On the counting function of sets with even partition functions

 by
F. Ben Saïd

Université de Monastir
Faculté des Sciences de Monastir
Avenue de l'environnement, 5000 Monastir, Tunisie.
Fethi.BenSaid@fsm.rnu.tn and
J.-L. Nicolas

Université de Lyon, Université Lyon 1, CNRS
Institut Camile Jordan, Mathématiques
Batiment Doyen Jean Braconnier
Université Claude Bernard
21 Avenue Claude Bernard, F-69622 Villeurbanne cedex, France jlnicola@in2p3.fr

> To Kálmán Győry, Attila Pethő, János Pintz and András Sárközy for their nice works in number theory.

Abstract

Let q be an odd positive integer and $P \in \mathbb{F}_{2}[z]$ be of order q and such that $P(0)=1$. We denote by $\mathcal{A}=\mathcal{A}(P)$ the unique set of positive integers satisfying $\sum_{n=0}^{\infty} p(\mathcal{A}, n) z^{n} \equiv$ $P(z)(\bmod 2)$, where $p(\mathcal{A}, n)$ is the number of partitions of n with parts in \mathcal{A}. In 胞, it is proved that if $A(P, x)$ is the counting function of the set $\mathcal{A}(P)$ then $A(P, x) \ll$ $x(\log x)^{-r / \varphi(q)}$, where r is the order of 2 modulo q and φ is the Euler's function. In this paper, we improve on the constant $c=c(q)$ for which $A(P, x) \ll x(\log x)^{-c}$.

key words: Sets with even partition functions, bad and semi-bad primes, order of a polynomial, Selberg-Delange formula.

2000 MSC: 11P83.

1 Introduction.

Let \mathbb{N} be the set of positive integers and $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ be a subset of \mathbb{N}. For $n \in \mathbb{N}$, we denote by $p(\mathcal{A}, n)$ the number of partitions of n with parts in \mathcal{A}, i.e. the number of solutions of the equation

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots=n
$$

in non-negative integers x_{1}, x_{2}, \ldots. We set $p(\mathcal{A}, 0)=1$.
Let \mathbb{F}_{2} be the field with two elements and $f=1+\epsilon_{1} z+\ldots+\epsilon_{N} z^{N}+\cdots \in \mathbb{F}_{2}[[z]]$. Nicolas et al proved (see [13], [4] and [11]) that there is a unique subset $\mathcal{A}=\mathcal{A}(f)$ of \mathbb{N} such that

$$
\begin{equation*}
\sum_{n=0}^{\infty} p(\mathcal{A}, n) z^{n} \equiv f(z)(\bmod 2) \tag{1.1}
\end{equation*}
$$

When f is a rational fraction, it has been shown in (11] that there is a polynomial U such that $\mathcal{A}(f)$ can be easily determined from $\mathcal{A}(U)$. When f is a general power series, nothing about the behaviour of $\mathcal{A}(f)$ is known. From now on, we shall restrict ourselves to the case $f=P$, where

$$
P=1+\epsilon_{1} z+\ldots+\epsilon_{N} z^{N} \in \mathbb{F}_{2}[z]
$$

is a polynomial of degree $N \geq 1$.
Let $A(P, x)$ be the counting function of the set $\mathcal{A}(P)$, i.e.

$$
\begin{equation*}
A(P, x)=|\{n: 1 \leq n \leq x, n \in \mathcal{A}(P)\}| \tag{1.2}
\end{equation*}
$$

In [10], it is proved that

$$
\begin{equation*}
A(P, x) \geq \frac{\log x}{\log 2}-\frac{\log (N+1)}{\log 2} \tag{1.3}
\end{equation*}
$$

More attention was paid on upper bounds for $A(P, x)$. In [5, Theorem 3], it was observed that when P is a product of cyclotomic polynomials, the set $\mathcal{A}(P)$ is a union of geometric progressions of quotient 2 and so $A(P, x)=\mathcal{O}(\log x)$.

Let the decomposition of P into irreducible factors over $\mathbb{F}_{2}[z]$ be

$$
P=P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}} \cdots P_{l}^{\alpha_{l}}
$$

We denote by $\beta_{i}, 1 \leq i \leq l$, the order of $P_{i}(z)$, that is the smallest positive integer such that $P_{i}(z)$ divides $1+z^{\beta_{i}}$ in $\mathbb{F}_{2}[z]$; it is known that β_{i} is odd (cf. 12]). We set

$$
\begin{equation*}
q=q(P)=\operatorname{lcm}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{l}\right) \tag{1.4}
\end{equation*}
$$

If $q=1$ then $P(z)=1+z$ and $\mathcal{A}(P)=\left\{2^{k}, k \geq 0\right\}$, so that $A(P, x)=\mathcal{O}(\log x)$. We may suppose that $q \geq 3$. Now, let

$$
\begin{equation*}
\sigma(\mathcal{A}, n)=\sum_{a \mid n, d \in \mathcal{A}} d=\sum_{d \mid n} d \chi(\mathcal{A}, d) \tag{1.5}
\end{equation*}
$$

where $\chi(\mathcal{A},$.$) is the characteristic function of the set \mathcal{A}$,

$$
\chi(\mathcal{A}, d)=\left\{\begin{array}{l}
1 \text { if } d \in \mathcal{A} \\
0 \text { otherwise }
\end{array}\right.
$$

In 6] (see also [3] and [2]), it is proved that for all $k \geq 0, q$ is a period of the sequence $\left(\sigma\left(\mathcal{A}, 2^{k} n\right) \bmod 2^{k+1}\right)_{n \geq 1}$, i.e.

$$
\begin{equation*}
n_{1} \equiv n_{2}(\bmod q) \Rightarrow \sigma\left(\mathcal{A}, 2^{k} n_{1}\right) \equiv \sigma\left(\mathcal{A}, 2^{k} n_{2}\right)\left(\bmod 2^{k+1}\right) \tag{1.6}
\end{equation*}
$$

and q is the smallest integer such that (1.6) holds for all $k^{\prime} s$. Moreover, if n_{1} and n_{2} satisfy $n_{2} \equiv 2^{a} n_{1}(\bmod q)$ for some $a \geq 0$, then

$$
\begin{equation*}
\sigma\left(\mathcal{A}, 2^{k} n_{2}\right) \equiv \sigma\left(\mathcal{A}, 2^{k} n_{1}\right)\left(\bmod 2^{k+1}\right) \tag{1.7}
\end{equation*}
$$

If m is odd and $k \geq 0$, let

$$
\begin{equation*}
S_{\mathcal{A}}(m, k)=\chi(\mathcal{A}, m)+2 \chi(\mathcal{A}, 2 m)+\ldots+2^{k} \chi\left(\mathcal{A}, 2^{k} m\right) \tag{1.8}
\end{equation*}
$$

It follows that for $n=2^{k} m$, one has

$$
\begin{equation*}
\sigma(\mathcal{A}, n)=\sigma\left(\mathcal{A}, 2^{k} m\right)=\sum_{d \mid m} d S_{\mathcal{A}}(d, k) \tag{1.9}
\end{equation*}
$$

which, by Möbius inversion formula, gives

$$
\begin{equation*}
m S_{\mathcal{A}}(m, k)=\sum_{d \mid m} \mu(d) \sigma\left(\mathcal{A}, \frac{n}{d}\right)=\sum_{d \mid \bar{m}} \mu(d) \sigma\left(\mathcal{A}, \frac{n}{d}\right) \tag{1.10}
\end{equation*}
$$

where μ is the Möbius's function and $\bar{m}=\prod_{p \mid m} p$ is the radical of m, with $\overline{1}=1$.
In [7] and [9], precise descriptions of the sets $\mathcal{A}\left(1+z+z^{3}\right)$ and $\mathcal{A}\left(1+z+z^{3}+z^{4}+z^{5}\right)$ are given and asymptotics to the related counting functions are obtained,

$$
\begin{gather*}
A\left(1+z+z^{3}, x\right) \sim c_{1} \frac{x}{(\log x)^{\frac{3}{4}}}, \quad x \rightarrow \infty \tag{1.11}\\
A\left(1+z+z^{3}+z^{4}+z^{5}, x\right) \sim c_{2} \frac{x}{(\log x)^{\frac{1}{4}}}, \quad x \rightarrow \infty \tag{1.12}
\end{gather*}
$$

where $c_{1}=0.937 \ldots, c_{2}=1.496 \ldots$. In [1] , are considered the sets $\mathcal{A}(P)$ when P is irreducible of prime order q and such that the order of 2 in $(\mathbb{Z} / q \mathbb{Z})^{*}$ is $\frac{q-1}{2}$. This situation is similar to that of $\mathcal{A}\left(1+z+z^{3}\right)$, and formula (1.11) can be extended to $A(P, x) \sim c^{\prime} x(\log x)^{-3 / 4}, x \rightarrow \infty$, for some constant c^{\prime} depending on P.

Let $P=Q R$ be the product in $\mathbb{F}_{2}[z]$ of two coprime polynomials. In [4], the following is given

$$
\begin{equation*}
A(P, x) \leq A(Q, x)+A(R, x) \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
|A(P, x)-A(R, x)| \leq \sum_{0 \leq i \leq \frac{\log x}{\log 2}} A\left(Q, \frac{x}{2^{i}}\right) \tag{1.14}
\end{equation*}
$$

As an application of (1.14), choosing $Q=1+z+z^{3}, R=1+z+z^{3}+z^{4}+z^{5}$ and $P=Q R$, we get from (1.11)-(1.14),

$$
A(P, x) \sim A(R, x) \sim c_{2} x(\log x)^{-1 / 4}, x \rightarrow \infty
$$

In [5], a claim of Nicolas and Sárközy [15], that some polynomials with $A(P, x) \asymp x$ may exist, was disapproved. More precisely, the following was obtained

Theorem 1.1. Let $P \in \mathbb{F}_{2}[z]$ be such that $P(0)=1, \mathcal{A}=\mathcal{A}(P)$ be the unique set obtained from (1.1) and q be the odd number defined by (1.4). Let r be the order of 2 modulo q, that is the smallest positive integer such that $2^{r} \equiv 1(\bmod q)$. We shall say that a prime $p \neq 2$ is a bad prime if

$$
\begin{equation*}
\exists \quad i, \quad 0 \leq i \leq r-1 \quad \text { and } p \equiv 2^{i}(\bmod q) \tag{1.15}
\end{equation*}
$$

(i) If p is a bad prime, we have $\operatorname{gcd}(p, n)=1$ for all $n \in \mathcal{A}$.
(ii) There exists an absolute constant c_{3} such that for all $x>1$,

$$
\begin{equation*}
A(P, x) \leq 7\left(c_{3}\right)^{r} \frac{x}{(\log x)^{\frac{r}{\varphi(q)}}} \tag{1.16}
\end{equation*}
$$

where φ is Euler's function.

2 The sets of bad and semi-bad primes.

Let q be an odd integer ≥ 3 and r be the order of 2 modulo q. Let us call "bad classes" the elements of

$$
\mathcal{E}=\left\{1,2, \ldots, 2^{r-1}\right\} \subset(\mathbb{Z} / q \mathbb{Z})^{*}
$$

From (1.15), we know that an odd prime p is bad if $p(\bmod q)$ belongs te \mathcal{E}. The set of bad primes will be denoted by \mathcal{B}. The fact that no element of $\mathcal{A}(P)$ is divisible by a bad prime (cf. Theorem 1.1 (i)) has given (cf. [6]) the upper bound (1.16). Another set of primes, which we call semi-bad primes and denote by \mathcal{S}, will be the tool to improve (1.16) cf. Theorem 2.1 below.

Remark 2.1. 2 is not a bad prime althouth it is a bad class.
Definition 2.1. . A class of $(\mathbb{Z} / q \mathbb{Z})^{*}$ is said semi-bad if it does not belong to \mathcal{E} and its square does. We denote by \mathcal{E}^{\prime} the set of semi-bad classes. A prime p is called semi-bad if its class modulo q is semi-bad, i.e.

$$
p \in \mathcal{S} \Leftrightarrow p(\bmod q) \in \mathcal{E}^{\prime}
$$

We denote by $S(q)=\left|\mathcal{E}^{\prime}\right|$ the number of elements of \mathcal{E}^{\prime}.
Lemma 2.1. Let q be an odd integer ≥ 3 and r be the order of 2 modulo q. Let us write the euclidean division

$$
r=2 r^{\prime}+r^{\prime}, \quad 0 \leq r " \leq 1
$$

and set

$$
q_{2}=\left\{\begin{array}{l}
1 \text { if } 2 \text { is a square modulo } \mathrm{q} \\
0 \text { if not. }
\end{array}\right.
$$

Then the number $S(q)$ of semi-bad classes modulo q is given by

$$
\begin{equation*}
S(q)=\left(r^{\prime}+r^{\prime \prime}\right)\left(2^{\omega(q)}-2+r^{\prime \prime}\right)+q_{2} r^{\prime}\left(2^{\omega(q)}-r^{\prime \prime}\right) \tag{2.1}
\end{equation*}
$$

where $\omega(q)$ is the number of distinct prime factors of q.
Proof. We have to count the number of solutions of the r congruences

$$
\mathcal{C}_{i}: \quad x^{2} \equiv 2^{i}(\bmod q), \quad 0 \leq i \leq r-1
$$

which do not belong to \mathcal{E}. The number of solutions of \mathcal{C}_{0} is $2^{\omega(q)} ;$ among them, one solution $(x=1)$ belongs to \mathcal{E} and if r is even, an extra one $\left(x=2^{r / 2}\right)$ belongs to \mathcal{E}. Therefore, the contribution of \mathcal{C}_{0} is $2^{\omega(q)}-2+r^{\prime \prime}$.

The contribution of \mathcal{C}_{i} when i is even is equal to that of \mathcal{C}_{0} by the change of variables $x=2^{i / 2} \xi$, so that the total contribution of the $\mathcal{C}_{i}^{\prime} s$ for i even is equal to the first term of the right hand-side of (2.1).

The number of odd $i^{\prime} s, 0 \leq i \leq r-1$, is equal to r^{\prime}, and the contribution of all the $\mathcal{C}_{i}^{\prime} s$ for these $i^{\prime} s$ are equal and vanish if $q_{2}=0$. When 2 is a square modulo q, \mathcal{C}_{1} has $2^{\omega(q)}$ solutions in $(\mathbb{Z} / q \mathbb{Z})^{*}$, no solution in \mathcal{E} when r is even and one solution $\left(x=2^{(r+1) / 2}\right)$ in \mathcal{E} when r is odd, which explains the last term of (2.1).

We shall prove

Theorem 2.1. Let $P \in \mathbb{F}_{2}[z]$ with $P(0)=1, q$ be the odd integer defined by (1.4), r be the order of 2 modulo q and $S(q)$ be the number of semi-bad classes given by (2.1). We denote by $\mathcal{A}(P)$ the set obtained from (1.1) and by $A(P, x)$ its counting function. When x tends to infinity, we have

$$
\begin{equation*}
A(P, x) \ll_{q} \frac{x}{(\log x)^{\frac{r+S(q) / 2}{\varphi(q)}}} \tag{2.2}
\end{equation*}
$$

This is the best possible. When P is irréducible, q is prime and $r=\frac{q-1}{2}$, it can be seen from [1]] since in this case $\left(\frac{2}{q}\right) \equiv 2^{\frac{q-1}{2}} \equiv 1(\bmod q)$, so that 2 is a square modulo q and $q_{2}=1$. Moreover, formula (1.12) gives the optimality of (2.2) for some prime ($q=31$) satisfying $r=\frac{q-1}{6}$.

Theorem 2.2. Let $P \in \mathbb{F}_{2}[z]$ be such that $P(0)=1$ and $P=P_{1} P_{2} \cdots P_{j}$, where the $P_{i}^{\prime} s$ are irréducible polynomials in $\mathbb{F}_{2}[z]$. For $1 \leq i \leq j$, we denote by q_{i} the order of P_{i}, by r_{i} the order of 2 modulo q_{i} and we set $c=\min _{1 \leq i \leq j} \frac{r_{i}+S\left(q_{i}\right) / 2}{\varphi\left(q_{i}\right)}$. When x tends to infinity, we have

$$
\begin{equation*}
A(P, x) \ll \frac{x}{(\log x)^{c}} \tag{2.3}
\end{equation*}
$$

where the symbol \ll depends on the $q_{i}^{\prime} s, 1 \leq i \leq j$.
Let us introduce the additive arithmetic function

$$
\begin{equation*}
\omega_{\mathcal{S}}(n)=\sum_{p \mid n, p \in \mathcal{S}} 1 \tag{2.4}
\end{equation*}
$$

Lemma 2.2. Let $k \geq 0$ and m be an odd positive integer, not divisible by any bad prime. If $\omega_{\mathcal{S}}(m) \geq k+2$ then $2^{h} m \notin \mathcal{A}(P)$ for all $h, 0 \leq h \leq k$.

Proof. Let us write $\bar{m}=m^{\prime} m^{\prime \prime}$, with $m^{\prime}=\prod_{p \mid \bar{m}, p \in \mathcal{S}} p$ and $m "=\prod_{p \mid \bar{m}, p \notin \mathcal{S}} p$. From (1.10), if $n=2^{k} m$ then

$$
\begin{equation*}
m S_{\mathcal{A}}(m, k)=\sum_{d \mid \bar{m}} \mu(d) \sigma\left(\mathcal{A}, \frac{n}{d}\right)=\sum_{d^{\prime} \mid m^{\prime}} \sum_{d^{\prime \prime} \mid m^{\prime \prime}} \mu\left(d^{\prime}\right) \mu\left(d^{\prime \prime}\right) \sigma\left(\mathcal{A}, \frac{n}{d^{\prime} d^{\prime \prime}}\right) \tag{2.5}
\end{equation*}
$$

Let us write $d^{\prime}=p_{i_{1}} \cdots p_{i_{j}}$ and take some $p_{\mathcal{S}}$ from \mathcal{S}. If j is even then $\mu\left(d^{\prime}\right)=1$ and $d^{\prime} \equiv 2^{t}(\bmod q)$ for some t (depending on $\left.d^{\prime}\right), 0 \leq t \leq r-1$. Whereas, if j is odd then $\mu\left(d^{\prime}\right)=-1$ and $d^{\prime} \equiv 2^{t^{\prime}} p_{\mathcal{S}}(\bmod q)$ for some t^{\prime} (depending on $\left.d^{\prime}\right), 0 \leq t^{\prime} \leq r-1$. From (1.7), we obtain

$$
\begin{align*}
\mu\left(d^{\prime}\right) \sigma\left(\mathcal{A}, \frac{n}{d^{\prime} d^{\prime \prime}}\right) & \equiv \sigma\left(\mathcal{A}, \frac{n}{d^{\prime \prime}}\right)\left(\bmod 2^{k+1}\right) \text { if } j \text { is even, } \tag{2.6}\\
\mu\left(d^{\prime}\right) \sigma\left(\mathcal{A}, \frac{n}{d^{\prime} d^{\prime \prime}}\right) & \equiv-\sigma\left(\mathcal{A}, \frac{n p_{\mathcal{S}}}{d^{\prime \prime}}\right)\left(\bmod 2^{k+1}\right) \text { if } j \text { is odd. } \tag{2.7}
\end{align*}
$$

If $\alpha=\omega_{\mathcal{S}}(\bar{m}) \neq 0$, the number of d^{\prime} with odd j is equal to that with even j and is given by

$$
1+\binom{\alpha}{2}+\binom{\alpha}{4}+\cdots=\binom{\alpha}{1}+\binom{\alpha}{3}+\cdots=2^{\alpha-1}
$$

From (2.5), we obtain

$$
\begin{equation*}
m S_{\mathcal{A}}(m, k) \equiv 2^{\alpha-1} \sum_{d^{\prime \prime} \mid m "} \mu\left(d^{\prime \prime}\right)\left(\sigma\left(\mathcal{A}, \frac{n}{d "}\right)-\sigma\left(\mathcal{A}, \frac{n p_{\mathcal{S}}}{d "}\right)\right)\left(\bmod 2^{k+1}\right) \tag{2.8}
\end{equation*}
$$

which, when $\alpha=\omega_{\mathcal{S}}(m) \geq k+2$, gives $S_{\mathcal{A}}(m, k) \equiv 0\left(\bmod 2^{k+1}\right)$, so that from (1.8),

$$
\begin{equation*}
\chi(\mathcal{A}, m)=\chi(\mathcal{A}, 2 m)=\cdots=\chi\left(\mathcal{A}, 2^{k} m\right)=0 \tag{2.9}
\end{equation*}
$$

Let us denote by $\mathcal{Q}=\mathcal{Q}(q)$ and \mathcal{N} the sets

$$
\mathcal{Q}=\{p \text { prime }, p \mid q\} \text { and } \mathcal{N}=\{p \text { prime, } p \notin \mathcal{B} \cup \mathcal{S} \text { and } \operatorname{gcd}(p, 2 q)=1\}
$$

so that the whole set of primes is equal to $\mathcal{B} \cup \mathcal{S} \cup \mathcal{N} \cup \mathcal{Q} \cup\{2\}$. For $n \geq 1$, let us define the multiplicative arithmetic function

$$
\delta(n)= \begin{cases}1 & \text { if } p \mid n \Rightarrow p \notin \mathcal{B}(\text { i.e. } p \in \mathcal{S} \cup \mathcal{N} \cup \mathcal{Q} \cup\{2\}) \\ 0 & \text { otherwise }\end{cases}
$$

and for $x>1$,

$$
\begin{equation*}
V(x)=V_{q}(x)=\sum_{n \geq 1, n 2^{\omega} \mathcal{S}^{(n)} \leq x} \delta(n) \tag{2.10}
\end{equation*}
$$

Lemma 2.3. Under the above notation, we have

$$
\begin{equation*}
V(x)=V_{q}(x)=\mathcal{O}_{q}\left(\frac{x}{(\log x)^{\frac{r+S(q) / 2}{\varphi(q)}}}\right) \tag{2.11}
\end{equation*}
$$

Proof. To prove (2.11), one should consider, for complex s with $\mathcal{R}(s)>1$, the series

$$
\begin{equation*}
F(s)=\sum_{n \geq 1} \frac{\delta(n)}{\left(n 2^{\omega_{\mathcal{S}}(n)}\right)^{s}} \tag{2.12}
\end{equation*}
$$

This Dirichet series has an Euler's product given by

$$
\begin{equation*}
F(s)=\prod_{p \in \mathcal{N} \cup \mathcal{Q} \cup\{2\}}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p \in \mathcal{S}}\left(1+\frac{1}{2^{s}\left(p^{s}-1\right)}\right) \tag{2.13}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
F(s)=H(s) \prod_{p \in \mathcal{N}}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p \in \mathcal{S}}\left(1-\frac{1}{p^{s}}\right)^{-\frac{1}{2^{s}}} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
H(s)=\prod_{p \in \mathcal{Q} \cup\{2\}}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p \in \mathcal{S}}\left(1+\frac{1}{2^{s}\left(p^{s}-1\right)}\right)\left(1-\frac{1}{p^{s}}\right)^{\frac{1}{2^{s}}} \tag{2.15}
\end{equation*}
$$

By applying Selberg-Delange's formula (cf. [8], Théorème 1 and [9], Lemma 4.5), we obtain some constant c_{4} such that

$$
\begin{equation*}
V(x)=c_{4} \frac{x}{(\log x)^{\frac{r+S(q) / 2}{\varphi(q)}}}+\mathcal{O}_{q}\left(\frac{x \log \log x}{\log x}\right) \tag{2.16}
\end{equation*}
$$

The constant c_{4} is somewhat complicated, it is given by

$$
\begin{equation*}
c_{4}=\frac{C H(1)}{\Gamma\left(1-\frac{r+S(q) / 2}{\varphi(q)}\right)}, \tag{2.17}
\end{equation*}
$$

where Γ is the gamma function,

$$
\begin{equation*}
H(1)=\frac{2 q}{\varphi(q)} \prod_{p \in \mathcal{S}}\left(1+\frac{1}{2(p-1)}\right)\left(1-\frac{1}{p}\right)^{\frac{1}{2}} \tag{2.18}
\end{equation*}
$$

and

$$
C=\prod_{p \in \mathcal{N}}\left(1-\frac{1}{p}\right)^{-1} \prod_{p \in \mathcal{S}}\left(1-\frac{1}{p}\right)^{\frac{-1}{2}} \prod_{p}\left(1-\frac{1}{p}\right)^{1-\frac{r+S(q) / 2}{\varphi(q)}}
$$

where in the third product, p runs over all primes.

3 Proof of the results.

Proof of Theorem 2.1. If $r=\varphi(q)$ then 2 is a generator of $(\mathbb{Z} / q \mathbb{Z})^{*}$, all primes are bad but 2 and the prime factors of q; hence by Theorem 2 of [$]$], $A(P, x)=\mathcal{O}\left((\log x)^{\kappa}\right)$ for some constant κ, so that we may remove the case $r=\varphi(q)$.

Let us write $V(x)$ defined in (2.10) as

$$
\begin{equation*}
V(x)=V^{\prime}(x)+V^{\prime \prime}(x) \tag{3.1}
\end{equation*}
$$

with

$$
V^{\prime}(x)=\sum_{n \geq 1, n 2^{\omega_{\mathcal{S}}(n)} \leq x, \omega_{\mathcal{S}}(n)=0} \delta(n) \text { and } V^{\prime \prime}(x)=\sum_{n \geq 1, n 2^{\omega_{\mathcal{S}}(n) \leq x, \omega_{\mathcal{S}}(n) \geq 1}} \delta(n)
$$

Similarly, we write $A(P, x)=\sum_{a \in \mathcal{A}(P), a \leq x} 1=A^{\prime}+A^{\prime}$, with

$$
A^{\prime}=\sum_{a \in \mathcal{A}(P), a \leq x, \omega_{\mathcal{S}}(a)=0} 1 \text { and } A^{"}=\sum_{a \in \mathcal{A}(P), a \leq x, \omega_{\mathcal{S}}(a) \geq 1} 1
$$

An element a of $\mathcal{A}(P)$ counted in A^{\prime} is free of bad and semi-bad primes, so that

$$
\begin{equation*}
A^{\prime} \leq V^{\prime}(x) \leq V^{\prime}(2 x) \tag{3.2}
\end{equation*}
$$

By Lemma 2.2, an element a of $\mathcal{A}(P)$ counted in A " is of the form $n 2^{\omega_{\mathcal{S}}(n)-1}$ with $\omega_{\mathcal{S}}(n)=$ $\omega_{\mathcal{S}}(a) \geq 1$; hence

$$
\begin{equation*}
A^{\prime \prime} \leq V^{\prime \prime}(2 x) \tag{3.3}
\end{equation*}
$$

Therefore, from (3.1)-(3.3), we get

$$
A(P, x)=A^{\prime}+A^{\prime \prime} \leq V^{\prime}(2 x)+V^{"}(2 x)=V(2 x)
$$

and (2.2) follows from Lemma 2.3.

Proof of Theorem 2.2. Just use Theorem 2.1 and (1.13).

Thanks. It is a great pleasure for us to thank András Sárközy for initiating the study of the sets $\mathcal{A}(P)$ and for all the mathematics that we have learnt from him.

References

[1] N. Baccar and F. Ben Saiid, On sets such that the partition function is even from a certain point on, International Journal of Number Theory, vol. 5, No. 3 (2009), 1-22.
[2] N. Baccar, F. Ben Saïd and A. Zekraoui, On the divisor function of sets wiht even partition functions, Acta Math. Hungar., 112 (1-2) (2006), 25-37.
[3] F. Ben Saïd, On a conjecture of Nicolas-Sárközy about partitions, Journal of Number Theory, 95 (2002), 209-226.
[4] F. Ben Saïd, On some sets with even valued partition function, The Ramanujan Journal, 9, (2005), 63-75.
[5] F. Ben Saïd, H. Lahouar and J.-L. Nicolas, On the counting function of the sets of parts such that the partition function takes even values for n large enough, Discrete Mathematics, 306 (2006), 1115-1125.
[6] F. Ben Saïd and J.-L. Nicolas, Sets of parts such that the partition function is even, Acta Arithmetica, 106 (2003), 183-196.
[7] F. Ben Saïd and J.-L. Nicolas, Even partition functions, Séminaire Lotharingien de Combinatoire (http//www.mat.univie.ac.at/ slc/), 46 (2002), B 46 i.
[8] F. Ben Saïd and J.-L. Nicolas, Sur une application de la formule de Selberg-Delange, Colloquium Mathematicum $98 n^{o} 2$ (2003), 223-247.
[9] F. Ben Saïd, J.-L. Nicolas and A. Zekraoui, On the parity of generalised partition function III, Journal de Théorie des Nombres de Bordeaux 22 (2010), 51-78.
[10] Li-Xia Dai and Yong-Gao Chen, On the parity of the partition function, Journal of Number Theory 122 (2007) 283 289,
[11] H. Lahouar, Fonctions de partitions à parité périodique, European J. of combinatorics, 24 (2003), 1089-1096.
[12] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge University Press, revised edition, (1994).
[13] J.-L. Nicolas, I.Z. Ruzsa and A. Sárközy, On the parity of additive representation functions, J. Number Theory 73 (1998), 292-317.
[14] J.-L. Nicolas and A. Sárközy, On the parity of partition functions, Illinois J. Math. 39 (1995), 586-597.
[15] J.-L. Nicolas and A. Sárközy, On the parity of generalised partition functions, in : M.A Bennett, B.C. Berndt, N. Boston, H.G. Diamond, A.J. Hildebrandt, W. Philip, A.K. Petars (Eds.), Number Theory for the Millenium, vol. 3 (2002), pp. 55-72.

