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Abstract

Let q be an odd positive integer and P ∈ F2[z] be of order q and such that P (0) = 1.
We denote by A = A(P ) the unique set of positive integers satisfying

∑

∞

n=0 p(A, n)zn ≡
P (z) (mod 2), where p(A, n) is the number of partitions of n with parts in A. In [5],
it is proved that if A(P, x) is the counting function of the set A(P ) then A(P, x) ≪
x(log x)−r/ϕ(q), where r is the order of 2 modulo q and ϕ is the Euler’s function. In
this paper, we improve on the constant c = c(q) for which A(P, x) ≪ x(log x)−c.

key words: Sets with even partition functions, bad and semi-bad primes, order of a poly-
nomial, Selberg-Delange formula.

2000 MSC: 11P83.

1 Introduction.

Let N be the set of positive integers and A = {a1, a2, ...} be a subset of N. For n ∈ N, we
denote by p(A, n) the number of partitions of n with parts in A, i.e. the number of solutions
of the equation

a1x1 + a2x2 + ... = n,

in non-negative integers x1, x2, .... We set p(A, 0) = 1.

Let F2 be the field with two elements and f = 1 + ǫ1z + ...+ ǫNzN + · · · ∈ F2[[z]]. Nicolas
et al proved (see [13], [4] and [11]) that there is a unique subset A = A(f) of N such that

∞
∑

n=0

p(A, n)zn ≡ f(z) (mod 2). (1.1)
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When f is a rational fraction, it has been shown in [11] that there is a polynomial U such that
A(f) can be easily determined from A(U). When f is a general power series, nothing about
the behaviour of A(f) is known. From now on, we shall restrict ourselves to the case f = P ,
where

P = 1 + ǫ1z + ...+ ǫNzN ∈ F2[z]

is a polynomial of degree N ≥ 1.

Let A(P, x) be the counting function of the set A(P ), i.e.

A(P, x) =| {n : 1 ≤ n ≤ x, n ∈ A(P )} | . (1.2)

In [10], it is proved that

A(P, x) ≥
log x

log 2
−

log(N + 1)

log 2
. (1.3)

More attention was paid on upper bounds for A(P, x). In [5, Theorem 3], it was observed
that when P is a product of cyclotomic polynomials, the set A(P ) is a union of geometric
progressions of quotient 2 and so A(P, x) = O(log x).

Let the decomposition of P into irreducible factors over F2[z] be

P = Pα1
1 Pα2

2 · · ·Pαl
l .

We denote by βi, 1 ≤ i ≤ l, the order of Pi(z), that is the smallest positive integer such that
Pi(z) divides 1 + zβi in F2[z]; it is known that βi is odd (cf. [12]). We set

q = q(P ) = lcm(β1, β2, ..., βl). (1.4)

If q = 1 then P (z) = 1 + z and A(P ) = {2k, k ≥ 0}, so that A(P, x) = O(log x). We may
suppose that q ≥ 3. Now, let

σ(A, n) =
∑

d |n, d∈A

d =
∑

d |n

dχ(A, d), (1.5)

where χ(A, .) is the characteristic function of the set A,

χ(A, d) =

{

1 if d ∈ A
0 otherwise.

In [6] (see also [3] and [2]), it is proved that for all k ≥ 0, q is a period of the sequence
(σ(A, 2kn) mod 2k+1)n≥1, i.e.

n1 ≡ n2 (mod q) ⇒ σ(A, 2kn1) ≡ σ(A, 2kn2) (mod 2k+1) (1.6)

and q is the smallest integer such that (1.6) holds for all k′s. Moreover, if n1 and n2 satisfy
n2 ≡ 2an1 (mod q) for some a ≥ 0, then

σ(A, 2kn2) ≡ σ(A, 2kn1) (mod 2k+1). (1.7)

If m is odd and k ≥ 0, let

SA(m,k) = χ(A,m) + 2χ(A, 2m) + . . .+ 2kχ(A, 2km). (1.8)
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It follows that for n = 2km, one has

σ(A, n) = σ(A, 2km) =
∑

d |m

dSA(d, k), (1.9)

which, by Möbius inversion formula, gives

mSA(m,k) =
∑

d |m

µ(d)σ(A,
n

d
) =

∑

d |m

µ(d)σ(A,
n

d
), (1.10)

where µ is the Möbius’s function and m =
∏

p |m p is the radical of m, with 1 = 1.

In [7] and [9], precise descriptions of the sets A(1+ z+ z3) and A(1+ z+ z3 + z4 + z5) are
given and asymptotics to the related counting functions are obtained,

A(1 + z + z3, x) ∼ c1
x

(log x)
3
4

, x → ∞, (1.11)

A(1 + z + z3 + z4 + z5, x) ∼ c2
x

(log x)
1
4

, x → ∞, (1.12)

where c1 = 0.937..., c2 = 1.496.... In [1], the sets A(P ) are considered when P is irreducible of
prime order q and such that the order of 2 in (Z/qZ)∗ is q−1

2 . This situation is similar to that

of A(1 + z + z3), and formula (1.11) can be extended to A(P, x) ∼ c′x(log x)−3/4, x → ∞, for
some constant c′ depending on P .

Let P = QR be the product of two coprime polynomials in F2[z]. In [4], the following is
given

A(P, x) ≤ A(Q,x) +A(R,x) (1.13)

and
| A(P, x)−A(R,x) |≤

∑

0≤i≤ log x
log 2

A(Q,
x

2i
). (1.14)

As an application of (1.14), choosing Q = 1 + z + z3, R = 1 + z + z3 + z4 + z5 and P = QR,
we get from (1.11)-(1.14),

A(P, x) ∼ A(R,x) ∼ c2x(log x)
−1/4, x → ∞.

In [5], a claim of Nicolas and Sárközy [15], that some polynomials with A(P, x) ≍ x may
exist, was disapproved. More precisely, the following was obtained

Theorem 1.1. Let P ∈ F2[z] be such that P (0) = 1, A = A(P ) be the unique set obtained
from (1.1) and q be the odd number defined by (1.4). Let r be the order of 2 modulo q, that is
the smallest positive integer such that 2r ≡ 1 (mod q). We shall say that a prime p 6= 2 is a
bad prime if

∃ i, 0 ≤ i ≤ r − 1 and p ≡ 2i (mod q). (1.15)

(i) If p is a bad prime, we have gcd(p, n) = 1 for all n ∈ A.
(ii) There exists an absolute constant c3 such that for all x > 1,

A(P, x) ≤ 7(c3)
r x

(log x)
r

ϕ(q)

, (1.16)

where ϕ is Euler’s function.
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2 The sets of bad and semi-bad primes.

Let q be an odd integer ≥ 3 and r be the order of 2 modulo q. Let us call ”bad classes” the
elements of

E(q) = {1, 2, ..., 2r−1} ⊂ (Z/qZ)∗. (2.1)

From (1.15), we know that an odd prime p is bad if p mod q belongs to E(q). The set of bad
primes will be denoted by B. The fact that no element of A(P ) is divisible by a bad prime (cf.
Theorem 1.1 (i)) has given (cf. [5]) the upper bound (1.16). Two other sets of primes will be
used to improve (1.16) cf. Theorem 2.1 below.

Remark 2.1. 2 is not a bad prime although it is a bad class.

Definition 2.1. A class of (Z/qZ)∗ is said semi-bad if it does not belong to E(q) and its square
does. A prime p is called semi-bad if its class modulo q is semi-bad. We denote by E ′(q) the
set of semi-bad classes, so that

p semi-bad ⇐⇒ p mod q ∈ E ′(q).

We denote by |E ′(q)| the number of elements of E ′(q).

Lemma 2.1. Let q be an odd integer ≥ 3, r be the order of 2 modulo q and

q2 =

{

1 if 2 is a square modulo q
0 if not.

The number |E ′(q)| of semi-bad classes modulo q is given by

|E ′(q)| = 2ω(q)
(⌊

r + 1

2

⌋

+ q2

⌊r

2

⌋

)

− r

=

{

r(2ω(q)−1 − 1) if r is even and q2 = 0

r(2ω(q) − 1) otherwise,
(2.2)

where ω(q) is the number of distinct prime factors of q and ⌊x⌋ is the floor of x.

Proof. We have to count the number of solutions of the r congruences

Ei : x2 ≡ 2i (mod q), 0 ≤ i ≤ r − 1,

which do not belong to E(q). The number of solutions of E0 is 2ω(q). The contribution of Ei

when i is even is equal to that of E0 by the change of variables x = 2i/2ξ, so that the total
number of solutions, in (Z/qZ)∗, of the E′

is for i even is equal to
⌊

r+1
2

⌋

2ω(q).

The number of odd i′s, 0 ≤ i ≤ r − 1, is equal to
⌊

r
2

⌋

. The contribution of all the E′
is

for these i′s are equal and vanish if q2 = 0. When q2 = 1, E1 has 2ω(q) solutions in (Z/qZ)∗.
Hence the total number of solutions, in (Z/qZ)∗, of the E′

is for i odd is equal to q2
⌊

r
2

⌋

2ω(q).

Now, we have to remove those solutions which are in E(q). But any element 2i, 0 ≤ i ≤ r−1,
from E(q) is a solution of the congruence x2 ≡ 2j (mod q), where j = 2i mod r. Hence

|E ′(q)| = 2ω(q)
(⌊

r + 1

2

⌋

+ q2

⌊r

2

⌋

)

− r.

The second formula in (2.2) follows by noting that q2 = 1 when r is odd.
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Definition 2.2. A set of semi-bad classes is called a coherent set if it is not empty and if the
product of any two of its elements is a bad class.

Lemma 2.2. Let b be a semi-bad class; then

Cb = {b, 2b, . . . , 2r−1b}

is a coherent set. There are no coherent sets with more than r elements.

Proof. First, we observe that, for 0 ≤ u ≤ r − 1, 2ub is semi-bad and, for 0 ≤ u < v ≤ r − 1,
(2ub)(2vb) is bad so that Cb is coherent.

Further, let F be a set of semi-bad classes with more than r elements; there exists in F
two semi-bad classes a and b such that a /∈ Cb. Let us prove that ab is not bad. Indeed, if ab ≡
2u (mod q) for some u, we would have a ≡ 2ub−1 (mod q). But, as b is semi-bad, b2 is bad,
i.e. b2 ≡ 2v (mod q) for some v, which would imply b ≡ 2vb−1 (mod q), b−1 ≡ b2−v (mod q),
a ≡ 2u−vb (mod q) and a ∈ Cb, a contradiction. Therefore, F is not coherent.

Lemma 2.3. If ω(q) = 1 and ϕ(q)/r is odd, then E ′(q) = ∅; while if ϕ(q)/r is even, the set of
semi-bad classes E ′(q) is a coherent set of r elements.

If ω(q) ≥ 2, then E ′(q) 6= ∅ and there exists a coherent set C with |C| = r.

Proof. If ω(q) = 1, q is a power of a prime number and the group (Z/qZ)∗ is cyclic. Let g be
some generator and d be the smallest positive integer such that gd ∈ E(q), where E(q) is given
by (2.1). We have d = ϕ(q)/r, since d is the order of the group (Z/qZ)∗/E(q). The discrete
logarithms of the bad classes are 0, d, 2d, · · · , (r − 1)d. The set E ′(q) ∪ E(q) is equal to the
union of the solutions of the congruences

x2 ≡ gad (mod q) (2.3)

for 0 ≤ a ≤ r − 1. By the change of variable x = gt, (2.3) is equivalent to

2t ≡ ad (mod ϕ(q)). (2.4)

Let us assume first that d is odd so that r is even. If a is odd, the congruence (2.4) has no
solution while, if a is even, say a = 2b, the solutions of (2.4) are t ≡ bd (mod ϕ(q)/2) i.e.

t ≡ bd (mod ϕ(q)) or t ≡ bd+ (r/2)d (mod ϕ(q)),

which implies
E ′(q) ∪ E(q) = {g0, gd, . . . , g(r−1)d} = E(q)

and E ′(q) = ∅.
Let us assume now that d is even. The congruence (2.4) is equivalent to

t ≡ ad/2 (mod ϕ(q)/2)

which implies E ′(q) ∪ E(q) = {gαd/2, 0 ≤ α ≤ 2r − 1} yielding

E ′(q) = {g
d
2 , g3

d
2 , · · · , g(2r−1)d

2 } = Cb

(with b = (g
d
2 )), which is coherent by Lemma 2.2.

If ω(q) ≥ 2, then, by Lemma 2.1, E ′(q) 6= ∅. Let b ∈ E ′(q); by Lemma 2.2, the set Cb is a
coherent set of r elements.
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Let us set

c(q) =

{

3
2 if E ′(q) 6= ∅

1 if E ′(q) = ∅.
(2.5)

We shall prove

Theorem 2.1. Let P ∈ F2[z] with P (0) = 1, q be the odd integer defined by (1.4) and r be
the order of 2 modulo q. We denote by A(P ) the set obtained from (1.1) and by A(P, x) its
counting function. When x tends to infinity, we have

A(P, x) ≪q
x

(log x)
c(q) r

ϕ(q)

, (2.6)

where c(q) is given by (2.5).

When P is irreducible, q is prime and r = q−1
2 , the upper bound (2.6) is best possible;

indeed in this case, from [1], we have A(P, x) ≍ x
(log x)3/4

. As ϕ(q)/r = 2, Lemma 2.3 implies

E ′(q) 6= ∅ so that c = 3/2 and in (2.6), the exponent of log x is 3/4. Moreover, formula (1.12)
gives the optimality of (2.6) for some prime (q = 31) satisfying r = q−1

6 .

Theorem 2.2. Let P ∈ F2[z] be such that P (0) = 1 and P = P1P2 · · ·Pj , where the P ′
is are

irreducible polynomials in F2[z]. For 1 ≤ i ≤ j, we denote by qi the order of Pi, by ri the order
of 2 modulo qi and we set c = min1≤i≤j c(qi)ri/ϕ(qi), where c(qi) is given by (2.5). When x
tends to infinity, we have

A(P, x) ≪
x

(log x)c
· (2.7)

where the symbol ≪ depends on the q′is, 1 ≤ i ≤ j.

Let C be a coherent set of semi-bad classes modulo q. Let us associate to C the set of primes
S defined by

p ∈ S ⇐⇒ p mod q ∈ C. (2.8)

We define ωS as the additive arithmetic function

ωS(n) =
∑

p |n, p∈S

1. (2.9)

Lemma 2.4. Let m be an odd positive integer, not divisible by any bad prime. If ωS(m) =
k + 2 ≥ 2 then 2hm 6∈ A(P ) for all h, 0 ≤ h ≤ k. In other words, if 2hm ∈ A(P ), then
h ≥ ωS(m)− 1 holds.

Proof. Let us write m = m′m”, with m′ =
∏

p |m, p∈S p and m” =
∏

p |m, p 6∈S p. From (1.10),

if n = 2km then

mSA(m,k) =
∑

d |m

µ(d)σ(A,
n

d
) =

∑

d′ |m′

∑

d” |m”

µ(d′)µ(d”)σ(A,
n

d′d”
). (2.10)

Let us write d′ = pi1 · · · pij and take some pS from S. If j is even then µ(d′) = 1 and, from
the definition of a coherent set, d′ ≡ 2t (mod q) for some t (depending on d′), 0 ≤ t ≤ r − 1.
Whereas, if j is odd then µ(d′) = −1 and d′ ≡ 2t

′

p−1
S (mod q) for some t′ (depending on d′),

0 ≤ t′ ≤ r − 1. From (1.7), we obtain
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µ(d′)σ(A,
n

d′d”
) ≡ σ(A,

n

d”
) (mod 2k+1) if j is even, (2.11)

µ(d′)σ(A,
n

d′d”
) ≡ −σ(A,

npS
d”

) (mod 2k+1) if j is odd. (2.12)

Since α = ωS(m) = k+ 2 > 0, the number of d′ with odd j is equal to that with even j and is
given by

1 +

(

α

2

)

+

(

α

4

)

+ · · · =

(

α

1

)

+

(

α

3

)

+ · · · = 2α−1.

From (2.10), we obtain

mSA(m,k) ≡ 2α−1
∑

d” |m”

µ(d”)
(

σ(A,
n

d”
)− σ(A,

npS
d”

)
)

(mod 2k+1), (2.13)

which, as α = ωS(m) = k + 2, gives SA(m,k) ≡ 0 (mod 2k+1), so that from (1.8),

χ(A,m) = χ(A, 2m) = · · · = χ(A, 2km) = 0. (2.14)

Let us assume that E ′(q) 6= ∅ so that there exists a coherent set C with r semi-bad classes
modulo q; we associate to C the set of primes S defined by (2.8) and we denote by Q = Q(q)
and N = N (q) the sets

Q = {p prime, p | q} and N = {p prime, p 6∈ B ∪ S and gcd(p, 2q) = 1},

so that the whole set of primes is equal to B ∪ S ∪ N ∪ Q ∪ {2}. For n ≥ 1, let us define the
multiplicative arithmetic function

δ(n) =

{

1 if p |n ⇒ p 6∈ B (i.e. p ∈ S ∪ N ∪Q ∪ {2})

0 otherwise.

and for x > 1,

V (x) = Vq(x) =
∑

n≥1, n2ωS(n)≤x

δ(n). (2.15)

Lemma 2.5. Under the above notation, we have

V (x) = Vq(x) = Oq

(

x

(log x)
c(q) r

ϕ(q)

)

, (2.16)

where c(q) is given by (2.5).

Proof. To prove (2.16), one should consider, for complex s with R(s) > 1, the series

F (s) =
∑

n≥1

δ(n)

(n2ωS(n))s
· (2.17)

This Dirichet series has an Euler’s product given by

F (s) =
∏

p∈N∪Q∪{2}

(

1−
1

ps

)−1
∏

p∈S

(

1 +
1

2s(ps − 1)

)

, (2.18)
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which can be written as

F (s) = H(s)
∏

p∈N

(

1−
1

ps

)−1
∏

p∈S

(

1−
1

ps

)− 1
2s

, (2.19)

where

H(s) =
∏

p∈Q∪{2}

(

1−
1

ps

)−1
∏

p∈S

(

1 +
1

2s(ps − 1)

)(

1−
1

ps

)
1
2s

. (2.20)

By applying Selberg-Delange’s formula (cf. [8], Théorème 1 and [9], Lemma 4.5), we obtain
some constant c4 such that

V (x) = c4
x

(log x)
c(q) r

ϕ(q)

+Oq

(

x log log x

log x

)

. (2.21)

The constant c4 is somewhat complicated, it is given by

c4 =
CH(1)

Γ(1− c(q) r
ϕ(q))

, (2.22)

where Γ is the gamma function,

H(1) =
2q

ϕ(q)

∏

p∈S

(

1 +
1

2(p− 1)

)(

1−
1

p

)
1
2

(2.23)

and

C =
∏

p∈N

(

1−
1

p

)−1
∏

p∈S

(

1−
1

p

)
−1
2 ∏

p

(

1−
1

p

)1−c(q) r
ϕ(q)

,

where in the third product, p runs over all primes.

3 Proof of the results.

Proof of Theorem 2.1. If r = ϕ(q) then 2 is a generator of (Z/qZ)∗, all primes are bad
but 2 and the prime factors of q; hence by Theorem 2 of [5], A(P, x) = O ((log x)κ) for some
constant κ, so that we may remove the case r = ϕ(q).

If E ′(q) = ∅, from (2.5), c = 1 holds and (2.6) follows from (1.16).
We now assume E ′(q) 6= ∅, so that, from Lemma 2.2, there exists a coherent set C satisfying

|C| = r. We define the set of primes S by (2.8). Let us write V (x) defined in (2.15) as

V (x) = V ′(x) + V ”(x), (3.1)

with

V ′(x) =
∑

n≥1, n2ωS (n)≤x, ωS(n)=0

δ(n) and V ”(x) =
∑

n≥1, n2ωS(n)≤x, ωS(n)≥1

δ(n).

Similarly, we write A(P, x) =
∑

a∈A(P ), a≤x 1 = A′ +A”, with

A′ =
∑

a∈A(P ), a≤x, ωS(a)=0

1 and A” =
∑

a∈A(P ), a≤x, ωS(a)≥1

1.
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An element a of A(P ) counted in A′ is free of bad and semi-bad primes, so that

A′ ≤ V ′(x) ≤ V ′(2x). (3.2)

By Lemma 2.4, an element a of A(P ) counted in A” is of the form n2ωS(n)−1 with ωS(n) =
ωS(a) ≥ 1; hence

A” ≤ V ”(2x). (3.3)

Therefore, from (3.1)-(3.3), we get

A(P, x) = A′ +A” ≤ V ′(2x) + V ”(2x) = V (2x)

and (2.6) follows from Lemma 2.5. �

Proof of Theorem 2.2. Just use Theorem 2.1 and (1.13). �
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the study of the sets A(P ) and for all the mathematics that we have learnt from him.

References

[1] N. Baccar and F. Ben Säıd, On sets such that the partition function is even from a certain
point on, International Journal of Number Theory, vol. 5, No. 3 (2009), 1-22.
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24 (2003), 1089-1096.

[12] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge
University Press, revised edition, (1994).
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