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, it is proved that if A(P, x) is the counting function of the set A(P ) then A(P, x) ≪ x(log x) -r/ϕ(q) , where r is the order of 2 modulo q and ϕ is the Euler's function. In this paper, we improve on the constant c = c(q) for which A(P, x) ≪ x(log x) -c .

1 Introduction.

Let N be the set of positive integers and A = {a 1 , a 2 , ...} be a subset of N. For n ∈ N, we denote by p(A, n) the number of partitions of n with parts in A, i.e. the number of solutions of the equation a 1 x 1 + a 2 x 2 + ... = n, in non-negative integers x 1 , x 2 , .... We set p(A, 0) = 1.

Let F 2 be the field with two elements and f = 1 + ǫ 1 z + ...

+ ǫ N z N + • • • ∈ F 2 [[z]
]. Nicolas et al proved (see [START_REF] Nicolas | On the parity of additive representation functions[END_REF], [START_REF] Saïd | On some sets with even valued partition function[END_REF] and [START_REF] Lahouar | Fonctions de partitions à parité périodique[END_REF]) that there is a unique subset A = A(f ) of N such that ∞ n=0 p(A, n)z n ≡ f (z) (mod 2).

(1.1)

When f is a rational fraction, it has been shown in [START_REF] Lahouar | Fonctions de partitions à parité périodique[END_REF] that there is a polynomial U such that A(f ) can be easily determined from A(U ). When f is a general power series, nothing about the behaviour of A(f ) is known. From now on, we shall restrict ourselves to the case f = P , where

P = 1 + ǫ 1 z + ... + ǫ N z N ∈ F 2 [z]
is a polynomial of degree N ≥ 1.

Let A(P, x) be the counting function of the set A(P ), i.e.

A(P, x) =| {n : 1 ≤ n ≤ x, n ∈ A(P )} | .

(1.2)

In [START_REF] Dai | On the parity of the partition function[END_REF], it is proved that

A(P, x) ≥ log x log 2 - log(N + 1) log 2 . (1.3)
More attention was paid on upper bounds for A(P, x). In [5, Theorem 3], it was observed that when P is a product of cyclotomic polynomials, the set A(P ) is a union of geometric progressions of quotient 2 and so A(P, x) = O(log x).

Let the decomposition of P into irreducible factors over F 2 [z] be

P = P α 1 1 P α 2 2 • • • P α l l .
We denote by β i , 1 ≤ i ≤ l, the order of P i (z), that is the smallest positive integer such that

P i (z) divides 1 + z β i in F 2 [z]
; it is known that β i is odd (cf. [START_REF] Lidl | Introduction to finite fields and their applications[END_REF]). We set

q = q(P ) = lcm(β 1 , β 2 , ..., β l ). (1.4) 
If q = 1 then P (z) = 1 + z and A(P ) = {2 k , k ≥ 0}, so that A(P, x) = O(log x). We may suppose that q ≥ 3. Now, let

σ(A, n) = d | n, d∈A d = d | n dχ(A, d), (1.5) 
where χ(A, .) is the characteristic function of the set A,

χ(A, d) = 1 if d ∈ A 0 otherwise.
In [START_REF] Saïd | Sets of parts such that the partition function is even[END_REF] (see also [START_REF] Saïd | On a conjecture of Nicolas-Sárközy about partitions[END_REF] and [START_REF] Baccar | On the divisor function of sets wiht even partition functions[END_REF]), it is proved that for all k ≥ 0, q is a period of the sequence (σ(A, 2 k n) mod 2 k+1 ) n≥1 , i.e.

n 1 ≡ n 2 (mod q) ⇒ σ(A, 2 k n 1 ) ≡ σ(A, 2 k n 2 ) (mod 2 k+1 ) (1.6)
and q is the smallest integer such that (1.6) holds for all k ′ s. Moreover, if n 1 and n 2 satisfy n 2 ≡ 2 a n 1 (mod q) for some a ≥ 0, then

σ(A, 2 k n 2 ) ≡ σ(A, 2 k n 1 ) (mod 2 k+1 ). (1.7)
If m is odd and k ≥ 0, let

S A (m, k) = χ(A, m) + 2χ(A, 2m) + . . . + 2 k χ(A, 2 k m). (1.8) 
It follows that for n = 2 k m, one has

σ(A, n) = σ(A, 2 k m) = d | m dS A (d, k), (1.9) 
which, by Möbius inversion formula, gives

mS A (m, k) = d | m µ(d)σ(A, n d ) = d | m µ(d)σ(A, n d ), (1.10) 
where µ is the Möbius's function and m = p | m p is the radical of m, with 1 = 1.

In [START_REF] Saïd | Even partition functions[END_REF] and [START_REF] Ben Saïd | On the parity of generalised partition function III[END_REF], precise descriptions of the sets A(1 + z + z 3 ) and A(1

+ z + z 3 + z 4 + z 5
) are given and asymptotics to the related counting functions are obtained,

A(1 + z + z 3 , x) ∼ c 1 x (log x) 3 4 , x → ∞, (1.11) 
A(1

+ z + z 3 + z 4 + z 5 , x) ∼ c 2 x (log x) 1 4 , x → ∞, (1.12) 
where c 1 = 0.937..., c 2 = 1.496.... In [START_REF] Baccar | On sets such that the partition function is even from a certain point on[END_REF], the sets A(P ) are considered when P is irreducible of prime order q and such that the order of 2 in (Z/qZ) * is q-1 2 . This situation is similar to that of A(1 + z + z 3 ), and formula (1.11) can be extended to A(P, x) ∼ c ′ x(log x) -3/4 , x → ∞, for some constant c ′ depending on P .

Let P = QR be the product of two coprime polynomials in F 2 [z]. In [START_REF] Saïd | On some sets with even valued partition function[END_REF], the following is given

A(P, x) ≤ A(Q, x) + A(R, x) (1.13) 
and

| A(P, x) -A(R, x) |≤ 0≤i≤ log x log 2 A(Q, x 2 i ). (1.14)
As an application of (1.14), choosing Q = 1 + z + z 3 , R = 1 + z + z 3 + z 4 + z 5 and P = QR, we get from (1.11)-(1.14),

A(P, x) ∼ A(R, x) ∼ c 2 x(log x) -1/4 , x → ∞.
In [START_REF] Ben Saïd | On the counting function of the sets of parts such that the partition function takes even values for n large enough[END_REF], a claim of Nicolas and Sárközy [START_REF] Nicolas | On the parity of generalised partition functions[END_REF], that some polynomials with A(P, x) ≍ x may exist, was disapproved. More precisely, the following was obtained Theorem 1.1. Let P ∈ F 2 [z] be such that P (0) = 1, A = A(P ) be the unique set obtained from (1.1) and q be the odd number defined by (1.4). Let r be the order of 2 modulo q, that is the smallest positive integer such that 2 r ≡ 1 (mod q). We shall say that a prime p = 2 is a bad prime if

∃ i, 0 ≤ i ≤ r -1 and p ≡ 2 i (mod q). (1.15) (i) If p is a bad prime, we have gcd(p, n) = 1 for all n ∈ A.
(ii) There exists an absolute constant c 3 such that for all x > 1,

A(P, x) ≤ 7(c 3 ) r x (log x) r ϕ(q) , (1.16)
where ϕ is Euler's function.

2 The sets of bad and semi-bad primes.

Let q be an odd integer ≥ 3 and r be the order of 2 modulo q. Let us call "bad classes" the elements of

E(q) = {1, 2, ..., 2 r-1 } ⊂ (Z/qZ) * . (2.1)
From (1.15), we know that an odd prime p is bad if p mod q belongs to E(q). The set of bad primes will be denoted by B. The fact that no element of A(P ) is divisible by a bad prime (cf. Theorem 1.1 (i)) has given (cf. [START_REF] Ben Saïd | On the counting function of the sets of parts such that the partition function takes even values for n large enough[END_REF]) the upper bound (1.16). Two other sets of primes will be used to improve (1.16) cf. Theorem 2.1 below.

Remark 2.1. 2 is not a bad prime although it is a bad class.

Definition 2.1. A class of (Z/qZ) * is said semi-bad if it does not belong to E(q) and its square does. A prime p is called semi-bad if its class modulo q is semi-bad. We denote by E ′ (q) the set of semi-bad classes, so that

p semi-bad ⇐⇒ p mod q ∈ E ′ (q).
We denote by |E ′ (q)| the number of elements of E ′ (q). Lemma 2.1. Let q be an odd integer ≥ 3, r be the order of 2 modulo q and

q 2 = 1 if 2 is a square modulo q 0 if not.
The number |E ′ (q)| of semi-bad classes modulo q is given by

|E ′ (q)| = 2 ω(q) r + 1 2 + q 2 r 2 -r = r(2 ω(q)-1 -1) if r is even and q 2 = 0 r(2 ω(q) -1) otherwise, (2.2) 
where ω(q) is the number of distinct prime factors of q and ⌊x⌋ is the floor of x.

Proof. We have to count the number of solutions of the r congruences

E i : x 2 ≡ 2 i (mod q), 0 ≤ i ≤ r -1,
which do not belong to E(q). The number of solutions of E 0 is 2 ω(q) . The contribution of E i when i is even is equal to that of E 0 by the change of variables x = 2 i/2 ξ, so that the total number of solutions, in (Z/qZ) * , of the

E ′ i s for i even is equal to r+1 2 2 ω(q) .
The number of odd i ′ s,

0 ≤ i ≤ r -1, is equal to r 2 .
The contribution of all the E ′ i s for these i ′ s are equal and vanish if q 2 = 0. When q 2 = 1, E 1 has 2 ω(q) solutions in (Z/qZ) * . Hence the total number of solutions, in (Z/qZ) * , of the E ′ i s for i odd is equal to q 2 r 2 2 ω(q) . Now, we have to remove those solutions which are in E(q). But any element 2 i , 0 ≤ i ≤ r-1, from E(q) is a solution of the congruence x 2 ≡ 2 j (mod q), where j = 2i mod r. Hence

|E ′ (q)| = 2 ω(q) r + 1 2 + q 2 r 2 -r.
The second formula in (2.2) follows by noting that q 2 = 1 when r is odd.

Definition 2.2. A set of semi-bad classes is called a coherent set if it is not empty and if the product of any two of its elements is a bad class.

Lemma 2.2. Let b be a semi-bad class; then

C b = {b, 2b, . . . , 2 r-1 b}
is a coherent set. There are no coherent sets with more than r elements.

Proof. First, we observe that, for 0 ≤ u ≤ r -1, 2 u b is semi-bad and, for 0

≤ u < v ≤ r -1, (2 u b)(2 v b) is bad so that C b is coherent.
Further, let F be a set of semi-bad classes with more than r elements; there exists in F two semi-bad classes a and b such that a / ∈ C b . Let us prove that ab is not bad. Indeed, if ab ≡ 2 u (mod q) for some u, we would have a ≡ 2 u b -1 (mod q). But, as b is semi-bad, b 2 is bad, i.e. b 2 ≡ 2 v (mod q) for some v, which would imply b ≡ 2 v b -1 (mod q), b -1 ≡ b2 -v (mod q), a ≡ 2 u-v b (mod q) and a ∈ C b , a contradiction. Therefore, F is not coherent. Lemma 2.3. If ω(q) = 1 and ϕ(q)/r is odd, then E ′ (q) = ∅; while if ϕ(q)/r is even, the set of semi-bad classes E ′ (q) is a coherent set of r elements.

If ω(q) ≥ 2, then E ′ (q) = ∅ and there exists a coherent set C with |C| = r.

Proof. If ω(q) = 1, q is a power of a prime number and the group (Z/qZ) * is cyclic. Let g be some generator and d be the smallest positive integer such that g d ∈ E(q), where E(q) is given by (2.1). We have d = ϕ(q)/r, since d is the order of the group (Z/qZ) * / E(q) . The discrete logarithms of the bad classes are 0, d, 2d, • • • , (r -1)d. The set E ′ (q) ∪ E(q) is equal to the union of the solutions of the congruences

x 2 ≡ g ad (mod q) (2.3)
for 0 ≤ a ≤ r -1. By the change of variable x = g t , (2.3) is equivalent to 2t ≡ ad (mod ϕ(q)).

(2.4)

Let us assume first that d is odd so that r is even. If a is odd, the congruence (2.4) has no solution while, if a is even, say a = 2b, the solutions of (2.4) are t ≡ bd (mod ϕ(q)/2) i.e. t ≡ bd (mod ϕ(q)) or t ≡ bd + (r/2)d (mod ϕ(q)), which implies E ′ (q) ∪ E(q) = {g 0 , g d , . . . , g (r-1)d } = E(q)

and E ′ (q) = ∅.

Let us assume now that d is even. The congruence (2.4) is equivalent to

t ≡ ad/2 (mod ϕ(q)/2) which implies E ′ (q) ∪ E(q) = {g αd/2 , 0 ≤ α ≤ 2r -1} yielding E ′ (q) = {g d 2 , g 3 d 2 , • • • , g (2r-1) d 2 } = C b (with b = (g d 2 )
), which is coherent by Lemma 2.2.

If ω(q) ≥ 2, then, by Lemma 2.1, E ′ (q) = ∅. Let b ∈ E ′ (q); by Lemma 2.2, the set C b is a coherent set of r elements.

Let us set

c(q) = 3 2 if E ′ (q) = ∅ 1 if E ′ (q) = ∅.
(2.5)

We shall prove Theorem 2.1. Let P ∈ F 2 [z] with P (0) = 1, q be the odd integer defined by (1.4) and r be the order of 2 modulo q. We denote by A(P ) the set obtained from (1.1) and by A(P, x) its counting function. When x tends to infinity, we have

A(P, x) ≪ q x (log x) c(q) r ϕ(q) , (2.6) 
where c(q) is given by (2.5).

When P is irreducible, q is prime and r = q-1 2 , the upper bound (2.6) is best possible; indeed in this case, from [START_REF] Baccar | On sets such that the partition function is even from a certain point on[END_REF], we have A(P, x) ≍ x (log x) 3/4 . As ϕ(q)/r = 2, Lemma 2.3 implies E ′ (q) = ∅ so that c = 3/2 and in (2.6), the exponent of log x is 3/4. Moreover, formula (1.12) gives the optimality of (2.6) for some prime (q = 31) satisfying r = q-1 6 .

Theorem 2.2. Let P ∈ F 2 [z] be such that P (0) = 1 and P = P 1 P 2 • • • P j , where the P ′ i s are irreducible polynomials in F 2 [z]. For 1 ≤ i ≤ j, we denote by q i the order of P i , by r i the order of 2 modulo q i and we set c = min 1≤i≤j c(q i )r i /ϕ(q i ), where c(q i ) is given by (2.5). When x tends to infinity, we have

A(P, x) ≪ x (log x) c • (2.7) 
where the symbol ≪ depends on the q ′ i s,

1 ≤ i ≤ j.
Let C be a coherent set of semi-bad classes modulo q. Let us associate to C the set of primes S defined by p ∈ S ⇐⇒ p mod q ∈ C.

We define ω S as the additive arithmetic function

ω S (n) = p | n, p∈S 1. (2.9) 
Lemma 2.4. Let m be an odd positive integer, not divisible by any bad prime.

If ω S (m) = k + 2 ≥ 2 then 2 h m ∈ A(P ) for all h, 0 ≤ h ≤ k. In other words, if 2 h m ∈ A(P ), then h ≥ ω S (m) -1 holds. Proof. Let us write m = m ′ m", with m ′ = p | m, p∈S p and m" = p | m, p ∈S p. From (1.10), if n = 2 k m then mS A (m, k) = d | m µ(d)σ(A, n d ) = d ′ | m ′ d" | m" µ(d ′ )µ(d")σ(A, n d ′ d"
).

(2.10)

Let us write d ′ = p i 1 • • • p i j and take some p S from S. If j is even then µ(d ′ ) = 1 and, from the definition of a coherent set, d ′ ≡ 2 t (mod q) for some t (depending on d ′ ), 0 ≤ t ≤ r -1.

Whereas, if j is odd then µ(d ′ ) = -1 and d ′ ≡ 2 t ′ p -1 S (mod q) for some t ′ (depending on d ′ ), 0 ≤ t ′ ≤ r -1. From (1.7), we obtain

µ(d ′ )σ(A, n d ′ d" ) ≡ σ(A, n d" ) (mod 2 k+1 ) if j is even, (2.11) µ(d ′ )σ(A, n d ′ d" ) ≡ -σ(A, np S d" ) (mod 2 k+1 ) if j is odd.
(2.12)

Since α = ω S (m) = k + 2 > 0, the number of d ′ with odd j is equal to that with even j and is given by

1 + α 2 + α 4 + • • • = α 1 + α 3 + • • • = 2 α-1 .
From (2.10), we obtain

mS A (m, k) ≡ 2 α-1 d" | m" µ(d") σ(A, n d" ) -σ(A, np S d" ) (mod 2 k+1 ), (2.13) 
which, as α = ω S (m) = k + 2, gives S A (m, k) ≡ 0 (mod 2 k+1 ), so that from (1.8),

χ(A, m) = χ(A, 2m) = • • • = χ(A, 2 k m) = 0. (2.14)
Let us assume that E ′ (q) = ∅ so that there exists a coherent set C with r semi-bad classes modulo q; we associate to C the set of primes S defined by (2.8) and we denote by Q = Q(q) and N = N (q) the sets Q = {p prime, p | q} and N = {p prime, p ∈ B ∪ S and gcd(p, 2q) = 1}, so that the whole set of primes is equal to B ∪ S ∪ N ∪ Q ∪ {2}. For n ≥ 1, let us define the multiplicative arithmetic function

δ(n) = 1 if p | n ⇒ p ∈ B (i.e. p ∈ S ∪ N ∪ Q ∪ {2}) 0 otherwise. and for x > 1, V (x) = V q (x) = n≥1, n2 ω S (n) ≤x δ(n). (2.15) 
Lemma 2.5. Under the above notation, we have

V (x) = V q (x) = O q x (log x) c(q) r ϕ(q) , (2.16) 
where c(q) is given by (2.5).

Proof. To prove (2.16), one should consider, for complex s with R(s) > 1, the series

F (s) = n≥1 δ(n) (n2 ω S (n) ) s • (2.17)
This Dirichet series has an Euler's product given by

F (s) = p∈N ∪Q∪{2} 1 - 1 p s -1 p∈S 1 + 1 2 s (p s -1) , (2.18) 
which can be written as

F (s) = H(s) p∈N 1 - 1 p s -1 p∈S 1 - 1 p s -1 2 s , (2.19) 
where

H(s) = p∈Q∪{2} 1 - 1 p s -1 p∈S 1 + 1 2 s (p s -1) 1 - 1 p s 1 2 s . ( 2 

.20)

By applying Selberg-Delange's formula (cf. [START_REF] Saïd | Sur une application de la formule de Selberg-Delange[END_REF], Théorème 1 and [9], Lemma 4.5), we obtain some constant c 4 such that

V (x) = c 4 x (log x) c(q) r ϕ(q) + O q x log log x log x . ( 2 

.21)

The constant c 4 is somewhat complicated, it is given by

c 4 = CH(1) Γ(1 -c(q) r ϕ(q) ) , (2.22) 
where Γ is the gamma function,

H(1) = 2q ϕ(q) p∈S 1 + 1 2(p -1) 1 - 1 p 1 2 (2.23) 
and

C = p∈N 1 - 1 p -1 p∈S 1 - 1 p -1 2 p 1 - 1 p 1-c(q) r ϕ(q)
, where in the third product, p runs over all primes.

3 Proof of the results.

Proof of Theorem 2.1. If r = ϕ(q) then 2 is a generator of (Z/qZ) * , all primes are bad but 2 and the prime factors of q; hence by Theorem 2 of [START_REF] Ben Saïd | On the counting function of the sets of parts such that the partition function takes even values for n large enough[END_REF], A(P, x) = O ((log x) κ ) for some constant κ, so that we may remove the case r = ϕ(q). If E ′ (q) = ∅, from (2.5), c = 1 holds and (2.6) follows from (1.16). We now assume E ′ (q) = ∅, so that, from Lemma 2.2, there exists a coherent set C satisfying |C| = r. We define the set of primes S by (2.8). Let us write V (x) defined in (2.15) as

V (x) = V ′ (x) + V "(x), (3.1) 
with

V ′ (x) = n≥1, n2 ω S (n) ≤x, ω S (n)=0
δ(n) and V "(x) = n≥1, n2 ω S (n) ≤x, ω S (n)≥1 δ(n).

Similarly, we write A(P, x) = a∈A(P ), a≤x 1 = A ′ + A", with A ′ = a∈A(P ), a≤x, ω S (a)=0

An element a of A(P ) counted in A ′ is free of bad and semi-bad primes, so that

A ′ ≤ V ′ (x) ≤ V ′ (2x). (3.2)
By Lemma 2.4, an element a of A(P ) counted in A" is of the form n2 ω S (n)-1 with ω S (n) = ω S (a) ≥ 1; hence A" ≤ V "(2x). 

(3. 3 ) 5 .

 35 Therefore, from (3.1)-(3.3), we getA(P, x) = A ′ + A" ≤ V ′ (2x) + V "(2x) = V (2x)and (2.6) follows from Lemma 2.Proof of Theorem 2.2. Just use Theorem 2.1 and (1.13).

and A" = a∈A(P ), a≤x, ω S (a)≥1 1.
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