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Abstract
Let ¢ be an odd positive integer and P € Fy[z] be of order ¢ and such that P(0) = 1.
We denote by A = A(P) the unique set of positive integers satisfying >~ p(A,n)z" =
P(z) (mod 2), where p(A,n) is the number of partitions of n with parts in A. In [J],
it is proved that if A(P,x) is the counting function of the set A(P) then A(P,z) <
z(logz)~"/#@ | where r is the order of 2 modulo ¢ and ¢ is the Euler’s function. In
this paper, we improve on the constant ¢ = ¢(q) for which A(P, z) < z(logx)~¢.

key words: Sets with even partition functions, bad and semi-bad primes, order of a poly-
nomial, Selberg-Delange formula.
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1 Introduction.

Let N be the set of positive integers and A = {a1,as,...} be a subset of N. For n € N, we
denote by p(A,n) the number of partitions of n with parts in 4, i.e. the number of solutions
of the equation

a1x1 + agxo + ... = n,

in non-negative integers z1, xa,.... We set p(A,0) = 1.

Let Fy be the field with two elements and f = 1+ €12 + ... + exz™ + - -+ € F[[2]]. Nicolas
et al proved (see [[LJ], [ and [[L1]]) that there is a unique subset A = A(f) of N such that

Zp(A,n)z" = f(z) (mod 2). (1.1)
n=0



When f is a rational fraction, it has been shown in [{1]] that there is a polynomial U such that
A(f) can be easily determined from A(U). When f is a general power series, nothing about
the behaviour of A(f) is known. From now on, we shall restrict ourselves to the case f = P,
where

P=1+ez+..+en2V e Fo[z]

is a polynomial of degree N > 1.
Let A(P,x) be the counting function of the set A(P), i.e.
APz)=|{n:1<n<z,ne AP)}]|. (1.2)
In [iq], it is proved that

1 log(N + 1
log 2 log 2

(1.3)

More attention was paid on upper bounds for A(P,z). In [f, Theorem 3|, it was observed
that when P is a product of cyclotomic polynomials, the set A(P) is a union of geometric
progressions of quotient 2 and so A(P,z) = O(log ).

Let the decomposition of P into irreducible factors over Fs[z] be
P =PMPy?... PM.

We denote by f;, 1 < i <, the order of P;(z), that is the smallest positive integer such that
Pi(2) divides 1 + 2% in Fy[z]; it is known that 3; is odd (cf. [[J]). We set

q = q(P) =lem(5, B2y ..., B1)- (1.4)

If ¢ = 1 then P(z) = 1+ z and A(P) = {2¥, k > 0}, so that A(P,z) = O(logz). We may
suppose that ¢ > 3. Now, let

o(An)= > d=> dx(Ad), (1.5)

aln, deA d|n
where x(A,.) is the characteristic function of the set A,

lifde A
0 otherwise.

X(A, d) = {

In [ (see also [[f] and [{]), it is proved that for all & > 0, ¢ is a period of the sequence
(0(A,2Fn) mod 2F+1),5q, ie.

n1 =ny (mod q) = (A, 2n1) = o(A,28n,) (mod 28+1) (1.6)

and ¢ is the smallest integer such that ([.d) holds for all &'s. Moreover, if n; and ny satisfy
ny = 2% (mod ¢) for some a > 0, then

o(A,2%ny) = o(A,28n;) (mod 28F1). (1.7)
If m is odd and k > 0, let

Sa(m, k) = x(A,m) +2x(A,2m) + ... 4+ 28y (A, 28m). (1.8)



It follows that for n = 25m, one has

o(An) =o(A,2"m) =" dSa(d, k), (1.9)
d|m
which, by Md&bius inversion formula, gives
n n
mSa(m. ) = 3 p(d)r(A, ) = 3 u(@o(A ), (1.10)
d|lm d|m
where 1 is the Mobius’s function and m = Hp | P 18 the radical of m, with 1T = 1.

In [[] and [f], precise descriptions of the sets A(1 + z + 23) and A(1 + 2z + 23 + 2% + 25) are
given and asymptotics to the related counting functions are obtained,

Al + 2+ 2% 2) ~ ¢ T, T — 00, (1.11)
(log z)
Al 424+ 2+ 425 0) ~ o ° -, T — 00, (1.12)
(log z)1
where ¢; = 0.937...,c2 = 1.496.... In [fl], are considered the Sets A(P) when P is irreducible of
prime order g and such that the order of 2 in (Z/qZ)* i . This situation is similar to that

of A(1+ 2+ 23), and formula (.11]) can be extended to A(P, z) ~ dx(logz) 34, x — oo, for
some constant ¢ depending on P.

Let P = QR be the product in Fa[z] of two coprime polynomials. In [ff], the following is
given

A(P,z) < A(Q,z) + A(R, z) (1.13)
and
| A(P2) —AR,2) < Y AQ, 23) (1.14)
0<i< 108”

1>

As an application of ([L.14), choosing Q =1+ 2+ 23 R=14+2+ 22+ 2* +2° and P = QR,
we get from (ITI)-(LTJ).

A(P,z) ~ A(R,z) ~ coz(logz) ™4, 2 — 0.

In [{], a claim of Nicolas and Sarkézy [[§], that some polynomials with A(P,x) < x may
exist, was disapproved. More precisely, the following was obtained

Theorem 1.1. Let P € Fy[z] be such that P(0) = 1, A = A(P) be the unique set obtained
from (1) and q be the odd number defined by (I.4). Let r be the order of 2 modulo q, that is
the smallest positive integer such that 2" =1 (mod ¢q). We shall say that a prime p # 2 is a
bad prime if

3, 0<i<r—1 and p=2" (mod q). (1.15)
(i) If p is a bad prime, we have ged(p,n) =1 for all n € A.
(ii) There exists an absolute constant cs such that for all x > 1,

A(P,z) < T(c3) ———, (1.16)

(log x) v(q)

where ¢ is Buler’s function.



2 The sets of bad and semi-bad primes.

Let ¢ be an odd integer > 3 and r be the order of 2 modulo ¢q. Let us call "bad classes” the
elements of

E={1,2,..,2 '}y C (Z/qZ)*.

From ([L.15), we know that an odd prime p is bad if p (mod ¢) belongs te £. The set of bad
primes will be denoted by B. The fact that no element of A(P) is divisible by a bad prime (cf.
Theorem [L.1 (i)) has given (cf. [[]) the upper bound ([.1). Another set of primes, which we
call semi-bad primes and denote by S, will be the tool to improve ([[.1§) cf. Theorem below.

Remark 2.1. 2 is not a bad prime althouth it is a bad class.

Definition 2.1. . A class of (Z/qZ)* is said semi-bad if it does not belong to £ and its square
does. We denote by &’ the set of semi-bad classes. A prime p is called semi-bad if its class
modulo ¢ is semi-bad, i.e.

peS & p(modq)€f.

We denote by S(q) =| £ | the number of elements of £’.

Lemma 2.1. Let q be an odd integer > 3 and r be the order of 2 modulo q. Let us write the
euclidean division
r=2"4+7", 0<r” <1,

and set

_ | 1if 2 is a square modulo q
271 0if not.

Then the number S(q) of semi-bad classes modulo q is given by
S(q) _ (7”, + 7477) <2w(q) —9 + 7"”) 4 q27a/ (Qw(q) _ 7"”) , (21)

where w(q) is the number of distinct prime factors of q.

Proof. We have to count the number of solutions of the r congruences
Ci: #*=2"(mod q), 0<i<r—1,

which do not belong to €. The number of solutions of Cy is 2¢(9); among them, one solution
(z = 1) belongs to £ and if 7 is even, an extra one (z = 27/2) belongs to €. Therefore, the
contribution of Cy is 240 — 2 4+ 7.

The contribution of C; when ¢ is even is equal to that of Cy by the change of variables
x = 2/2¢, so that the total contribution of the Cls for i even is equal to the first term of the
right hand-side of (P-])).

The number of odd #’s, 0 <1 <r — 1, is equal to r’, and the contribution of all the C.s for
these s are equal and vanish if go = 0. When 2 is a square modulo ¢, C; has 2@ solutions in
(Z./qZ)*, no solution in £ when 7 is even and one solution (z = 2"+1/2) in £ when r is odd,
which explains the last term of (R.1)). O

We shall prove



Theorem 2.1. Let P € Fylz] with P(0) = 1, q be the odd integer defined by (1.4), v be the
order of 2 modulo q and S(q) be the number of semi-bad classes given by ([2.1). We denote
by A(P) the set obtained from and by A(P,x) its counting function. When x tends to
infinity, we have

A(Pz) <4 TR (2.2)
(10g x) w(a)

This is the best possible. When P is irréducible, ¢ is prime and r = g , it can be seen
from [fl] since in this case (q) =22 =1 (mod q), so that 2 is a square modulo ¢ and ¢g = 1.
Moreover, formula ([.L1]) gives the optimality of (.9) for some prime (¢ = 31) satisfying

— a1
r= 4.

Theorem 2.2. Let P € Fylz] be such that P(0) = 1 and P = P\ P» - -- P, where the Ps are
irréducible polynomials in Fo[z]. For 1 <i < j, we denote by q; the order of P;, by r; the order

of 2 modulo q; and we set ¢ = minj<;<; %. When x tends to infinity, we have
T
A(P _— 2.3
(P.0) < oo (23)

where the symbol < depends on the gis, 1 <i < j.

Let us introduce the additive arithmetic function

ws(n) = Z 1. (2.4)

p|n, peS

Lemma 2.2. Let k > 0 and m be an odd positive integer, not divisible by any bad prime. If
ws(m) >k +2 then 2"m & A(P) for all h, 0 < h < k.

Proof. Let us write m = m/m”, with m’ = [, 7 ,esp and m” =[], |7 ,zsp. From (L10),
if n = 2¥m then

mSa(m, k) Zu Z Z pu(d”)o A,%). (2.5)

d|m d'|m'd’ |m”

Let us write d’ = p;; ---p;; and take some ps from S. If j is even then u(d’) = 1 and
d = 2! (mod q) for some t (depending on d’), 0 < t < r — 1. Whereas, if j is odd then
pw(d) = —1 and d = 2"ps (mod q) for some ' (depending on d’), 0 < ' < r — 1. From ([7),
we obtain

u(d)o (A, ﬁ) =o(A, %) (mod 2F1) if 5 is even, (2.6)
u(d)o (A, dle,,) = —o(A, ;ff ) (mod 2841 if j is odd. (2.7)

If o = ws(m) # 0, the number of d’ with odd j is equal to that with even j and is given by

()= () o

From (R.), we obtain



a—1 99 _ nps k+1
mS a(m. k) = 2 dﬂz” @) (oA, 72) = o(A,"22)) (mod 2°71), (2.8)

which, when a = ws(m) > k + 2, gives S4(m, k) =0 (mod 2¥+1), so that from (.g),
X(A,;m) = x(A,2m) = --- = x(A,2"m) = 0. (2.9)
U
Let us denote by Q@ = Q(¢) and N the sets

Q = {p prime, p|q} and N = {p prime, p ¢ BUS and ged(p,2q) = 1},

so that the whole set of primes is equal to BUSUN U QU {2}. For n > 1, let us define the
multiplicative arithmetic function

5(n) = {1 if pln=p¢gB (ie.pc SUNUQU{2})

0 otherwise.

and for x > 1,

Viz) = Vy(z) = > 5(n). (2.10)

n>1, n2ws(M <g

Lemma 2.3. Under the above notation, we have

Vi(z) = V4(x) = O T+5(9)/2 (2.11)
(log 1-) w(a)
Proof. To prove (R.11), one should consider, for complex s with R(s) > 1, the series
o(n)
F(s) = — 2.12
(S) 7; (n2wS(n))s’ ( )

This Dirichet series has an Euler’s product given by

ro- I 02 Mersts) e

peNUQU{2}

which can be written as

Fs)=H(s) [[ <1 - i>1 11 <1 - i>28 , (2.14)
where
H(s) = peQ]_U[{Z} (1 - pi> lpgg <1 + ﬁ) <1 - pi> o (2.15)

By applying Selberg-Delange’s formula (cf. [§], Théoréeme 1 and [[J], Lemma 4.5), we obtain
some constant ¢4 such that

x xloglog x
(log 1-) v(q) 2



The constant ¢4 is somewhat complicated, it is given by

CH(1)

r+5(q)/2y’
Il - ©(q) )

4= (2.17)

where I' is the gamma function,

1 = O] (1 55) (1 %) (2.18)

peS
and
1! 1\ 7 1\
c-I1(-3) I0-5) ml-5)
peN p peES p P p
where in the third product, p runs over all primes. ]

3 Proof of the results.

Proof of Theorem R.1. If r = ¢(g) then 2 is a generator of (Z/qZ)*, all primes are bad
but 2 and the prime factors of ¢; hence by Theorem 2 of [f], A(P,z) = O ((logx)*) for some
constant k, so that we may remove the case r = ¢(q).

Let us write V(z) defined in (2.10) as
V(z) =V'(x)+ V7 (x), (3.1)
with
V'(z) = > 6(n) and V7 (z) = > 5(n).
n>1, n2¢s(M <z, ws(n)=0 n>1, n2vs(M <z, ws(n)>1

Similarly, we write A(P,x) =3 c a(p), 1=A"+ A", with

a<x

A = Z 1 and A” = Z 1.

acA(P), a<z, ws(a)=0 a€A(P), a<lz, ws(a)>1
An element a of A(P) counted in A’ is free of bad and semi-bad primes, so that
A <V'(z) <V'(2z). (3.2)

By Lemma P-4, an clement a of A(P) counted in A” is of the form n2¥s(M~1 with wgs(n) =
ws(a) > 1; hence
A < V7 (22). (3.3)

Therefore, from (B.1))-(B.3), we get
APyx) = A + A <V'(22) + V7 (22) = V(22)
and (R.9) follows from Lemma P.3. O

Proof of Theorem R.2. Just use Theorem P.1] and ([L.13). O

Thanks. It is a great pleasure for us to thank Andras Sarkozy for initiating the study of
the sets A(P) and for all the mathematics that we have learnt from him.
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