i=1

A(zi) : ∇2
i

(

Φ(µNZ )
)

+

N
∑

i=1

(T zi) · ∇i

(

Φ(µNZ )
)

+

N
∑

i=1

FN
(

zi, µ
N−1

Ẑi

)

· ∇i

(

Φ(µNZ )
)

=: I1(Z) + I2(Z)
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with

I1(Z) :=
1

N

N
∑

i=1

m
∑

α,β=1

Aα,β(zi) ∂
2
α,βφZ(zi)

+

N
∑

i=1

m
∑

α,β=1

(Tαβzi) ∂βφZ(zi) +
1

N

N
∑

i=1

m
∑

α=1

Fα

(

zi, µ
N
Z

)

∂αφZ(zi)

and

I2(Z) :=
1

N2

N
∑

i=1

m
∑

α,β=1

Aα,β(zi)D
2Φ
[

µNZ
] (

∂zi,αδzi , ∂zi,β δzi
)

+
1

N

N
∑

i=1

m
∑

α=1

[

FN
α

(

zi, µ
N−1

Ẑi

)

− Fα

(

zi, µ
N
Z

)

]

DΦ
[

µNZ
] (

∂zi,αδzi
)

.

On the one hand, using that
∥

∥

∥
µN−1

Ẑi
− µNZ

∥

∥

∥

H
−s1
−2 (Rm)

≤ 2

N
sup
zi
‖δzi‖H−s1 (Rm) ≤

C

N

as well as (6.2) and (6.3), we deduce that

|I2(Z)| ≤ N
m2

N2
‖A‖∞ ‖D2Φ‖∞ ‖∂1δ‖2H−s1

−2 (Rm)

+N m

(

CF

N

)

1

N
‖DΦ‖∞ ‖∂1δ‖H−s1

−2 (Rm)
≤ CΦ

N
.

On the other hand, we recognize

I1(Z) =

〈

µNZ ,

m
∑

α,β=1

Aα,β ∂
2
α,βφZ

〉

+

〈

µNZ ,

m
∑

α=1

(T ·)α ∂αφZ
〉

+

〈

µNZ ,

m
∑

α=1

Fα

(

·, µNZ
)

∂αφZ

〉

=
〈

Q(µNZ ), φZ
〉

=
〈

Q(µNZ ),DΦ(µNZ )
〉

=
(

πNG∞Φ
)

(Z),

thanks to the calculation of the limit dual generator made in Subsection 4.1.
�

Proof of assumption (A4). We need here to perform a second-order
expansion of the limit semigroup.

We consider

• for any two given initial data fin, gin ∈ P(Rm) the corresponding solu-
tions ft and gt to the nonlinear McKean-Vlasov (or Vlasov) equation
(6.6),
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• for any given initial data hin ∈ P(Rm) the solution ht to the following
equation, which is the linearization around ft:

(6.12)
∂th = ∇2 : (Ah)−∇ · ((T z)h)−∇ · [h (U ∗ f) + f (U ∗ h)] , ht=0 = hin,

• rt the solution to the following second variation equation around ft
(6.13)


















∂tr = ∇2 : (Ar)−∇ · ((T z) r)−∇ · [r (U ∗ f) + f (U ∗ r)]

−1

2
∇ ·
[

h̃ (U ∗ h)
]

− 1

2
∇ ·
[

h (U ∗ h̃)
]

,

r|t=0 = rin = 0

for two solutions h, h̃ of the first variation equation.
Then we shall prove the following a priori estimates.

Lemma 6.4. For any s1 ∈ N, s1 > m/2+1, ℓ ∈ {1, 2, 3} and for any T > 0,
there exists CT such that

sup
[0,T ]
‖gt − ft‖H−s1

−ℓ
(Rm)

≤ CT ‖gin − fin‖H−s1
−ℓ

(Rm)
,(6.14)

sup
[0,T ]
‖ht‖H−s1

−ℓ
(Rm)

≤ CT ‖hin‖H−s1
−ℓ

(Rm)
,(6.15)

sup
[0,T ]
‖rt‖H−(s1+1)

−4 (Rm)
≤ CT ‖hin‖H−s1

−2 (Rm)
‖h̃in‖H−s1

−2 (Rm)
,(6.16)

and when h̃in = hin = gin − fin we have

sup
[0,T ]
‖gt − ft − ht‖H−(s1+1)

−4 (Rm)
≤ CT ‖gin − fin‖2H−s1

−2 (Rm)
,(6.17)

sup
[0,T ]
‖gt − ft − ht − rt‖H−(s1+2)

−6 (Rm)
≤ CT ‖gin − fin‖3H−s1

−2 (Rm)
.(6.18)

This shows that the nonlinear semigroup SNL
t associated to the nonlinear

McKean-Vlasov equation (6.6) is C2,1
b (PG1(E),PG2(E)).

Proof of Lemma 6.4. The proof is carried out in several steps.
Step 1. We will several times consider the equation

(6.19) ∂tζt = ∇2 : (Aζt)−∇ · ((T z)ζt)−∇ · (u1 ζt + u2 (U ∗ ζt))
with given initial data ζin and with an R

m-valued function u1 and an R-valued
measure u2 to be specified (chosen in order to “match” equations (6.6), (6.12)
and (6.13)). We claim that for any k ∈ N, k > m/2 + 1, ℓ ∈ {1, 2, 3} and
any T > 0,

(6.20) ∀ t ∈ [0, T ], ‖ζt‖H−k
−ℓ

(Rm)
≤ ‖ζin‖H−k

−ℓ
(Rm)

eCk(U ,u1,u2)T

with

Ck(U , u1, u2) := C(k) sup
t∈[0,T ]

[

‖u1‖W k,∞(Rm) + ‖U ‖Hk
ℓ
(Rm) ‖u2‖TV (Rm)

]

.
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We argue by duality and we consider a smooth solution θ to the following
linear equation (which is the dual equation of (6.19))

(6.21)















∂tθ = L∗
1θ + L∗

2θ,

L∗
1θ := A : ∇2θ + (T z) · ∇θ,

L∗
2θ := u1 · ∇θ + Ǔ ∗ (u2∇θ) ,

with Ǔ (x) := U (−x).
For a given multi-index ν ∈ N

m with |ν| = k′ ≤ k, we compute

d

dt

∫

Rm

|∂νθ|2ℓ 〈z〉2ℓ dz

=

∫

Rm

(∂νL∗
1θ) ∂

νθ 〈z〉2ℓ dz +
∫

Rm

(∂νL∗
2θ) ∂

νθ 〈z〉2ℓ dz =: L1 + L2.

By integrations by parts, we get

L1 ≤ −κ
∫

Rm

|∇∂νθ|2 〈z〉2ℓ dz + C
(

‖T ‖∞ + ‖A‖W k′+2,∞(Rm)

)

‖θ‖2
Hk′

ℓ
(Rm)

and (using Sobolev embedding inequalities for the last term)

L2 ≤ C
(

‖u1‖W k′,∞(Rm) + ‖u2‖TV (Rm) ‖U ‖Hk′

ℓ
(Rm)

)

‖θt‖2Hk
ℓ
(Rm)

which shows that

∀ t ∈ [0, T ], ‖θt‖Hk
ℓ
(Rm) ≤ ‖θin‖Hk

ℓ
(Rm) e

Ck(U ,u1,u2)T .

Denoting by Ut the linear semigroup associated to (6.19), the associated
dual semigroup U∗

t is generated by (6.21). As a consequence, for any θin ∈
Hk(Rm), we have

〈ζt, θin〉 = 〈ζin, U∗
t θin〉 ≤ ‖ζin‖H−k

−ℓ
(Rm)
‖U∗

t θin‖Hk
ℓ
(Rm)

≤ eCk(U ,u1,u2) T ‖ζin‖H−k
−ℓ

(Rm) ‖θin‖Hk
ℓ
(Rm),

which concludes the proof of the claim (6.20).

Step 2. Proof of (6.14). The equation satisfied by the difference dt = gt−ft
is
(6.22)
{

∂tdt = ∇2 : (A dt)−∇ · ((T z)dt)−∇ · (dt (U ∗ f) + g (U ∗ dt)) ,
d|t=0 = din = gin − fin,

which fits in the form (6.19) with u1 := U ∗ f and u2 = g. Now, since
∥

∥

∥
∇k(U ∗ f)

∥

∥

∥

L∞(Rm)
=
∥

∥

∥
(∇k

U ) ∗ f
∥

∥

∥

L∞(Rm)
≤
∥

∥

∥
∇k

U

∥

∥

∥

L∞(Rm)

we conclude that

Ck(U ,U ∗ f, g) ≤ C ‖U ‖Hk
3∩W

k,∞(Rm)
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and that (6.14) holds. Proceeding in the same way for the function h we end
up with

(6.23) sup
[0,T ]
‖ht‖H−s1

−ℓ
(Rm)

≤ CT ‖hin‖H−s1
−ℓ

(Rm)
,

for any s1 ∈ N, s1 > m/2 + 1.

Step 3. Inequalities for products and convolutions in Sobolev spaces. We
define the weighted L∞-based Sobolev spaces as usual:

‖f‖L∞
−ℓ

(Rm) :=
∥

∥

∥〈·〉−ℓf
∥

∥

∥

L∞(Rm)
,

‖f‖
W k,∞

−ℓ
(Rm)

:=
∑

0≤k′≤k

∥

∥

∥
〈·〉−ℓ∂k

′

f
∥

∥

∥

L∞(Rm)
.

We have the three following inequalities on functions S,ψ in the appro-
priate spaces:

‖S ∗U ‖L∞
−ℓ

(Rm) ≤ ‖U ‖Hk
ℓ
(Rm) ‖S‖H−k

−ℓ
(Rm)

and more generally

‖S ∗U ‖
W k,∞

−ℓ
(Rm)

≤ ‖U ‖H2k
ℓ

(Rm) ‖S‖H−k
−ℓ

(Rm)

and finally

‖S ψ‖H−k
−ℓ

(Rm) ≤ Ck,ℓ ‖S‖H−k
−ℓ

(Rm) ‖ψ‖W k,∞(Rm)

for any k, ℓ ∈ N, and some constant Ck,ℓ > 0. The proofs are elementary
and we omit them for the sake of conciseness.

Step 4. Proof of (6.17). Let ωt := gt − ft − ht = dt − ht, which satisfies the
equation

(6.24) ∂tω = Lω +Σ, ω|t=0 = ωin = 0,

with
{

Lω := ∇2 : (Aω)−∇ · ((T z)ωt)−∇ · (ω (U ∗ f) + f (U ∗ ω)) ,

Σt = ∇ · (dt (U ∗ dt)) .
Denoting by Θs,tw the unique solution of the linear, non-autonomous

equation

∂twt = Lwt, ws = w,

the Duhamel formula for equation (6.24) yields

ωt =

∫ t

0
Θs,tΣs ds.
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Therefore we obtain, using (6.20) and the estimates established in the Step 3,
that for any t ∈ [0, T ]

‖ωt‖H−k
−4 (R

m) ≤ CT

∫ t

0
‖∇ (ds (U ∗ ds))‖H−k

−4 (R
m) ds

≤ CT,k

∫ t

0
‖∇ds‖H−k

−2 (R
m) ‖U ∗ ds‖W k,∞

−2 (Rm)
ds

+CT,k

∫ t

0
‖ds‖H−k

−2 (R
m)‖U ∗ (∇ds)‖W k,∞

−2 (Rm)
ds

≤ CT,k ‖U ‖H2k
2 (Rm)

∫ t

0
‖ds‖H−(k−1)

−2 (Rm)
‖ds‖H−k

−2 (R
m) ds,

which together with (6.14) for the control of the norms of dt implies (6.17).
Step 5. Proof of (6.16) and (6.18). The second variation r satisfies the
equation

∂tr = Lr +Rt, r|t=0 = 0,

with L as above and

Rt :=
1

2
∇ ·
(

h̃t (U ∗ ht)
)

+
1

2
∇ ·
(

ht (U ∗ h̃t)
)

.

We proceed as in Step 4, taking advantage of the bound (6.23), and we obtain

(6.25) sup
[0,T ]
‖rt‖H−k

−4 (R
m) ≤ CT ‖hin‖H−(k−1)

−2 (Rm)
‖h̃in‖H−(k−1)

−2 (Rm)
,

which is nothing but (6.16).
Finally we introduce ψt := gt − ft − ht − rt = dt − ht − rt = ωt − rt, with

the initial data h̃in = hin = gin − fin. It satisfies the equation

(6.26)

{

∂tψ = Lψ +Ψt, ψ|t=0 = 0,

Ψt := ∇ (ωt (U ∗ dt) + ht (U ∗ ωt))

Therefore, we deduce

∀ t ∈ [0, T ], ‖ψt‖H−k
−6 (R

m) ≤
∥

∥

∥

∥

∫ t

0
Θs,tΨs ds

∥

∥

∥

∥

H−k
−6 (R

m)

≤ CT

∫ t

0

(

‖hs‖H−(k−1)
−2 (Rm)

+ ‖ds‖H−(k−1)
−2 (Rm)

)

‖ωs‖H−(k−1)
−4 (Rm)

ds,

which together with (6.14)-(6.15) and (6.17) implies (6.18). �

Proof of (A2). The first property (A2)-(i) is a consequence of (6.14) in
Lemma 6.4. we have

(6.27)























‖Q(f1)‖H−k
−2 (R

m) ≤ CU ,1

‖Q(f2)‖H−2
−2 (R

m) ≤ CU ,1

‖Q(f2)−Q(f1)‖H−k
−2 (R

m) ≤ CU ,2 ‖f2 − f1‖1/5H−k
−2 (R

m)
.
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We write

Q(f) = Q1(f) +Q2(f)

with

Q1(f) = ∇2 : (Af)−∇ · ((T z)f), Q2(f) = −∇ · ((U ∗ f) f).
The linear term Q1 satisfies the first part of (6.27) (first equation) by direct
inspection combined with the use of Sobolev embeddings. In order to see
that Q1 also satisfies the second part of (6.27) (on the difference), we write

‖Q1(f2)−Q1(f1)‖H−k
−2 (R

m) ≤ ‖A‖W k−2,∞(Rm) ‖f2 − f1‖H−(k−2)
−2 (Rm)

+‖T ‖∞ ‖f2 − f1‖H−(k−1)
−1 (Rm)

,

and we conclude by using interpolation and Sobolev embeddings (noticing
that k− 2− 1/2 > m/2 allows for the Sobolev embedding in the first term).

Concerning the quadratic term Q2, using estimates proved in Step 3 of
the proof of (A4), on the one hand we get

‖Q2(f)‖H−k
−2 (R

m) ≤ ‖Q2(f)‖H−k(Rm) ≤ ‖U ∗ f‖W k−1,∞(Rm) ‖f‖H−(k−1)(Rm)

≤ Ck ‖U ‖H2(k−1)(Rm) ‖f‖2H−(k−1)(Rm)
≤ Ck ‖U ‖H2(k−1)(Rm)

where we have used P(Rm) ⊂ H−(k−1)/2(Rm) with continuous embedding.
On the other hand, we have with d := f2 − f1

‖Q2(f2)−Q2(f1)‖H−k
−2 (R

m)
≤ ‖(U ∗ d) 〈·〉−2‖W k−1,∞(Rm) ‖f2‖H−(k−1)(Rm)

+ ‖U ∗ f1‖W k−1,∞(Rm) ‖d‖H−(k−1)
−2 (Rm)

.

In order to estimate the first term in the above inequality, we remark that

〈z〉−2 |(∂αU ∗ d)(z)| ≤ 〈z〉−2 ‖∂αU (z − ·) 〈·〉2‖Hk(Rm) ‖d 〈·〉−2‖H−k(Rm)

≤ C ‖∂αU ‖Hk
2 (R

m) ‖d‖H−k
−2 (R

m)

uniformly for any z ∈ R
m. All together, we have for the quadratic term

‖Q2(f2)−Q2(f1)‖H−k
−2 (R

m) ≤ C
′
U ,2 ‖f2 − f1‖H−(k−1)

−2 (Rm)
,

and we conclude the proof of (A2)-(ii) by using interpolation and Sobolev
embeddings again.

Proof of (A5). We use the well known following estimate (see [37]): for
any q ≥ 1, fin, gin ∈ Pq(Rd) and T > 0 there exists CT such that

sup
t≥0

Wq(S
NL
t (fin), S

NL
t (gin)) ≤ CT Wq(fin, gin),

that we use with q = 2. Alternatively, estimate (6.14) precisely says that
assumption (A5) holds in PG1(E).
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7. Inelastic collisions with thermal bath

7.1. The model. In this section we assume that E = R
d, d ≥ 1, and we are

interested in the following Boltzmann equation for diffusively excited granular
media on the distribution f(t, v) ≥ 0, v ∈ R

d of particles:

(7.1)
∂ft
∂t

= Q(ft), f|t=0 = fin in P(Rd),

with
Q(f) = Qα(f, f) + ν∆ f

for some ν > 0, and where the quadratic Boltzmann collision kernel Qα is
defined by the following dual formulation
(7.2)

〈Qα(f, f), ϕ〉 :=
∫

R2d×Sd−1

b(cos θ) (φ(w∗
2)− φ(w2)) dσ f(dw1) f(dw2)

for any ϕ ∈ C0(R
d), f ∈ P(Rd), and with cos θ = σ · (w2 − w1)/|w2 − w1|

and similarly as in equations (5.1) and (5.6)

w∗
2 =

w1 + w2

2
+
u∗

2
,

but with

u∗ =

(

1− α
2

)

(w1 − w2) +

(

1 + α

2

)

|w2 − w1|σ,

for some α ∈ (0, 1). (Note that the case α = 1 and ν = 0 would correspond
to the elastic Boltzmann kernel considered in Section 5.) This corresponds
to a situation where particles lose energy when they collide. We refer to
[3, 7] for a physical motivation to these equations. The mathematical theory
is treated in e.g. [3, 2, 4], where, for example, it is proven that this equation
generates a nonlinear semigroup SNL

t fin := ft for any fin ∈ Pq(Rd), q ≥ 2.
Notice that unlike the classical Boltzmann equation the kinetic energy is not
conserved. For the sake of simplicity we make the normalization assumptions

‖b‖L1(Sd−1) =

∫

Sd−1

b(σ1) dσ = 1, ν = 1.

One of these quantities, say the first, can be set to one just by a rescaling
of time but the two cannot be changed independently. However, the result
would be the same for any value of ν. Note that due to the normalization
‖b‖L1(Sd−1) = 1 and the fact that f ∈ P(Rd), the bilinear operator Qα splits
into a quadratic part and a linear part

Q(f) = Q+
α (f, f)− f +∆f,

where Q+ is defined through the positive part of the expression (7.2).

We now want to introduce a N -particle system associated to the above
Boltzmann equation for diffusively excited granular media by mimicking the
Kac’s construction. We consider the velocities process (VNt ) with values in



NEW APPROACH TO QUANTITATIVE PROPAGATION OF CHAOS 45

R
dN , of mixed jump and diffusion nature, defined through the stochastic

differential equations

VNt = VN0 +

∫ t

0

∫

Sd−1

N
∑

i,j=1

Γi,j,σ(VNs−)1z<b(σ·ûi,j (VN

s−
))NN (ds,dσ, i, j,dz) +

√
2B

N
t .

Here BN
t is a R

dN valued standard Brownian motions, NN (ds,dσ, i, j,dz)
is a Poisson measure on [0,∞)× S

d−1 × {1, . . . , N}2 × R+ with intensity

ds dσ
1

N

N
∑

i′,j′=1

1i′ 6=j′δ(i′,j′)(i, j) du

independent of BN
t , and the two functions Γi,j,σ : RdN → R

dN and ûi,j :

R
dN → S

d−1 are a.e. defined through the following expressions: for any
V = (v1, . . . , vN ) ∈ R

dN we set

ûi,j(V ) :=
uij
|uij |

, uij := vi − vj

and
Γi,j,σ(V ) := V ∗

ij − V,
where

V ∗
ij = (v1, . . . , vi−1, v

∗
i , vi+1, . . . , vj−1, v

∗
j , vj+1, . . . , vN )

and, as in equation (5.1),

(7.3) v∗i =
wij

2
+
u∗ij
2
, v∗j =

wij

2
−
u∗ij
2
,

but here with

wij = vi + vj, u∗ij =

(

1− α
2

)

uij +

(

1 + α

2

)

|uij |σ.

The associated forward Kolmogorov equation on the probability law fNt
of (VNt ) in R

dN reads

(7.4) ∂t〈fNt , ϕ〉 = 〈fNt , GNϕ〉
with generator GN = GN

1 +GN
2 , where GN

1 is associated to an inelastic Boltz-
mann collision process whose collision kernel only depends on the deviation
angle as in Section 5

(7.5) (GN
1 ϕ)(V ) =

1

N

N
∑

i,j=1

∫

Sd−1

b(cos θij)
[

ϕ(V ∗
ij)− ϕ(V )

]

dσ,

with cos θij = σ · (vj − vi)/|vj − vi| and V ∗
ij defined in (7.3), and GN

2 is the
generator associated to the Brownian motion

(7.6) (GN
2 ϕ)(V ) =

N
∑

i=1

∆iϕ,
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where vi := (vi,1, . . . , vi,d) and ∆i denotes the Laplacian in R
d associated to

the i-th particle:

∆i :=
d
∑

α=1

∂2vi,α,vi,α .

It is classical to prove that VNt is a Feller process and we refer to the textbooks
[13, 34] where the theory is set up with full details (one can also refer to
[37, 30, 15] where similar processes are considered).

7.2. Statement of the result. The main result in this section is a quanti-
tative estimate of propagation of chaos for the mixed collision and diffusion
model introduced above.

Theorem 7.1. Consider an initial distribution fin ∈ Pq(Rd), q ≥ 2, the

hierarchy of N -particle distributions fNt = SN
t (f⊗N

in ) following the evolution
(7.4), and the nonlinear semigroup ft = SNL

t (fin) following the evolution
(7.1).

Then there is a constant C > 0 and, for any T > 0, there are constants
CT , C̃T ∈ (0,∞) only depending T ∈ (0,∞) such that for any

ϕ = ϕ1 ⊗ · · · ⊗ ϕℓ ∈ F⊗ℓ, F :=W 9,1(Rd) ∩W 1,∞(Rd), ‖ϕj‖F ≤ 1,

we have for N ≥ 2ℓ:
(7.7)

sup
[0,T ]

∣

∣

∣

〈(

SN
t (fNin )−

(

SNL
t (fin)

)⊗N
)

, ϕ
〉∣

∣

∣
≤ C ℓ2

N
+ CT

ℓ2

N
+ C̃T ℓΩ

W2
N (fin).

As a consequence of (7.7) and Lemma 4.6, this shows the quantitative prop-

agation of chaos with rate ε(N) ≤ C(ℓ, T, fin)N
− 1

d+4 for any initial data
fin ∈ Pd+5(R

d).

We are not aware of any result of propatation of chaos in this setting.
A conceivable alternative approach would be to use the general nonlinear
martingale approach, but that would most likely not provide any quantitative
rate of propagation of chaos. The techniques developed recently in [15] for
the elastic Kac equation without cut-off is yet another alternative technique
that could be tried on this model, but we have not made any attempts in this
direction, and, would it work, it is not clear as to what kind of convergence
rate one could hope to achieve.

7.3. Proof of Theorem 7.1. We shall prove that Theorem 7.1 is a conse-
quence of Theorem 2.1 by proving that the assumptions (A1)-(A2)-(A3)(A4)-
(A5). We consider the phase space E = R

d and the following choice of
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functional spaces


























G1 := H−s1(Rd), s1 := 3,

G2 := H−s2(Rd), s2 := 3s1 = 9,

F1 =W s1,1(Rd),

F2 =W s2,1(Rd),

where the Fourier based space H−s(Rd) and the norms | · |s are defined in
example 3.7, and the corresponding spaces PG1(E) and PG2(E) (without
weight). We finally define F3 = Lip(Rd) and PG3(E) := P2(Rd) endowed
with the quadratic MKW distance W2.

Proof of (A1). The well-posedness of equation (7.4)-(7.5) is a variation
on the well-posedness result for equation (7.1) as obtained in [2, 4]. We also
refer to [13, 37, 30, 15] for a proof of the fact that t ZN

t is a Feller process.

Proof of (A2). First we prove (A2)-(i), and more precisely we prove that

SNL
t ∈ C0,1(PG1(E),PG1(E)),

which is a consequence of the following result:

Lemma 7.2. For any fin, gin ∈ P(Rd) and any final time T > 0, the asso-
ciated solutions ft and gt to the diffusive inelastic Boltzmann equation (7.1)
satisfy for any s ≥ 0

(7.8) sup
t∈[0,T ]

|ft − gt|s ≤ e2T |fin − gin|s .

Proof of Lemma 7.2. We recall Bobylev’s identity for Maxwellian inelastic
collision kernel (see for instance [2])

F
(

Q+
α (f, g)

)

(ξ) = Q̂+
α (F,G)(ξ) =:

1

2

∫

Sd−1

b
(

σ · ξ̂
)

[F+G− + F−G+] dσ,

with F = f̂ , G = ĝ, F± = F (ξ±), G± = G(ξ±) and

ξ+ =
3− α
4

ξ +
1 + α

4
|ξ|σ, ξ− =

1 + α

4
(ξ − |ξ|σ).

Denoting D = ĝ − f̂ , S = ĝ + f̂ , the following equation holds

(7.9) ∂tD =

∫

S2

b
(

σ · ξ̂
)

[

D+ S−

2
+
D− S+

2

]

dσ −D − |ξ|2D.

Using that ‖S‖∞ ≤ 2 and then |ξ±| ≤ |ξ|, we deduce in distributional sense

d

dt

|D|
〈ξ〉s ≤

(

sup
ξ∈Rd

|D|
〈ξ〉s

) (

sup
ξ∈Rd

∫

Sd−1

b(σ · ξ̂)
{〈ξ+〉s
〈ξ〉s +

〈ξ−〉s
〈ξ〉s

}

dσ

)

≤ 2 sup
ξ∈Rd

|D|
〈ξ〉s ,

from which we conclude that (7.8) holds. �
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Next we prove (A2)-(ii), as a consequence of the following result:

Lemma 7.3. For any f, g ∈ P(Rd) and s ≥ 0, we have

(7.10) |Qα(f, f)|s ≤ 2

and

(7.11) |Qα(f + g, f − g)|s ≤ 3 |f − g|s.
Moreover for any s > 2 there exists δ ∈ (0, 1) such that

(7.12) |∆f −∆g|s ≤ 2 |f − g|δs.
Proof of Lemma 7.2. We prove the second inequalities (7.11). We write in
Fourier:

F (Qα(f + g, f − g)) = Q̂α(D,S)

=
1

2

∫

Sd−1

b(σ · ξ̂)
(

S(ξ+)D(ξ−) + S(ξ−)D(ξ+)− 2D(ξ)
)

dσ

where Q̂α is the Fourier transform of the symmetric version of the collision
operator Qα, which yields

∣

∣

∣
Q̂α(D,S)

∣

∣

∣

〈ξ〉s ≤ T1 + T2 + T3,

with

T1 :=

∣

∣

∣

∣

1

2 〈ξ〉s
∫

Sd−1

b(σ · ξ̂)S(ξ+)D(ξ−) dσ

∣

∣

∣

∣

≤
∫

Sd−1

b(σ · ξ̂) |S(ξ
+)|
2

|D(ξ−)|
〈ξ−〉s

〈ξ−〉s
〈ξ〉s dσ ≤ |D|s.

Similar estimates hold for the two other terms T2 and T3. The proof
of the first inequality (7.10) is similar (and simpler): we use the Fourier
representation of Qα(f, f) and the bound ‖f̂‖L∞ ≤ 1. We finally prove the
last inequality. We compute

|∆f −∆g|s = sup
ξ∈Rd

|ξ|2 |F −G|〈ξ〉s ≤ sup
ξ∈Rd

(

|F −G|1−δ

( |F −G|
〈ξ〉s

)δ
)

with δ := (s− 2)/s. �

Proof of (A3). We claim that for any s1 ≥ 3 there exists C1 ∈ R+ such
that for all Φ ∈ C2,1(PG1(E),R)
(7.13)
∥

∥GN (Φ ◦ µNZ )−
〈

Q(µNZ , µ
N
Z ),DΦ[µNZ ]

〉∥

∥

L∞(EN )
≤ C1

N
‖Φ‖C2,1(PG1

(E),R),

which is (A3) with k = 2, η = 1 and ε(N) = C1N
−1.

We begin with a technical lemma which shows that the norm | · |s is
well-adapted for obtaining differentiability of the empirical measures. It is
worth emphasizing that the choice of s1 = 3 (in fact we only need s1 > 2
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by modifying slightly the arguments) comes from the requirement that the
function V 7→ Φ(µNZ ) be C2.

Lemma 7.4. The map R
dN → PG1(E), V 7→ µNZ is C2,1 and

∂(vi)α(µ
N
Z ) =

1

N
∂αδvi , ∂2(vi)α,(vi)β (µ

N
Z ) = N−1 ∂2αβδvi .

Proof of Lemma 7.4. For v,w ∈ R
d, we have

|δv − δw|s = sup
ξ∈Rd

∣

∣e−i v·ξ − e−i w·ξ
∣

∣

〈ξ〉s ≤ |v −w| sup
ξ∈Rd

∥

∥∇ve
−i v·ξ

∥

∥

L∞(Rd
v)

〈ξ〉s

≤ |v − w| sup
ξ∈Rd

|ξ|
〈ξ〉s ≤ |v − w|

which shows that v 7→ δv is C0,1. For the sake of simplicity we present the
proof of differentiability when d = 1, the case d > 1 being similar. For v ∈ R

and h ∈ R
∗, we have

∣

∣δv+h − δv − h δ′v
∣

∣

s
= sup

ξ∈R

∣

∣(e−i ξ h − 1 + i ξ h) e−i v ξ
∣

∣

〈ξ〉s ≤ sup
ξ∈R

|ξ h|2
〈ξ〉s ≤ |h|

2,

from which we deduce that v 7→ δv is C1,1. Similarly we can go to second
order:
∣

∣

∣

∣

δv+h − δv − h δ′v +
h2

2
δ′′v

∣

∣

∣

∣

s

= sup
ξ∈R

∣

∣

(

e−i ξ h − 1 + i ξ h− ξ2 h2
)

e−i v ξ
∣

∣

〈ξ〉s ≤ sup
ξ∈R

|ξ h|3
〈ξ〉s ≤ |h|

3,

and we easily conclude that v 7→ δv is C2,1. When the dimension d is greater
than 1, one can perform the same argument for the partial derivatives of the
Dirac mass. �

We come back to the proof of (7.13). Take Φ ∈ C2,1(PG1(E),R) and
compute separately the contributions of GN

i , i = 1, 2. Proceeding as in the
proof of (A3) in Theorem 5.1 we have

GN
1

(

Φ ◦ µNZ
)

=
〈

Qα

(

µNZ , µ
N
Z

)

,DΦ(µNZ )
〉

+ I2(V )

with

|I2(V )| ≤ 1

2N

N
∑

i,j=1

∫

Sd−1

b(cos(θij))‖Φ‖C2,1

∣

∣

∣µNV ∗
ij
− µNZ

∣

∣

∣

2

s1
dσ

≤ 8

N
‖Φ‖C2,1(PG1

(E),R),
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since for any i 6= j
∣

∣

∣
µNV ∗

ij
− µNZ

∣

∣

∣

s1
=

1

N

∣

∣

∣
δv′i + δv′j − δvi − δvj

∣

∣

∣

s1

≤ 1

N

(

∣

∣

∣δv′i

∣

∣

∣

s1
+
∣

∣

∣δv′j

∣

∣

∣

s1
+ |δvi |s1 +

∣

∣δvj
∣

∣

s1

)

=
4

N
.

On the other hand, as in the proof of assumption (A3) in Section 6, the
map R

dN → R, V 7→ Φ(µNZ ) is C2,1 thanks to Lemma 7.4 and denoting
φZ = DΦ

[

µNZ
]

∈ (Hs1(Rd))′, we compute

GN
2 (Φ(µNZ )) =

N
∑

i=1

∆iΦ(µ
N
Z )

=
N
∑

i=1

{

1

N
(∆φZ)(vi) +

1

N2

d
∑

α=1

D2Φ
[

µNZ
]

(∂αδvi , ∂αδvi)

}

= 〈∆µNZ , φZ〉+O
(

‖Φ‖C2,1(PG1
(E),R)

N

)

.

We conclude the proof by combining the previous estimates. �

Proof of (A4). For fin, gin ∈ P(Rd), we define the associated solutions ft
and gt to the nonlinear Boltzmann equation; we define ht := LNL

t [fin](gin −
fin) the solution of the linearized Boltzmann equation around ft; and we
define rt the solution to the “second variation” equation around ft. More
precisely, we define






























∂tft = Qα(ft, ft) + ∆ ft, f|t=0 = fin

∂tgt = Qα(gt, gt) + ∆ gt, g|t=0 = gin

∂tht = Qα(ft, ht) +Qα(ht, ft) + ∆ht, h|t=0 = hin,

∂trt = Qα(ft, rt) +Qα(rt, ft) + ∆ rt +
1
2Qα(ht, h̃t) +

1
2Qα(h̃t, ht), r|t=0 = 0

where in the last equation (second-order variation) ht and h̃t are two solutions
to the third equation (first-order variation).

We then define when hin = h̃in = gin − fin the following error terms














dt := gt − ft
ωt := gt − ft − ht = SNL

t (gin)− SNL
t (fin)− LNL

t [fin](gin − fin)

ψt := gt − ft − ht − rt.
Lemma 7.5. Fix s ≥ 0 and T ∈ (0,∞). There exists CT such that for any
fin, gin ∈ P(Rd), the following estimates hold

∀ t ∈ [0, T ], |ht|s ≤ CT |hin|s ,(7.14)

∀ t ∈ [0, T ], |rt|2s ≤ CT |hin|s |h̃in|s,(7.15)
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and when hin = h̃in = gin − fin we have furthermore

∀ t ∈ [0, T ], |ωt|2s ≤ CT |fin − gin|2s ,(7.16)

∀ t ∈ [0, T ], |ψt|3s ≤ CT |fin − gin|3s .(7.17)

This proves that SNL
t ∈ C2,1(PG1(E), PG2(E)).

Proof of Lemma 7.5. We skip the proof of (7.14) since it is similar to the
proof of (7.8). We then deal with each term successively. We work in Fourier
variable and we introduce the notations F = f̂ , D = d̂, H = ĥ, H̃ = (h̃)̂,
Ω = ω̂, R = r̂ and Ψ = ψ̂.
Step 1. The evolution equation satisfied by Ω is

(7.18) ∂tΩ = Q̂α(Ω, F ) + Q̂α(F,Ω)− |ξ|2 Ω− Q̂α(D,D).

We deduce in distributional sense
d

dt

|Ω(ξ)|
〈ξ〉2s ≤ T1 + T2,

where

T1 := sup
ξ∈Rd

∫

Sd−1

b
(

σ · ξ̂
)

〈ξ〉2s

(

∣

∣

∣

∣

Ω(ξ+)F (ξ−)

2

∣

∣

∣

∣

+

∣

∣

∣

∣

Ω(ξ−)F (ξ+)

2

∣

∣

∣

∣

−F (ξ)Ω(0)− F (0)Ω(ξ)
)

dσ

≤ sup
ξ∈Rd

∫

Sd−1

b
(

σ · ξ̂
)

(

|Ω(ξ+)|
〈ξ+〉2s

〈ξ+〉2s
〈ξ〉2s +

|Ω(ξ−)|
〈ξ−〉2s

〈ξ−〉2s
〈ξ〉2s

+
|Ω(ξ)|
〈ξ〉2s + |Ω(0)| |F (ξ)|〈ξ〉2s

)

dσ

≤ C sup
ξ∈Rd

|Ω(ξ)|
〈ξ〉2s + |Ω(0)| sup

ξ∈Rd

|F (ξ)|
〈ξ〉2s ,

for some constant C > 0, and

T2 :=
1

2
sup
ξ∈Rd

∫

Sd−1

b
(

σ · ξ̂
)

〈ξ〉2s
∣

∣D(ξ+)D(ξ−) +D(ξ−)D(ξ+)
∣

∣ dσ

≤ 1

2
sup
ξ∈Rd

∫

Sd−1

b
(

σ · ξ̂
)

( |D(ξ+)|
〈ξ+〉s

|D(ξ−)|
〈ξ−〉s +

|D(ξ+)|2
〈ξ+〉s

|D(ξ−)|2
〈ξ−〉s

)

dσ

≤ |dt|2s ≤ CT |fin − gin|2s ,
using the estimates (7.8). We then conclude thanks to a Gronwall lemma.

Step 2. The evolution equation satisfied by R is
(7.19)

∂tR = Q̂α(F,R)+Q̂α(R,F )−|ξ|2R+
1

2
Q̂α(H, H̃)+

1

2
Q̂α(H̃,H), R|t=0 = 0.
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Equation (7.19) being similar to equation (7.18), with the same computations
as in Step 1 we deduce that (7.15) holds.

Step 3. Choosing now hin = h̃in = din, the equation satisfied by Ψ is

∂tΨ = Q̂α(F,Ψ) + Q̂α(Ψ, F )− |ξ|2 Ψ− Q̂α(Ω,H)− Q̂α(D,Ω), Ψ|t=0 = 0.

Observe that by conservation of mass Ψt(0) = 0 for all times, and with these
choices of initial data Q̂α(Ω,H) = Q̂+

α (Ω,H) and Q̂α(D,Ω) = Q̂+
α (D,Ω).

Then we perform similar computations as in Step 1, and we deduce in dis-
tributional sense

d

dt

|Ψ(ξ)|
〈ξ〉3s ≤ T1 + T2 + T3,

where

T1 := sup
ξ∈R3

|Q̂α(F,Ψ) + Q̂α(Ψ, F )|
〈ξ〉3s ≤ C sup

ξ∈R3

|Ψ(ξ)|
〈ξ〉3s ,

T2 := sup
ξ∈R3

|Q̂+
α (Ω,H)|
〈ξ〉3s ≤ 2

(

sup
ξ∈R3

|Ω(ξ)|
〈ξ〉2s

) (

sup
ξ∈R3

|H(ξ)|
〈ξ〉s

)

,

T3 := sup
ξ∈R3

|Q̂+
α (D,Ω)|
〈ξ〉3s ≤ 2

(

sup
ξ∈R3

|D(ξ)|
〈ξ〉s

) (

sup
ξ∈R3

|Ω(ξ)|
〈ξ〉2s

)

.

Finally we then conclude the proof of (7.17) using the already established
estimates (7.8), (7.14), (7.16), and the Gronwall lemma. �

Proof of (A5). We use the following result proved in [4] (see also [2] for
a similar result)

sup
t≥0

W2(S
NL
t fin, S

NL
t gin) ≤W2(fin, gin),

which concludes the proof.
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