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Abstract

Let q be an odd positive integer and P ∈ F2[z] be of order q and such that P (0) = 1.
We denote by A = A(P ) the unique set of positive integers satisfying

∑

∞

n=0 p(A, n)zn ≡
P (z) (mod 2), where p(A, n) is the number of partitions of n with parts in A. In [5],
it is proved that if A(P, x) is the counting function of the set A(P ) then A(P, x) ≪
x(log x)−r/ϕ(q), where r is the order of 2 modulo q and ϕ is the Euler’s function. In
this paper, we improve on the constant c = c(q) for which A(P, x) ≪ x(log x)−c.

key words: Sets with even partition functions, bad and semi-bad primes, order of a poly-
nomial, Selberg-Delange formula.
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1 Introduction.

Let N be the set of positive integers and A = {a1, a2, ...} be a subset of N. For n ∈ N, we
denote by p(A, n) the number of partitions of n with parts in A, i.e. the number of solutions
of the equation

a1x1 + a2x2 + ... = n,

in non-negative integers x1, x2, .... We set p(A, 0) = 1.

Let F2 be the field with two elements and f = 1 + ǫ1z + ...+ ǫNzN + · · · ∈ F2[[z]]. Nicolas
et al proved (see [13], [4] and [11]) that there is a unique subset A = A(f) of N such that

∞
∑

n=0

p(A, n)zn ≡ f(z) (mod 2). (1.1)
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When f is a rational fraction, it has been shown in [11] that there is a polynomial U such that
A(f) can be easily determined from A(U). When f is a general power series, nothing about
the behaviour of A(f) is known. From now on, we shall restrict ourselves to the case f = P ,
where

P = 1 + ǫ1z + ...+ ǫNzN ∈ F2[z]

is a polynomial of degree N ≥ 1.

Let A(P, x) be the counting function of the set A(P ), i.e.

A(P, x) =| {n : 1 ≤ n ≤ x, n ∈ A(P )} | . (1.2)

In [10], it is proved that

A(P, x) ≥
log x

log 2
−

log(N + 1)

log 2
. (1.3)

More attention was paid on upper bounds for A(P, x). In [5, Theorem 3], it was observed
that when P is a product of cyclotomic polynomials, the set A(P ) is a union of geometric
progressions of quotient 2 and so A(P, x) = O(log x).

Let the decomposition of P into irreducible factors over F2[z] be

P = Pα1
1 Pα2

2 · · ·Pαl
l .

We denote by βi, 1 ≤ i ≤ l, the order of Pi(z), that is the smallest positive integer such that
Pi(z) divides 1 + zβi in F2[z]; it is known that βi is odd (cf. [12]). We set

q = q(P ) = lcm(β1, β2, ..., βl). (1.4)

If q = 1 then P (z) = 1 + z and A(P ) = {2k, k ≥ 0}, so that A(P, x) = O(log x). We may
suppose that q ≥ 3. Now, let

σ(A, n) =
∑

a |n, d∈A

d =
∑

d |n

dχ(A, d), (1.5)

where χ(A, .) is the characteristic function of the set A,

χ(A, d) =

{

1 if d ∈ A
0 otherwise.

In [6] (see also [3] and [2]), it is proved that for all k ≥ 0, q is a period of the sequence
(σ(A, 2kn) mod 2k+1)n≥1, i.e.

n1 ≡ n2 (mod q) ⇒ σ(A, 2kn1) ≡ σ(A, 2kn2) (mod 2k+1) (1.6)

and q is the smallest integer such that (1.6) holds for all k′s. Moreover, if n1 and n2 satisfy
n2 ≡ 2an1 (mod q) for some a ≥ 0, then

σ(A, 2kn2) ≡ σ(A, 2kn1) (mod 2k+1). (1.7)

If m is odd and k ≥ 0, let

SA(m,k) = χ(A,m) + 2χ(A, 2m) + . . .+ 2kχ(A, 2km). (1.8)
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It follows that for n = 2km, one has

σ(A, n) = σ(A, 2km) =
∑

d |m

dSA(d, k), (1.9)

which, by Möbius inversion formula, gives

mSA(m,k) =
∑

d |m

µ(d)σ(A,
n

d
) =

∑

d |m

µ(d)σ(A,
n

d
), (1.10)

where µ is the Möbius’s function and m =
∏

p |m p is the radical of m, with 1 = 1.

In [7] and [9], precise descriptions of the sets A(1+ z+ z3) and A(1+ z+ z3 + z4 + z5) are
given and asymptotics to the related counting functions are obtained,

A(1 + z + z3, x) ∼ c1
x

(log x)
3
4

, x → ∞, (1.11)

A(1 + z + z3 + z4 + z5, x) ∼ c2
x

(log x)
1
4

, x → ∞, (1.12)

where c1 = 0.937..., c2 = 1.496.... In [1], are considered the sets A(P ) when P is irreducible of
prime order q and such that the order of 2 in (Z/qZ)∗ is q−1

2 . This situation is similar to that

of A(1 + z + z3), and formula (1.11) can be extended to A(P, x) ∼ c′x(log x)−3/4, x → ∞, for
some constant c′ depending on P .

Let P = QR be the product in F2[z] of two coprime polynomials. In [4], the following is
given

A(P, x) ≤ A(Q,x) +A(R,x) (1.13)

and
| A(P, x) −A(R,x) |≤

∑

0≤i≤ log x
log 2

A(Q,
x

2i
). (1.14)

As an application of (1.14), choosing Q = 1 + z + z3, R = 1 + z + z3 + z4 + z5 and P = QR,
we get from (1.11)-(1.14),

A(P, x) ∼ A(R,x) ∼ c2x(log x)
−1/4, x → ∞.

In [5], a claim of Nicolas and Sárközy [15], that some polynomials with A(P, x) ≍ x may
exist, was disapproved. More precisely, the following was obtained

Theorem 1.1. Let P ∈ F2[z] be such that P (0) = 1, A = A(P ) be the unique set obtained
from (1.1) and q be the odd number defined by (1.4). Let r be the order of 2 modulo q, that is
the smallest positive integer such that 2r ≡ 1 (mod q). We shall say that a prime p 6= 2 is a
bad prime if

∃ i, 0 ≤ i ≤ r − 1 and p ≡ 2i (mod q). (1.15)

(i) If p is a bad prime, we have gcd(p, n) = 1 for all n ∈ A.
(ii) There exists an absolute constant c3 such that for all x > 1,

A(P, x) ≤ 7(c3)
r x

(log x)
r

ϕ(q)

, (1.16)

where ϕ is Euler’s function.
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2 The sets of bad and semi-bad primes.

Let q be an odd integer ≥ 3 and r be the order of 2 modulo q. Let us call ”bad classes” the
elements of

E = {1, 2, ..., 2r−1} ⊂ (Z/qZ)∗.

From (1.15), we know that an odd prime p is bad if p (mod q) belongs te E . The set of bad
primes will be denoted by B. The fact that no element of A(P ) is divisible by a bad prime (cf.
Theorem 1.1 (i)) has given (cf. [5]) the upper bound (1.16). Another set of primes, which we
call semi-bad primes and denote by S, will be the tool to improve (1.16) cf. Theorem 2.1 below.

Remark 2.1. 2 is not a bad prime althouth it is a bad class.

Definition 2.1. . A class of (Z/qZ)∗ is said semi-bad if it does not belong to E and its square
does. We denote by E ′ the set of semi-bad classes. A prime p is called semi-bad if its class
modulo q is semi-bad, i.e.

p ∈ S ⇔ p (mod q) ∈ E ′.

We denote by S(q) =| E ′ | the number of elements of E ′.

Lemma 2.1. Let q be an odd integer ≥ 3 and r be the order of 2 modulo q. Let us write the
euclidean division

r = 2r′ + r”, 0 ≤ r” ≤ 1,

and set

q2 =

{

1 if 2 is a square modulo q
0 if not.

Then the number S(q) of semi-bad classes modulo q is given by

S(q) = (r′ + r”)
(

2ω(q) − 2 + r”
)

+ q2r
′
(

2ω(q) − r”
)

, (2.1)

where ω(q) is the number of distinct prime factors of q.

Proof. We have to count the number of solutions of the r congruences

Ci : x2 ≡ 2i (mod q), 0 ≤ i ≤ r − 1,

which do not belong to E . The number of solutions of C0 is 2ω(q); among them, one solution
(x = 1) belongs to E and if r is even, an extra one (x = 2r/2) belongs to E . Therefore, the
contribution of C0 is 2ω(q) − 2 + r”.

The contribution of Ci when i is even is equal to that of C0 by the change of variables
x = 2i/2ξ, so that the total contribution of the C′

is for i even is equal to the first term of the
right hand-side of (2.1).

The number of odd i′s, 0 ≤ i ≤ r − 1, is equal to r′, and the contribution of all the C′
is for

these i′s are equal and vanish if q2 = 0. When 2 is a square modulo q, C1 has 2ω(q) solutions in
(Z/qZ)∗, no solution in E when r is even and one solution (x = 2(r+1)/2) in E when r is odd,
which explains the last term of (2.1).

We shall prove
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Theorem 2.1. Let P ∈ F2[z] with P (0) = 1, q be the odd integer defined by (1.4), r be the
order of 2 modulo q and S(q) be the number of semi-bad classes given by (2.1). We denote
by A(P ) the set obtained from (1.1) and by A(P, x) its counting function. When x tends to
infinity, we have

A(P, x) ≪q
x

(log x)
r+S(q)/2

ϕ(q)

. (2.2)

This is the best possible. When P is irréducible, q is prime and r = q−1
2 , it can be seen

from [1] since in this case (2q ) ≡ 2
q−1
2 ≡ 1 (mod q), so that 2 is a square modulo q and q2 = 1.

Moreover, formula (1.12) gives the optimality of (2.2) for some prime (q = 31) satisfying
r = q−1

6 .

Theorem 2.2. Let P ∈ F2[z] be such that P (0) = 1 and P = P1P2 · · ·Pj , where the P ′
is are

irréducible polynomials in F2[z]. For 1 ≤ i ≤ j, we denote by qi the order of Pi, by ri the order

of 2 modulo qi and we set c = min1≤i≤j
ri+S(qi)/2

ϕ(qi)
. When x tends to infinity, we have

A(P, x) ≪
x

(log x)c
· (2.3)

where the symbol ≪ depends on the q′is, 1 ≤ i ≤ j.

Let us introduce the additive arithmetic function

ωS(n) =
∑

p |n, p∈S

1. (2.4)

Lemma 2.2. Let k ≥ 0 and m be an odd positive integer, not divisible by any bad prime. If
ωS(m) ≥ k + 2 then 2hm 6∈ A(P ) for all h, 0 ≤ h ≤ k.

Proof. Let us write m = m′m”, with m′ =
∏

p |m, p∈S p and m” =
∏

p |m, p 6∈S p. From (1.10),

if n = 2km then

mSA(m,k) =
∑

d |m

µ(d)σ(A,
n

d
) =

∑

d′ |m′

∑

d” |m”

µ(d′)µ(d”)σ(A,
n

d′d”
). (2.5)

Let us write d′ = pi1 · · · pij and take some pS from S. If j is even then µ(d′) = 1 and
d′ ≡ 2t (mod q) for some t (depending on d′), 0 ≤ t ≤ r − 1. Whereas, if j is odd then
µ(d′) = −1 and d′ ≡ 2t

′

pS (mod q) for some t′ (depending on d′), 0 ≤ t′ ≤ r − 1. From (1.7),
we obtain

µ(d′)σ(A,
n

d′d”
) ≡ σ(A,

n

d”
) (mod 2k+1) if j is even, (2.6)

µ(d′)σ(A,
n

d′d”
) ≡ −σ(A,

npS
d”

) (mod 2k+1) if j is odd. (2.7)

If α = ωS(m) 6= 0, the number of d′ with odd j is equal to that with even j and is given by

1 +

(

α

2

)

+

(

α

4

)

+ · · · =

(

α

1

)

+

(

α

3

)

+ · · · = 2α−1.

From (2.5), we obtain
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mSA(m,k) ≡ 2α−1
∑

d” |m”

µ(d”)
(

σ(A,
n

d”
)− σ(A,

npS
d”

)
)

(mod 2k+1), (2.8)

which, when α = ωS(m) ≥ k + 2, gives SA(m,k) ≡ 0 (mod 2k+1), so that from (1.8),

χ(A,m) = χ(A, 2m) = · · · = χ(A, 2km) = 0. (2.9)

Let us denote by Q = Q(q) and N the sets

Q = {p prime, p | q} and N = {p prime, p 6∈ B ∪ S and gcd(p, 2q) = 1},

so that the whole set of primes is equal to B ∪ S ∪ N ∪ Q ∪ {2}. For n ≥ 1, let us define the
multiplicative arithmetic function

δ(n) =

{

1 if p |n ⇒ p 6∈ B (i.e. p ∈ S ∪ N ∪Q ∪ {2})

0 otherwise.

and for x > 1,

V (x) = Vq(x) =
∑

n≥1, n2ωS(n)≤x

δ(n). (2.10)

Lemma 2.3. Under the above notation, we have

V (x) = Vq(x) = Oq





x

(log x)
r+S(q)/2

ϕ(q)



 . (2.11)

Proof. To prove (2.11), one should consider, for complex s with R(s) > 1, the series

F (s) =
∑

n≥1

δ(n)

(n2ωS(n))s
, (2.12)

This Dirichet series has an Euler’s product given by

F (s) =
∏

p∈N∪Q∪{2}

(

1−
1

ps

)−1
∏

p∈S

(

1 +
1

2s(ps − 1)

)

, (2.13)

which can be written as

F (s) = H(s)
∏

p∈N

(

1−
1

ps

)−1
∏

p∈S

(

1−
1

ps

)− 1
2s

, (2.14)

where

H(s) =
∏

p∈Q∪{2}

(

1−
1

ps

)−1
∏

p∈S

(

1 +
1

2s(ps − 1)

)(

1−
1

ps

)
1
2s

. (2.15)

By applying Selberg-Delange’s formula (cf. [8], Théorème 1 and [9], Lemma 4.5), we obtain
some constant c4 such that

V (x) = c4
x

(log x)
r+S(q)/2

ϕ(q)

+Oq

(

x log log x

log x

)

. (2.16)
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The constant c4 is somewhat complicated, it is given by

c4 =
CH(1)

Γ(1− r+S(q)/2
ϕ(q) )

, (2.17)

where Γ is the gamma function,

H(1) =
2q

ϕ(q)

∏

p∈S

(

1 +
1

2(p− 1)

)(

1−
1

p

)
1
2

(2.18)

and

C =
∏

p∈N

(

1−
1

p

)−1
∏

p∈S

(

1−
1

p

)
−1
2 ∏

p

(

1−
1

p

)1− r+S(q)/2
ϕ(q)

,

where in the third product, p runs over all primes.

3 Proof of the results.

Proof of Theorem 2.1. If r = ϕ(q) then 2 is a generator of (Z/qZ)∗, all primes are bad
but 2 and the prime factors of q; hence by Theorem 2 of [5], A(P, x) = O ((log x)κ) for some
constant κ, so that we may remove the case r = ϕ(q).

Let us write V (x) defined in (2.10) as

V (x) = V ′(x) + V ”(x), (3.1)

with

V ′(x) =
∑

n≥1, n2ωS (n)≤x, ωS(n)=0

δ(n) and V ”(x) =
∑

n≥1, n2ωS(n)≤x, ωS(n)≥1

δ(n).

Similarly, we write A(P, x) =
∑

a∈A(P ), a≤x 1 = A′ +A”, with

A′ =
∑

a∈A(P ), a≤x, ωS(a)=0

1 and A” =
∑

a∈A(P ), a≤x, ωS(a)≥1

1.

An element a of A(P ) counted in A′ is free of bad and semi-bad primes, so that

A′ ≤ V ′(x) ≤ V ′(2x). (3.2)

By Lemma 2.2, an element a of A(P ) counted in A” is of the form n2ωS(n)−1 with ωS(n) =
ωS(a) ≥ 1; hence

A” ≤ V ”(2x). (3.3)

Therefore, from (3.1)-(3.3), we get

A(P, x) = A′ +A” ≤ V ′(2x) + V ”(2x) = V (2x)

and (2.2) follows from Lemma 2.3. �

Proof of Theorem 2.2. Just use Theorem 2.1 and (1.13). �

Thanks. It is a great pleasure for us to thank András Sárközy for initiating the study of
the sets A(P ) and for all the mathematics that we have learnt from him.
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