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On the cutoft frequency of clarinet-like
instruments
Geometrical vs acoustical regularity

E. Moers, J.Kergomard
Laboratoire de Mécanique et d’Acoustique, CNRS UPR 7051, 31 Chemin
Joseph Aiguier, 13402 Marseille Cedex 20, France

Abstract

A characteristic of woodwind instruments is the cutoff frequency of
their tone-hole lattice. Benade proposed a practical definition using the
measurement of the input impedance, for which at least two frequency
bands appear. The first one is a stop band, while the second is a pass
band. The value of this frequency, which is a global quantity, depends
on the whole geometry of the instrument, but is rather independent on
the fingering. This seems to justify the consideration of a woodwind with
several open holes as a periodic lattice. However the holes on a clarinet
are very irregular. The paper investigates the question of the acoustical
regularity: an acoustically regular lattice of tone holes is defined as a
lattice built with T-shaped cells of equal eigenfrequencies. Then the paper
discusses the possibility of division of a real lattice into cells of equal
eigenfrequencies. It is shown that it is not straightforward but possible,
explaining the apparent paradox of the Benade theory. When considering
the open holes from the input of the instrument to its output, the spacings
between holes are enlarged together with their radii: this explains the
relative constancy of the eigenfrequencies.

PACS: 43.75

1 Introduction

In his paper of 1960, Benade [ﬂ] proposed to use the theory of periodic media
in order to analyze the effects of a row of tone-holes of wind instruments. He
was mainly interested in the length correction at the input of a regular lattice
of holes, which are either all closed or all open. He discovered the existence
of an important frequency, the cutoff frequency of the lattice of open holes.
Below cutoff, at low frequency (in the stop band), a wave is evanescent, i.e.
exponentially decreasing, while above cutoff (in the pass band), it can propagate.
Later, in his book [E], he gave many details about this frequency and published
experimental results showing the relative independence of this frequency with
respect to the fingerings (except the fork ones) in the first register of oboes,
bassoons and clarinets. In addition he explained how this frequency is correlated
to the tone-color adjectives used by musicians to describe the overall tone of an
instrument (see [ p. 486).



The relative independence of the cutoff with respect to the fingerings suggests
a great regularity of the tone-hole lattice. This fact seems to be in contradiction
with the irregularity of the geometry of the holes of a clarinet and is the basis
of the motivation of the present paper.

Benade proposed a practical method of determination of this frequency based
upon the measurement of the input impedance. Two examples will be shown
in Figs. E and E In general, this works properly even for a few number of
open holes, thanks to a rather clear distinction between the stop band and the
pass band. The measured quantity is a global quantity, depending of the whole
geometry of the instrument for a given fingering, i.e. for a given configuration
of open holes. It therefore depends of the hole irregularity and the termination
of the instrument. Notice that using the measurement of any transfer function,
the effect of a (global) cutoff frequency strictly appears only for an infinite (and
lossless) lattice. When losses exist, the definition is less strict but precise. When
the lattice is of finite length or/and irregular, the definition remains possible in
general, as it will be discussed in the present paper. In what follows, we will
define the global cutoff frequency as the frequency separating two frequency bands,
as viewed on the input impedance curve. It is possible to find an analogy with
the horn theory: above the global cutoff, the input impedance curve has no
resonances.

In the book, Benade also discussed the effect of irregularity. Let us cite him
(p. 449): “If the lattice is irregular, theory shows that: (1) if the first and
second open-hole segments of the lattice (taken by themselves) have widely dif-
ferent cutoff frequencies, the observed value of f. for the composite system has
an intermediate value for its cutoff frequency; and (2) at the lower frequencies,
the properties of the first segment still dominate the implications of f..” We
can remark that here Benade regards the cutoff frequency as a local quantity,
defined for one segment and not for a complete lattice. We will define the local
cutoff frequency as the frequency calculated from a given cell (or segment), cor-
responding to the theoretical cutoff of the periodic medium built with an infinity
of cells identical to the considered one. In a paper on cutoff frequencies of flutes,
Wolfe and Smith [[] also implicitly considered a local definition (“the cutoff fre-
quency varies from hole to hole”, see Figure 4 of the paper) and calculates it
using “typical values” for the dimensions and spacing of holes, in order to use
the formula corresponding to a periodic medium. In addition they calculated
the deviation of the calculated frequencies, exhibiting a large value for it.

For a perfectly periodic lattice, i.e. a perfectly geometrically regular lattice,
there is no difficulty for the definition of a local cutoff, because the lattice is
divided into identical cells, one cell determining a cutoff. For that case, local
and global cutoff frequencies coincide, at least when the lattice is long enough,
and the measured global cutoff does not depend on the fingering.

The final objective of the paper is to compare the obtained local cutoffs
to the global ones, where the local cutoffs are calculated from the geometrical
dimensions of different holes, while global cutoffs are measured for different
fingerings with one or several open holes. In general the lattices are with losses
and sometimes of short length, and in addition they are not perfectly regular,
thus the definition of the cutoff using the input impedance is necessarily done
with a non negligible uncertainty. In other words, there is no perfect separation
between two frequency bands. Therefore for the sought comparison, an accurate
calculation of the local cutoff is not useful and would be illusory. This allows



an approximate treatment, with simplification of the model.
Three questions are examined in the present paper concerning a real instru-
ment, with irregular geometry:

1. Is it possible to define an “acoustical regularity”, for which coincidence
between local and global cutoff frequencies is possible even without strict
periodicity? We will proof that the answer is positive for a lattice of
holes, at least at low frequencies, if the local cutoff frequency is uniform
and the lattice long enough: it is possible to build an instrument with this

property.

2. Starting from the result of Benade that the global cutoff very slightly
depends on the fingering, and on the number of open holes, is it possible
to find an “acoustical regularity” in a real clarinet? The answer is that it is
possible in an approximate way, when the spacing between holes remains
small in comparison to the wavelength.

3. For this purpose, is it possible to divide a real clarinet into acoustically
regular cells? The answer is not simple, as it will be shown hereafter.

The outline of the paper is as follows: section 2 reminds the theory of Benade,
and adds a useful interpretation of the cutoff frequency as the eigenfrequency
of a cell (i.e. a segment) of the lattice. Section 3 presents experimental results
for a clarinet Yamaha Y250 for the global cutoff frequencies measured from the
input impedance, confirming Benade’s results. In addition numerical simulation
exhibits the important effect of the termination, even for a periodic lattice.
Section 4 discusses the first above-mentioned question. Section 5 tries to answer
the second and third questions: in a first step, the tube is supposed to be
cylindrical and without closed tone holes, and in a second step some corrections
are sought to this simplification. In section 6 global and local cutoff frequencies
of the clarinet are compared and acoustical regularity is discussed.

2 Periodic lossless lattice of holes: the cutoff
frequency and its interpretation as an eigen-
frequency

Benade [E] proposed a formula for the first cutoff frequency of a perfectly pe-
riodic lattice of open holes, valid at low frequencies (it is recalled below as Eq.
(ﬂ)) We remark that the corresponding frequency is the eigenfrequency of a
Helmholtz resonator built as follows: the volume is this of a portion of the main
tube with a length equal to the spacing between two adjacent holes, and the
neck is the open tone hole. In this section we remind the basic model, and ex-
plain why this remark is true, even at higher frequencies. The considered lattice
is built with a row of T-shaped cells (see Fig.[l).

Let us consider the classical transfer-matrix description of a symmetrical
cell, relating pressures p,, and flow rates w, at the extremities (with indices n
and n + 1), as follows:

()= (pl By (), m



Figure 1: Two T-shaped cells of a lattice of tone holes. A T-shaped cell consists
in the tone hole and a length ¢ of the main tube on both sides of the hole. The
cross section areas are S = ma? and S, = wb?, where ¢ and b are the radii of
the main tube and the hole, respectively.

The transfer matrix is symmetrical (A = D), and unitary, because of reciprocity.
We ignore losses, thus A is real, and B and C imaginary (in what follows
both visco-thermal and radiation losses are ignored). In an infinite lattice,
the traveling waves are p, = pgexp(+nl'), and u, = ugexp(+n), where I' is
the propagation constant. Using Eq. (f) for the two cells (n — 1, n) and (n,
n + 1) leads to coshT' = A. Therefore at cutoff, A = +£1, I' = 0 or . At the
cutoff frequency, the complex amplitude of a traveling lattice wave of pressure
(respectively of flow rate), is constant from one cell to the next one, with a factor
+1. For symmetry reasons detailed hereafter, it can be deduced that either the
flow rate or the pressure vanishes at the extremities of the cells.

The relationship between pressure and flow rate waves is defined by the



characteristic admittance ). (or impedance Z. = 1/),), given by:

A2-1 ¢ ?

sinh I’
S 2
B2 B A2-1 (2)

Ve = —5— thus V2=

When T is imaginary (and Z,. real), waves propagate (pass band), while if T' is
real (and Z. imaginary), waves are evanescent (stop band).

At cutoff, A = +1, thus BC = 0, i.e. either B or C vanishes. If C' vanishes,
Y. vanishes too. The flow rate being proportional to ), for the waves in the two
directions, it is zero for any value of n, for both an infinite or a finite lattice.
Therefore the pressure wave is constant: p, = App+1 = £pnt1- If pn = Dy,
the pressure field is symmetrical, while if p, = —p,41, the pressure field is
antisymmetrical. The dual situation, reversing the roles of pressure and flow
rate, occurs if B = 0. Finally the cutoff frequencies are the eigenfrequencies of
a cell with either Neumann (u, = 0, if C' = 0) or Dirichlet (p, = 0, if B = 0)
conditions at the extremities.

The next question is the distinction between the first eigenfrequencies sat-
isfying the termination conditions. At low frequencies, for a cell of a tone-hole
lattice, the coefficient A is larger than unity , therefore the waves are evanescent
and the first cutoff occurs for A = +1, i.e. when either the pressure field or the
flow rate field is symmetrical. As it is well known, a Helmholtz resonator has
an eigenfrequency very low when its volume is closed, therefore the first cutoff
frequency of the lattice, which is the subject of the present paper, corresponds
to the Neumann boundary conditions, with a symmetrical pressure field. This
is true even if the wavelength at cutoff is not larger than the dimensions of a
cell. In Ref. [E] expressions are given for the four types of cutoff frequencies (see
also Appendix E of the present paper), with a comparison of the first four ones,
and confirm the fact that the lowest cutoff is this of the Helmholtz resonance of
a T-shaped cell. It corresponds to the condition ), = 0, or C' = 0, and this is
in accordance with a mathematical analysis done by Benade (in his Eq. 8, the
cutoff is obtained when the denominator vanishes [f]). To our knowledge, this
interpretation is new.

It can be concluded that considering the transfer matrix or the equivalent
circuit of a tone-hole (see Refs [E,E]), the element corresponding to the anti-
symmetrical field, which is a series impedance denoted Z,, does not appear in
the expression of the first cutoff frequency (this is a rigorous result, without any
approximation). Nevertheless ignoring this series impedance is not valid at any
frequency. In Appendix E, it is shown how this series impedance could be taken
into account in order to generalize the present approach, but for the purpose of
the paper, simplified models are sufficient and we ignore it.

Now, if the height of the hole chimney is assumed to be much shorter than
the wavelength, and if losses are ignored, the effect of the tone hole is reduced
to a shunt acoustic mass, denoted my,. The coefficients for transfer matrices of
a T'—shaped cell are given by standard acoustic theory:

A = D=1-2sin’kl+ jYz.sinklcoskl (3)
B = =z [2jsinklcoskl—Y z sin® k(]
c = z! [2]' sin kf cos k¢ + Y z. cos® M} ,

where Y = (jwmy,) ™! is the shunt admittance of the hole and z. = pc/S, the
characteristic impedance of the main tube. p is the air density, ¢ the sound



speed, S = ma? the cross-section area of the tube, assumed to be cylindrical,
2¢ the spacing between two holes, w the angular frequency, and k = w/c the
wavenumber.

The equation satisfied by the cutoff frequency is given by C' = 0:

j% cot kf = 25wmy, | (4)
The left-side member is the impedance on both sides of the tone hole, deduced
from the Neumann boundary condition, and the right-side member twice the
shunt impedance of the tone hole. The mass my is the sum of the mass of
the planar mode in the hole and of the masses of the radiation impedance into
surrounding space and into the main tube. It is approximately equal to:

my, = phy/Sh, with hy ~ h + 1.6b, (5)

where h is the height of the hole, and S, = wb? the cross section area of the
hole. Notice that h; is denoted . by Benade.
Solving Eq. (f]) when k¢ << 1 leads to the result (Ref. [ff)):

_cl 1 _cb 1
2l th/m_Qﬂa\/%ht'

Je (6)

where m = pf/S is the acoustic mass of the portion of the main tube of length
¢ (notice that in Eq. (f]) the compressibility of air in the main tube appears, via
the acoustic compliance C, = £S/pc?, but its inertia does not). The exact value
of h; depends on several parameters, such as the undercutting of the hole or the
existence of a key pad, but this is not critical for the present study, especially
because the cutoff depends on the square root of this mass.

A better approximation for the solution of Eq. (H) is the following (see

Refs [ﬂ,E])
c1 1 c

T2l \Smp mt1/3  2n0\/2(ajb)?he/l 1 1/3

It is obtained by expanding cot k¢ to the next order in k2¢?. This gives a
condition of validity of Eq. (f):

Je

(7)

b? h m

¥<<67t or m—h<<6, (8)
If k. = 27 f./c, this condition is equivalent to: k2¢?* << 1 (the half spacing
between two holes is much smaller than the cutoff wavelength, i.e. the elements
of the system are lumped). For a clarinet, typical values of the cutoff frequency
and length ¢ are 1500 Hz and 10 mm, thus k. ~ 0.3, thus the condition is
satisfied.

The dimensions and locations of the holes are given in Appendix @ (Table
1). Table 2 of the same appendix indicates the first opened holes for the different
fingerings.



3 Determination of global cutoff frequencies

Benade [E] proposed a simple method to measure the “global” cutoff frequency
of a given instrument, considering the curve of the input impedance modulus.
The first two frequency bands generally appear rather clearly: the first one with
high and regular peaks, the second one with small and irregular peaks. Benade
defined the cutoff as the boundary between the two bands. As stated in the
introduction, in principle this method is perfect for a perfectly periodic lattice
(i.e. regular, lossless and infinite). What happens for a real lattice is discussed
hereafter.

The explanation given by Benade (p. 434) is based upon the strong radiation
of the holes above cutoff. This can be more detailed: below cutoff, in the stop
band (waves are evanescent), the effective length of the tube is very close to the
tube cut at the first open hole, thus the frequency interval between resonances
is large. Moreover boundary layer losses (which are preponderant in this range)
are small, thus the impedance peaks are high.

On the contrary, above cutoff (in the pass band), the effective tube is divided
into two portions. The first one is without open holes, while the second one
is the open-hole lattice. The phase velocity and characteristic impedance are
different in the two portions, thus the impedance peaks are irregular. Moreover
boundary-layer losses exist over a large length, and several open holes radiate
efficiently. Therefore the peaks are lower than in the stop band. The efficient
radiation is due not only to the number of holes radiating, but also to the
external interaction between the holes, as shown in Ref. [E]

Benade [B] measured modern and baroque instruments, and found that
baroque instruments have lower cutoff frequencies than modern ones. The ex-
planation seems to be evident thanks to the analysis of the previous section:
first of all, the holes of baroque instruments are generally narrower than those
of modern instruments. In addition baroque instruments are basically diatonic
instruments while roughly speaking the basis of modern instruments is more
chromatic. Therefore spacings between open holes are larger for baroque in-
struments than for modern ones. These two facts with the interpretation of the
cutoff frequency as the eigenfrequency of a cell viewed as a resonator explain the
differences in cutoff frequencies. A consequence is the slightly wider compass of
modern instruments, even if it is not impossible to play notes with frequencies
higher than the cutoff, especially using the vocal tract as an auxiliary resonator
(obviously a complementary explanation for the wider compass of modern in-
struments is the addition of new holes). Otherwise the question of the influence
of the cutoff frequency on the sound spectrum has been discussed rather rarely,
but Benade and Kouzoupis can be cited [[I]], as well as Ref. [f] for the flutes.
This question is out of the scope of the present paper.

3.1 Measurement results

Benade deduced the cutoff frequency from the measured modulus of the
input impedance in linear scale. Actually it is easier in practice to use either
the modulus of the impedance in logarithmic scale or its argument. This is often
better because a slope inversion clearly appears for almost every fingering, even
when only a small number of holes is open. This leads to a definition of the
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Figure 2: Impedance curve for note D4. The cutoff f. is found to be 1450. The
scale for the impedance modulus is the logarihmic one: 20log(|Z|/z).
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Figure 3: Impedance curve for note A3. The cutoff f. is found to be 1130 Hz.
The scale for the impedance modulus is the logarihmic one: 20log(|Z|/zc).

global cutoff with a precision in practice better than 1%. Nevertheless, as stated
in the introduction, this does not mean that the separation of the two frequency
bands is precise, the definition being somewhat arbitrary.

Figures E and E show two examples of input impedance curves for the notes



D4 and A3. For the note D4 (262 Hz), the global cutoff is found to be 1450 Hz,
while for the note A3 it is 1130 Hz. For all the notes of the first register, the
measurement of the cutoff frequency is easy, even when only one hole is open
(note F3): Benade and Kouzoupis explained this fact by the effect of the
bell, “which serves as a more or less surrogate for an open-hole lattice” (sect
VIID).

An interesting result is that the cutoff does not vary very much, even for
this kind of notes, as it will be seen on Figure E, which shows the results for the
different notes of the studied clarinet, Yamaha Y250. The results are within
the range of results obtained by Benade, who measured several different instru-
ments. Notice that Benade gave results for the first register, for the same notes
as those we have studied, except the notes for which the first open tone hole is
provided with what we call a “closed key”, i.e. a key open for this note only
(see Appendix @ Table E) Otherwise, as expected, the cutoff frequencies for
the second register, when the register hole is open, are exactly the same than
the cutoff for the first register, for the corresponding fingering.

For the first register, two groups of notes can be observed, above and below
B4, around 1450 Hz and 1150 Hz, respectively. We will see in section @ that
this difference is not related to regularity, but it is due to the termination effect.
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Figure 4: Cutoff frequencies measured for the Yamaha Y250 clarinet. The graph
covers all fingerings, and for the first register exhibits a great similarity with
the results of Benade, the scale being chosen to be similar.

The device used for the impedance measurement is based upon the measure-
ment of acoustic pressures in two cavities separated by a flow rate source [@]



3.2 Simulation results

In order to get more insight into the problem, some simple simulations using
transfer matrices like Eq. (f]) have been carried out. No series impedance are
taken into account (see Egs. (E)), but boundary layer losses and radiation, given
by standard theory, are considered. Radiation takes external interaction into
account, via a global admittance matrix (see Ref. [[]]). A simplified shape of the
bell is used. Some open holes are considered through a unique, equivalent tone
hole, as explained hereafter in section @, resulting in a lattice with 11 open
holes. The (global) cutoff frequencies are deduced using the input impedance
curve.

Fig.ﬂ shows an interesting qualitative agreement between this model and
experiment, sufficient for our purpose. The discrepancy is less than 11%, this
value occurring for the note Af3. This fact can be related to the location of the
limit between the two groups of values, near to Af3.
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Figure 5: Measured and calculated global cutoff frequencies. Solid, thick line:
experimental results for the Yamaha Y250 clarinet (also shown in the previous
figure). Dashdot line:numerical result of the simplified model with a bell (see
section (p.2.9). Solid, thin line: numerical result for a purely periodic lattice
with a bell. Dotted lines: numerical results for a purely periodic lattice with
a cylindrical tube replacing the bell (for low notes, two possible values of the
cutoff are shown).

The most interesting result is the comparison between the values for the
geometrical data of the studied clarinet and those for a perfectly periodic lattice,
having 11 open holes with constant spacing 2/ = 0.0341 m and theoretical
cutoff (1450 Hz), the radius being 7.5 mm. The total length is the same. The
common value of the reduced masses, m;/p = 340 m~!, is deduced from Eq.
(). Notice that the exact value (Eq. ([l)) of the theoretical cutoff is 1402 Hz;
the approximation (E), giving also 1402 Hz, is very good.
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The main features are the following;:

The differences between the results for the purely periodic lattice and the
simplified model of the irregular, real one are less than 5%; this can be
seen as a first indication of the existence of an acoustic regularity;

The existence of two groups of values with a limit for A3 is roughly similar
for the two lattices;

Above A3 (first group), when many holes are open, the global cutoff is
higher than the theoretical value (1402 Hz), some values being higher than
1500 Hz, the average being 6% higher than the theoretical one. Even for
the highest note, when all the holes are open, the global cutoff is 2% higher
than the theoretical one.

The existence of two groups is due to the effect of termination only. This
can be checked by replacing the bell by a cylindrical tube of same length
and input radius. The values corresponding to the lowest notes (2" group)
are strongly modified. The above cited sentence by Benade and Kouzoupis
is probably true, because for the lowest notes, the determination of the
global cutoff is uncertain. For the cylindrical termination, irregular peaks
are found around 900 Hz, but the shape of the impedance curves differ
strongly from the typical curves shown in Figures E and E
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Figure 6: Calculated input impedance curve for the fingering D4. Solid line:
simplified model of the clarinet. Dashed line: periodic lattice of the same
length and termination. Dotted line: infinite periodic lattice (characteristic
impedance). The arrow indicates the change in behavior of the infinite periodic
lattice at the theoretical cutoff (1402 Hz).

Figure E shows a comparison of theoretical results for three kinds of lattices:

11



the one of the considered clarinet; the above mentioned periodic 1atticeE|, with
the same termination (a simplified bell); finally the same periodic lattice with
its characteristic impedance as a termination. This means that the third case
corresponds to an infinite lattice, expected to produce a strong dissipation in
the pass band. This figure confirms the important role of the termination on
the periodic lattice. For an infinite lattice without losses, the argument should
exhibit a discontinuity between the two bands. A careful examination of the
curves allows to see a sharp angle (indicated by an arrow) very close to the
theoretical cutoff (1402 Hz).

For this particular case, it appears that the practical definition of the global
cutoff is easier for the real (irregular) lattice than for periodic one with the same
termination. It is a confirmation that the definition of the global cutoff is not
always easy in practice.

4 Construction of an acoustically regular lattice

This section investigates if acoustically regular lattices can exist. It is known
since Anderson [[L9] that in a onedimensional medium, the effect of an infinite
number of random irregularities is the suppression of pass bands, and therefore
of cutoff frequencies. Obviously this asymptotic property cannot be observed
on musical instruments, because of their limited length. Moreover the theorem
of Fiirstenberg @] concerning the product of random matrices indicates that
some exceptions to the Anderson’s result can exist. In Ref. [L4], it is shown that
the product of matrices having the same characteristic impedance Z. is such an
exception. As a matter of fact, for that case:

N coshT; Z.sinhT; - cosho Z.sinho )
B Z

1} Zc_l sinhT’; coshT’; 0_1 sinho  cosho

N
where ¢ = ZXI.

The behavior is similar to this of the regular medium with the same total
propagation constant ¢ = nI'. As a consequence, if a lattice is built with
irregular cells having the same characteristic impedance at every frequency, its
behavior is the same as the behavior of a perfectly periodic medium. If this
situation can exist for wind instruments, acoustic regularity can exist without
geometrical regularity. In particular stop and pass bands can exist: when I is
imaginary (and Z, real), waves propagate, while if " is real (and Z. imaginary),
waves are evanescent. This is now investigated.

The cutoff of a T-shaped cell is given by A =1 or C = 0 (see Eq. ([])). In
order to exhibit the value of the cutoff wavenumber k., using Eq. () for w = w.
and k = k., the mass my, can be eliminated and the admittance ¥ = (jwmh)_1
is rewritten as follows:

ke
Y = —2jzc_1? tan k.0 .

IThe important discrepancy between the first resonance frequencies comes from the differ-
ence in length of the tubes upstream the first open tone hole. The spacing between the first
tone holes is significantly smaller than the mean spacing, used for the periodic lattice. This
will be seen on Fig. H.
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Thus, using the definition of the transfer matrix (Eq. (f)):

s B _ a1+ Ee tan kol tan k(-

cC ‘1-— % tan k.0 cot k¢
The characteristic impedance is written with respect to two quantities, the half-
length ¢ of a cell and the cutoff wavenumber k., the latter parameter replacing
the hole mass. If a lattice is built with cells of identical k., the characteristic
impedance can be identical (i.e. independent of ¢) at low frequencies if both k.¢
and k¢ are small quantities:

(10)

B 1+ O(k20?)
Z,o= — =2l L T\ ] 11
CTC T k2R (11)

The propagation constant is given by sinh?T = BC with

BC = —4sin® klcos? k0 (1 + kb~ tan kol tan k0) (1 + kk™ ! tan k.l / tan k()
(12)
thus with the same approximation,

, : [, k2
'=2jpf with o=k 17?' (13)

© is an equivalent wavenumber. Therefore, in the frequency range where the
cell dimensions are smaller than wavelength (and consequently where Eq. ([
is valid), it is possible to build an acoustically regular lattice, provided that
the cutoff frequency of the cells if a constant. The length of the cells can be
arbitrarily chosen but cannot be too long, and for each cell the value of the
hole acoustic mass is deduced from the chosen value of the cutoff frequency.
Notice that starting from the input of the tube, the distance between holes
can either increase or decrease, and consequently the hole masses decrease or
increase, respectively (e.g. the hole radii increase or decrease). The property of
the considered lattice is identical to this of a purely periodic one, therefore the
global cutoff is the same as the local cutoff of the cells. This is the answer to
the first question in the introduction.

Eqgs. (E) and (E) suggest an analogy with the problem of an exponential
horn: this is discussed in Ref. [@] Studying the “horn function” of a given bell
as Benade did, is equivalent to studying the local cutoff frequency of the bell,
which has strong variation for instance for a trumpet bell [@]

This result concerning acoustical regularity will be more complicated if the
antisymmetrical (negative) masses are taken into account in the calculation,
but the answer remains positive (see Appendix E) Other complications of the
model are possible if they can be compatible with the basic model, based upon
the association of an acoustic mass with an acoustic compliance. Fortunately
this is in general the case at low frequencies.

5 The inverse problem; analysis of an irregular
lattice

5.1 Statement of the problem

We will now analyze the lattice of a real instrument. Solving the inverse problem,
i.e. dividing a given lattice into cells having the same cutoff frequency, is not
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an easy task, because the solution either is not unique or does not exist, as
explained hereafter. Obviously a first requirement for a method of division is
to re-obtain the initial division when considering a lattice built as explained in
section , instead a real one.

We first assume the clarinet to be a purely cylindrical tube with holes of
different sizes. As it is known, the radius of the main tube does not vary very
much for a clarinet. We will see how it is possible to take into account the
conicity of some portions as corrections. Another hypothesis has been made:
in a first step, the closed holes have no influence, and their effect is taken as
another kind of correction.

For the present purpose, we consider 14 open holes. In three cases (holes
number 8 and 9, 14 and 15, 18 and 19, see Appendix @, table E), two closely
spaced holes are opened simultaneously in order to get a given note: according
to the basic hypothesis of long wavelength, we choose to replace them by a
unique hole, with a mass equivalent to the two masses in parallel, and located
at the middle of the interval of the two holes. It remains 11 equivalent holes,
therefore 11 cells. All the other holes are closed.

Three methods of analysis have been investigated, the first two ones being
based upon different choices of division of the bore into cells, the third one
trying to define a local cutoff frequency without any division.

5.2 Methods of analysis and results
5.2.1 Division into symmetrical cells with varying eigenfrequency

A first method is implemented to divide the tone-hole lattice into T-shaped,
symmetrical cells. It is not possible to fix a common value for the cutoff fre-
quency, because doing that all the cell lengths become fixed (they are deduced
from the values of the hole masses and of the cutoff frequency), and the cells
either will have overlap or do not re-built the complete lattice.

Thus for the chosen method no value for the cutoff is a priori fixed. An
initial parameter is arbitrarily chosen, i.e. for instance the half length of the first
(upper) cell in the lattice, denoted ¢;. Using iteration, this implies the length
of each cell, therefore the whole division of the lattice. The cutoff frequencies
of each cell can be deduced. They are a priori different, and depend on the
chosen value for /1. The ratio R. of the cutoff highest value to the lowest one
is calculated, and the final choice of the parameter ¢; is found by searching for
the minimum value of this ratio, which appears very clearly.

The method is first tested on an ideal (acoustically regular) lattice of 11
tone-holes, as defined in the previous section. As expected, the minimum ratio
R, is unity, for a length ¢; equal to the half length of the first cell. The method
is therefore capable to divide correctly a lattice built to be acoustically regular.

On the contrary, when applied to the lattice of a clarinet, no division have
been found, because negative spacings between holes appear. This is probably
due to the close location of the two first upper holes. When ignoring these
two holes, a result is found, but the value of the minimum ratio is 2.8: this
value is high, while the other approaches, as it will be discussed hereafter, give
much smaller values, i.e. a much more uniform value for the cutoff frequencies.

Therefore this method has been abandoned [E]
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5.2.2 Division into asymmetrical cells with constant eigenfrequency

For the second method, a more general model of acoustically regular lattices is
investigated, with one degree of freedom more. Asymmetrical cells are consid-
ered: the hole is not necessarily located at the middle of the cell. As a matter of
fact, the location of the neck of a Helmholtz resonator has a small influence on
its eigenfrequency. The essential elements are an acoustic mass and an acoustic
compliance, related to the volume. At low frequencies, it is therefore possible
to modify a (symmetrical) T-shaped cell by moving the input and output by
the same length, 6, without changing the transfer matrix (the condition being
§ << A, if X is the wavelength). The accuracy of this division is a priori similar
to this of the division into symmetrical cells (this will be discussed more precisely
when comparison with measured global cutoff frequencies will be presented).
The division into asymmetrical cells allows to have a supplementary available
parameter. It is possible to set a constant value for the eigenfrequency of the
different cells. From the knowledge of the eigenfrequency and the hole mass,
the lengths ¢;,, 4+ £, of the cells are obtained. The starting point is an initial
value for the length ¢;; to the left of the first open hole. Therefore, from the
knowledge of ¢;,,, the length ¢,., on the right of the hole is deduced, then, from
the spacing between two holes, the length ¢, 11, etc. Depending on the choice

1490
1480 ]
1470 1
N
L. 1460 -
©
1450 ]
1440 ]
11 equivalent holes
1430 : : : ‘ :
0 0.5 1 15 2 2.5 3
Ir' L [mm]
Figure 7: 2" method: Division of a lattice with 11 equivalent holes into asym-

metrical cells. On the horizontal axis is the semi-cell length to the right £,;.
The region where a solution (i.e. a possible common eigenfrequency) is found is
dashed and the horizontal dotted lines limit the frequency range where a correct
partition exists.

of the initial length £;;, a more or less wide range of possible eigenfrequencies is

found. The result is that a solution exists for f. € [1439,1478] Hz, as shown in
Figfl
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Looking at the partition itself, graphed in Fig.ﬂ for fo =1470 Hz and [,.; =
1.50 mm, it is observed that some cells are very asymmetrical, the borders being
located very close to the middle of a hole (and even within the hole opening).
This seems to be curious and unreal, but formally the transfer matrix of the
whole lattice is identical to this of an acoustically regular one, and we will see
in the final discussion that the results are interesting. The acoustical regularity
can be far from the geometrical one!

The surprise can diminish if we accept that the found lattice is equivalent
to the symmetrized lattice with the same holes and cells, but with holes at the
center of the cells. We checked that the main discrepancies between the asym-
metrical lattice and the symmetrized one occur at frequencies much higher than
cutoff. Nevertheless the relative error in non negligible at very low frequencies,
and this is intuitive: makers know that the shift of the first open tone hole mod-
ifies the first resonance frequencies. Further analytical analysis confirms that
the expected error due to the moving of the holes is larger at low frequencies
than around cutoff. Finally we notice that this symmetrized lattice cannot be
found by the first method, which is not flexible enough.

18 46 14 8 6 |5
2120 1 15 11 9
1|2 3 |4| 5 6 7 8 9 10 11
Il Il Il Il Il Il Il
200 250 300 350 400 450 500 550

Distance to reed tip [mm]

Figure 8: 2" method: Illustration of the partition in 11 asymmetrical cells for
fe =1470 Hz and [, ; = 1.50 mm. The numbers below are the cell numbers from
the input of the instrument; while the numbers on the top are the hole numbers,
as defined in Appendix E For three cells, two holes have been replaced by an
equivalent hole.

5.2.3 A possible simple definition of a local cutoff frequency

A third method of analysis is not based upon any possible division. If two ad-
jacent, symmetrical T-shaped cells have the same eigenfrequency with different
lengths ¢; and ¢ and different hole masses mpiand mys2, Eq. (E) leads to:

P
Limpr = Lomp = Fk:g ) (14)
therefore the spacing d = £; 4 /5 between the holes satisfies:
1 p 1 1
d= —— — 15
kg 2S (mhl + mhg) ( )
thus
c p 1 1
= —|— | —+—). 16
/ 27\l 25d (mhl + mhg) (16)
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This quantity can be calculated without a division of the lattice for every pair
of tone holes. If it is a constant over the length of a lattice, the lattice is
acoustically regular. If it is not constant, its variation can be regarded as a
measure of the irregularity. We can define the frequency given by Eq. (E) as a
local cutoff frequency, depending in a direct way on the dimensions (masses) of
two adjacent holes and their distance.

600 ~ 1800
— —e— Corrected ey
:E| 500, — 4 — Not corrected | | 2 1700 y )
= c pal
0 2 1600 J O\ /A/
@ 400 o \ ,
9}
E E 1500 A y
.= 300 \ y
@ £ 1400 Ny 1
8 200 {2 -
2 ) © 1300 —e— Corrected 1
s 8 — & — Not corrected
100 -1 1200
1 2 3 4 5 6 7 8 9 10 11 1-22-33-44-55-66-77-88-9 10-11

Cell number Cell number

Figure 9: 3"¢ method. Left figure: Acoustic mass divided by the density ms/p,
for 11 equivalent tone holes. Right figure: Local cutoff frequency for a pair of
adjacent holes (Eq. )). For both quantities, the not corrected and corrected
model (see section p.d) are compared.

Fig.E shows the results of the third method. An important feature is the
difference in variation for the acoustic masses and the local cutoff frequencies.
The maximum variation for the square root of the masses is 2.24 while the max-
imum variation for the cutoff frequencies is 1.38. It can be concluded that the
choice of the spacing between the tone holes allows a significant compensation
for the variation of the hole acoustic masses, and a certain acoustical regularity
exists. This is confirmed by a rough inspection of the holes of a real instrument:
the holes appear to be larger as well as their spacing from the input to the bell.
Is this effect directly sought by the makers? It is far from evident, and at our
mind this remains an open question.

5.3 Results with corrections

The objective is to analyze a real lattice in terms of acoustical regularity, and
implies to use a simple model. Actually many details have an influence on the
local cutoff frequencies, but the order of magnitude of the influence remains
small. In order to validate this idea, two types of corrections have been studied:

e the effect of closed holes. At low frequencies, this effect is due to the
air compressibility, and is proportional to the volume of the cavity of
the closed hole. The volume of the portion of the main tube involved in
Eq. (B) is therefore modified, in accordance with the lumped elements
hypothesis. Fig.E shows that the correction for the cutoff is small. The
cutoff frequency is lowered with a typical amount of 25 Hz.

e the effect of the variation of cross section of the main tube. We are in-
terested in the enlargement of the portion of the tube where open holes
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are present. This portion is not long. The choice is to describe this en-
largement as the insertion of a change in conicity, just below hole n°3 (see
Appendix @), by using results explained e.g. in Ref. [@] This change
in conicity is represented by a supplementary shunt mass mcepne, which
is rather high, i.e. equivalent to a narrow open hole. It is given by the

following formula:
Mcone = pE

S

where z is the length of the missing part of the cone, equal to 287mm. The
mass is inserted at 28.4 mm of hole n°3. In addition, the masses of holes
n°l and n°2 need to be multiplied by the ratios S;/S and S3/S, where S;
is the cross section of the main tube at the location of hole n°i. Again the
correction of the results appears to be very small (see FigJ).

Concerning the corrections of the results of the 2"¢ method of analysis (di-
vision into asymmetrical cells), the effect is small as well. The range of possible
common eigenfrequencies becomes slightly narrower and lower.

6 Global and local cutoff frequencies

Using the results obtained in the previous section, it is possible to compare the
theoretical eigenfrequencies and the measured, global cutoff frequencies. It is
reasonable to think that the use of a simplified model does not modify the dis-
cussion written hereafter, because the corrections are very small. Nevertheless
the results take the two kinds of corrections into account.

Fig.@ shows the results of: i) the measurements of the global cutoffs; ii) the
calculation of the possible constant eigenfrequencies using division into asym-
metrical cells (2" method §f.2.9); iii) the calculation of the local cutoff fre-
quencies (3" method, §) Notice that there are two different types of axes
for the abscissa: for the theoretical results, the numbers correspond to the cell
numbers, while for the experimental ones, the results depend on the fingerings.

The most evident feature is the satisfactory result of the division into asym-
metrical cells. The constant eigenfrequency obtained by this method coincides
very well with the measured global cutoff for many fingerings. We think that
this is a validation of both the definition of the acoustical regularity and the
method of division in asymmetrical cells. Nevertheless we notice that this excel-
lent agreement is the consequence of a slight overestimation of the two results:
for the theoretical result, as mentioned earlier, the frequency is higher than the
true one, because of approximation (E), for the experimental result, it has been
seen that the practical measurement of the global cutoff overestimates the true
cutoff as well.

A discrepancy exists for four lower notes. The explanation has been given
earlier, in section @, when studying the effect of the termination. Concerning

the 3¢ method, it gives an order of magnitude of the cutoffs, but they are in
general 15% higher than the global measured values, at least at the ends of the
considered register. The tendency of the variation looks rather similar, except
for fingerings around the note A3 (we have no interpretation of this fact). If
for a given fingering the global cutoff was determined by the value of the cell
corresponding to the first open hole, the two curves should coincide (notice
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Figure 10: Comparison between experimentally determined global f. and local
fc obtained using method 2 and 3 for the corrected model. The values of f. for
method 3 are plotted between the tones, because they are based on the acoustic
mass of two subsequent equivalent tone holes. The dashed region shows the
frequency range for the local f. obtained by the 2"¢ method.

however that the results of this method concern a pair of tone hole). It is not
the case, but the fact that the tendency is similar (except some notes) is in
accordance with the hypothesis that the global frequencies are determined by
the local frequencies of the first cells.

We finally remark that the 3"¢ method seems to be interesting because of its
simplicity, no division being needed. For sake of simplicity, the improvement of
Eq. ([Lld) by taking into account the correction term of Eq. ([]) is not discussed
here. The correction depends on the length of the cell, but the irregularity
shown in Fig. E of the results is not significantly reduced.

7 Conclusion

A theoretical definition of acoustical regularity is possible, at least at low fre-
quencies, and can be applied to a clarinet. An important degree of acoustical
reqularity is found on a clarinet, despite the rather great geometrical irrequ-
larity. This explains why the measured cutoff frequencies do not vary very
much, except when termination effect occurs. Results for another type of clar-
inet probably should be rather similar. The acoustical regularity is limited to
wavelengths large compared to the inter-holes spacing. A consequence is that
if higher cutoff frequencies exist, e.g. limiting a new stop band, the previous
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analysis of regularity cannot be expected be relevant for these frequencies. A
second stop band seems to exist on both experimental and numerical results
between roughly 2500 Hz and 3000 Hz, the second cutoff being different from
one fingering to another one. Its study can be subject of future investigation
(for the periodic lattice studied in section @, this frequency should be very
close to the quarter-wavelength eigenfrequency, i.e. ¢/(8¢), equal to 2492 Hz).

The division of a real lattice as an acoustically regular lattice is not an easy
task. Thanks to an extension of the definition of such a lattice, the 2*¢ method
gives a satisfactory division. Notice that when Benade wrote about the cutoff
frequency of segments (in the sentences cited in the introduction), he did not
explain how this frequency is defined, i.e. how the two first segments are divided.

The present paper does not present a classical comparison between experi-
ment and theory: a precise comparison between theory and experiment could
be sought, especially by taking into account the effect of key pads, the antisym-
metrical effects of tone holes, or the precise geometry of the bell. However the
agreement between measured global cutoff frequencies and the theoretical cutoff
of the acoustically regular lattice built from the real geometry is very good. The
limitation to long wavelength is not problematic: this was not evident, because
while the spacing between holes is small compared to the cutoff wavelength, the
total length of the lattice is not small at all.

The 3"% method is very simple and gives correct orders of magnitude: the
concept is probably rather close to this in the mind of Benade. When qualita-
tively looking at the location and sizes of the tone holes (see Fig.ﬁ), the corre-
lation between larger spacings between holes and wider holes roughly appears,
and this is confirmed by the approach of the 37% method.

It remains to understand the origin of this correlation. Why do the makers
provide an increase of the spacing between holes together with an increase of
their radius? Probably it is related to the search for correct tuning, because
when a hole is moved downstream, it needs to be enlarged for a given tune. If
this is true, why the makers enlarge the holes far from the reed? Is it related
to radiation efficiency, or to nonlinear effects, or to the possibilities of the fin-
gers and the keys? Another topic for future investigation, is a more complete
understanding of the effect of the value of the cutoff frequency on the tone color.

In this paper the question of the bell of the clarinet has not been studied
in a precise way. Its effect is known to ensure a correct tune of the second
register (see refs [l§-R0]). An idea could be that for tone-color purposes, the
shape of the bell, which is nearly catenoidal, is sought to be equivalent to a
continuation of the open tone-hole lattice. According to Ref. [Lf], the cutoff of
the (infinite) catenoidal horn should be f = mc/2w, where m is the expansion
parameter, found to be 1/0.085 m~!. This would lead to a value of 636 Hz,
much lower than the cutoff of the tone-hole lattice. Therefore this simple idea
is not satisfactory, and anyway it ignores the finite size effect if periodic media.

Finally we remark that an extension of this study to conical instruments,
such as saxophones or oboes, is possible without great complexity.

APPENDICES
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A  Geometry of the studied clarinet

The dimensions and locations of the holes of the clarinet Yamaha Y250 are given
in Table 1. Table 2 indicates the first opened holes for the different fingerings.

Table 1: Numerical data for the complete set of tone holes. Holes are numbered
for decreasing distance to the tip of the reed. Hole 24 is the register hole.
Holes 22 and 23 are not used for basic fingerings (see Table E), therefore they
have not been considered in the study. The uncertainties of the measurements
are +£0.02mm for the tone-hole radius, +0.04mm for the tone-hole height, and
40.005mm for the tube radius.

no. | « [mm] | Hole radius b [mm] | Bore radius a [mm] | Hole height h [mm]
24 | 156.50 1.50 7.53 12.50
23 | 167.33 2.46 7.50 6.90
22 | 193.98 2.88 7.46 6.87
21 | 203.51 2.70 7.46 6.66
20 | 213.74 2.47 7.46 6.81
19 | 231.14 2.47 7.46 6.68
18 | 239.66 3.58 7.47 10.23
17 | 241.78 2.48 7.47 6.89
16 | 252.90 2.69 7.47 8.95
15 | 271.38 2.36 7.47 6.91
14 | 285.12 3.44 7.47 9.20
13 | 287.43 2.75 7.47 6.60
12 | 289.95 2.83 7.47 6.67
11 | 308.62 3.94 7.47 7.19
10 | 318.88 2.61 7.47 6.66
9 349.86 3.65 7.49 6.08
8 365.19 4.13 7.51 8.72
7 370.36 3.80 7.52 6.99
6 391.39 4.02 7.54 8.66
) 414.34 4.91 7.55 8.66
4 446.63 5.25 7.53 5.13
3 473.60 6.22 7.52 5.27
2 505.78 5.70 7.67 4.63
1 544.10 5.71 8.40 4.46
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Table 2: Most common notes of a clarinet. The third column gives the target
frequency of a well tuned note when it is normally tempered. The fourth column
gives the hole number of the first open hole(s) in the lattice. When no number is
listed, this note is not considered in this study and does not belong to the, what
we call, normal set of fingerings. Excluding a note from this set means that
for its corresponding fingering, it is necessary to open a tone hole that keeps
closed for the other fingerings. also for those notes with a maximum of open
tone holes. Since this non-normal set of notes represents not the same lattice of
open tone holes, they are not considered.

Note | f, [Hz] | First opened tone-hole number
Chalumeau | E3 147 all closed

F3 156 1

F3 165 -

G3 175 3

Gf3 185 -

A3 196 5

Af3 208 6

B3 220 -

C4 233 8+9

Ct4 247 -

D4 262 11

Di4 277 -

E4 294 14+15

F4 311 16

Fi4 330 -
Throat | G4 349 18419

Gf4 370 20

A4 392 21

A4 415 -

Clarinet | B4 440 all closed

C5 466 1

Ctb 494 -

D5 523 3

Dt5 554 -

E5 587 5

F5 622 6

F5 659 -

G5 698 8+9

Gf5 740 -

A5 784 11

At5 831 -

B5 880 14+15

C6 932 16
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B Use of a more complete model

We have ignored the negative acoustic masses corresponding to the antisymmet-
rical field in the holes. If the series impedance Z, = jwm,.is taken into account
together with the shunt admittance Y = (jwmy)™!, the transfer matrix of a
hole is written as follows (see e.g Fig.3 of Ref. [d]):

1 1+ Z,Y/4 Za
1— Z,Y/4 Y 1+ 2,Y/4 )

Multiplying this matrix on both sides by the transfer matrix of a segment of

cylindrical tube of length ¢ leads to the coefficients of the matrix of the T-shaped
cell:

Y _
B = (cos K+ j 5 ze sin ke) (Zqcoskl + 2jz.sinkl) (1 — Z,Y/4) ™

C

L, -
(Y coskl + 2jz; " sinkl) (cos kl +j72:c_1 sinkzﬁ) (1= 2,Y/4)~"

This result exhibits the four types of cutoff frequencies, the lowest one corre-
sponding to the first factor of the coefficient C. As expected, all of them depend
on either the series impedance or the shunt admittance, for reasons of symmetry.
Therefore the exact value of the cutoffs are simpler than those obtained after
approximations, as it has been done in Ref. [

In order to study the acoustical regularity, Eq. ) is transformed into:

z - Ezzzl—l—%tankchtankf 1—j%cotk€'
C "°1—Eetank.l cotkt 1+ j% tankl

At low frequencies, the characteristic impedance given by Eq. (E) is multi-
plied by the factor (1 +m,/2m)'/2. As a consequence, it is possible to ensure
an improved acoustical regularity, as follows: in order to obtain a constant
characteristic impedance at every frequency, both the cutoff f. and the ratio
(1 + mga/2m)/S? can be chosen to be equal. Therefore, for a given length ¢,
there are two equations for the two parameters of the holes (height h and radius
b).

However the ratio mg/2m ~ —0.1863/(a?() is in general close to 0.01 or
0.02, thus it is not important to keep this term into account in the present
study, because a high precision is not needed.
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