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Estimation for Conditional Independence

Multivariate Finite Mixture Models

Didier Chauveau∗ David R. Hunter† Michael Levine‡

September 9, 2010

Abstract

The conditional independence assumption for nonparametric mul-
tivariate finite mixture models may be considered to be a weaker form
of the well-known conditional independence assumption for random ef-
fects models for longitudinal data. After summarizing important recent
identifiability results, this article describes and extends an algorithm
for estimation of the parameters in these models. The algorithm works
for any number of components and any dimensionality of at least three,
and it possesses a descent property and can be easily adapted to situa-
tions where the data is grouped in blocks of conditionally independent
variables. We discuss how to adapt this algorithm to various location-
scale models that link component densities, and we even adapt it to
a particular class of univariate mixture problems in which the com-
ponents are assumed symmetric. We also give an example of possible
bandwidth selection procedure for our algorithm. The effectiveness
of the new algorithm is demonstrated in a simulation study and two
psychometric datasets.

1 Introduction

The analysis of longitudinal data generally involves multivariate observa-

tions for each subject in which the correlation among observations for a
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given subject must be taken into account. A common method for modeling

this situation is the so-called “conditional-independence model” (Laird and

Ware, 1982), in which each multivariate observation, say Xi for 1 ≤ i ≤ n,

consists of a subject-specific effect plus random noise. The hallmark of

the conditional independence model is that the noise is independent; i.e.,

conditional on the subject-specific effect, the multivariate vector consists

of independent observations. Furthermore, each subject-specific effect may

depend on certain covariates that are observed, but it also depends on an

unobserved, or latent, feature of the individual. Importantly, all aspects of

the traditional random-effects model for longitudinal data—in particular,

the subject-specific effects and the independent random noise—are consid-

ered to be realizations from some parametric model that is specified a priori,

and the parameters are the objects of statistical estimation.

Here, we relax the traditional parametric assumption of the conditional-

independence random effects model. The model we use retains the charac-

teristic conditional independence assumption, but instead of subject-specific

effects, we posit that the population is divided into m distinct components,

each subject belonging to one of those components, and that each multi-

variate observation has independent measurements conditional on the com-

ponent from which the individual comes. Trading the usual specific-subject

effect for the less-specific component effect leads to a finite mixture model,

and as we shall see below, it allows us to do away with the parametric as-

sumption altogether. We are therefore led to consider nonparametric finite

mixture models under an assumption of conditional independence.

Specifically, suppose the r-dimensional vectors X1, . . . ,Xn are a simple

2

ha
l-0

05
58

83
4,

 v
er

si
on

 1
 - 

24
 J

an
 2

01
1



random sample from a finite mixture density of m components f1, . . . , fm,

withm > 1 and known in advance. It is assumed throughout this manuscript

that each one of these densities fj is equal with probability 1 to the product

of its marginal densities:

fj(x) =
r∏

k=1

fjk(xk). (1)

Taking a fully nonparametric approach with regard to estimating the fjk,

we may therefore express the finite mixture density as

Xi ∼ gθ(xi) =
m∑
j=1

λj

r∏
k=1

fjk(xik), (2)

where λ = (λ1, . . . , λm) must satisfy

m∑
j=1

λj = 1 and each λj ≥ 0. (3)

Here, we assume Xi = (Xi1, . . . , Xir)> and we let θ denote the vector of

parameters to be estimated, including the mixing proportions λ1, . . . , λm

and the univariate densities fjk. Furthermore, throughout this article, j

and k always denote the component and coordinate indices, respectively;

thus, 1 ≤ j ≤ m and 1 ≤ k ≤ r.

This finite-mixture version of the conditional independence assumption

has appeared in a growing body of literature on non- and semi-parametric

multivariate mixture models. Hettmansperger and Thomas (2000) intro-

duced a more restrictive version of (2) in which the fjk depended only on

j. This conditionally i.i.d. (independent and identically distributed) finite

mixture model was later examined by Elmore and Wang (2003) and Cruz-

Medina and Hettmansperger (2004). Hall and Zhou (2003) considered (2)
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in its full generality, establishing some rudimentary results concerning the

identifiability of the parameters in this model. Other articles (Elmore et al.,

2005; Hall et al., 2005) explored this identifability question further, until

Allman et al. (2009) established the fundamental result that we elucidate

fully in Section 2. Benaglia et al. (2009a) proposed an estimation algorithm

for (2), which was later modified and put on more solid theoretical ground

by Levine et al. (2010), who showed that the modified algorithm possesses

a descent property, much like any EM algorithm. In Section 3 of this arti-

cle, we extend the algorithm of Levine et al. (2010), and in Section 5, we

summarize numerical tests of the extended algorithm.

2 Identifiability

The fundamental result concerning identifiability of finite mixtures of non-

parametric measure products is due to Allman et al. (2009). It is based

on a fundamental algebraic result of Kruskal (1976, 1977) that we need to

present first. J. B. Kruskal studied contingency tables in the context of

his interest in psychometrics. His work describes a 3-way contingency table

that cross-classifies a sample of n individuals with respect to 3 polytomous

variables, the kth of which has a state space {1, . . . , κk}. This classification

can also be described in terms of the latent structure model. Assume that

there is a latent (unobservable) variable Z with values in {1, . . . ,m}. Let

us suppose that each of the individuals is known to belong to one of m la-

tent classes and, conditionally on knowing the exact class j, j = 1, . . . ,m,

the 3 observed variables are mutually independent. Then latent class struc-

ture explains relationships among the categorical variables that we observe
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through the contingency table.

For more detailed explanation, some algebraic notation is needed. For

k = 1, 2, 3, let Ak be a matrix of size m× κk, with akj = (akj (1), . . . , akj (κk))

being the jth row of Ak Later, we will see that akj (`) is the probability that

the kth variable is in the `th state, conditional on the observation coming

from the jth mixture component. Let A1 × A2 × A3 be the κ1 × κ2 × κ3

tensor defined by

[A1, A2, A3] =
m∑
j=1

a1
j

⊗
a2
j

⊗
a3
j . (4)

Using simpler language, the tensor [A1, A2, A3] is a three-dimensional ar-

ray whose element with coordinates (u, v, w) is a sum of products of elements

of matrices Ak, k = 1, 2, 3, with column numbers u, v, and w, respectively,

added up over all of the m rows:

[A1, A2, A3]u,v,w =
m∑
j=1

a1
j (u)a2

j (v)a3
j (w).

Such a tensor describes exactly the probability distribution in a finite latent-

class model with three observed variables. To see why this is the case,

imagine that there is some latent variable Z that takes positive integer

values from 1 to some m > 1 and each of the n individuals belongs to one

of m latent classes. If the 3 observed variables are mutually independent

when the specific latent class j, 1 ≤ j ≤ m, is known, we have a mixture of

m components with each component being a product of finite measures and

probabilities λj
def=P (Z = j), j = 1, . . . ,m being the mixing probabilities.

Now, let the jth row of the matrix Ak be the vector of probabilities of the

kth variable conditioned on belonging to jth class pjk = P (Xk = · |Z = j).

5
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Choose one of the three matrices (say, A1) and define Ã1 = diag(λ)A1,

where λ = (λ1, . . . , λm)> is a vector describing the distribution of the latent

class variable Z. Then, the (u, v, w) element of the tensor [Ã1, A2, A3] is the

unconditional probability P (X1 = u,X2 = v,X3 = w) and, therefore, the

joint probability distribution in such a model is exactly described by the

tensor (4).

Define the Kruskal rank of a matrix A, rankKA, as the largest number

I of rows such that every set of I rows of A is independent. The following

result was established by Kruskal in the mid-1970s.

Theorem 1. Let Ik = rankKAk. If

I1 + I2 + I3 ≥ 2m+ 2,

then [A1, A2, A3] uniquely determines the Aj, up to simultaneous permuta-

tion and rescaling of rows.

Kruskal’s result is very general and is a cornerstone of several subsequent

results establishing identifiability criteria for various latent structure models

with multiple observed variables. The one that follows most directly is the

identifiability result of finite mixtures of finite measure products. Mixtures

of that type have been widely used to model data in biological taxonomy,

medical diagnosis or classification of text documents (for some practical ex-

amples, see Glick, 1973; Nigam et al., 2000). It was understood long ago

that finite mixtures of Bernoulli products are not identifiable in a strict

sense (see Gyllenberg et al., 1994); however, these mixtures are known to be

well behaved in practice with respect to statistical parameter inference (see,
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for example, Carreira-Perpiñán and Renals, 2000). Allman et al. (2009)

explained this seeming contradiction by providing exact sufficient condi-

tions for generic identifiability of these mixtures, up to the label swapping.

Generic identifiability here is understood to mean identifiability on the en-

tire parameter set except a subset of Lebesgue measure zero. The subset

can be precisely described using terminology from algebraic geometry. For

more details, see Allman et al. (2009).

Models that can also be viewed from the same latent structure viewpoint

include random graph mixture models, hidden Markov models, and finite

mixtures of nonparametric measure products. An important contribution

of Allman et al. (2009) is that, for the first time, all of these various latent

class models have been shown to be generically identifiable and that all of

these identifiability results are derived using just one fundamental result

from algebraic geometry—Kruskal’s theorem 1.

Let us recall that we are specifically interested in finite mixtures of non-

parametric measure products. We consider a nonparametric model of finite

mixtures of m probability distributions. Each distribution is specified as

a measure µj on Rr, 1 ≤ j ≤ m. Assume that the dimensionality r (the

number of classification variables) is at least 3. The kth marginal of µj is de-

noted µkj . As before, let Z be the variable defining the latent structure of the

model with values in {1, . . . ,m} and P (Z = j) = λj for any j = 1, . . . ,m.

Then, the mixture model becomes

P =
m∑
j=1

λjµj =
m∑
j=1

λj

r∏
k=1

µkj . (5)

This model implies that the r variates are, yet again, independent condi-

7

ha
l-0

05
58

83
4,

 v
er

si
on

 1
 - 

24
 J

an
 2

01
1



tional on a latent structure. The next theorem can be proved by using cut

points to discretize the continuous distribution described by the measure

P and using Kruskal’s theorem. The details can be found in Allman et al.

(2009).

Theorem 2. Let P be a mixture of nonparametric measure products as

defined in (5) and, for every variate k ∈ {1, . . . , r}, the marginal mea-

sures {µkj }1≤j≤m are linearly independent in the sense that the corresponding

(univariate) distribution functions satisfy no nontrivial linear relationship.

Then, if the number of variates r ≥ 3, the parameters {λj , µkj }1≤j≤m,1≤k≤r

are uniquely identifiable from P, up to label swapping.

3 The algorithm and its extension

3.1 Notational conventions

Let Ω be a compact subset of Rr and define the linear vector function space

F = {f = (f1, . . . , fm)> : 0 < fj ∈ L1(Ω), log fj ∈ L1(Ω), j = 1, . . . ,m}.

Take K(·) to be a kernel density function on the real line and, with a slight

abuse of notation, define the product kernel function K(u) =
∏r
k=1K(uk).

For a row-vector h = (h1, . . . , hr), define the rescaled version of K by

Kh(u) =
∏r
k=1 h

−1
k K(h−1

k uk). For f ∈ L1(Ω), the smoothing operator Sh is

defined by

Shf(x) =
∫

Ω
Kh(x− u)f(u) du

and its corresponding nonlinear operator Nh by

Nhf(x) = exp {(Sh log f)(x)} = exp
∫

Ω
Kh(x− u) log f(u) du.

8
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This Nh operator is strictly concave (Eggermont, 1999, Lemma 3.1) and

also multiplicative in the sense that Nhfj =
∏
kNhk

fjk for fj defined as in

Equation (1). Letting H denote the m×r bandwidth matrix (h>1 , . . . ,h
>
m)>,

we may extend S (or N ) to F by defining SHf = (Sh1f1, . . . ,Shmfm)>.

Define the finite mixture operator

Mλf(x) def=
m∑
j=1

λjfj(x),

whence we also obtain Mλf(x) = gθ(x) as in Equation (2), and

MλNHf(x) def=
m∑
j=1

λjNhj
fj(x).

3.2 The Descent Property

Let g(x) now represent a known target density function. Following Levine

et al. (2010), we define the functional

`H(θ, g) =
∫

Ω
g(x) log

g(x)
[MλNHf ](x)

dx, (6)

which can be viewed as a penalized Kullback-Leibler distance between g(x)

and (MλNHf)(x). Letting θ0 = (λ0, f0), define

f̂jk(u) = αjk

∫
Khjk

(xk − u)g(x)w0
j (x) dx, (7)

where

w0
j (x) def=

λ0
jNhj

f0
j (x)

Mλ0NHf0(x)
, (8)

which implies
∑m

j=1w
0
j (x) = 1, and αjk is a constant chosen so that

∫
f̂jk(u) du =

1. Furthermore, let

λ̂j =

∫
g(x)w0

j (x) dx∑m
a=1

∫
g(x)w0

a(x) dx
=
∫
g(x)w0

j (x) dx. (9)

9
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The newly updated θ̂ = (λ̂, f̂) then satisfies the following “descent prop-

erty”:

`H(θ̂, g) ≤ `H(θ0, g). (10)

This fact relies on a so-called MM algorithm, which stands for majorization-

minimization algorithm, and its proof follows the proof of an analogous result

in Levine et al. (2010) almost exactly except for the presence of the different

bandwidth values H. For a general introduction to MM algorithms, which

generalize the well-known class of iterative maximum likelihood algorithms

known as EM algorithms, see Hunter and Lange (2004).

3.3 Estimation of Parameters

We now assume that we observe a simple random sample x1, . . . ,xn dis-

tributed according to some r-dimensional density g(x). One may posit that

g ≡ gϑ, where ϑ represents the “true” parameter values and gϑ is defined

as in Equation (2), or one may instead take the view that the truth is not

contained in our model class and that the goal of estimation is merely to

minimize the criterion function `H(θ), thereby finding in some sense a “best”

vector θ to approximate the truth by a density of the form (2). Since we do

not discuss any notion of consistency in the current article, either point of

view will work here.

Letting G̃n(·) denote the empirical distribution function of the sample

and ignoring the term
∫
g(x) log g(x) dx that does not involve any parame-
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ters, a discrete version of (6) is

`H(θ) def=
∫

log
1

[MλNHf ](x)
dG̃n(x)

= −
n∑
i=1

log {[MλNHf ](xi)} . (11)

For the sake of notational simplicity, we drop the explicit dependence of `H

on G̃n(·) here; we trust that this re-definition of `H will not cause confusion,

as it is essentially the same function as in Equation (6). In its new form,

Equation (11), it resembles a loglikelihood function except for the presence

of the nonlinear smoothing operator NH and the fact that with the negative

sign preceding the sum, our goal is minimization rather than maximization.

Here, we recall the maximum smoothed likelihood (MSL) algorithm from

Levine et al. (2010): In that algorithm, it is possible to fix some of the coor-

dinates in the x vectors to be identically distributed, in additional to being

conditionally independent. We say that groups of conditionally independent

and identically distributed coordinates belong to the same “block”. Let bk

denote the block index of the kth coordinate, where 1 ≤ bk ≤ B and B is

the total number of such blocks, so that the model is

gθ(xi) =
m∑
j=1

λj

r∏
k=1

fjbk(xik). (12)

A simplification is possible when bk = k for all k, whereby (12) becomes (2).

Assuming model (12) and letting hj` be the bandwidth used in the jth

component and the `th block, the objective function of Equation (11) may

be written

`H(θ) = −
n∑
i=1

log
m∑
j=1

λj exp

{
r∑

k=1

∫
Khjbk

(xik − u) log fjbk(u) du

}
. (13)
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With initial parameter values θ0 = (f0,λ0), our modified MSL algorithm

iterates the following steps for t = 0, 1, . . .:

• Majorization step: Define, for each i and j,

wtij =
λtjNhj

f tj (xi)∑m
a=1 λ

t
aNhaf

t
a(xi)

=
λtj
∏r
k=1Nhjbk

f tjbk(xik)∑m
a=1 λ

t
a

∏r
k=1Nhabk

f tabk(xik)
. (14)

• Minimization step, part 1: Set, for j = 1, . . . ,m,

λt+1
j =

1
n

n∑
i=1

wtij (15)

• Minimization step, part 2: For each component j and block ` ∈

{1, . . . , B}, let

f t+1
j` (u) =

1
nhj`λ

t+1
j C`

r∑
k=1

n∑
i=1

wtijI{bk=`}K

(
u− xik
hj`

)
, (16)

where C` =
∑r

k=1 I{bk=`} is the number of coordinates in the `th block, and

hj` is the bandwidth for the kernel density estimate corresponding to the `th

block in the jth component. It appears at first glance that the bandwidths

hj` in the second M-step (16) need not be the same as those in the E-

step (14). However, in order to prove that our new algorithm retains the

desirable descent property, we require an analogue of Equation (7), which

means that these bandwidths must indeed match. We demonstrate in the

Appendix how to adapt a method of proof given by Levine et al. (2010) to

show that `H(θt) is nonincreasing in t using the algorithm in this section.

In other words, equations (14) through (16) ensure that

`H(θt+1) ≤ `H(θt). (17)
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3.4 Bandwidth Selection

As discussed in Benaglia et al. (2009a) in the case of the similar npEM

algorithm, the selection of a bandwidth in a mixture setting like (12) can be

an intricate problem, and there are several reasons for which using a single,

fixed bandwidth as in (16) is not always appropriate. An iterative bandwidth

scheme adapting the well-known rule of Silverman (Silverman, 1986, p. 46)

has been proposed in Benaglia et al. (2010) for the npEM algorithm. Briefly,

it amounts to replacing, in Silverman’s rule

h = 0.9 min
{

SD,
IQR
1.34

}
n−1/5 (18)

for a simple random sample, the sample size (n), interquartile range (IQR)

and standard deviation (SD) by corresponding block- and component-wise

versions. These estimates are to be iteratively defined using the posterior

probabilities. This scheme can be applied straightforwardly in the npMSL

algorithm and gives estimated bandwiths at (t+ 1)th iteration,

ht+1
j` = 0.9 min

{
σt+1
j` ,

IQRt+1
j`

1.34

}
(nC`λt+1

j )−1/5, (19)

where nC`λt+1
j estimates the sample size for the `th block of coordinates

in the jth component, and σt+1
j` and IQRt+1

j` are the weighted standard

deviation and empirical interquartile range for the jth component and `th

block, as introduced in Benaglia et al. (2010), but using here the wtij to

weight the data.

However, the major difference between the npEM algorithm and our

MSL algorithm is that the latter satisfies a descent property when the band-

widths hj` are fixed throughout. It remains an open question whether there

13
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is any sort of descent property that is satisfied by a modified MSL in which

the bandwidths are iteratively updated. A deeper question is whether there

is some sense in which the iteratively updated hj` converge in some sense to,

say, the “oracle” bandwidths that would result if somehow the true parame-

ter vector ϑ were known and the modified Silverman rule (19) were applied

using the true parameter values. We do not tackle these difficult questions

in the current article.

Nonetheless, it is possible in theory to implement a two-stage algorithm

in which the bandwidths are allowed to change for several iterations (until a

reasonable estimate of the mixture structure and thus the set of bandwidths

is achieved), then the bandwidths are fixed and the algorithm allowed to

converge. Such a scheme allows for both a reasonable set of bandwidth

estimates and the guaranteed descent property beginning from the point at

which the bandwidths are fixed. In practice, however, note that this is no

different from a scheme in which the first stage is allowed to run until some

convergence criterion is satisfied, since fixing the bandwidths at that stage

and continuing to run the algorithm does not result in any further changes

because the algorithm has already achieved convergence according to the

original criterion. The downside to such a scheme is that the inability to

verify any descent property removes one possible method to check that the

algorithm is coded correctly. In our numerical examples in Section 5, we

find that the scheme appears to work well.

14
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4 Extensions of the estimation algorithm

Here, we discuss two extensions of the basic idea of the algorithm of Sec-

tion 3.3 to situations distinct from, but related to, model (2). The first

is a univariate case in which a more stringent assumption is required for

identifiability. The second is multivariate but with an assumption that the

components and/or the coordinates differ only by a location or a scale pa-

rameter. Proofs of the descent properties of the algorithms in this section

are given in the Appendix.

4.1 The Univariate Symmetric Location Model

Both Bordes et al. (2006) and Hunter et al. (2007) showed that, for univariate

X ∼
m∑
j=1

λjf(x− µj), (20)

where each λj is positive, all µj are distinct,
∑

j λj = 1, and f is some

density function on R that is symmetric about zero, the parameters λ, µ,

and f are uniquely identifiable when m = 2 (up to label-switching) from the

density of X as long as λ1 6= 1/2. Furthermore, Hunter et al. (2007) showed

that for m = 3, the parameters are uniquely identifiable except when λ, µ

take values in a particular set of Lebesgue measure zero, conjecturing that

a similar result may be shown for general m. We will assume here that

f is absolutely continuous with respect to Lebesgue measure, though this

assumption is not necessary for the above identifiability results to hold.

Although both Bordes et al. (2006) and Hunter et al. (2007) proposed

methods for estimating the parameters in (20) given a simple random sam-

ple x1, . . . , xn distributed according to (20), these methods were inefficient
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and were not easily generalizable beyond the case m = 2. Later, Bordes

et al. (2007) proposed a stochastic EM-like estimation algorithm that is eas-

ily generalizable to any m; however, this algorithm does not possess the

descent property of a typical EM algorithm. Here, we discuss an estimation

algorithm that does guarantee a descent property.

Given a bandwidth h, together with initial parameter values θ0 = (f0,λ0,µ0),

iterate the following steps for t = 0, 1, . . .:

• Majorization step: Define, for each i and j,

wtij =
λtjNhf t(xi − µtj)∑m
a=1 λaNhf t(xi − µta)

(21)

• Minimization step, part 1: Set, for j = 1, . . . ,m,

λt+1
j =

1
n

n∑
i=1

wtij (22)

• Minimization step, part 2: For any u ∈ R, let

f t+1(u) =
1

2nhλt+1
j

m∑
j=1

n∑
i=1

wtij

[
K

(
xi − µtj − u

h

)

+K

(
xi − µtj + u

h

)]
. (23)

• Minimization step, part 3: For j = 1, . . . ,m, let

µt+1
j = arg max

µ

∫ n∑
i=1

wtijK

(
xi − u
h

)
log f t+1(u− µ) du. (24)

Equation (23) assures that f(u) = f(−u), which is required due to the

symmetry assumption. This algorithm guarantees that `h(θt) of Equa-

tion (11) is nonincreasing in t, where in this model we may express this
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objective function in the form

`h(θt) = −
n∑
i=1

log
m∑
j=1

λtj [Nhf t](xi − µtj). (25)

In other words, this algorithm has a provable descent property. However,

the “minimization” step in this algorithm is slightly misnamed, since parts 1

through 3 do not result in a global minimization of the majorizing function.

Instead, as verified in the Appendix, part 2 minimizes only as a function of

f , while holding µ fixed at µt. Then part 3 minimizes as a function of µ,

while holding f fixed at f t+1. Thus, each of these parts results in a lowering

of the value of the majorizing function, which in turn guarantees a decrease

in `h(θ). It is a small drawback that the maximization of Equation (24)

must be accomplished numerically, but since this is merely a one-dimensional

maximization for each j, it can easily be accomplished as long as the integral

in Equation (24) is inexpensive to calculate for a given µ.

One could modify the above algorithm by alternating between iterations

that implement only parts 1 and 2 and iterations that implement only parts

1 and 3 of the maximization step. Because this idea holds part of the

parameter vector fixed at each iteration and optimizes only with respect to

the rest of the parameters, it produces something that might be called an

MCM (majorization-conditional maximization) algorithm, analogous to the

ECM (expectation conditional maximization) algorithm of Meng and Rubin

(1993).

17

ha
l-0

05
58

83
4,

 v
er

si
on

 1
 - 

24
 J

an
 2

01
1



4.2 The location-scale model

It is not difficult to restrict model (2) somewhat while still retaining the

essential nonparametric character of the estimation: We may assume that

the various univariate density functions in Equation (2) have the same shape,

not assumed to follow any parametric form, but that they differ from one

another in a parametric way. There are various ways in which this may be

accomplished. For example, Qin and Leung (2006) propose an “exponential

tilt” idea in which the ratio of one component’s density functions to another’s

has a specific parametric form, namely, log[f2k(x)/f1k(x)] is a quadratic

function of x for each k. (They consider only the case m = 2 and r = 3.)

By contrast, we assume here, as in Benaglia et al. (2009a), that

fj`(x) =
1
σj`

fj

(
x− µj`
σj`

)
(26)

for unknown parameters (µj ,σj , fj), j = 1, . . . ,m, we are assuming that

the coordinates within each individual have the same shape of distribution

(depending on the individual’s mixture component) but may differ by a

location and scale factor. One may restrict the model of Equation (26) even

further by assuming that all µj or all σj are the same, in which case we have

either a scale-only or a location-only model, respectively. Alternatively, we

may assume that

fj`(x) =
1
σj`

f`

(
x− µj`
σj`

)
, (27)

in which case the individual differences, i.e., the mixture components, only

account for differences up to a location and scale parameter, but otherwise

the distributions of different blocks of coordinates do not relate to one an-

other in any way. Equation (26) differs from Equation (27) by only a single
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subscript on the density f , yet the interpretations of the two models are

quite different.

As a special case of both (26) and (27), if all fjk are assumed to have

the same shape, then we may require that

fj`(x) =
1
σj`

f

(
x− µj`
σj`

)
(28)

for a single unspecified density function f(·).

Because fj in equation (26) is completely unspecified, the location and

scale parameters may be absorbed into fj , so the parameters are not uniquely

identiable even if each fj` is known. Therefore, one may assume some addi-

tional constraints on the µj` and σj`, such as
∑

` µj` = 0 and
∑

` σj` = 1. In

practice, however, it is typically not necessary to enforce these constraints.

Similar arguments can be made for the parameters in equations (27) and

(28).

Employing the block structure of Equation (12) instead of the less general

Equation (2), we may modify the algorithm of Section 3.3. Equations (14)

and (15) remain unchanged, but we must modify Equation (16) to either

f t+1
j (u) =

1
nrhjλ

t+1
j

r∑
k=1

n∑
i=1

wtijK

(
u− xik + µtjbk

hjσtjbk

)
(29)

or

f t+1
` (u) =

1
nh`λ

t+1
j C`

r∑
k=1

n∑
i=1

m∑
j=1

wtijI{bk=`}K

(
u− xik + µtjbk

h`σ
t
jbk

)
, (30)

where C` =
∑r

k=1 I{bk=`}, depending upon whether we take Equation (26)

or Equation (27) as our assumption. In addition, the updates to the µ

and σ parameters would take place in a separate part of the minimization
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step, as in Equation (24). The resulting algorithm would be similar to the

one described in Section 20: It is not an MM algorithm exactly, but it is

very similar and most importantly it guarantees a decrease in the desired

objective function (13).

5 Numerical examples

5.1 A synthetic example

To illustrate the iterative and block- and component-specific bandwidths, we

choose first a simulated example with heavy-tailed distributions and different

scales among the coordinates. The model is multivariate with r = 5 repeated

measures grouped into B = 2 blocks of sizes 3 and 2 (b1 = b2 = b3 = 1 and

b4 = b5 = 2) and m = 2 components. Block 1 corresponds to a mixture of

two noncentral Student t distributions, t(2, 0) and t(10, 4), where the first

parameter is the number of degrees of freedom and the second is the non-

centrality. Block 2 corresponds to a mixture of Beta distributions, B(1, 1)

(which is actually the uniform distribution over [0, 1]) and B(1, 5). The first

component weight is λ1 = 0.4. For this example, in which the coordinate

densities are on different scales, it is obvious that the bandwidth should

depend on the blocks and components.

A simple run of the original npMSL algorithm results in a single fixed

bandwith h = 0.527, while a run with the above scheme gives the following

(final) bandwidth matrix:

component 1 component 2
block 1 0.316 0.343
block 2 0.089 0.038

The estimates of the component and block densities are shown in Figure 1.
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In that figure, we see that the original npMSL algorithm gives a nearly

identical estimate of the densities in the first block, but the estimates are

dramatically different in the second block.
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Figure 1: The two colors designate the two components; the solid and dashed
lines are the fixed-single-bandwidth and adaptive-multiple bandwidth npMSL
solutions, respectively.

Remark: The choice of the Gaussian kernel K in Figure 1 may ex-

plain the “leaking” of mass seen at the edges of the second block’s density

estimates. Though choice of kernel function is not generally very influen-

tial, a different choice such as a triangle density might prevent such leakage.

Studying such a boundary correction could be the subject of future work.
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5.2 Water-level dataset

As an illustration of the adaptive block- and component-wise bandwidth

approach, we consider a benchmark dataset which has previously been ana-

lyzed by Hettmansperger and Thomas (2000) and Elmore et al. (2004) with

a conditionally i.i.d. (independent and identically distributed) assumption,

and more recently by Benaglia et al. (2009a) and Levine et al. (2010) under

the same assumptions we make here. This experiment involves n = 405

children aged 11 to 16 years subjected to a written test as initially described

by Thomas et al. (1993). In this test, each child is presented with eight

rectangular drawings of a vessel on a sheet of paper, each tilted to one of

r = 8 clock-hour orientations: 11, 4, 2, 7, 10, 5, 1, and 8 o’clock, in order of

presentation to the subjects. The children’s task was to draw a line repre-

senting the surface of still liquid in the closed, tilted vessel in each picture.

The acute angle, in degrees, formed between the horizontal and this line

was measured for each response, the associated sign being the sign of the

slope of the line. The water-level dataset is available in the mixtools package

(Young et al., 2009; Benaglia et al., 2009b).

As in Benaglia et al. (2009a) and Levine et al. (2010), it seems rea-

sonable to weaken the conditionally i.i.d. assumption, assuming instead

that only opposite clock-face orientations lead to conditionally independent

and identically distributed responses, so that the eight coordinates may

be organized into four blocks of two each, which is model (12) with B=4.

According to the ordering of the clock-hour orientations, we thus define

b = (4, 3, 2, 1, 3, 4, 1, 2). For instance, we see that b4 = b7 = 1, which means
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block 1 relates to coordinates 4 and 7, corresponding to clock orientations

1:00 and 7:00.
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Figure 2: The water-level data analyzed using the npMSL algorithm with
m = 3 mixture components and a fixed bandwidth h = 4.

We first consider here the m = 3-component model as studied in Levine

et al. (2010) to compare the npMSL with fixed bandwidth against the adap-

tive strategy. Figure 2 gives the solution returned by the npMSL algorithm

with a fixed bandwidth preset to h = 4, as in Benaglia et al. (2009a) and

Levine et al. (2010). This value has been chosen by trial an error by these
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authors, instead of allowing the algorithm compute a fixed bandwidth value

using Silverman’s rule as in (18). However, using that rule would result in a

fixed bandwidth value of h = 1.47, and correspondingly more jagged compo-

nent densities, but qualitatively the same overall solution. The interpreta-

tion of this solution is that component 2 (green) represents the 46.5% of the

subjects who know how to do the task—the “competent group”—whereas

component 3 (blue) represents the 6.4% of the subjects who always draw

the line parallel to the vessel bottom. The first component (red, with 47%)

is perhaps the most interesting: These subjects in the “slightly confused

group” appear to perform the task nearly correctly for the more vertically

oriented vessels (1, 5, 7, and 11 o’clock) but tend to allow the water level

to slant somewhat with the vessel itself when the vessel is tipped to a more

horizontal orientation.

Figure 3 gives the solution returned by the npMSL algorithm with the

adaptive bandwidth given by (19). The corresponding bandwidth matrix is

displayed in Table 1, which shows that the bandwith differences are mostly

between components.

Table 1: Adaptive bandwidths per block and components for the Water level
data, at the npMSL last iteration.

component 1 component 2 component 3
block 1 12.17 1.46 0.975
block 2 14.0 2.74 2.276
block 3 19.19 2.55 2.276
block 4 12.36 1.28 1.63

The qualitative interpretation appears simpler here, since the competent
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Figure 3: The water-level data analyzed using the npMSL algorithm with
m = 3 mixture components and adaptive bandwidths given in Table 1.

group now represents 83% of the subjects (but seems to encompass most

of the previous slightly confused group), while the group of subjects who

always draw the line parallel to the vessel bottom lowers to 4.6%, with more

clear peaks on ±30 and ±60 due to this component smaller bandwidths. An

interesting fact is also that the first (red) component is far less important

(12%) and appears to retain qualities of the previous slightly confused group

but also includes some even stranger behavior that is close to uniform, or
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“totally guessing.” Hence in this example, allowing bandwidth to change

adaptively results in a very different qualitative interpretation.

However, if we fit a m = 4 components model with the npMSL algorithm

and adaptive bandwidth strategy, we identify all four previously mentioned

groups. A typical result is in Fig. 4, and the final bandwidth matrix is

omitted for brevity. The competent group represents again about 45% of

the subjects, and is distinct from the 43% slightly confused group. The

group who always draw the line parallel to the vessel bottom drops to 3.7%

which is more in accordance with the result from Fig.3, and distinct from

the 7% totally guessing group.

5.3 A psychometric data example

The data in this section come from a large-scale psychometrics study ex-

ploring cognitive task performances for children with specific language im-

pairments, presented in Miller et al. (2001). Response (or Reaction) Times

(RT) with which the children respond to a range of tasks are recorded in

milliseconds. We focus in particular on one experiment that Miller et al.

(2001) call a “simple RT task”: The child is instructed to strike a key as

quickly as possible in response to a visual signal, which itself is emitted after

a delay following the word “ready” said by the child. There are 8 trials for

each of three time delays of 1, 2 and 5 seconds. Tasks are mixed into a much

longer sequence of trials so that the child does not know exactly what the

next task would be, so that independence of the repeated measures for each

child may reasonably be assumed. This dataset with n = 82 subjects and

r = 24 coordinates is available in the mixtools package (Young et al., 2009;
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Figure 4: The water-level data analyzed using the npMSL algorithm with
m = 4 mixture components and adaptive bandwidths strategy.

Benaglia et al., 2009b) for the R statistical software environment (R Devel-

opment Core Team, 2010), and is loaded by the data(RTdata2) command.

This experiment supports a model with B = 3 blocks of 8 coordinates

each, each block corresponding to a delay between the “ready” sign and

the stimulus. This data set is interesting because it illustrates the potential

interest of the conditional independence model for multivariate data with

a large number of coordinates and block structure suggested by scientific
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considerations.

We ran the npMSL algorithm with fixed and adaptive bandwidth strate-

gies. Results in Fig. 5 show that there is almost no difference between the

two, which is not surprising because the component densities have similar

scaling properties. However, one can see that the third block, which cor-

responds to the longer delay of 5 seconds, shows densities slightly shifted

to the right. We find that no matter what the delay is, we can essentially

describe the two groups as a “faster group” and a “slower group”, where the

former represents 72% of the subjects.
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Figure 5: Density estimates for the simple RT task with B = 3 blocks of
8 coordinates each, and m = 2 components: npMSL with fixed bandwidth
(dashed line), and adaptive bandwidths (solid line). The component weights
are (0.72, 0.28).

28

ha
l-0

05
58

83
4,

 v
er

si
on

 1
 - 

24
 J

an
 2

01
1



6 Discussion

This manuscript reviews the justification for the conditional independence

assumption in multivariate finite mixture models and summarizes what is

known about the identifiability of parameters in these models when no as-

sumption is made about the parametric form of the component densities.

In particular, we review the important results in Allman et al. (2009), who

prove that conditional independence implies identifiability under weak as-

sumptions as long as the multivariate observations have dimension at least

three.

We review the npMSL algorithm of Levine et al. (2010) and introduce

a method for selecting bandwidths, which is an important aspect of the

practical implementation of this algorithm. In addition, we extend the idea

of Levine et al. (2010) to the special cases of a univariate location mixture

of symmetric components and a multivariate location-scale mixture. These

special cases require a generalization of the notion of MM (majorization-

minimization) algorithms since it is impossible to achieve a closed-form

global minimization with respect to all parameters in the second “M” step.

Finally, we give proofs of the descent properties of our algorithms when the

bandwidths are held constant.

The important feature of the npMSL algorithm and the extension we

introduce in the current article is that it is shown to minimize (at least

locally) a particular objective function. This function may be considered

a nonlinearly smoothed version of the nonparametric likelihood function.

The fact that our estimators may be shown to optimize this function opens
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the door for potential results on asymptotic properties of the algorithm,

such as consistency and convergence rates. Such results appear much more

difficult to establish for the similar npEM algorithm of Benaglia et al. (2009a,

2010) because that algorithm does not appear to optimize any type of a

loglikelihood-like function despite its resemblance to an EM algorithm.
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A Proofs of descent properties

Recall throughout this section that the parameter vector θ consists of the

mixing weights λ and the univariate densities fj`, 1 ≤ j ≤ m and 1 ≤ ` ≤ B.

For a given (fixed) θt, let the constants wtij be defined as in Equation (14).

We first state and prove two lemmas, each based on the following definition:

btH(θ) = −
n∑
i=1

m∑
j=1

wtij log
{
λj [Nhj

fj ](xi)
}
. (31)

Lemma 1. Let `H(θ) be defined as in Equation (11). Then

`H(θ)− `H(θt) ≤ btH(θ)− btH(θt). (32)

Proof:

`H(θ)− `H(θt) = −
n∑
i=1

log
m∑
j=1

λj [Nhj
fj ](xi)

[MλtNHf t](xi)

= −
n∑
i=1

log
m∑
j=1

wtij
λj [Nhj

fj ](xi)
λtj [Nhj

f tj ](xi)

≤ −
n∑
i=1

m∑
j=1

wtij log
λj [Nhj

fj ](xi)
λtj [Nhj

f tj ](xi)

= btH(θ)− btH(θt),
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where the inequality follows from the convexity of the negative logarithm

function and the fact that
∑

j w
t
ij = 1 for each i.

Remark: In the terminology of MM algorithms (see, for example,

Hunter and Lange, 2004), the result of Lemma 1 means that btH(θ) is said

to majorize `H(θ) at the point θ = θt.

Lemma 2. If θt+1 = (λt+1, f t+1), where λt+1
j and f t+1

j` are defined as in

Equations (15) and (16), respectively, then θt+1 minimizes btH(θ).

Proof: As a function of λ,

btH(θ) = −
m∑
j=1

log λj

(
n∑
i=1

wtij

)
+ something not involving λ.

Subject to the constraint
∑

j λj = 1, this is straightforward to minimize via

a standard argument using a Lagrange multiplier. Since
∑

i

∑
j w

t
ij = n,

Equation (15) gives the minimizer.

As a function of fj`,

btH(θ) = −
n∑
i=1

wtij

r∑
k=1

I{bk=`} log
{

[Nhj`
fj`](xik)

}
+ something not involving fj`. (33)

The piece involving fj` may be rewritten

−
∫ n∑

i=1

r∑
k=1

wtijI{bk=`}Khj`
(xik − u) log fj`(u) du,

which is a constant times −
∫
f t+1
j` (u) log fj`(u) du if we define f t+1

j` as in

Equation (16). However, this is merely the Kullback-Leibler divergence be-

tween f t+1
j` and fj` plus something not involving fj`. We conclude that (33)

is minimized for each j and ` by setting fj` = f t+1
j` .

Putting the two lemmas together, we obtain the following:
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Theorem 3. Let `H(θ) be defined as in Equation (11). Then the algorithm

given in steps (14) through (16) imply the descent property (17).

Proof: Since Lemma 2 implies in particular that btH(θt+1) ≤ btH(θt),

Lemma 1 gives

`H(θt+1)− `H(θt) ≤ btH(θt+1)− btH(θt) ≤ 0.

Corollary 1. Assuming Model (20), the algorithm described by Equations (21)

through (24) guarantees that `h(θt+1) ≤ `h(θt), where `h(θ) is defined in

Equation (25).

Proof: In this case, the observations x1, . . . , xn are not vector-valued

(i.e., r = 1), so there is only a single block and we may drop the subscript `

wherever it occurs in Lemmas 1 and 2 and Theorem 3. Since Equation (11)

is the same as Equation (25) for this special case, Lemmas 1 and 2 imply

that the desired result holds whenever bth(θt+1) ≤ bth(θt), where bth(θ) is

the appropriately modified form of Equation (31). Using a simple change of

variable together with the fact that f(u) = f(−u), we may rewrite

log {[Nhfj ](xi)} =
∫
Kh(xi − u) log f(u− µj) du

=
1
2

∫
[Kh(xi − µj − u) +Kh(xi − µj + u)] log f(u) du.

Thus, bth(θ) becomes

−
∫

1
2

n∑
i=1

m∑
j=1

wtij [Kh(xi − µj − u) +Kh(xi − µj + u)] log f(u) du

+
n∑
i=1

m∑
j=1

wtij log λj .
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Using the same argument as in Lemma 2, if µ is fixed at µt, then bth(θ) is

minimized as a function of λ and f only by λt+1 and f t+1 of Equations (22)

and (23). Then, Equation (24) can only ensure a further decrease in the

value of bth(θ) when f is fixed at f t+1.

Remark: Similar reasoning to that used in the preceding proof, but

without the extra step required because of the symmetry of f in that proof,

demonstrates that the algorithms described in Section 4.2 also guarantee

the descent properties as claimed in that section.
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