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†

Jean Sébastien Sereni
‡

Abstract

Zykov designed one of the oldest known families of triangle-free graphs with arbitrarily high chromatic

number. We determine the fractional chromatic number of the Zykov product of a family of graphs.

As a corollary, we deduce that the fractional chromatic numbers of the Zykov graphs satisfy the same

recurrence relation as those of the Mycielski graphs, that is an+1 = an + 1

an
. This solves a conjecture of

Jacobs.

1 Introduction

Since trees (connected acyclic graphs) have chromatic number 2, one could think that if G is a graph that
locally looks like a tree (i.e. the size of its shortest circuit — its girth — is large), then it has a low chromatic
number. This was proven to be strongly false by Erdős [1] in 1959, who showed that a high chromatic number
can emerge as a consequence of the global structure of a graph, as opposed to its local properties. Introducing
what is now called the “deletion method”, Erdős proved, by probabilistic means, the existence of graphs with
arbitrary high girth and chromatic number. Yet, it took almost ten more years until Lovász [4] managed to
design an explicit construction of such graphs. Another short constructive proof was given in 1979 by Nešetřil
and Rödl [6]. Before Lovász’s result, explicit constructions were only known for some fixed (small) girth.
This is why several constructions of triangle-free graphs with arbitrary high chromatic number were designed
in the 1950s. Among them, the most famous is arguably that of Mycielski [5], dating back to 1955. The
Mycielskian M (G) of a graph G with vertex-set {v1, . . . , vn} is obtained by first replacing every vertex vi by
an independent set {v1

i , v2
i }, linking vs

i and vt
j if and only if vi and vj are adjacent in G and (s, t) 6= (2, 2).

Next, a new vertex is added and linked to all the vertices v2
1 , . . . , v2

n. Notice that if G is triangle-free, then so
is M (G); moreover, χ(M (G)) = χ(G) + 1. In 1995, Larsen, Propp and Ullman [3] gave a short and elegant
proof that the fractional chromatic number of M (G) satisfies the following unexpected formula.

χf (M (G)) = χf (G) +
1

χf (G)
.

One of the earliest constructions of triangle-free graphs with arbitrary high chromatic number was found
in 1949 by Zykov [8]. For each n > 1, the Zykov graph Zn is triangle-free and has chromatic number n.
Inspired by the relation for Mycielski’s graphs, Jacobs [2] conjectured that the fractional chromatic numbers
of the Zykov graphs satisfy the same recurrence relation as the Mycielski graphs.

Conjecture 1. For every n > 2,

χf (Zn+1) = χf (Zn) +
1

χf (Zn)
.

In this article, we prove Conjecture 1 by proving a more general result on a product of graphs. Let
G1, . . . , Gn be finite graphs. The Zykov product Z(G1, . . . , Gn) of G1, . . . , Gn is defined as follows.

• Make a disjoint union of all the graphs Gi.

∗This work was partially supported by the French Agence Nationale de la Recherche under reference anr 10 jcjc 0204 01.
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• For each possible choice of (x1, x2, . . . , xn) ∈ V (G1) × V (G2) × . . . × V (Gn), add a new vertex x with
neighborhood precisely {x1, . . . , xn}.

Thus, Z(G1, . . . , Gn) has
∑n

i=1 |V (Gi)| +
∏n

i=1 |V (Gi)| vertices. Notice also that the order in which the
graphs Gi are numbered makes no difference in the construction.

It is straightforward to see that if G1, . . . , Gn are all triangle-free, then so is Z(G1, . . . , Gn). The Zykov
graphs are the sequence of graphs (Zn)n>1 defined by Z1 := K1 and Zn+1 := Z(Z1, . . . , Zn) for n > 1.
Similarly to Mycielski’s graphs, one can check that the chromatic number of Zi is i.

We establish the following result, which implies Conjecture 1.

Theorem 1. For n > 2, let G1, . . . , Gn be finite graphs, and set χi := χf (Gi). Suppose also that the graphs
Gi are numbered such that χi 6 χi+1. Then

χf (Z(G1, . . . , Gn)) = max

(

χn , 2 +

n
∑

i=2

n
∏

k=i

(

1 −
1

χk

)

)

. (1)

Before proving Theorem 1, let us see how it implies that Conjecture 1 is true.

Proof of Conjecture 1. For n > 1, set χn := χf (Zn) and f(n) := 2 +
∑n

i=2

∏n

k=i

(

1 − 1
χk

)

. Observe that

f(n) = 2 +
(

1 − 1
χn

)

· (f(n − 1) − 1) for n > 2.

We prove by induction on n > 2 that χn+1 = f(n) = χn + χ−1
n . First, notice that f(1) = 2 = χ2 and

χ1 = 1. Now, assume that χn = f(n − 1) for some n > 2. Then,

f(n) = 2 +

(

1 −
1

χn

)

· (f(n − 1) − 1)

= χn +
1

χn

.

Thus, χn+1 = f(n) by Theorem 1, and the conclusion follows.

We define the basic concepts in the next section, and then proceed with the proof of Theorem 1.

2 Notation

If G is a graph, then V (G) is its vertex-set and E(G) is its edge-set. Let I (G) be the collection of all
independent sets of the graph G. A weighting of a set X ⊆ I (G) is a function w : X → R>0. If v ∈ V (G),
then

w[v] :=
∑

I∈X
v∈I

w(I) .

A fractional k-coloring of G is a weighting of I (G) such that

•
∑

S∈I (G) w(S) = k; and

• w[v] > 1 for every v ∈ V (G).

The fractional chromatic number χf (G) of G is the infimum of all positive real numbers k for which G has
a fractional k-coloring. In other words, the fractional chromatic number of G is the optimal value of the
following linear program.

Minimize
∑

S∈I (G)

w(S) where w is a weighting of I (G) satisfying

∀v ∈ V (G), w[v] > 1 .
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As is well known, the fractional chromatic number of a finite graph is always a rational number and the
infimum is actually a minimum. Observe that for every graph G, there exists a fractional χf (G)-coloring w
of G such that w[v] = 1 for every v ∈ V (G). There are other equivalent definitions of a fractional coloring of
a graph, and we refer to the book by Scheinerman and Ullman [7] for further exposition about fractional
colorings (and, more generally, fractional graph theory).

3 Proof of Theorem 1: Lower Bound

We use the notations of Theorem 1. Further, we set f(n) := 2 +
∑n

i=2

∏n

k=i

(

1 − 1
χk

)

for n > 1.

First, χf (G) > χn = χf (Gn) since Gn is a subgraph of G = Z(G1, . . . , Gn). So, we focus on proving that
χf (G) > f(n). We start with the following observation.

Lemma 1. Let G be a graph and w a weighting of X ⊆ I (G). Then, for every induced subgraph H of G,
there exists x ∈ V (H) such that

w[x] 6
1

χf (H)

∑

S∈X

w(S) .

Proof. Let wH be the weighting of I (H) defined by wH(I) :=
∑

S∈X

S∩V (H)=I

w(S). Note that wH(∅) =
∑

S∈X

S∩V (H)=∅
w(S). Moreover, wH [v] = w[v] for every v ∈ V (H). Set m := minv∈V (H) wH [v]. It suffices to

show that m 6
1

χf (H)

∑

S∈X
w(S). This holds if m = 0, so we assume that m > 0.

The function w′ := 1
m

·wH is a fractional k-coloring of H with k := 1
m

∑

I∈I (H) wH(I). Thus, k > χf (H).
Further,

∑

I∈I (H)

wH(I) =
∑

S∈X

w(S)

by the definition of wH , and hence the conclusion follows.

Let w be a fractional χf (G)-coloring of G and let x1 ∈ V (G1). Set

F1 := {S ∈ I (G) |x1 ∈ S} .

By the definition,
∑

S∈F1

w(S) = w[x1] > 1 .

Applying Lemma 1 with H := G2 and X := F1, we deduce that there exists x2 ∈ V (G2) such that

∑

S∈F1

x2∈S

w(S) 6
1

χ2

∑

S∈F1

w(S) ,

and hence

∑

S∈I (G)\F1

x2∈S

w(S) = w[x2] −
∑

S∈F1

x2∈S

w(S) > 1 −
1

χ2

∑

S∈F1

w(S) .

Thus, setting
F2 := {S ∈ I (G) |S ∩ {x1, x2} 6= ∅} ,

it follows that
∑

S∈F2

w(S) > 1 +

(

1 −
1

χ2

)

∑

S∈F1

w(S) .
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In a recursive way and by the exact same argument, we can construct xi ∈ V (Gi) and

Fi := {S ∈ I (G) |S ∩ {x1, . . . , xi} 6= ∅}

for i 6 n, such that for each k ∈ {1, 2, . . . , n}

∑

S∈Fk

w(S) > 1 +

(

1 −
1

χk

)

∑

S∈Fk−1

w(S) .

Thus, we deduce that
∑

S∈Fn

w(S) > 1 +

n
∑

i=2

n
∏

k=i

(

1 −
1

χk

)

= f(n) − 1 .

Now, consider the vertex x ∈ V (G) the neighborhood of which is precisely {x1, . . . , xn}. An independent
set of G that contains x cannot be in Fn. Since w[x] > 1, we infer that

∑

I∈I (G)

w(I) >
∑

I∈Fn

w(I) + w[x] > f(n) .

Hence, χf (G) > f(n), as wanted.

4 Proof of Theorem 1 : Upper Bound

Again, we follow the notation of Theorem 1 and let f(n) := 2 +
∑n

i=2

∏n

k=i

(

1 − 1
χk

)

. For convenience, we

set Vi := V (Gi) for i ∈ {1, 2, . . . , n}. Further, let V0 be the vertices of G not in ∪n
i=1Vi. Recall that V0 is an

independent set and there are no edges between Vi and Vj if i 6= j and i, j ∈ {1, . . . , n}. Therefore, every
maximal independent set S of G is determined by its intersection with the sets Vi for i ∈ {1, . . . , n}, since
S ∩ V0 is then composed of the vertices of V0 with no neighbors in ∪n

i=1(S ∩ Vi).
To prove the upper bound, we define a weighting w of I (G) of total weight max(χn, f(n)). To this end,

only a subfamily of the maximal independent sets of G will be assigned a positive weight by w.
For i = {1, . . . , n} we define the collection Fi of independent sets of G by

Fi := {S |S maximal in I (G) and ∀ j ∈ {1, . . . , n}, S ∩ Vj = ∅ if and only if j < i} .

Let

F :=

n
⋃

i=1

Fi .

We first define a weighting p of F as a product of weightings of each graph Gi. For each i ∈ {1, 2, . . . , n},
set Ii := I (Gi) and let wi be a fractional χi-coloring of Gi such that wi[v] = 1 for every v ∈ Vi. (Note that
wi(∅) = 0.) We define pi : Ii → R>0 by pi(S) := wi(S)/χi if S 6= ∅ and pi(∅) := 1. Thus,

∑

S∈Ii\{∅}

pi(S) = 1

and

∀x ∈ Vi, pi[x] =
1

χi

.

We now define p as
p : F −→ R>0

S 7−→
n
∏

i=1

pi(S ∩ Vi) .

The next lemma states some useful properties of p.
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Lemma 2. Let i, j ∈ {1, . . . , n}. The weighting p satisfies the following.

(i)
∑

S∈Fi

p(S) = 1 .

(ii) For each x ∈ Vj, if i 6 j then
∑

S∈Fi

x∈S

p(S) =
1

χj

.

If i > j, this sum is equal to zero since none of the elements of Fi intersects Vj.

(iii) For each (x1, x2, . . . , xn) ∈ V1 × V2×, . . . × Vn,

∑

S∈Fi

S∩{x1,x2,...,xn}=∅

p(S) =

n
∏

k=i

(

1 −
1

χk

)

.

Proof of Lemma 2. First,

∑

S∈Fi

p(S) =
∑

S∈Fi

n
∏

k=i

pk(S ∩ Vk)

=

n
∏

k=i

∑

S∈Ik\{∅}

pk(S)

= 1 ,

which proves (i). Note that the swapping of the sum and product signs is legitimate because, as we noted
earlier, every maximal independent set of G is completely determined by its intersections with the sets Vi for
i ∈ {1, 2, . . . , n}. As a result, for each i ∈ {1, 2, . . . , n}, there is a one-to-one correspondence between Fi and
∪n

k=i(Ik \ {∅}).

Similarly, if x ∈ Vj and i 6 j, then

∑

S∈Fi

x∈S

p(S) =
∑

S∈Fi

x∈S

n
∏

k=i

pk(S ∩ Vk)

=









∑

S∈Ij

x∈S

pj(S)















n
∏

k=i
k 6=j

∑

S∈Ik\{∅}

pk(S)







=
1

χj

.

Further, if i > j then no element of Fi intersects Vj , and hence (ii) holds. We omit the proof of (iii), which
can be established similarly by again switching the sum and the product signs and using (ii).

We are ready to define our final weighting w of I (G). For convenience, set χ0 := 0. For every S ∈ F ,
we define w(S) to be (χi − χi−1) · p(S) where i ∈ {1, . . . , n} such that S ∈ Fi (recall that the sets Fi are
pairwise disjoint). Further, we set w(V0) := max(0, f(n) − χn); all the other independent sets are assigned
weight 0 by w. Recall that the graphs Gi are ordered such that χi > χi−1 for each i ∈ {2, . . . , n}.
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Lemma 2(i) implies that

∑

S∈I (G)

w(S) =
∑

S∈F

w(S) + w(V0)

=

n
∑

i=1

(χi − χi−1) ·
∑

S∈Fi

p(S) + max(0, f(n) − χn)

= χn + max(0, f(n) − χn)

= max(χn, f(n)) .

By Lemma 2(ii), for each x ∈ Vj

w[x] =

j
∑

i=1

(χi − χi−1) ·
∑

S∈Fi

x∈S

p(S)

=
1

χj

·

j
∑

i=1

(χi − χi−1)

= 1 .

It remains to show that w[x] > 1 if x ∈ V0. Let x ∈ V0, and let (x1, x2, . . . , xn) ∈ V1 × V2 × . . . × Vn be the
n-uple of its neighbors in G. Then, using Lemma 2(iii),

w[x] = w(V0) +
∑

S∈F
S∩{x1,x2,...,xn}=∅

w(S) = w(V0) +
n
∑

i=1

∑

S∈Fi

S∩{x1,...,xn}=∅

w(S)

= w(V0) +

n
∑

i=1

(

(χi − χi−1)

n
∏

k=i

(

1 −
1

χk

)

)

= w(V0) +
n
∑

i=1

(

χi

n
∏

k=i

(

1 −
1

χk

)

)

−
n
∑

i=1

(

(χi−1 − 1)
n
∏

k=i

(

1 −
1

χk

)

)

−
n
∑

i=1

n
∏

k=i

(

1 −
1

χk

)

= w(V0) +

n
∑

i=1

(

(χi − 1)

n
∏

k=i+1

(

1 −
1

χk

)

)

−
n
∑

i=1

(

(χi−1 − 1)

n
∏

k=i

(

1 −
1

χk

)

)

−
n
∑

i=1

n
∏

k=i

(

1 −
1

χk

)

= w(V0) + χn − 1 −
n
∑

i=2

n
∏

k=i

(

1 −
1

χk

)

= max(0, f(n) − χn) + χn + 1 − f(n)

> 1 .

Hence, w is a fractional max(χn, f(n))-coloring of G, which concludes the proof.
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