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PREPRINT

Abstract

In computational biology, gene expression datasets are characterized by very few individ-
ual samples compared to a large number of measurements per sample. Thus, it is appealing
to merge these datasets in order to increase the number of observations and diversify the
data, allowing a more reliable selection of genes relevant to the biological problem. Besides,
the increased size of a merged dataset facilitates its re-splitting into training and validation
sets. This necessitates the introduction of the dataset as a random effect. In this context,
extending a work of Lee et al. [2003], a method is proposed to select relevant variables among
tens of thousands in a probit mixed regression model, considered as part of a larger hierar-
chical Bayesian model. Latent variables are used to identify subsets of selected variables and
the grouping (or blocking) technique of Liu [1994] is combined with a Metropolis-within-
Gibbs algorithm [Robert and Casella, 2004]. The method is applied to a merged dataset
made of three individual gene expression datasets, in which tens of thousands of measure-
ments are available for each of several hundred human breast cancer samples. Even for this
large dataset comprised of around 20000 predictors, the method is shown to be efficient and
feasible. As an illustration, it is used to select the most important genes that characterize
the estrogen receptor status of patients with breast cancer.

Keywords: Bayesian variable selection, random effects, probit mixed regression model, grouping
technique (or blocking technique), Metropolis-within-Gibbs algorithm.

1 Introduction

Selection of variables is a common problem in many scientific fields, and particularly in bioinfor-
matics. Gene expression profiling analyses are notorious for generating a very large number of
predictors compared to the number of observations. Microarray or high throughput sequencing
technologies are important for finding genes that are implicated in biological processes including
development, disease, and response to treatment, and it plays an important role in the current
tendency towards personalized medicine. Identified genes or sequences can be used to classify
future observations, influencing the treatment of patients. However, these experiments are ex-
pensive, and datasets have often no more than 100 specimens. The goal, therefore, is to advance
a method allowing variable selection from merged microarray datasets, each of them presenting
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its own individual experimental bias.

Several model-based approaches have been developed to select variables. A well-known exam-
ple is SVM (Support Vector Machine) with a recursive feature elimination of the genes (Guyon
et al. [2002]). George and McCulloch [1993] and Chipman et al. [2001] developed Bayesian vari-
able selection with the use of Gibbs sampling for linear models; a review of this type of selection
is provided by O’Hara and Sillanpää. [2009]. Tadesse et al. [2005] proposed a Bayesian variable
selection in a model-based clustering approach, using a multivariate Gaussian mixture model.
Recently Bottolo and Richardson [2010] proposed an algorithm based upon Evolutionary Monte
Carlo. Binary responses are often encountered in biostatistics studies, therefore probit or logis-
tic models are implied. Bayesian variable selection methods have been proposed by Lee et al.
[2003], Sha et al. [2004], Zhou et al. [2004b], Zhou et al. [2004c] and Yang and Song [2010] for
probit regression, and by Zhou et al. [2004a], Chen and Dey [2003] and Tüchler [2008] for logistic
regression. Extension to multi-category data has been done for the probit model in Albert and
Chib [1993].

The motivation behind the variable selection method developed in this paper is to take the
design of the study into account by using random effects in a mixed model. It is particularly
suited to a merged microarray dataset design, and many such datasets are freely available from
the NCBI GEO website [Edgar et al., 2002]. The increased size of a merged dataset may provide
improved power, and facilitates its re-splitting into training and validation sets. In addition a
merged set comprises more data diversity than an individual set, hence we can avoid bias due
to a particular dataset as explained by various authors, see Cheng et al. [2010] and references
therein. Among all the methods previously proposed for variable selection, that of Tüchler
[2008] considered mixed models. However, her approach was specific for logistic models, and
the method was applied to datasets with only few dozens predictors, whereas the aim of this
paper is to select a few predictors among tens of thousands in a Bayesian framework. Recently
Frühwirth-Schnatter and Wagner [2010] considered variable selection for random effects, but
in this paper we are more interested by variable selection for the fixed effects, assuming that
random effects are present.

The approach developed in this paper extends the approach of George and McCulloch [1993]
and Lee et al. [2003]. George and McCulloch [1993] introduced latent variables to identify sub-
sets of selected variables in a linear model. Then Lee et al. [2003] used these latent variables in a
probit regression model, which is considered as part of a larger hierarchical Bayesian model. Our
method extends the model used by Lee et al. [2003] by adding random effects. We are then con-
fronted with several difficulties. One concerns the simulation of conditional distributions, since
full conditional distributions cannot be directly simulated. A solution is to use the grouping (or
blocking) technique of Liu [1994], and to combine Gibbs sampler and Metropolis-Hastings algo-
rithms. Therefore the algorithm developed is a combination of the grouping method of Liu and
the Metropolis-within-Gibbs algorithm [Robert and Casella, 2004]. A computational difficulty
due to the large number of genes had also been overcome by imposing a fixed number of selected
genes at each iteration of the algorithm. As a consequence the influence of the value chosen for
the variable selection coefficient of our model is reduced. That represents an advantage, since
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the value of this coefficient can impact the results of other methods, see for instance Bottolo
and Richardson [2010] who proposed to put a hyperprior distribution on this coefficient.

In this paper, Affymetrix microarray data are used, so predictors (genes) will be referred to
as “probesets”, according to that technology. An Affymetrix U133plus2 microarray profiles all
of the genes in the human genome, many of them more than once, using over 54000 gene-specific
“probesets”. Our Bayesian variable selection method for probit mixed models is developed to
select a few important probesets, among tens of thousands, which are indicative of the activity
of the estrogen receptor gene in breast cancer. The severity of this common and deadly disease is
directly related to estrogen receptor (ER) status, which is traditionally measured biochemically.
Three different breast cancer datasets were used, all with clinically defined ER status. One
microarray experiment was done per patient, and ten of thousands of probesets were measured
per experiment. The dataset is introduced as a random effect in the model, thus accounting
for the different experimental conditions implicit in each set. The three merged datasets were
split into training and validation sets, and the relevance of the selected probesets was checked
by fitting a probit mixed model on the training set and predicting the ER status for the patients
from the validation set and other independent sets available from the NCBI GEO website. The
stability and the sensitivity of the algorithm were also checked by using the relative weighted
consistency measure of Somol and Novovicova [2008].

The remainder of the paper is organized as follows. Section 2 describes the probit mixed
model with latent variables. Section 3 gives the full conditional distributions necessary for the
Gibbs sampling algorithm, outlines the algorithm and proposes a way to construct a classification
rule using the selected probesets. Section 4 provides some experimental results on real datasets,
on the relevance of selected probesets, and on the sensitivity and the stability of the method.
Finally Section 5 discusses the method.

2 Probit mixed model for gene selection

2.1 The hierarchical model

Suppose that n binary events are observed, denoted by the Yi, i = 1, . . . , n. The set of potential
regressors is of size p, with p ≫ n. The goal is to select a subset of regressors related to the
events Y1, . . . , Yn. The following probit mixed model is considered,

P (Yi = 1 | U, β) = pi = Φ(X ′

iβ + Z ′

iU),

where Φ stands for the standard Gaussian cumulative distribution function, and Xi and Zi for
the fixed and random effect regressors associated with the ith observation. The parameter β
corresponds to the fixed-effect coefficients and the parameter U to the random-effect coefficients.
X and Z are design matrices associated with the fixed and random effects.
Assuming that we have K random effects, U = (U ′

1, . . . , U
′

K)′. Each Ul is of size ql, and
∑K

l=1 ql =
q. The size of β is p.

Following Albert and Chib [1993] and Lee et al. [2003], a vector of latent variables L is
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introduced. We write L = (L1, . . . , Ln) and we assume that L | U, β ∼ Nn(Xβ + ZU, In) with
In the identity matrix. We then have

Yi =

{

1 if Li > 0
0 if Li < 0,

(1)

To perform variable selection, a vector γ of p indicator variables is introduced:

γj =

{

1 if βj 6= 0, variable j selected
0 if βj = 0, variable j not selected.

Given γ, βγ is the vector of all nonzero elements of β, and Xγ is the matrix X with only the
columns corresponding to the elements of γ that are equal to 1.

2.2 Prior distributions

To complete the hierarchical model, some prior assumptions have to be made on U | D, βγ | γ,
γ and D, where D is a covariance matrix of dimension q.

• If the data supports γj = 0 over γj = 1, then the jth variable will not be needed in the
model and we can let βj = 0. We then focus on the prior distribution of the non null
vector βγ . Like Lee et al. [2003], we take the following conventional prior:

βγ | γ ∼ Nd(0, c(X
′

γXγ)
−1), with d =

p
∑

j=1

γj, (2)

This prior corresponds to the g-prior of Zellner [1986], and c is a positive scale factor spec-
ified by the user. Bottolo and Richardson [2010] called it the variable selection coefficient.
Several authors discussed the choice of its value, see Chipman et al. [2001], George and
Foster [2000], Clyde and George [2000] and Smith and Kohn [1997] among others. Raftery
et al. [1997] used a similar form of prior. In our algorithm the value of c will be fixed, but
will not be too influent (see the discussion).

• The γj are assumed to be independent Bernoulli variables, with

P (γj = 1) = πj, 0 ≤ πj ≤ 1.

We do not want to use prior knowledge to favor any probesets, so we put πj = π,
∀j = 1, . . . p.

• The vector of coefficients associated with the random effects is assumed to be Gaussian
and centered:

U | D ∼ Nq(0,D).

This definition allows three cases to be distinguished:
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General case: No structure is assumed for the variance-covariance matrix D, its prior
distribution is an Inverse-Wishart W−1(Ψ,m).

Case of a block-diagonal matrix D: The different random effects are assumed indepen-
dent. The vectors of coefficients associated with each random effect have Gaussian prior
distributions:

Ul | Al ∼ Nql(0, Al), l = 1, . . . ,K,

where the Al are symmetric design matrices of dimension ql. D is a block-diagonal matrix
denoted by diag(A1, . . . , AK). The prior distributions for each Al are Inverse-Wishart
W−1(Ψ,m).

Case of a diagonal matrix D: D = diag(A1, . . . , AK) where Al = σ2
l Iql , l = 1, . . . ,K and

Iql the identity matrix. The prior distributions for the σ2
l are then Inverse Gamma IG(a, b)

(b denotes the scale).

3 Bayesian sampler for variable selection

3.1 The conditional distributions

The posterior distribution of γ is of particular interest since it encapsulates the effectiveness of
the different explanatory variables in explaining the variation in the responses Y . The number
of possible explanatory variables is on the order of tens of thousands, so the number of possible
γ-vectors is extremely large. The idea is to use a Gibbs sampling algorithm to explore this
posterior distribution and search for high probability γ values.

In order to use the classical Gibbs sampler, we must be able to simulate from all of the full
conditional distributions (simplified by the hierarchical structure): f(L | Y, β, U), f(β | L,U, γ),
f(U | L, β,D), f(γ | L,U, β) and f(D | U).

• Full conditional distribution of L.

Li | β,U, Yi = 1 ∼ N (X ′

iβ + Z ′

iU, 1) left truncated at 0

Li | β,U, Yi = 0 ∼ N (X ′

iβ + Z ′

iU, 1) right truncated at 0. (3)

• Full conditional distribution of β.
Given γ, we know which elements of β are not null. So we focus on the generation of the
non null elements of βγ . Letting Vγ = c

1+c
(X ′

γXγ)
−1, we have

βγ | L,U, γ ∼ Nd(VγX
′

γ(L− ZU), Vγ) with d =

p
∑

i=1

γi. (4)

• Full conditional distribution of U .
Defining W = (Z ′Z +D−1)−1, we have

U | L, β,D ∼ Nq(WZ ′(L−Xβ),W ). (5)
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• Full conditional distributions of γ.

f(γ | βγ , L, U) ∝ (2π)−
d
2 exp

[

−
1

2

(

− L′Xγβγ − β′

γX
′

γL+ β′

γX
′

γZU + U ′Z ′Xγβγ + β′

γV
−1
γ βγ

)]

× | c(X ′

γXγ)
−1 |−

1
2

p
∏

j=1

π
γj
j (1− πj)

1−γj . (6)

• Full conditional distribution of D.
General case: The full conditional distribution of D is an Inverse-Wishart:

D | U ∼ W−1(UU ′ +Ψ,m+ 1). (7)

Case of a block-diagonal matrix D: D = diag(A1, . . . , AK). The full conditional distribu-
tion of Al (∀l = 1, . . . ,K) is an Inverse-Wishart:

Al | Ul ∼ W−1(UlU
′

l +Ψ,m+ 1). (8)

Case of a diagonal matrix D: D = diag(A1, . . . , AK), and ∀l = 1, . . . ,K, Al = σ2
l Iql . The

full conditional distribution of σ2
l is an Inverse-Gamma:

σ2
l | Ul ∼ IG

(ql
2
+ a,

(1

2
U ′

lUl + b
)

)

. (9)

3.2 Use of the grouping technique

The classical Gibbs sampler cannot be used because the full conditional distribution of γ cannot
be directly simulated (see (6)). However, this full conditional distribution can be simulated with
a Metropolis-Hastings algorithm, and the complete algorithm would be a Metropolis-within-
Gibbs algorithm. Roberts and Rosenthal [2006] have shown the Harris-recurrence of this algo-
rithm, therefore its convergence is guaranteed. But even with a Metropolis-Hastings algorithm,
the full conditional distribution of γ is difficult to obtain, since it depends on the actual value
of βγ . Thus the acceptance rate for a candidate γ∗ in the Metropolis-Hastings algorithm will
depend both on the actual γ(t) and βγ(t) , and on the proposed γ∗ and βγ∗ . The problem is that
βγ∗ is unknown.
To get around this problem, we combine the Metropolis-within-Gibbs algorithm with the group-
ing (or blocking) technique of Liu [1994]. The idea is to group the parameters βγ and γ, so we
will be interested in the full conditional distribution of (βγ , γ) | L,U . This technique improves
the algorithm and facilitates the convergence of the Markov chain, see Liu [1994] and van Dyk
and Park [2008]. We note that the sampler obtained is then a special case of a Partial Collapsed
Gibbs Sampler, see van Dyk and Park [2008].
As we have

f(βγ , γ | L,U) ∝ f(γ | L,U)f(βγ | γ, L,U),

we remark that simulating from the full conditional distribution (βγ , γ) | L,U is equivalent to
simulating γ from its full conditional distribution integrated on βγ , then simulating βγ from its
full conditional distribution. The “integrated distribution” for γ will not depend anymore on
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the nuisance parameter βγ and will be easily simulated by a Metropolis-Hastings algorithm.
In each iteration of the algorithm, we will take care to simulate γ before βγ, to keep the depen-
dence between βγ and γ, as noted by van Dyk and Park [2008].

We use f(L | γ, U) and the Bayes Theorem to get the integrated distribution of γ | L,U (the
target distribution):

f(γ | L,U) ∝ (1 + c)−
∑

γi
2 exp

[

−
1

2

{

(L− ZU)′(L− ZU) (10)

−
c

1 + c
(L− ZU)′Xγ(X

′

γXγ)
−1X ′

γ(L− ZU)
}]

×

p
∏

j=1

π
γj
j (1− πj)

1−γj .

3.3 The Metropolis-within-Gibbs sampler modified by the grouping tech-

nique

3.3.1 A Metropolis-Hastings step to simulate γ

At iteration (i+ 1) of the Metropolis-Hastings algorithm, a candidate γ∗ will be proposed from
γ(i). We want a symmetric transition kernel, to simplify the acceptance rate of the algorithm.
The simplest way to have a symmetric transition kernel is to propose a γ∗ which corresponds to
γ(i) in which r components have been randomly changed (see Chipman et al. [2001] and George
and McCulloch [1997]).

Given the target distribution (10), the acceptance rate ρ is then:

ρ(γ(i), γ∗) = min

{

exp
[ c

2(1 + c)
(L− ZU)′

(

Xγ∗(X ′

γ∗Xγ∗)−1X ′

γ∗ −Xγ(i)(X ′

γ(i)Xγ(i))−1X ′

γ(i)

)

×(L− ZU)
]

× (1 + c)

∑
(

γ
(i)
j

−γ∗j

)

2 ×
( π

1− π

)

∑p
1

(

γ∗

j −γ
(i)
j

)

, 1

}

. (11)

To facilitate the computation of the algorithm, the proposed γ∗ still corresponds to γ(i) for
which r components have been changed, but in such a way that the number of components
whose values are 1 (and so the number of selected variables) is invariant. In so doing, r/2
components among the 1 values, and r/2 components among the 0 values are chosen at random
and switched. There are several advantages to propose such a γ∗:

• In an iteration of the algorithm, if we have the number of variables selected d higher
than the number of observations n, the X ′

γXγ matrix would be singular, and the prior
distribution of βγ could not be defined as in (2). An advantage of fixing the number of
variables to be selected at each iteration is that this number cannot increase during a run
of the algorithm, and if d is chosen lower than n this case of non singularity of X ′

γXγ is
avoided.

• The acceptance rate is simplified, as we obtain
∑

(

γ
(t)
j − γ∗j

)

= 0.
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• The choice of the prior value for the variable selection coefficient c used in the prior
distribution of β is less influent (see the discussion).

Remark. In the method of Lee et al. [2003], the γ vector is generated component by compo-
nent at each iteration, while in our method a Metropolis-Hastings algorithm is used to generate
it. There are two advantages to use a Metropolis-Hastings algorithm: it is computationally
advantageous for a very large number of variables compared to a generation component by com-
ponent, and it enables us to easily generate a γ vector with an invariant number of components
whose values are 1.

3.3.2 The sampler

The Metropolis-within-Gibbs sampler modified by the grouping technique of Liu generates a
sequence:

γ(1), β(1)
γ ,D(1), L(1), U (1), . . . . . . , γ(b+m), β(b+m)

γ ,D(b+m), L(b+m), U (b+m).

The sequence of the γ(t), which is of interest for the variable selection problem, is embedded
in this ”Gibbs sequence”. To generate it, at each iteration γ is simulated from its integrated
distribution and βγ , L, U and D are simulated from their full conditional distributions.

Algorithm:

Starting with initial values γ(0), β(0),D(0), L(0), U (0). At iteration t+ 1:

1. Simulate γ(t+1) from f(γ | L(t), U (t)) (see 10), using the Metropolis-Hasting
step. Given γ(t), L(t), U (t), k iterations of the Metropolis-Hastings algorithm
are performed (k arbitrarily fixed). The Metropolis-Hastings step begins with
γ(t) as an initial value. Then at each iteration i+ 1:

(a) Generate the γ∗ candidate, by randomly switching r/2 components among
the 1 values, and r/2 components among the 0 values.

(b) Take

γ(i+1) =

{

γ∗ with probability ρ(γ(i), γ∗) see (11)

γ(i) with probability 1− ρ(γ(i), γ∗)

γ(t+1) will be the γ(k) obtained at the kth iteration of the Metropolis-Hastings
algorithm.

2. Simulate β
(t+1)
γ from f(βγ | L(t+1), U (t), γ(t+1)) (see (4)).

3. Simulate D(t+1) from f(D | U (t)) (see (7), (8) or (9)).

4. Simulate L(t+1) from f(L | Y, β(t), U (t)) (see (3)).

5. U (t+1) from f(U | L(t+1), β(t+1),D(t+1)) (see (5)).

We use the fact that Xβ = Xγβγ and that β can be obtained from γ and βγ . The number of
iterations is b +m, where b corresponds to the burn-in period and m to the observations from
the posterior distributions.
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In our application, we are not concerned by the strict convergence of the sampler. The
aim is to find some relevant variables explaining the response, and to obtain good predictions.
Hence we only need to do stability and sensitivity studies to check that the training set and the
choices of the hyperparameters are not too influent, and we check the biological relevance of the
variables selected.

3.3.3 The selected probesets

For selection of variables, the sequence {γ(t) = (γ
(t)
1 , . . . , γ

(t)
p ), t = b+1, . . . , b+m} is used. The

most relevant variables for the regression model are those which are supported by the data and
prior information. Thus they are those corresponding to the γ components with higher posterior
probabilities, and can be identified as the γ components that are most often equal to 1.

3.4 Classification and prediction

Once a set of relevant variables have been selected, it can be used to fit a probit mixed model
in a classical way and to classify future observations. However, if more variables than necessary
to fit a probit mixed model have been selected in the Bayesian selection step, a second selection
has to be performed on them in order to build a reliable probit mixed model. This second
selection is performed on the training set using standard selection tools like AIC, BIC, Bayes
factors,. . . . The final probit mixed model can be tested on the validation set. Moreover, the
variables selected in the Bayesian selection step can be used in other classification methods, such
as Support Vector Machines (but random effects are not taken into account).

4 Experimental results

4.1 Application to the ER status of patients with breast cancer

4.1.1 Description of the datasets

Three different datasets were used: one private dataset from the Institut Paoli Calmettes (Mar-
seille, France), consisting of 151 samples, and two datasets freely available from the NCBI GEO
public website [Edgar et al., 2002]: accession numbers GSE2109 (310 samples) and GSE5460
(124 samples). Each dataset was treated for background noise and normalized with respect to a
reference distribution by the RMA procedure [Irizarry et al., 2003]. Each dataset was split into
a training set and a validation set having the same proportions of ER positive and ER negative
observations. Then the three training datasets were merged on one side (497 patients) and the
three validation sets were merged on the other side (88 patients).
For each patient, more than 54000 probesets were available. Two filters were applied on all of
these probesets. Only the probesets sufficiently expressed so that they can be differentiated from
noise and which could not be considered as invariant were kept, resulting in 19384 probesets.
The goal was to select only a few probesets which are related to the ER status of the patients, by
taking into account the different experimental conditions between the different merged datasets.
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In this illustration, there are thousands of fixed regressors corresponding to the expression
measurements of probesets, and only one random effect, which corresponds to the different
datasets. Xij corresponds to the measurement of the expression level of the jth probeset for the
ith patient, and Zil = 1 if the ith patient is from the lth dataset, 0 otherwise.

4.1.2 Prior settings for the algorithm

• Following the recommendations of Smith and Kohn [1997], a value of c = 50 was chosen
for the variable selection coefficient used in the prior distribution of β.

• Thirty probesets were selected at each iteration of the Gibbs sampler, when γ is generated;
r = 10 of them were changed at each iteration of the Metropolis-Hastings step (5 zeros
and 5 ones).

• The random effect corresponds to the dataset, and the three datasets are considered in-
dependent: they were generated in different countries, by different teams, using different
equipments and different patients. Therefore the variance-covariance matrix of the ran-
dom effect D was a diagonal matrix 3 × 3 with A1 = σ2

1I3. Gelman [2006] noted that an
inverse-gamma prior should not be too non-informative, otherwise serious problems can
arise. Given our data, we knew that σ2

1 is probably not too high, and a IG(2, 3) seemed
reasonable for the prior distribution of σ2

1.

• For the Metropolis-within-Gibbs sampler modified by the grouping technique, 60000 iter-
ations were computed, among which 30000 were burn-in iterations. For the Metropolis-
Hastings step in this sampler, 500 iterations were computed, and the simulated γ was the
one corresponding to the 500th iteration.

4.1.3 Results and predictions

We performed a first selection of variables by selecting the top-rank probesets, those which have
been selected the most often. A boxplot can help, see Figure 1. Forty probesets were selected at
least once from the 30000 post-burn-in iterations of the simulated Markov Chain for γ. Twenty
three probesets were selected in the 30000 iterations, and thirty were selected at least from 20000
iterations. There is a gap between probesets selected in more than 20000 iterations and others,
so the first selection is made of these probesets selected at least in 20000 iterations.
A second selection was performed on the thirty probesets from the first selection, to build a
reliable probit mixed model. This second selection was performed on the training set, using a
stepwise selection (with AIC and BIC criteria) and the classification performance of the model
on the validation set. Five probesets were kept: Affymetrix symbols 228241 at, 205862 at,
202376 at, 216222 s at and 1568760 at. See Table 1 for the associated gene symbols and
coefficients. The estimated random effects of this final model were reasonable: −0.284 for the
dataset from the Institut Paoli Calmettes, 0.199 for the GSE2109 dataset and 0.087 for the
GSE5460 dataset.
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Figure 1: Boxplot of the number of selections of a probeset after the burn-in period, for the real
datasets example. Forty probesets were selected at least once, all of the other probesets were
never selected. A point represents a probeset (or several probesets if they have been selected
the same number of times).

Probeset gene Coefficient Pvalue

Intercept -9.12074 1.92e-05
228241 at AGR3 0.45046 1.12e-15
205862 at GREB1 0.77639 4.18e-08
202376 at SERPINA3 0.37965 0.000149
216222 s at MYO10 -0.63551 0.004967
1568760 at MYH11 0.42742 0.050219

Table 1: Probesets selected in the final model and associated coefficients.

Using this 5-probeset model, two methods were used to predict the ER status of the patients
in the validation set:

1. Using knowledge of the dataset to which each patient belonged and using the estimated
random effects coefficients.

2. The estimated random effects coefficients are not used in order to mimic a real-life scenario
of an experiment for a patient coming from an unknown dataset.

The patients were predicted positive if their probability to be positive was higher than 0.5 and
negative if it was lower than 0.5. The two methods gave us the same predictions, which were
very good: a specificity of 1 and a sensitivity of 0.98 (1 wrong predictions among 88), see Figure 2.
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Figure 2: Histogram of probabilities to be ER positive given by the final model, for patients
from the validation set.

Remark. In biomedical studies, when continuous variables are often reclassified as binary, it
is common to define an “undetermined zone” of probabilities for which no prediction are given.
Indeed, it is sometimes better than giving a wrong prediction, because these predictions imply
treatments. Defining an “undetermined zone” between 10% and 90% probability of being posi-
tive, false predictions were eliminated, and 10 were considered undetermined (11.4%) (estimated
random effects coefficients not used).

As a final test of our model, two more independent datasets were brought in from the NCBI
GEO website: the GEO series GSE6532 and the GEO series GSE12763. The random effects
associated with these datasets were entirely unknown, simulating an even more realistic case
of prediction for a patient coming from an unknown dataset. Once again the results were very
good : only 1 wrong prediction among 29 for the GSE12763 dataset, and no wrong predictions
among 86 for the GSE6532 dataset.

4.2 Sensitivity and stability studies

The sensitivity and the stability of the algorithm were assessed by using the relative weighted
consistency measure of Somol and Novovicova [2008], denoted by CWrel. It is a measure evalu-
ating how much subsets of selected variables for several runs overlap, and it shows the relative
amount of randomness inherent in the concrete variable selection process. It takes values be-
tween 0 and 1, where 0 represents the outcome of completely random occurrence of variables in
the selected subsets and 1 indicates the most stable variable selection outcome possible.
Stability is defined as sensitivity to variations in the training set. Referring to our breast cancer
data set, 4000 probesets were randomly chosen from among the 19384 originally available. Since
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the aim here was only to check the sensitivity and stability of the method, these 4000 were not
chosen in relation to the ER status.
Several runs of the algorithm were performed, and are reported in Table 2. Concerning the
stability, the algorithm was run on three different training sets of 497 microarrays (among 585),
using the same prior values for the hyperparameters. Concerning the sensitivity, the algorithm
was run on the same training set with different values of c, different prior distributions for σ2

1 ,
different numbers of probesets to be selected at each iteration of the algorithm and different
numbers of iterations. For the prior distributions for σ2

1 , we chose a IG(2, 3) which seemed
reasonable given our data, a IG(2, 5) to have a prior favoring higher values compared to the first
one, a IG(3, 1) to favor lower values, and a IG(1, 1) to have a non-informative prior without too
small parameters to avoid problems, see Gelman [2006].

For each run, a reasonable number of probesets could be easily selected. Indeed, two to ten
probesets were selected much more often than the others, see Figure 3 (two to four probesets
were selected for most of the runs). Hence there is no need to perform a second selection, as
in section 4.1.3. To compare the results of the different runs, the relative weighted consistency
measure of Somol and Novovicova CWrel was used.

Value Prior Nb probesets to be Nb probesets to be Iterations burn-in
Simu Dataset of for selected at each changed at each for the for the CWrel

c σ2 iteration of the GS iteration of the MH algo algo

1 1
2 2
3 3

50 IG(2, 3) 15 6 12000 6000
0.25

4 10
5 50
6 100
7

1

1000

IG(2, 3) 15 6 12000 6000

0.375

8 IG(2, 3)
9 IG(1, 1)
10 IG(1, 1)
11

1 50

IG(2, 5)

15 6 12000 6000

0.292

12 15 6
13 5 2
14

1 50 IG(2, 3)
30 10

12000 6000
0.5

15 1 50 IG(2, 3) 15 6 30000 15000

Table 2: Parameters of the runs for the stability and sensitivity study and associated relative
weighted consistency measure of Somol and Novovicova CWrel. For the Metropolis-Hastings
step, always 500 iterations are computed.
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Figure 3: Boxplot of the number of selections of a probeset after the burn-in period, for two
runs of the sensitivity analysis. A point represents a probeset (or several probesets if they
have been selected the same number of times). The left boxplot corresponds to the run with
c = 1000: there is a gap between the two probesets selected in more than 4000 iterations and the
others, hence we selected these two probesets. The right boxplot corresponds to the run with
σ2
1 ∼ IG(2, 5): there is a gap between the four probesets selected in more than 1500 iterations

and the others, hence we selected these four probesets.

Using the results of the 15 runs together, CWrel = 0.398. Subsets of selected variables
for the different runs overlapped: among the 15 runs the probesets 215552 s at, 209603 at

and 209602 s at were kept in 12, 12 and 6 runs respectively. Apparently the prior for σ2

(CWrel = 0.292) has more impact than the number of probesets to be selected at each iteration
(CWrel = 0.5). We note that the number of probesets to be selected at each iteration of the
algorithm and the number of iterations do not seem to modify the number of probesets more
selected than the others during the run.

This was satisfying and the method appears relatively stable. First because the random
selection of 4000 probesets carries a risk of destabilization of the results, since these 4000 are
not necessarily those which are most indicative of ER status. Secondly, several probesets can
represent the same gene, and different genes can be implied in the same biological pathway.
Thus, it is possible that subsets of probesets are more similar than they appear, and therefore
that CWrel is underestimated. For example, the probesets 209603 at and 209602 s at men-
tioned above both represent the gene GATA3. Finally, these simulations indicate that there is
not a parameter whose choice introduces more sensitivity than the others.
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4.3 Comparison with other methods

We compared the performance of our method with the performances of other methods which
do not take into account random effects: we considered the model of Lee et al. [2003] and
Support Vector Machine with Recursive Feature Elimination of the variables, with linear or non
linear kernels [Guyon et al., 2002]. We used simulated data: 200 observations of 1000 variables
following a uniform distribution U[−5,5] are generated. We assume that 5 variables and a random
effect U of size 4 explain a vector of binary variables Y by a probit mixed model:

pi = Φ(X ′

iβ + Z ′

iU), i = 1, . . . , 200

Yi ∼ B(pi), i = 1, . . . , 200

We took βγ = (−1,−1, 1, 1, 2) and we assume that 50 observations are coming from each modality
of the random effect. Different values of U were used: U1 = (0, 0, 0, 0), U2 = (−3,−2, 2, 3), U3 =
(−5,−3, 3, 5), U4 = (−10,−5, 5, 10) and U5 = (−30,−10, 10, 30). This set of 200 observations
was splitted into training and validation sets, each of them of size 100, with 25 observations
coming from each modality of the random effect. For our method and the method of Lee et al.
we took c = 50, 5 probesets were selected at each iteration of the Gibbs sampler and r = 2 of
them were changed at each iteration of the Metropolis-Hastings step (1 zero and 1 one), D was
a diagonal matrix 3 × 3 with A1 = σ2

1I3 and a prior IG(1, 1) was chosen for σ2
1, 500 iterations

were performed for each Metropolis-Hastings step, and a total of 3000 and 5000 iterations were
performed for the whole algorithm.
Concerning our method and the method of Lee et al. [2003], the top-ranked variables (variables
selected more often than others, box-plots were used) were used to perform predictions on the
validation set. The RFE-SVM method gave us directly sets of ”best variables” and associated
models, and these models were used to perform the predictions. The results obtained are in
Table 3.

Random effect Our method Lee et al. [2003] method RFE-SVM

U 3000 iterations 5000 iterations 3000 iterations 5000 iterations linear non linear

U1 17 26 19 22 25 23

U2 19 21 19 19 20 26

U3 21 23 24 24 25 26

U4 19 19 35 35 29 31

U5 14 11 44 44 52 56

Table 3: Number of misclassifications on the validation set, for different methods and different
random effects.

When there is no random effect or when the magnitude of the random effect is small, our
method is comparable to the one of Lee et al., and the results of these two methods are better
than or comparable with those obtained by RFE-SVM. But when the magnitude of the random
effect is high, especially for U4 and U5, it appears that our method outperforms the method of
Lee et al. and the RFE-SVM method.
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5 Discussion

In this article we have developed an approach for Bayesian gene selection for a probit mixed
model, as an extension of previous works by George and McCulloch [1993] and Lee et al. [2003].
An important contribution of our method is that it allows selection of variables in a mixed
framework, taking into account the design of the data. It is particularly useful for gene selec-
tion, as it enables the use of merged datasets in order to introduce more observations and greater
diversity. That may provide improved power, and we can avoid bias due to a particular dataset.
The increased size of a merged dataset facilitates its re-splitting into training and validation sets,
hence we do not need to evaluate the performance of a classification rule by a cross-validation
procedure. It is advantageous compared to other methods which do not take into account ran-
dom effects. Indeed, as these methods can use only one dataset which is usually of small size,
they often need to perform leave-one-out-cross-validation, which can be time-consuming (see Lee
et al. [2003], Yang and Song [2010], Sha et al. [2004], Zhou et al. [2004b] and Zhou et al. [2004c]
for instance). On the contrary, if several datasets are merged then a separated training set can
be used and the performance of a classifier can be directly obtained on it. Using simulations
to make comparisons with other methods which do not take into account random effects, we
showed that the proposed method is comparable to others when the magnitude of the random
effects is low, but performs better than the others for classification when the magnitude of the
random effects is high. This method should prove widely useful in microarray bioinformatics,
since many diverse datasets are freely available on the Internet. But it can also be used for
data obtained from high throughput sequencing technologies, which will probably be used a lot
in few years. Indeed, the method can be applied when we have a matrix with n << p and an
associated vector of random effects.

In practice, before running an analysis, one must decide how many variables will be selected
at each iteration of the Gibbs sampler. We do not consider this to be a drawback, since in
order to have a reliable selection, the number of probesets should be limited compared to the
size of the training set. Besides, fixing the number of variables selected at each iteration is
a computational advantage, as discussed in section 3.3.1. In particular, the singularity of the
X ′

γXγ matrix is avoided.
In addition, one must choose a value for the hyperparameter c which is large enough to have
a relatively non-informative prior. Only the simulations of βγ | L,U, γ and of γ | L,U directly
depend on c. Concerning βγ | L,U, γ, we can see in (4) that the density is proportional to
c/(1 + c), which is relatively close to 1 if c is large. Concerning the density of γ | L,U (see

(10)), it depends on c/(1 + c) and on (1 + c)−
∑

γi
2 . The factor (1 + c)−

∑
γi
2 does not play a role

in the simulation of γ, because the number of variables to be selected at each iteration is fixed:
this factor vanishes in the acceptance rate of the Metropolis-Hastings step of the algorithm.
Therefore the value chosen should not be too influent, as long as it is large enough. We chose
arbitrarily c = 50, following Smith and Kohn’s (1997) recommendations. However different au-
thors suggested different ranges, see Chipman et al. [2001], George and Foster [2000] and Clyde
and George [2000] among others. For example Zhou et al. [2004b] and Zhou et al. [2004c] used
c = 10, and Lee et al. [2003] used c = 100. However, it is possible to include another level in our
Bayesian hierarchical model and to put a prior distribution on c. Zellner and Siow [1980] for
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instance proposed a mixture of g-priors and an inverse-gamma prior on c. Recently Bottolo and
Richardson [2010] considered putting a hyperprior on c and using a Metropolis-within-Gibbs
with adaptive proposal for updating this coefficient. In our application this coefficient was held
fixed for convenience, and good results were obtained. Besides the sensitivity study showed us
that the method is not overly sensitive to the value chosen for c, as expected.
More generally, it appeared that the algorithm is fairly stable to variations in the training set,
and is robust to prior value of any of the hyperparameters.

Convergence could not be verified because we did not have formal diagnostic tools to prove
it, as the parameters vectors used in the proposed algorithm were not associated to the same
variables from one iteration to the next. Besides, the different runs could have converged to a
local mode of the posterior distribution of γ, and not to a global one. But the results obtained in
the stability and sensitivity analyses were satisfactory, as different runs with different starting
points and different prior hyperparameters selected broadly the same variables, which means
that these different chains had basically the same behavior. From our experience, it appeared
that having a total number of iterations equal to three times the size of the set of predictors is
sufficient, the results were not significantly different when more iterations were performed.

The probesets selected by our method to characterize the estrogen receptor status enabled
us to fit a model with good predictions. Moreover, three genes among the five used in the model
were also selected using a Support Vector Machine method (twenty-four genes were selected by
SVM), and another group of three among those five is known to be associated with estrogen
receptor pathways and breast cancer: GREB1 [Nagaraja et al., 2006, Townson and O’Connell,
2006, Rae et al., 2005], SERPINA3 [Cimino et al., 2008] and MYH11 [Singh and Chaturvedi,
2009]. Therefore, it seems that the probesets selected by our method are quite biologically rel-
evant.

The algorithm developed is efficient and feasible, even for very large datasets with around
20000 variables. Therefore this approach has a clear advantage over other selection methods
which handle less variables or which do not take into account random effects. However, Bayesian
variable selection is an active research area, and it would be interesting to combine our method
with recent proposals. For instance by studying the performance of the method with other prior
distributions for σ2, like half-Cauchy or folded-noncentral-t distributions, see Gelman [2006].
Or by putting a prior distribution on c, like in Bottolo and Richardson [2010]. It would also be
of interest to consider an alternative prior distribution for βγ to handle a non-invertible X ′

γXγ

(when γ is itself singular or when n < d), by combining our approach with the concept of ridge
regression (work in progress).
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Moléculaire of the Institut PAOLI CALMETTES (Marseille, France) for permission to use their
data. We also thank Pr Denys Pommeret and Rebecca Tagett for useful discussions and com-
ments.

References

J.H. Albert and S. Chib. Bayesian analysis of binary and polychotomous response data. Journal
of the American Statistical Association, 88(422):669–679, 1993.

L. Bottolo and S. Richardson. Evolutionary stochastic search for bayesian model exploration.
Bayesian Analysis, 5(3):583–618, 2010.

M.H. Chen and D.K. Dey. Variable selection for multivariate logistic regression models. Journal
of Statistical Planning and Inference, 111:37–55, 2003.

W.C. Cheng, M.L. Tsai, C.W. Chang, C.L. Huang, C.R. Chen, W.Y. Shu, Y.S. Lee, T.H W.ang,
J.H. Hong, C.Y. Li, and I.C. Hsu. Microarray meta-analysis database (m2db): a uniformly
pre-processed, quality controlled, and manually curated human clinical microarray database.
BMC Bioinformatics, 11, 2010.

H. Chipman, E.I. George, and R.E. McCulloch. The practical implementation of bayesian model
selection. In Model selection - IMS Lecture Notes. P. LAHIRI. Institute of Mathematical
Statistics, 2001.

D. Cimino, L. Fuso, C. Sfiligoi, N. Biglia, R. Ponzone, F. Maggiorotto, G. Russo, L. Cicatiello,
A. Weisz, D. Taverna, P. Sismondi, and M. De-Bortoli. Identification of new genes associated
with breast cancer progression by gene expression analysis of predefined sets of neoplastic
tissues. International Journal of Cancer, 123(6):1327–1338, 2008.

M. Clyde and E.I. George. Flexible empirical bayes estimation for wavelets. Journal of the Royal
Statistical Society B, 62(4):681–698, 2000. doi: 10.1111/1467-9868.00257.

R. Edgar, M. Domrachev, and A.E. Lash. Gene expression omnibus: NCBI gene expression and
hybridization array data repository. Nucleic Acids Research, 30(1):207–210, 2002.
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