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Cosmological constant in spinfoam cosmology

We consider a simple modification of the amplitude defining the dynamics of loop quantum gravity, corresponding to the introduction of the cosmological constant, and possibly related to the SL(2, C)q extension of the theory recently considered by Fairbairn-Meusburger and Han. We show that in the context of spinfoam cosmology, this modification yields the de Sitter cosmological solution.

I. INTRODUCTION

The cosmological-constant term in the Einstein equations is an integral part of the theory that appears today to best describe Nature [START_REF] Lahav | Review article for The Review of Particle Physics 2010[END_REF][START_REF] Bianchi | Why all these prejudices against a constant?[END_REF][START_REF] Bianchi | Is dark energy really a mystery?[END_REF]. Incorporating this term into the covariant dynamics of loop quantum gravity (see [START_REF] Rovelli | Simple model for quantum general relativity from loop quantum gravity[END_REF][START_REF] Rovelli | A new look at loop quantum gravity[END_REF] and references therein) is important in order to get a realistic theory and also to control infrared divergences. But it is also important for formal reasons. In particular, one of the elements of evidence that the covariant theory has the correct semiclassical limit, is its application to cosmology [START_REF] Bianchi | Towards Spinfoam Cosmology[END_REF]. So far this has been studied only in the absence of matter, but without matter and without cosmological constant, the only cosmological solution is flat space. Recovering flat space is interesting, but is still weak evidence for the full classical limit.

Here we consider a simple way of including the cosmological constant into the spinfoam vertex. We show that in cosmology this yields the de Sitter solution of the Einstein equations.

The modification of the vertex that we consider is motivated by simple heuristic, based on the form of the cosmological constant term in the Hamiltonian constraint. In two recent papers, Fairbairn and Meusburger [START_REF] Fairbairn | Quantum deformation of two four-dimensional spin foam models[END_REF] and, independently, Han [START_REF] Han | 4-dimensional Spin-foam Model with Quantum Lorentz Group[END_REF], have defined a modification of the spinfoam amplitude defining the dynamics of loop quantum gravity, by replacing SL(2, C) with its quantum deformation, developed in [START_REF] Noui | Cosmological deformation of Lorentzian spin foam models[END_REF]. It is reasonable to expect this modification to define quantum general relativity with a cosmological constant [START_REF] Turaev | State sum invariants of 3 manifolds and quantum 6j symbols[END_REF][START_REF] Perez | On the regularization of the constraints algebra of Quantum Gravity in 2+1 dimensions with non-vanishing cosmological constant[END_REF]. Since the asymptotical analysis of the q-deformed vertex is not yet done, we cannot directly compare it with the the vertex we write here. Still, we argue below that if the q-deformed vertex behaves as expected in the large distance limit, the two ¶ Unité de recherche (UMR 6207) du CNRS et des Universités de Provence (Aix-Marseille I), de la Méditerranée (Aix-Marseille II) et du Sud (Toulon-Var); affilié à la FRUMAM (FR 2291).

Quantum-gravity transition amplitudes can be written in a number of equivalent forms [START_REF] Rovelli | Simple model for quantum general relativity from loop quantum gravity[END_REF][START_REF] Rovelli | A new look at loop quantum gravity[END_REF][START_REF] Bianchi | Spinfoams in the holomorphic representation[END_REF]. Let us write the partition function in the spin-network basis as

Z C = j f ,ve f (2j + 1) v A v (j f , v e ). ( 1 
)
Here C is a fixed two-complex, the sum is over a spin j f associated to each of its faces and an intertwiner v e associated to each of its edges e. The vertex amplitude A v (j f , v e ) is a function of the spins and intertwiners adjacent to the vertex v. It is convenient to choose a basis of intertwiners that diagonalizes the volume, and we indicate with v e the corresponding quantum number, which we take to be the eigenvalue (for simplicity of notation we disregard the eventual degeneracy). We consider the following modification of the sum (1),

Z C = j f ,ve f (2j + 1) e e iλve v A v (j f , v e ). ( 2 
)
where λ is related to the cosmological constant. The relation between λ and the standard cosmological constant Λ is given below, together with a more precise justification for the form of the term added. The heuristic for this definition is the following. In the canonical theory, the cosmological constant appears as an additive term to the gravitational Hamiltonian constraint, which multiples the 3-volume element. When deriving a path integral formulation of quantum theory à la Feynman by inserting resolutions of unity into the evolution operator, a potential term appears simply as a multiplicative exponential, because the potential is diagonal in the position basis. The cosmological constant term is diagonal in the spin-intertwiner basis. It is therefore possible to insert the cosmological constant "potential" as a multiplicative term along the spinfoam evolution, that is in between 4-cells, which is to say on 3-cells. The coupling is therefore very simple, and consists in weighting edge amplitudes with an exponential term which depends on the volume and the cosmological constant.

Alternatively, the q-deformed version of the theory studied in [START_REF] Fairbairn | Quantum deformation of two four-dimensional spin foam models[END_REF][START_REF] Han | 4-dimensional Spin-foam Model with Quantum Lorentz Group[END_REF] is expected to lead to a modification of the amplitude that corresponds to the addition of the cosmological term. In the large-j regime, the conventional vertex amplitude converges to the Regge action of the 4-cell dual to the vertex, and the q-deformed amplitude should converges to the Regge action of the 4-cell plus a cosmological term. This is given by the cosmological constant multiplying the four-volume of the 4-cell. But the boundary geometry is in the time gauge, where the Shift function vanishes and the Lapse function is equal to unity, and in this gauge the 4-volume is equal to the 3-volume. The time gauge is also the common choice in the cosmological formalism. Hence we obtain again a modification of the vertex amplitude of the form (2).

III. COSMOLOGICAL MODEL

Let us apply the amplitude (2) to spinfoam cosmology, following [START_REF] Bianchi | Towards Spinfoam Cosmology[END_REF], to which we refer for the notation and the rest of the derivation. By sandwiching the cosmological term e iλve between coherent states, we obtain its contribution to the holomorphic form of the action. We are interested in the homogeneous and isotropic coherent states on the chosen graph, that here is a "dipole" r r . For these states, the cosmological term is just a function of the spin

e iλve = e iλvoj 3/2 (3)
where v o is the volume of a regular tetrahedron with faces having unit area. Therefore the effect of the cosmological constant is to modify the amplitude for a homogeneous isotropic state determined by the complex number z, where Re(z) ∼ γ ȧ, Im(z) ∼ a 2 , and a is the scale factor,

W (z) = SO(4) dg l=1,4 P t (H , G) (4) 
by replacing the expression of P t (H l , g) given by the equation after eq.( 32) in [START_REF] Bianchi | Towards Spinfoam Cosmology[END_REF] by

P t (H , G) = j (2j + 1) e -2t j(j+1)-izj-iλvoj 3 2 × Tr P Y † D (j + ,j -) (G)Y . (5) 
Following the same steps as in [START_REF] Bianchi | Towards Spinfoam Cosmology[END_REF], this gives the unnormalized amplitude as

W (z) = j (2j + 1) N o j 3 e -2t j(j+1)-izj-iλvoj 3 2 (6) 
where z = αc + iβp, being α and β constants that can be determinated. The resulting amplitude can be studied with different techniques, all giving the same result.

To begin with, we analyze W (z) directly. Notice first of all that the sum over j is a gaussian sum, which is peaked on the maximum of the real value of the exponent. This is

j ∼ j o = Im(z) 4t . (7) 
Then, notice that W (z) is periodic in c. In the sum, we expect the oscillating phases to suppress the sum, except when the imaginary part of the exponent vanishes. This happens for

Re(z) + λv o j 1 2 = 0. ( 8 
)
but since we are near the maxima, we can use [START_REF] Fairbairn | Quantum deformation of two four-dimensional spin foam models[END_REF] to obtain

Re(z) = -λv o j 1 2 o = -λ v o √ 4t Im(z) 1 2 . ( 9 
)
Squaring the above equation we obtain the Friedmann equation ȧ a

2 = Λ 3 , (10) 
where Λ ∼ λ 2 . The proportionality constant can be computed using the explicit value of the volume of a tetrahedron and the values given in [START_REF] Bianchi | Towards Spinfoam Cosmology[END_REF], and reads

Λ = 2λ G 3 √ 3 3 √ 2 2 , (11) 
that has correctly the dimensions of an inverse area. Equation [START_REF] Turaev | State sum invariants of 3 manifolds and quantum 6j symbols[END_REF] is the Friedmann equation in the presence of a cosmological constant Λ, which is solved by de Sitter spacetime. We discuss later on the reason for the quadratic relation between Λ and λ.

The validity of the drastic approximations made in this analysis can be confirmed by a numerical analysis of the amplitude [START_REF] Bianchi | Towards Spinfoam Cosmology[END_REF]. For this, we need first to normalize the wave function. The normalization of the holomorphic coherent states has been computed in [START_REF] Bianchi | Coherent spin-networks[END_REF], and reads (there is a missing 1/2 factor in [START_REF] Bianchi | Coherent spin-networks[END_REF])

N (p) := (2πt) -3 2 e -t 2 e -(p/2) 2 t sinh p 2 p/2 (12) 
Plotting the modulus square on the normalized amplitude in the complex z plane

A(z) = |W (z)/N (z)|, (13) 
we see that it is sharply peaked on a line. The plot of this amplitude in the coordinates Re(z) ∼ γ ȧ and Im(z) ∼ a is given in Fig. 1: it clearly shows the linear relation between ȧ and a which is characteristic of de Sitter cosmology.

Furthermore, let us also derive the classical limit using the technique that was used in [START_REF] Bianchi | Towards Spinfoam Cosmology[END_REF], to confirm the overall coherence. The sum over j is still peaked on a value j 0 . Expanding around j 0 gives

iλv o j 3 2 ∼ iλv o j 3 2 o + 3 2 iλv o j 1 2 o δj. ( 14 
)
The first term is an irrelevant phase. The second amounts to a shift

z → z + 3 2 λv o j 1 2 o . (15) 
We therefore recover the result of [START_REF] Bianchi | Towards Spinfoam Cosmology[END_REF] up to this shift. In particular, the amplitude derived in [START_REF] Bianchi | Towards Spinfoam Cosmology[END_REF] satisfies a Hamiltonian constraint equation that in the classical limit reduces to

z 2 + z 2 = 0. ( 16 
)
With the cosmological constant, this becomes

(z + 3 2 λv o j 1 2 o ) 2 + (z + 3 2 λv o j 1 2 o ) 2 = 0. ( 17 
) Using z = αc + iβp ∼ αγ ȧ + iβa 2 , this gives i4 a 2 (αγ ȧ + 3 2 λv o j 1 2 o ) = 0, ( 18 
)
but in our model the volume of the universe (that is a 3-sphere) is twice the volume of the regular tetrahedron namely a 3 ∼ 2v o j o . Therefore we obtain again the Friedmann equation for the de Sitter universe [START_REF] Turaev | State sum invariants of 3 manifolds and quantum 6j symbols[END_REF].

There are two questions that we must address before concluding. The first is the reason of the surprising quadratic dependence of Λ from λ: if the term added in (2) is just the cosmological term in the hamiltonian, why is it multiplied by √ Λ instead of Λ? The answer is that the term that must appear in the amplitude is not really ΛV 3 ∼ Λa 3 , but rather the value of the Hamilton function over the interval covered by the vertex. Let us compute the Hamilton function of the cosmological theory with cosmological constant. This can be done evaluating the Einstein-Hilbert action with Hawking boundary term,

S = (R -2Λ) √ g + t f -ti K √ h , (19) 
on a homogeneous and isotropic metric with scale factor a(t). When the scale factor satisfies the Friedmann equation [START_REF] Turaev | State sum invariants of 3 manifolds and quantum 6j symbols[END_REF], the bulk term in the action vanishes and the boundary term reduces to

S = 2 3 Λ 3 (a 3 f -a 3 i ) , ( 20 
)
where a i and a f are the initial and final scale factors. Therefore the contribution of the cosmological term to the Hamilton function, and hence to the vertex, is proportional to √ Λa 3 , and not to Λa 3 . This modification also accounts for the correct change of dimension from the four-volume term in the action.

The second question regards the sign of λ-term. It is clear from the above that this sign must be determined by the kind of solution being considered. Expanding or contracting solutions have different signs. An amplitude that contains both possibilities can be obtained simply by summing the two terms, in the same manner in which the quantum gravity vertex without cosmological constant is the sum of two terms with opposite time orientation. Indeed, if we replace the exponential of the λ-term in (2) with a cosine, we obtain a time symmetric amplitude, whose modulus is given by Figure 2, we shows the two branches of the solution of the Friedmann equation. The only free parameter is λvo, here is set equal to .3. The computation has been done truncating the sum over j up to a maximum value jmax = 200. This choice is compatible to maximal scale factor plotted.
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IV. CONCLUSIONS AND SUMMARY

In summary, we have obtained two results. First, we have a definition of a simple modification of the loop gravity vertex amplitude, which adds a cosmological constant to the theory. Second, we have applied this modified amplitude to cosmology and shown that it leads to the de Sitter spacetime in the large distance limit, where the effect of the curvature can be neglected. This is a new element of evidence supporting the conjecture that the loop-gravity amplitude does indeed define a theory whose classical limit is general relativity. It is a stronger result than the analogous result in [START_REF] Bianchi | Towards Spinfoam Cosmology[END_REF] because there only flat space-time was recovered, while here a non-trivial solution of the Einstein equations is derived from full quantum gravity.

A major advantage with respect to the analogous calculation in [START_REF] Bianchi | Towards Spinfoam Cosmology[END_REF] is that the large distance approximation is now fully justified, as the regime where the curvature term k/a 2 is negligible with respect to the cosmological term Λ/3 -as in the universe in which we live.

We leave several problems open. First, to study the precise relation between ( 2) and the q-deformed vertex amplitude defined in [START_REF] Fairbairn | Quantum deformation of two four-dimensional spin foam models[END_REF][START_REF] Han | 4-dimensional Spin-foam Model with Quantum Lorentz Group[END_REF]. Second, to include the intrinsic curvature term, which is present because we have assumed a compact slicing; this can be done following [START_REF] Magliaro | Coherent states for FLRW space-times[END_REF], where a pentagonal triangulation of space is used, more appropriate than the dipole one introduced in [START_REF] Rovelli | Stepping out of Homogeneity in Loop Quantum Cosmology[END_REF]. Third, to connect this formalism to other analyses of the cosmological constant in loop quantum cosmology, such as [START_REF] Bojowald | Recollapsing quantum cosmologies and the question of entropy[END_REF][START_REF] Bentivegna | Anti-deSitter universe dynamics in LQC[END_REF][START_REF] Kaminski | The LQC evolution operator of FRW universe with positive cosmological constant[END_REF][START_REF] Bojowald | High-order quantum backreaction and quantum cosmology with a positive cosmological constant[END_REF]. Finally, to relate the way the cosmological constant appears here with the way it is has been argued to appear in the spinfoam expansion of canonical loop cosmology [START_REF] Ashtekar | Loop Quantum Cosmology and Spin Foams[END_REF][START_REF] Rovelli | On the spinfoam expansion in cosmology[END_REF][START_REF] Ashtekar | Casting Loop Quantum Cosmology in the Spin Foam Paradigm[END_REF][START_REF] Campiglia | Vertex Expansion for the Bianchi I model[END_REF][START_REF] Henderson | Local spinfoam expansion in loop quantum cosmology[END_REF].
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